Editors

Joseph J. Lieber, MD
Director of Medicine
Elmhurst Hospital Center
Associate Professor of Medicine
Associate Program Director of Medicine for Elmhurst Site
Icahn School of Medicine at Mt. Sinai
New York, NY

Frank P. Noto, MD
Assistant Professor of Internal Medicine
Department of Hospital Medicine
Associate Program Director of Education for Elmhurst Site
Icahn School of Medicine at Mt. Sinai
Internal Medicine Clerkship and Sub-Internship Site Director
Icahn School of Medicine at Mt. Sinai
New York, NY

The editors would like to acknowledge Manuel A. Castro, MD, AAHIVS; Raj Dasgupta, MD, FACP, FCCP, FAASM; Amirtharaj Dhanaraja, MD; Aditya Patel, MD; Irfan Sheikh, MD; and Frazier Stevenson, MD for their contributions.
We want to hear what you think. What do you like or not like about the Notes?
Please email us at medfeedback@kaplan.com.
Table of Contents

Chapter 1: Preventive Medicine ... 1
Chapter 2: Endocrinology ... 11
Chapter 3: Rheumatology ... 61
Chapter 4: Gastroenterology .. 85
Chapter 5: Cardiology .. 125
Chapter 6: Hematology .. 193
Chapter 7: Infectious Diseases .. 225
Chapter 8: Nephrology .. 283
Chapter 9: Pulmonology ... 331
Chapter 10: Emergency Medicine 371
Chapter 11: Neurology .. 415
Chapter 12: Dermatology ... 443
Chapter 13: Radiology/Imaging 465
Chapter 14: Ophthalmology .. 475

Index ... 483

Additional resources available at
www.kaptest.com/usmlebookresources
Learning Objectives

- Describe appropriate screening methods as they apply to neoplasms of the colon, breast, cervix, and lung
- Describe epidemiological data related to incidence and prevention of common infectious disease, chronic illness, trauma, smoking, and travel risks

CANCER SCREENING

A 39-year-old woman comes to the clinic very concerned about her risk of developing cancer. Her father was diagnosed with colon cancer at age 43, and her mother was diagnosed with breast cancer at age 52. She is sexually active with multiple partners and has not seen a physician since a car accident 15 years ago. She denies any symptoms at this time, and her physical examination is normal. She asks what is recommended for a woman her age.

Screening tests are done on seemingly healthy people to identify those at increased risk of disease. Even if a diagnostic test is available, however, that does not necessarily mean it should be used to screen for a particular disease.

- Several harmful effects may potentially result from screening tests.
- Any adverse outcome that occurs (large bowel perforation secondary to a colonoscopy) is iatrogenic.
- Screening may be expensive, unpleasant, and/or inconvenient.
- Screening may also lead to harmful treatment.

Finally, there may be a stigma associated with incorrectly labeling a patient as "sick."

For all diseases for which screening is recommended, effective intervention must exist, and the course of events after a positive test result must be acceptable to the patient. Most important, the screening test must be valid, i.e., it must have been shown in trials to decrease overall mortality in the screened population. For a screening test to be recommended for regular use, it has to be extensively studied to ensure that all of the requirements are met.
The 4 malignancies for which regular screening is recommended are cancers of the colon, breast, cervix, and lung.

Colon Cancer

In the patient with no significant family history of colon cancer, screening should begin at age 50. The preferred screening modality for colon cancer is colonoscopy every 10 years. Other choices include annual fecal occult blood testing and sigmoidoscopy with barium enema every 5 years.

In the patient with a single first-degree relative diagnosed with colorectal cancer before age 60 or multiple first-degree relatives with colon cancer at any age, colonoscopy should begin at age 40 or 10 years before the age at which the youngest affected relative was diagnosed, whichever age occurs earlier. In these high-risk patients, colonoscopy should be repeated every 5 years. The U.S. Preventive Services Task Force (USPSTF) does not recommend routine screening in patients age >75.

Breast Cancer

The tests used to screen for breast cancer are mammography and manual breast exam. Mammography with or without clinical breast exam is recommended every 1–2 years from age 50–74. The American Cancer Society no longer recommends monthly self-breast examination alone as a screening tool. Patients with very strong family histories of breast cancer (defined as multiple first-degree relatives) should consider prophylactic tamoxifen, discussing risks and benefits with a physician. Tamoxifen prevents breast cancer in high-risk individuals.

Cervical Cancer

The screening test of choice for the early detection of cervical cancer is the Papanicolaou smear (the “Pap” test). In average risk women, Pap smear screening should be started at age 21, regardless of onset of sexual activity. It should be performed every 3 years until age 65.

As an alternative, women age 30–65 who wish to lengthen the screening interval to every 5 years can do co-testing with Pap and HPV testing. In higher risk women, e.g., HIV, more frequent screening or screening after age 65 may be required.

Lung Cancer

Current recommendations for lung cancer screening are as follows:

- Annual screening with low-dose CT in adults age 55–80 who have a 30-pack-year smoking history and currently smoke or have quit within past 15 years
- Once a person has not smoked for 15 years or develops a health problem substantially limiting life expectancy or ability/willingness to have curative lung surgery, screening should be discontinued

Note

Tamoxifen prevents cancer by 50% in those with >1 family member with breast cancer.

Note

Prostate Screening

USPSTF concludes that the current evidence is insufficient to assess the balance of benefits/risks of prostate cancer screening in men age <75. It recommends against screening in men age >75.

For USMLE, do not screen for prostate cancer.
Clinical Recall

Which of the following patients is undergoing an inappropriate method of screening as recommended by the USPSTF?

A. A 50-year-old man gets his first screening for colon cancer via colonoscopy
B. A 50-year-old woman gets her first screening for breast cancer via mammography
C. A 17-year-old woman is screened for HPV via a Pap smear after her first sexual encounter
D. A 65-year-old man with a 30-pack-year smoking history gets a low-dose CT
E. A 21-year-old woman with a high risk of developing breast cancer is given tamoxifen

Answer: C

TRAVEL MEDICINE

A 44-year-old executive comes to the clinic before traveling to Thailand for business. He has no significant past medical history and is here only because his company will not let him travel until he is seen by a physician. The patient appears agitated and demands the physician’s recommendation immediately.

It is important to set up a pretravel counseling session 4–6 weeks before the patient’s departure.

Hepatitis A vaccination is recommended for all travelers to less developed countries. If a patient is leaving within 2 weeks of being seen, both the vaccine and immune serum globulin are recommended.

A booster shot given 6 months post-initial vaccination confers immunity for approximately 10 years.

Hepatitis B vaccination is recommended for patients who work closely with indigenous populations. Additionally, patients who plan to engage in sexual intercourse with the local populace, to receive medical or dental care, or to remain abroad for >6 months should be vaccinated.

Malaria: Mefloquine is the agent of choice for malaria prophylaxis. It is given once per week; it may cause adverse neuropsychiatric effects such as hallucinations, depression, suicidal ideations, and unusual behavior. Doxycycline is an acceptable alternative to mefloquine, although photosensitivity can be problematic. For pregnant patients requiring chemoprophylaxis for malaria, chloroquine is the preferred regimen.

Note

Hepatitis A infection is the most common vaccine-preventable disease in travelers. It can occur wherever there is fecal contamination of food/drinking water.
Rabies vaccination is recommended for patients traveling to areas where rabies is common among domesticated animals (India, Asia, Mexico). Chloroquine can blunt the response to the intradermal form of rabies vaccine. Therefore, in patients who require malaria prophylaxis, in addition to rabies prophylaxis the intramuscular form of the vaccine should be administered. Rabies vaccination is not considered a routine vaccination for most travelers.

Typhoid vaccination is recommended for patients who are traveling to developing countries and will have prolonged exposure to contaminated food and water. Typhoid vaccination comes in 2 forms, an oral live attenuated form and a capsular polysaccharide vaccine given parenterally. The live attenuated form (1) needs to be refrigerated, and (2) is contraindicated in patients who are HIV-positive. The polysaccharide vaccine is given intramuscularly as a single injection. Side effects include irritation at the injection site. Fever and headache are rare adverse reactions to the vaccine. The polysaccharide vaccine is the preferred form for almost all subjects as it is well-tolerated and convenient (no need for refrigeration). It is safe for HIV patients.

Polio: Adults who are traveling to developing countries and have never received a polio vaccine should receive 3 doses of the inactivated polio vaccine. Patients who have been previously immunized should receive a 1-time booster. The live attenuated polio vaccine is no longer recommended because of the risk of vaccine-associated disease.

Patients traveling to areas where meningococcal meningitis is endemic or epidemic (Nepal, sub-Saharan Africa, northern India) should be immunized with the polysaccharide vaccine. Additionally, Saudi Arabia requires immunization for pilgrims to Mecca. Patients with functional or actual asplenia and patients with terminal complement deficiencies should also receive the vaccine. Meningococcal vaccine is now routinely administered at age 11.

To prevent traveler’s diarrhea, patients should be advised to avoid raw and street vendor salads, unwashed fruit, and tap/ice water. Patients who experience mild loose stools without fever or blood can safely take loperamide. Treatment with a fluoroquinolone or azithromycin is reserved for patients with moderate to severe symptoms.

IMMUNIZATIONS

A 52-year-old man comes to the clinic for a health maintenance evaluation. His recent colonoscopy showed no evidence of carcinoma. Recent serum fasting glucose, serum cholesterol, and blood pressure are all within normal limits. The patient has a history of smoking and continues to smoke 2 packs per day. He was diagnosed with COPD 3 years ago.

Immunization is the best method available for preventing serious infectious disease. Between 50,000–70,000 adults die every year from preventable infectious disease (influenza, invasive pneumococcal disease, and hepatitis B). Surveys have shown that among patients who have an indication for any vaccination, very few actually receive it (pneumococcal vaccination 20%, influenza 40%, hepatitis B 10%). For this reason, the American College of Physicians recommends that every patient’s immunization status be reviewed at age 50; evaluate risk factors for specific vaccinations at that time.
Most patients received a primary immunization against tetanus and diphtheria as children.

For those adults who were never vaccinated, give 3 doses. The principle is that adults require a total of 3 vaccinations against tetanus and diphtheria.

- Give the first 2 doses 1–2 months apart
- Give the third dose 6–12 months later
- Give a booster vaccination every 10 years for life; one of the boosters should use Tdap instead of Td booster; if wound is dirty, revaccinate after 5 years

Influenza Vaccine

Influenza vaccine is recommended annually for all adults regardless of age. Patients who have a history of cardiopulmonary disease, diabetes mellitus, or hemoglobinopathy, or are age 50+ residents of chronic care facilities will derive the greatest benefit from an annual influenza vaccination. Pregnant women who will be in their second or third trimester during the influenza season should also receive the vaccine.

Pneumococcal Vaccine

Pneumococcal vaccine is indicated for all adults age ≥65. Additionally, the following individuals should receive the vaccine regardless of age:

- Those with history of sickle-cell disease or splenectomy
- Those with history of cardiopulmonary disease, alcoholism, or cirrhosis
- Alaskan natives and certain Native American populations
- Immunocompromised patients (patients with hematologic malignancies, chronic renal failure, or nephrotic syndrome; HIV-positive patients; or patients receiving immunosuppressive medications)

Revaccination should be performed in healthy patients who received their initial vaccination age <65 and were age <60 at the time of primary vaccination. Patients with a high risk of fatal infection (CKD, asplenic patients, immunocompromised patients) should be revaccinated 1x after 5 years. No one gets >1 booster shot per lifetime.

Hepatitis B Vaccine

Hepatitis B vaccine is recommended when there is a history of the following:

- IV drug abuse
- Male homosexuality
- Household or sexual contact with hepatitis B carriers
- Frequent exposure to blood/blood products
- History of chronic liver disease

The hepatitis B vaccine is also recommended for the following individuals:

- All children through age 18
- Those with STIs

Note

Patients must get Pneumovax, meningococcal, and *Haemophilus* vaccines 2 weeks before a splenectomy.
Those who are sexually active but not monogamous
Workers with occupational exposure to blood
Prison inmates

Immunity is confirmed serologically.

Hepatitis A Vaccine
The hepatitis A vaccine protects against the virus in >95% of cases. There are 2 types of vaccine, both of which stimulate active immunity against a future infection.

- One contains inactivated hepatitis A virus
- One contains a live but attenuated virus

For the best protection, give the vaccine in 2 doses: initial dose and then a booster 6–12 months later. Protection against hepatitis A begins approximately 2–4 weeks after the initial vaccination.

In the United States, the vaccine is strongly recommended for all children age 12–23 months in an attempt to eradicate the virus nationwide. There are also recommendations that the following populations be vaccinated:

- All children age >1 year
- People whose sexual activity puts them at risk
- People with chronic liver disease
- People who are being treated with clotting factor concentrates
- People who are living in communities where an outbreak is present

Hepatitis A is the most common vaccine-preventable virus acquired during travel, so people travelling to places where the virus is common (Indian subcontinent, Africa, Central America, South America, the Far East, and Eastern Europe) should be vaccinated.

Varicella Vaccine
The varicella vaccine is a live attenuated vaccine recommended for use in all adults who lack a history of childhood infection with varicella virus. Being a live attenuated vaccine, varicella vaccine should not be given to immunocompromised patients, HIV-positive patients when symptomatic or <200 CD4 cells, or pregnant women.

Patients aged ≥60 are recommended to receive the varicella zoster (shingles) vaccine, which has been shown to reduce the risk of zoster and its associated pain (post-herpetic neuralgia). It is indicated regardless of whether there is a history of shingles, as it is possible to have a second herpes zoster infection.

Measles, Mumps, Rubella Vaccine
The measles, mumps, rubella (MMR) vaccine is a live attenuated vaccine usually given in childhood. Healthy adults born after 1956 should receive 1 dose of the vaccine. Pregnant women and immunocompromised patients should not be vaccinated. HIV-positive patients who are asymptomatic may receive the vaccine.
Meningococcal Vaccine
The meningococcal vaccine is recommended for everyone at age 11 visit. It is also recommended for young adults living in dormitories or barracks, people exposed to outbreaks, those with asplenia or terminal complement deficiencies, those who travel to endemic regions (traveling to Mecca), and those exposed to *Neisseria meningitidis*.

Human Papillomavirus (HPV) Vaccine
The human papillomavirus (HPV) vaccine is recommended for women age 9–26, regardless of sexual activity. The regimen is in 3 doses: 0, 2, and 6 months. It should not be administered in pregnancy.

Herpes Zoster Vaccine
The zoster vaccine is a live vaccine that has been shown to reduce the incidence of shingles by 50%. It has also been shown to reduce the number of cases of post-herpetic neuralgia, as well as the severity and duration of pain/discomfort associated with shingles. The vaccine is, basically, a larger-than-normal dose of the chicken pox vaccine, as both shingles and chicken pox are caused by the same virus, varicella zoster virus (VZV).

The shingles vaccine (Zostavax), a live vaccine given as a single injection, is recommended for adults age ≥60, whether they have already had shingles or not. Some people report a chickenpox-like rash after receiving it. The vaccine should not be given to the following individuals:

- Those with a weakened immune system due to HIV/AIDS or another disease that affects the immune system
- Those who are receiving immune system-suppressing drugs or treatments, such as steroids, adalimumab (Humira), infliximab (Remicade), etanercept (Enbrel), radiation or chemotherapy
- Those who have neoplasia, which affects the bone marrow or lymphatic system, such as leukemia or lymphoma

Clinical Recall
In which of the following patients will the vaccination have the greatest benefit?

A. Routine hepatitis A vaccination in a 2-month-old infant
B. Influenza vaccine in a 16-year-old asymptomatic high school student
C. VZV vaccination given to an AIDS patient with CD4 count 100
D. Pneumococcal vaccination given to a 48-year-old male COPD patient
E. HBV vaccination given to a heart failure patient

Answer: D
SMOKING

A 25-year-old man comes to the clinic for evaluation of a stuffy nose and fever. Over the course of the interview, the patient states that he smokes 3 packs of cigarettes per day and has been doing so for the last 7 years.

Smoking is responsible for 1 in every 5 deaths in the United States. Smoking cessation is the most preventable cause of disease. Physicians can take the following steps to assist:

• **ASK** about smoking at every visit.
• **ADVISE** all smokers to quit at every visit.
• **ATTEMPT** to identify those smokers willing to quit.
• **ASSIST** the patient by setting a quit date (usually within 2 weeks) and using nicotine patches/gum, the oral antidepressant bupropion or varenicline as supportive therapy. Varenicline and bupropion are more effective than patches.
• **ARRANGE** follow-up. If the quit attempt was successful, then provide positive reinforcement. If it was not successful, then determine why the patient smoked and elicit a recommitment to smoking cessation. Most patients require several attempts before being successful.

Monotherapy treatment for smoking cessation includes nicotine replacement therapy (transdermal nicotine patches, gum, lozenges, inhalers), bupropion, and varenicline.

• Bupropion lowers the seizure threshold so do not use in cases of alcohol abuse.
• Varenicline causes an increased rate of suicidal thoughts, so first screen for depression.

Place a follow-up call 1–2 weeks after quit date. The use of pharmacotherapy doubles the effect of any tobacco cessation intervention.

OSTEOPOROSIS

All women age >65 should be given DEXA bone density scan. Screening should begin at age 60 if there is low body weight or increased risk of fractures. A bone density test uses x-rays to measure how many grams of calcium and other bone minerals are packed into a segment of bone. The bones that are tested are typically the spine, hip and forearm. Bone density test results are reported in 2 numbers: T-score and Z-score.

The **T-score** is the bone density compared with what is normally expected in a healthy young adult of the same sex. The T-score is the number of units—standard deviations—that bone density is above or below the average.

• T-score >2.5 SD indicates the likelihood of osteoporosis and increased risk of fracture.
• The diagnosis of osteoporosis by DEXA scan also means that treatment should be initiated with bisphosphonates, oral daily calcium supplementation, and vitamin D.

The **Z-score** is the number of standard deviations above or below what is normally expected for someone of the same age, sex, weight, and ethnic or racial origin.

• Z-score ≤-2 may suggest that something other than aging is causing abnormal bone loss (consider drugs causing osteoporosis such as corticosteroids).
• The goal in this case is to identify the underlying problem.

Note
Do not use varenicline in patients with a history of psychiatric disease.
ABDOMINAL AORTIC ANEURYSM
U/S should be done once in men age >65 who have ever smoked. There are no screening recommendations for male nonsmokers and women, regardless of smoking history.

HYPERTENSION, DIABETES MELLITUS, AND HYPERCHOLESTEROLEMIA

A 45-year-old man comes to the physician anxious about his health. Five years ago his mother was diagnosed with diabetes and high cholesterol. He is worried about his health and risk for heart disease. Physical examination is within normal limits.

Cholesterol screening should commence at age 35 in men who have no risk factors for coronary artery disease. In both men and women with risk factors, screening should be done routinely after age 20. Management should not be determined by an isolated reading because cholesterol levels may fluctuate between measurements. Repeat in 5 years in low-risk individuals.

Screening for diabetes mellitus should be considered only for patients with hypertension (>135/80 mm Hg). Diabetes mellitus is diagnosed in either of these situations:

- Two fasting glucose measurements are >125 mg/dL, HbA1c >6.5%
- Random glucose >200 mg/dL accompanied by symptoms

There is insufficient evidence for or against routine screening. The strongest indication is for those with hypertension and hyperlipidemia.

Screening is recommended for elevated blood pressure in those age >18, at every visit. Screening is not recommended for carotid artery stenosis with duplex.

ALCOHOL ABUSE

A 55-year-old man comes to the office for evaluation of a sore throat. The patient admits that he was recently fired from his job and is having marital problems at home. The patient has no significant past medical history, and physical examination is within normal limits. He attests to drinking 3 shots of whiskey every day after work.

Physicians should screen for alcohol abuse by using the CAGE questionnaire:

- Have you ever felt the need to: Cut down on your drinking?
- Have you ever felt: Annoyed by criticism of your drinking?
- Have you ever felt: Guilty about your drinking?
- Have you ever taken a morning: Eye opener?

A positive screen is 2 “yes” answers. One “yes” should raise the possibility of alcohol abuse.
VIOLENCE AND INJURY

A 27-year-old woman presents to the emergency department complaining of right-arm pain. When asked how she sustained the injury, she states that she fell down the steps in front of her house. The patient appears anxious and nervous. On physical examination there are various 2 cm wide lacerations on her buttocks.

Injuries are the most common cause of death in those age <65. The role of the physician is to advise patients about safety practices that can prevent injury, e.g., using seat belts, wearing bicycle helmets, and not driving after drinking alcohol.

Identifying women who are at increased risk of physical or sexual abuse is an essential role for a physician. Simply asking them if they have been hit, kicked, or physically hurt can increase identification by >10%.

Clinical Recall

Which of the following is indicated in a 65-year-old male smoker?

A. Digital rectal examination with PSA level
B. Meningococcal vaccination
C. Varicella-zoster vaccination
D. Varicella-zoster vaccination and hepatitis A vaccination
E. Varicella-zoster vaccination and abdominal ultrasound

Answer: E
Learning Objectives

- List presenting signs and therapeutic approaches to disease of the anterior pituitary, posterior pituitary, thyroid, parathyroid, and adrenal glands
- Describe disorders that cause hypogonadism or affect the testes
- Describe disorders of carbohydrate metabolism

DISEASES OF THE PITUITARY GLAND

The pituitary is surrounded by the sphenoid bone and covered by the sellar diaphragm, an extension from the dura mater. It lies in the sella turcica near the hypothalamus underneath the optic chiasm.

The pituitary is divided into 2 lobes:
- Adenohypophysis (or anterior lobe) (80% of pituitary)
- Neurohypophysis (or posterior lobe), the storage site for hormones produced by neurosecretory neurons (supraoptic and paraventricular nuclei) within the hypothalamus: ADH (antidiuretic hormone or vasopressin) and oxytocin

There is a close relationship between the hypothalamus and the pituitary. The hypothalamus regulates the release of hormones from the anterior pituitary by different hypothalamic releasing and inhibiting hormones (hypothalamic–pituitary axis).
As a sample summary, the hypothalamus secretes releasing factors for each respective pituitary stimulatory hormone. Each pituitary hormone stimulates release of the active hormone from the final target gland. The active hormones then inhibit release of releasing factors and stimulatory hormones from the hypothalamus and pituitary gland, respectively. This is feedback inhibition, and it leads to a steady state of both respective hormones involved in the axis.

Clinically, note the following to screen and diagnose diseases:

- Disease states involving overproduction of target hormones lead to suppressed levels of pituitary hormones.
- Disease states involving underproduction of target hormones lead to increased levels of pituitary hormones.
DISEASES OF THE ANTERIOR PITUITARY

Syndromes causing excess production of hormones usually arise from benign tumors of a single cell type. Microadenomas (more common) are tumors <1 cm in diameter. Macroadenomas (less common) are tumors >1 cm in diameter. Larger tumors can occasionally compress the optic chiasm and cause visual deficits.

Table 2-1. Pituitary Adenomas by Function

<table>
<thead>
<tr>
<th>Prolactin</th>
<th>50–60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth hormone (GH)</td>
<td>15–20%</td>
</tr>
<tr>
<td>ACTH</td>
<td>10–15%</td>
</tr>
<tr>
<td>Gonadotroph</td>
<td>10–15%</td>
</tr>
</tbody>
</table>

Hyperprolactinemia

A 32-year-old woman sees her physician because she has noticed milk-like discharge from her breasts the past 4 weeks. She also states that she has not menstruated in 2 months. The examination reveals galactorrhea but is otherwise normal.

Excess prolactin secretion is a common clinical problem in women and causes the syndrome of galactorrhea-amennorhea. The amenorrhea appears to be caused by inhibition of hypothalamic release of gonadotropin-releasing hormone (GnRH) with a decrease in luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. Prolactin inhibits the LH surge that

Note

Cabergoline is used more often than bromocriptine because of a better side-effect profile. It is the preferred treatment for galactorrhea.
causes ovulation. The LH/FSH-producing cells are not destroyed, just suppressed.

Although hyperprolactinemia is also seen in men, gynecomastia and especially galactorrhea are very rare. The most common presenting symptom in men is erectile dysfunction and decreased libido.

Hyperprolactinemia can be seen in natural physiologic states such as pregnancy, early nursing, hypoglycemia, seizure, exercise, stress, sleep, cirrhosis, nipple stimulation, and chronic renal failure (due to PRL clearance).

Autonomous production of prolactin occurs with pituitary adenomas; these so-called prolactinomas are the most common functioning pituitary adenomas, accounting for 60% of all pituitary tumors. They are usually microadenomas when they occur in women and macroadenomas in men, usually presenting with visual field deficits, etc. Macroadenomas can obstruct the pituitary stalk, increasing prolactin release by blocking dopamine transport from hypothalamus (stalk effect). Other examples are tumors such as craniopharyngioma, meningioma, and dyserminoma; empty sella; and trauma.

Hyperprolactinemia can also occur with decreased inhibitory action of dopamine. This occurs with the use of drugs that block dopamine synthesis (phenothiazines, metoclopramide) and dopamine-depleting agents (α-methyldopa, reserpine). Tricyclic antidepressants, narcotics, cocaine, SSRIs, and risperidone can also cause increased prolactin.

Stimuli that overcome the normal dopamine inhibition can also lead to hyperprolactinemia. An example of this is primary hypothyroidism (resulting in an increase in thyrotropin-releasing hormone [TRH]) and subsequently an increase in prolactin release.

Always check TSH in patients with elevated prolactin.

Clinical Presentation. Hyperprolactinemia presents with galactorrhea, menstrual abnormalities amenorrhea/oligomenorrhea, osteopenia and osteoporosis in long-standing cases, infertility, and gynecomastia in women; men present with hypogonadism, erectile dysfunction, decreased libido, gynecomastia, and infertility. Men typically do not develop galactorrhea. Women are detected earlier because of menstrual symptoms. Hence, microadenomas are more common in women.

Diagnosis. Always exclude states such as pregnancy, lactation, hypothyroidism and medications before starting the workup of hyperprolactinemia. Prolactinomas may co-secrete growth hormone (GH).

- Prolactin >100 ng/mL suggests probable pituitary adenoma
- Prolactin level should be commensurate with tumor size
 - Prolactin 100 ng/mL correlates with tumor approximately 1 cm
 - Prolactin 200 ng/mL correlates with tumor approximately 2 cm
Management. Treat initially with cabergoline or bromocriptine (a dopamine-agonist), which will reduce prolactin level in hyperprolactinemia. Dopamine normally inhibits prolactin release.

- About 90% of patients treated with cabergoline have a drop in prolactin to <10% of pretreatment levels.
- Reserve surgery only for those adenomas not responsive to cabergoline/bromocriptine or associated with significant compressive neurologic effects.
- Surgery is more effective for microadenomas than macroadenomas (only 30% of macroadenomas can be successfully resected, with long-term recurrence >50%).
- Use radiation therapy if drug therapy and surgery are ineffective at reducing tumor size and prolactin level.

Clinical Recall

Which of the following therapeutic options is most appropriate in the management of prolactinoma?

A. Somatostatin
B. Surgical resection
C. Transsphenoidal resection
D. Radiation therapy
E. Cabergoline

Answer: E

Acromegaly

Acromegaly (called gigantism in children) is a syndrome of excessive secretion of growth hormone (GH). It is an insidious, chronic debilitating disease associated with bony and soft tissue overgrowth, and increased mortality.

Note

A basal, fasting, morning PRL >100–200 mg/L (normal <20 mg/L) in a nonpregnant woman indicates a need for a pituitary MRI.
Acromegaly is caused by a pituitary adenoma (usually macroadenoma in 75% of the cases that produce GH). Rarely ectopic tumors can produce growth hormone-releasing hormone (GHRH) and cause this syndrome. Less than 1% are malignant. GH is produced by 20% of pituitary tumors.

Clinical Findings. GH excess occurs most frequently around decades 3–5. The following findings may be seen.

- Various skeletal and soft tissue changes
- Enlargement of the hands and feet, coarsening of facial features, and thickened skin folds; increase in shoe, hat, glove, and ring size
- Enlarged nose and mandible (prognathism and separation of teeth), sometimes causing underbite
- Deeper voice
- Increased sweating
- Obstructive sleep apnea
- Enlarged internal organs, including heart, lung, spleen, liver, and kidneys
- Interstitial edema, osteoarthritis, and entrapment neuropathy (carpal tunnel syndrome)
- Menstrual problems (common) due to co-secretion of prolactin by GH-producing tumor
- Cardiac anomalies (10–20%) such as hypertension, arrhythmia, hypertrophic cardiomyopathy, and accelerated atherosclerosis
- Metabolic changes, i.e., impaired glucose tolerance (80%) and diabetes (13–20%)
- Hypertension (35%)
- Headaches and visual field loss
- Proliferated articular cartilage, causing severe joint disease

Diagnosis. Patients with acromegaly have symptoms for ~9 years before the diagnosis is made. The best initial test is IGF-1 level, which is significantly elevated. The confirmatory test is GH measurement after 100 g of glucose is given orally; if GH remains high (>5 ng/mL), it is positive and suggests acromegaly. Normally, glucose load should completely suppress levels of GH.

Measurement of insulin-like growth factor (IGF) or somatomedin correlates with disease activity.

Radiologic studies such as MTI and CT are used to localize the tumor but should be done only after GH excess is documented biochemically. MRI is superior to CT in that it will show a tumor in 90% of people with acromegaly.

Management. The objectives are to decrease GH levels to normal, stabilize or decrease tumor size, and preserve normal pituitary function. Transsphenoidal surgery provides a rapid response. Hypopituitarism can result in 10–20%. Primary treatment is surgery.

Somatostatin analogues are the drugs of choice. Octreotide and lanreotide reduce GH values (70% of patients) and cause partial tumor regression (20–50% of patients). Octreotide is the best medical therapy for acromegaly. The main side effect of concern with somatostatin analogues is cholestasis, leading to cholecystitis.
Dopamine-agonists such as bromocriptine and cabergoline are used if surgery is not curative, with 10% of patients responding to these drugs.

Pegvisomant is a growth hormone analogue which antagonizes endogenic GH by blocking peripheral GH binding to its receptor in the liver. Important to note, pegvisomant is a second-line agent.

Radiotherapy, used only if surgery and drug therapy do not work, results in slow resolution of disease and hypopituitarism in 20% of patients.

Complications of acromegaly can arise from pressure of the tumor on the surrounding structures or invasion of the tumor into the brain or sinuses. Other complications include **cardiac failure** (most common cause of death in acromegaly), diabetes mellitus, cord compression, and visual field defects.

Hypopituitarism

Hypopituitarism is partial or complete loss of anterior function that results from any lesion which destroys the pituitary or hypothalamus or which interferes with the delivery of releasing and inhibiting factors to the anterior hypothalamus. GH and gonadotropins (FSH, LH) are typically lost early.

Large pituitary tumors, or cysts, as well as hypothalamic tumors (craniopharyngiomas, meningiomas, gliomas) can lead to hypopituitarism. Pituitary adenomas are the most common cause of panhypopituitarism; the mass compresses the gland, causing pressure, trauma, and necrosis.

Pituitary apoplexy is a syndrome associated with acute hemorrhagic infarction of a preexisting pituitary adenoma and manifests as severe headache, nausea or vomiting, and depression of consciousness. It is a medical and neurosurgical emergency.

Inflammatory diseases can lead to hypopituitarism: granulomatous diseases (sarcoidosis, tuberculosis [TB], syphilis), eosinophilic granuloma, and autoimmune lymphocytic hypophysitis (usually associated with other autoimmune diseases such as Hashimoto thyroiditis and gastric atrophy). Trauma, radiation, surgery, infections, and hypoxia may also damage both the pituitary and hypothalamus.

Vascular diseases such as **Sheehan postpartum necrosis** (initial sign being the inability to lactate) and infiltrative diseases including hemochromatosis and amyloidosis may induce this state as well.

Stroke can also damage these cells. Stroke can cause central diabetes insipidus due to damage of hypothalamus and/or posterior pituitary.

Clinical Findings. The following hormones appear in the order in which they are lost in hypopituitarism.

- Gonadotropin deficiency (LH and FSH) can occur in women and lead to amenorrhea, genital atrophy, infertility, decreased libido, and loss of axillary and pubic hair.
- In men, decreased LH and FSH results in impotence, testicular atrophy, infertility, decreased libido, and loss of axillary and pubic hair.
• GH deficiency occurs next and is not clinically detectable in adults, though it may manifest as fine wrinkles and increased sensitivity to insulin (hypoglycemia). GH deficiency gives an asymptomatic increase in lipid levels and a decrease in muscle, bone, and heart mass. It also may accelerate atherosclerosis, and it increases visceral obesity.

• GH deficiency in children results in growth failure and short stature.

• Thyrotropin (TSH) deficiency results in hypothyroidism with fatigue, weakness, hyperlipidemia, cold intolerance, and puffy skin without goiter.

• Adrenocorticotropin (ACTH) deficiency occurs last and results in secondary adrenal insufficiency caused by pituitary disease.

• There is decreased cortisol, which results in fatigue, decreased appetite, weight loss, decreased skin and nipple pigment, and decreased response to stress (as well as fever, hypotension, and hyponatremia).

Electrolyte changes like hyperkalemia and salt loss are minimal in secondary adrenal insufficiency because aldosterone production is mainly dependent on the renin-angiotensin system. ACTH deficiency does not result in the salt wasting, hyperkalemia, and death that are associated with aldosterone deficiency.

Diagnosis. The first step in diagnosing pituitary insufficiency is to measure GH, TSH, LH, and IGF-1. The most reliable stimulus for GH secretion is insulin-induced hypoglycemia. After injecting 0.1 μ/kg of regular insulin, blood glucose declines to <40 mg/dL; in normal conditions that will stimulate GH levels to >10 mg/L and exclude GH deficiency. Random GH and IGF levels are not sensitive enough to diagnose GH deficiency. This is why a provocative test is used.

Arginine infusion can also stimulate growth hormone release. Measure GH levels after infusing arginine. This is less dangerous because it does not lead to hypoglycemia.

To diagnose ACTH deficiency, basal cortisol levels may be preserved (the problem could be only in response to stress). Insulin tolerance test is diagnostic and involves giving 0.05–0.1 U/kg of regular insulin and measuring serum cortisol; plasma cortisol should increase to >19 mg/dL. Metyrapone tests for decreased ACTH production. Metyrapone blocks cortisol production, which should increase ACTH levels. A failure of ACTH levels to rise after giving metyrapone would indicate pituitary insufficiency. Cosyntropin (ACTH) stimulation may give abnormally low cortisol output if pituitary insufficiency has led to adrenal atrophy.

To diagnose gonadotropin deficiency in women, measure LH, FSH, and estrogen. In males, measure LH, FSH, and testosterone. To diagnose TSH deficiency, measure serum thyroxine (T4) and free triiodothyronine (T3), which are low, with a normal to low TSH.

Management. Management of hypopituitarism involves treating the underlying causes. Multiple hormones must be replaced, but the most important is cortisol.

Empty Sella Syndrome (ESS)

ESS is in the differential diagnosis of enlarged sella caused by pituitary tumors. In ESS, the sella has no bony erosion. It is caused by herniation of the suprasellar subarachnoid space through an incomplete diaphragma sellae. No pituitary gland is visible on CT or MRI. The syndrome can be primary (idiopathic) and is also associated with head trauma and radiation therapy. Most patients with these syndromes are obese, multiparous women with headaches; 30% will have hypertension. Endocrine symptoms are absent. Therapy is reassurance.
Chapter 2 • Endocrinology

Clinical Recall

What is the best initial test to diagnose acromegaly?

A. 100 g oral glucose tolerance test
B. Insulin-like growth factor-1 levels
C. MRI of the brain
D. Pituitary biopsy
E. Adrenal venous sampling

Answer: B

DISEASES OF THE POSTERIOR PITUITARY

Vasopressin (or antidiuretic hormone [ADH]) and oxytocin are synthesized in neurons of the supraoptic and paraventricular nuclei in the hypothalamus, then transported to the posterior pituitary lobe to be released into the circulatory system. A deficiency of ADH will cause diabetes insipidus (DI), while an excess of ADH will cause syndrome of inappropriate secretion of ADH (SIADH).
Diabetes Insipidus

Diabetes insipidus (DI) often starts in childhood or early adult life. Men > women.

- **Central diabetes insipidus** (CDI) is a disorder of the neurohypophyseal system, caused by partial or total deficiency of ADH. It leads to excessive, dilute urine and increased thirst associated with hypernatremia.
 - Causes include neoplastic or infiltrative lesions of the hypothalamus or pituitary (60% also have partial or complete loss of anterior pituitary function); in the hypothalamus these lesions can be secondary to adenoma, craniopharyngioma, etc.; in the pituitary gland, adenoma, leukemia, or sarcoid histocytosis can lead to DI
 - Other causes include pituitary or hypothalamic surgery, radiotherapy, severe head injuries, anoxia, hypertension, meningitis
 - Idiopathic DI starts in childhood
 - Encephalitis, TB, and syphilis may affect the pituitary as well
- **Nephrogenic diabetes insipidus** (NDI) is caused by renal resistance to the action of vasopressin. It can be idiopathic or it can be secondary to hypercalcemia, hypokalemia, sickle cell disease, amyloidosis, myeloma, pyelonephritis, sarcoidosis, or Sjögren syndrome.
 - Causes include drugs (lithium, demeclocycline, colchicine)

Clinical Findings. Clinical findings of DI include polyuria, excessive thirst, polydipsia (16–20 L/d), hypernatremia with high serum osmolarity and coexisting low urine osmolarity and urine specific gravity <1.010. Nocturia is expected.

Hypertonicity is not usually present if the patient has an intact thirst mechanism and can increase water intake to keep up with urinary loss.

![Figure 2-5. P\textsubscript{osm} versus U\textsubscript{osm} during Dehydration in Normal Subjects](image)
Diagnosis. The water deprivation test compares U_{osm} after dehydration versus U_{osm} after vasopressin.

- In a normal person, the response to fluid restriction is decreased urine volume and increased urine osmolality.
- In DI, urine volume remains increased despite volume depletion.
- ADH will be decreased in central DI and increased in nephrogenic DI. If a patient falls to the right of the shaded area, the diagnosis is DI.

![Figure 2-6. Water Restriction Test](image)

The differential diagnosis of DI includes primary disorders of water intake (psychogenic polydipsia, drug-induced polydipsia from chlorpromazine, anticholinergic drugs, or thioridazine) and hypothalamic diseases.

Management. Management for CDI includes the following:

- Hormone replacement with vasopressin subcutaneously or desmopressin subcutaneously, orally, or intranasally
- Drugs to stimulate the secretion of ADH or increase release (chlorpropamide, clofibrate, or carbamazepine)
- HCTZ or amiloride (for NDI) to enhance the reabsorption of fluid from proximal tubule
- Chlorthalidone
- Correction of any calcium and/or potassium abnormalities
Syndromes Associated with Vasopressin (ADH) Excess
Syndromes associated with ADH excess involve a mechanism of defense against hypovolemia or hypotension. This includes adrenal insufficiency, excessive fluid loss, fluid deprivation, and probably positive-pressure respiration.

Excessive release of ADH from the neurohypophysis is associated with drugs or diseases (SIADH).

Syndrome of Inappropriate Antidiuretic Hormone
Syndrome of inappropriate antidiuretic hormone (SIADH) has many causes:

- Malignancy such as small cell carcinoma, carcinoma of the pancreas, and ectopic ADH secretion
- Nonmalignant pulmonary disease such as tuberculosis, pneumonia, and lung abscess
- CNS disorder such as head injury, cerebral vascular accident, and encephalitis
- Drugs such as chlorpropamide, clofibrate, vincristine, vinblastine, cyclophosphamide, and carbamazepine

In general, increased ADH causes water retention and extracellular fluid volume expansion without edema or hypertension, owing to natriuresis. The water retention and sodium loss both cause hyponatremia, which is a key feature in SIADH. Hyponatremia and concentrated urine ($U_{osm} > 300 \text{ mOsm}$) are seen, as well as no signs of edema or dehydration. When hyponatremia is severe (sodium <120 mOsm), or acute in onset, symptoms of cerebral edema become prominent (irritability, confusion, seizures, and coma).

Diagnosis. Lab findings in SIADH include:

- Hyponatremia <130 mEq/L
- $P_{osm} < 270 \text{ mOsm/kg}$
- Urine sodium concentration >20 mEq/L (inappropriate natriuresis)
- Maintained hypervolemia
- Suppression of renin–angiotensin system
- No equal concentration of atrial natriuretic peptide
- Low blood urea nitrate (BUN), low creatinine, low serum uric acid, and low albumin

Management. Treat underlying causes. Restrict fluid to 800–1,000 mL/d to increase serum sodium (in chronic situations when fluid restriction is difficult to maintain, use demeclocycline which inhibits ADH action at the collecting duct [V2]). Conivaptan and tolvaptan are V2 receptor blockers indicated for moderate to severe SIADH. For very symptomatic patients (severe confusion, convulsions, or coma), use IV hypertonic saline (3%) 200–300 mL in 3–4 h. The rate of correction should be 0.5–1 mmol/L/h serum Na.
Clinical Recall

Which of the following laboratory findings is suggestive of central diabetes insipidus?

A. Increased serum osmolarity, decreased urine osmolarity, decreased ADH
B. Decreased serum osmolarity, increased urine osmolarity, increased ADH
C. Increased serum osmolarity, decreased urine osmolarity, increased ADH
D. Increased serum osmolarity, increased urine osmolarity, increased ADH
E. Decreased serum osmolarity, decreased urine osmolarity, decreased ADH

Answer: A

DISEASES OF THE THYROID GLAND

The normal function of the thyroid gland is directed toward the secretion of l-thyroxine (T4) and l-3,5,5′-triiodothyronine (T3), which influence a diversity of metabolic processes.

Diseases of the thyroid can be quantitative or qualitative alterations in hormone secretion, enlargement of thyroid (goiter), or both.

- Insufficient hormone secretion will lead to hypothyroidism.
- Excess hormone secretion will lead to hyperthyroidism.
- Generalized enlargement can be associated with increased, normal, or decreased function of the gland, depending on the underlying cause.
- Focal enlargement of the thyroid can be associated with tumors (benign or malignant).

The most sensitive test in thyroid diseases is the TSH. If TSH is normal, then the patient is euthyroid.

Total T4 and T3, however, does not always reflect actual thyroid function.

- Increased TBG levels are seen in pregnancy and the use of oral contraceptives. Total T4 will increase but free or active T4 level will be normal.
- Decreased TBG levels are seen in nephrotic syndrome and the use of androgens. Total T4 will decrease but free or active T4 will be normal, with the patient being euthyroid.

Clinical Pearl

Always check free T4 to assess thyroid function.
Figure 2-7. Pathways for Synthesis and Secretion of Thyroid Hormones

RAIU (thyroid-reactive iodine uptake) varies directly with the functional state of the thyroid. After 24 hours, normal uptake is 5–30% of administered dose. RAIU is increased in Graves' disease or toxic nodule and decreased in thyroiditis or surreptitious ingestion of thyroid hormone.
Table 2-2. Evaluating Thyroid Function

<table>
<thead>
<tr>
<th>Thyroid Hormones and TSH</th>
<th>RAI Uptake Scan</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Decreased TSH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Free increased T₄;</td>
<td>Increased RAIU</td>
<td>De novo synthesis of hormone (primary hyperthyroidism)</td>
</tr>
<tr>
<td>increased T₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Decreased TSH</td>
<td></td>
<td>Factitious hyperthyroidism or inflammation/destruction of the gland releasing preformed hormone into the circulation (subacute thyroiditis)</td>
</tr>
<tr>
<td>• Free increased T₄;</td>
<td>Decreased RAIU</td>
<td></td>
</tr>
<tr>
<td>increased T₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Decreased TSH</td>
<td>Decreased RAIU</td>
<td>Secondary or tertiary hypothyroidism</td>
</tr>
<tr>
<td>• Free decreased T₄;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decreased T₃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other tests include antimicrosomal and antithyroglobulin antibodies, which are detected in Hashimoto thyroiditis. In Graves’ disease, thyroid-stimulating immunoglobulin (TSI) is found. Serum thyroglobulin concentration can be used to assess the adequacy of treatment and follow-up of thyroid cancer, and to confirm the diagnosis of thyrotoxicosis factitia.

Hyperthyroidism (Thyrotoxicosis)

A wide range of conditions can cause hyperthyroidism, although Graves’ disease is the most common. Graves’, an autoimmune disorder, causes the production of antibodies (thyroid stimulating immunoglobulin [TSI]), which stimulate the thyroid to secrete T4 and T3.

Intrinsic thyroid autonomy can be caused by the following:

- Hyperfunctioning adenoma (toxic adenoma)
- Toxic multinodular goiter (Plummer disease), a non-autoimmune disease of the elderly associated commonly with arrhythmia and CHF
- Simple goiter

Transient hyperthyroidism results from subacute thyroiditis (painful) or lymphocytic thyroiditis (painless, postpartum).

Drugs such as amiodarone, alpha interferon, and lithium can induce thyrotoxicosis. Excess iodine, as may occur in people taking certain expectorants or iodine-containing contrast agents for imaging studies, may cause hyperthyroidism. Extrathyroid source of hormones include thyrotoxicosis factitia and ectopic thyroid tissue (struma ovarii, functioning follicular carcinoma). Rarely, hyperthyroidism can result from excess production of TSH (secondary hyperthyroidism).
Note
For treatment purposes, it is important to distinguish primary hyperthyroidism (Graves' disease or toxic adenoma) from thyroiditis.

Graves' disease
Graves' disease (toxic diffuse goiter) is hyperthyroidism with diffuse goiter, exophthalmos, and dermopathy. In Graves', autoantibodies form and bind to the TSH receptor in thyroid cell membranes, stimulating the gland to hyperfunction (TSI).

- Commonly affects patients age <50
- Women > men
- Significant genetic component, i.e., a person is more likely to be affected if they have family member with the disease
- Commonly triggered by stress, infection, and pregnancy
- Patients with another autoimmune disease such as type 1 diabetes or pernicious anemia are more likely to be affected
- Smoking causes increased risk of disease and may make the exophthalmos worse
Clinical Findings. Graves' is associated clinically with diffuse painless enlargement of the thyroid. Additionally:

- Nervous symptoms (younger patients)
- Cardiovascular and myopathic symptoms (older patients)
- Atrial fibrillation
- Emotional lability, inability to sleep, tremors
- Frequent bowel movements
- Excessive sweating and heat intolerance
- Weight loss (despite increased appetite) and loss of strength
- Proximal muscle weakness (prominent symptom in many patients, and the primary reason why they see a physician)
- Dyspnea, palpitations, angina, and possible cardiac failure
- Warm and moist skin
- Palmar erythema, along with fine and silky hair in hyperthyroidism
- Ocular signs such as staring, infrequent blinking, and lid lag
- Menstrual irregularity such as oligomenorrhea
- Osteoporosis and hypercalcemia, as a result of increases in osteoclast activity

Diagnosis of Graves' is made on history and physical exam. Lab studies include the following:

- Decreased TSH (but elevated TSH in secondary hyperthyroidism)
- High serum free T4 and T3
- Elevated RAIU (but decreased RAIU in subacute thyroiditis and factitious hyperthyroidism)
- Elevated TSI, antithyroglobulin, and antimicrosomal antibodies

Treatment involves relief of symptoms and correction of the thyrotoxic state. Treat adrenergic hyperfunction with beta-adrenergic blockade (propranolol). Correct the high thyroid hormone levels with an anti-thyroid medication (methimazole or propylthiouracil), which blocks the synthesis of thyroid hormones and/or by treatment with radioactive iodine.

- Methimazole has a longer half-life, reverses hyperthyroidism more quickly, and has fewer side effects than propylthiouracil.
- Methimazole requires an average of 6 weeks to lower T4 levels to normal and is often given before radioactive iodine treatment; it can be taken 1x/day.
- Use propylthiouracil only when methimazole is not appropriate because of its potential for liver damage; it must be taken 2–3x/day.

For years propylthiouracil was the traditional drug of choice during pregnancy because it causes fewer severe birth defects than methimazole. However, experts now recommend that propylthiouracil be given during the first trimester only. This is because there have been rare cases of liver damage in people taking propylthiouracil. After the first trimester, women should switch to methimazole for the rest of the pregnancy.

For women who are nursing, methimazole is probably a better choice than propylthiouracil (to avoid liver side effects). Both drugs can cause agranulocytosis.
The most commonly used ‘permanent’ therapy for Graves’ disease is radioactive iodine. Indications for its use (overusing antithyroid agents alone) include:

- Large thyroid gland
- Multiple symptoms of thyrotoxicosis
- High levels of thyroxine
- High titer of TSI

Because of the high relapse rate (>50%) associated with antithyroid therapy, many physicians in the United States prefer to use radioactive iodine as first-line therapy. Patients currently taking antithyroid drugs must discontinue the medication at least 2 days prior to taking the radiopharmaceutical since pretreatment with antithyroid drugs reduces the cure rate of radioiodine therapy in hyperthyroid diseases. With radioactive iodine, the desired result is hypothyroidism due to destruction of the gland, which usually occurs 2–3 months post-administration, after which hormone replacement treatment is indicated.

Subtotal thyroidectomy (and rarely total thyroidectomy) is indicated only in pregnancy (second trimester), in children, and in cases when the thyroid is so large that there are compressive symptoms.

Clinical Pearl

When large quantities of iodide are ingested by patients with hyperthyroidism, the result is thyroid hormone suppression (Wolff-Chaikoff effect).

Thyroid Storm

Thyroid storm is an extreme form of thyrotoxicosis and an endocrine emergency. It is precipitated by stress, infection, surgery, or trauma. It manifests with extreme irritability, delirium, coma, tachycardia, restlessness, vomiting, jaundice, diarrhea, hypertension, dehydration, and high fever.

Treatment involves supportive therapy with saline and glucose hydration, glucocorticoids, and oxygen cooling blanket. Therapy for hyperthyroidism is also used:

- First, give propylthiouracil.
- Next, give iodine to inhibit hormone release.
- Follow with adrenergic antagonists (e.g., β-adrenergic blockers).
- Finally, give dexamethasone to provide adrenal support.
- Stop the antithyroid drugs 1–2 weeks before and after the RAI treatment, as they block the uptake of the radioactive iodine.

Hypothyroidism

The far majority of hypothyroidism has a thyroid etiology (primary).

- Secondary to chronic thyroiditis (Hashimoto disease) (most common cause of goitrous hypothyroidism; associated with antimicrosomal antibodies)
- Postablative surgery or radioactive iodine, heritable biosynthetic defects, and iodine deficiency
- Drugs such as lithium and acetylsalicylic acid
- Amiodarone, interferon, and sulfonamides

Suprathyroid causes of hypothyroidism include pituitary induced (secondary hypothyroidism) or hypothalamic induced (tertiary hypothyroidism).
Amiodarone, an antiarrhythmic drug used to treat ventricular and supraventricular tachyarhythmia, is structurally similar to T4 and contains approximately 40% iodine. Its other characteristics include:

- Highly lipid-soluble and concentrated in the adipose tissue, muscle, liver, lung, and thyroid gland
- High elimination half-life (50–100 days) so total body iodine stores can remain increased for up to 9 months after discontinuation of the drug
- Thyroid abnormalities are seen in up to 20% of patients receiving long-term amiodarone therapy. (However, other research has shown that with lower doses of amiodarone, incidence of thyroid dysfunction is around 4%.)
 - The effects range from abnormal thyroid function test findings (without clinical hyper- or hypothyroidism) to overt thyroid dysfunction, which may be amiodarone-induced thyrotoxicosis or amiodarone-induced hypothyroidism (both can develop in apparently normal thyroid glands or in glands with preexisting abnormalities).

Amiodarone-induced thyrotoxicosis has 2 types:

- **Type 1** occurs in patients with underlying thyroid pathology, e.g., autonomous nodular goiter or Graves’. Treatment is anti-thyroid therapy.
- **Type 2** is a result of amiodarone causing a subacute thyroiditis, with release of preformed thyroid hormones into the circulation. Treatment is glucocorticoids.

Amiodarone-induced hypothyroidism is due to inhibition of peripheral conversion of T4 to T3.

Clinical Findings.

- In the **newborn**, cretinism (in 1/5,000 neonates) and juvenile hypothyroidism; persistent physiologic jaundice, hoarse cry, constipation, somnolence, and feeding problems
- In **later months**, delayed milestones and dwarfism, coarse features, protruding tongue, broad flat nose, widely set eyes, sparse hair, dry skin, protuberant abdomen, potbelly with umbilical hernia, impaired mental development, retarded bone age, and delayed dentition
- In the **adult**, there are stages:
 - Early stages may include lethargy; constipation; cold intolerance; stiffness/cramping of muscles; carpal tunnel syndrome; menorrhagia
 - Later stages may include slowing intellectual and motor activity; decreased appetite; weight gain, dry hair/skin, deeper, hoarse voice; deafness
 - Elevated cholesterol and slow, deep tendon reflexes
 - Possible hyponatremia and anemia
 - Ultimately, myxedema (expressionless face, sparse hair, periorbital puffiness, large tongue, and pale, cool skin that feels rough and doughy)

Diagnosis of hypothyroidism is made by symptoms and physical findings. Lab tests confirm diagnosis.
Table 2-3. Confirmation of Hypothyroid Diagnosis*

<table>
<thead>
<tr>
<th>Primary Hypothyroidism</th>
<th>2° or 3° Hypothyroidism</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ TSH</td>
<td>Normal or ↓ TSH</td>
</tr>
<tr>
<td>↓ T₄, ↓ FT₄</td>
<td>↓ T₄, ↓ FT₄</td>
</tr>
<tr>
<td>T₃ decreases in lesser extent</td>
<td>Accompanied by decreased secretion of other hormones</td>
</tr>
</tbody>
</table>

*Also seen: hypercholesterolemia, elevation of CPK, AST, hyponatremia, LDH; 12% associated with pernicious anemia

Management. The goal with hypothyroidism is to restore the metabolic state with levothyroxine. This should be done gradually in the elderly and those with coronary artery disease. Levothyroxine (T4) should be administered with monitoring of TSH/T3, T4 levels (it takes 6 weeks after dosing changes for TSH to equilibrate).

- If there is a strong suspicion of suprathyroid hypothyroidism with a hypothalamic or pituitary origin, give hydrocortisone with thyroid hormones.
- In patients with suprathyroid hypothyroidism, T4 level rather than TSH is used to guide treatment.
- Levothyroxine should be taken on an empty stomach with no other drugs or vitamins; multivitamins, including calcium and iron, can decrease its absorption.
- If a patient has coronary heart disease that needs intervention, do the intervention (CABG or stent placement) before thyroid hormone replacement is initiated.

During pregnancy, demand for thyroid hormones may increase and thus close monitoring of TSH and T4 should be done. Hypothyroidism during pregnancy should be treated with levothyroxine, with serum TSH goal to be kept in the lower reference range. Serum TSH should be measured at 4–6 weeks’ gestation, then every 4–6 weeks until 20 weeks’ gestation.

Myxedema coma can result if severe, long-standing hypothyroidism is left untreated. Patients develop a hypothermic, stuporous state that is frequently fatal. It is associated with respiratory depression (CO₂ retention). Myxedema coma is precipitated by cold exposure, trauma, infections, and CNS depressants. Treatment includes very high doses of T4 along with T3.

Thyroiditis

Thyroiditis includes disorders of different etiologies characterized by inflammation of the thyroid. Each has a different clinical course and can be associated at one time or another with euthyroid, thyrotoxic, or hypothyroid state.

Subacute thyroiditis includes granulomatous, giant cell, or de Quervain thyroiditis. This can occur at any age, although most commonly in decades 4 and 5.

- Likely of viral origin
- Follows upper respiratory infection symptoms, e.g., malaise, fever, pain over the thyroid, and pain referred to the lower jaw, ears, neck, or arms
- Thyroid gland is enlarged and firm
• Lab findings include elevated erythrocyte sedimentation rate, decreased radioactive iodine uptake, initial elevation in T_4 and T_3 (due to leak of hormone from the gland) followed by hypothyroidism as the hormone is depleted
• Differential diagnosis includes mostly Graves’ disease

Treatment is symptomatic with NSAIDs, prednisone, and propranolol. The disorder may smolder for months but eventually subsides with return to normal function.

Hashimoto thyroiditis is a chronic inflammatory process of the thyroid with lymphocytic infiltration of the gland. It is most often seen in middle-aged women, and is the most common cause of sporadic goiter in children.

• Likely caused by autoimmune factors, as evidenced by lymphocytic infiltration, increased immunoglobulin, and antibodies against components of thyroid tissue (antithyroglobulin Abs)
• Main feature is a **goiter that is painless**; goiter is rubbery and not always symmetric
• Hypothyroidism occurs
• Diagnosis is suggested by finding a firm, nontoxic goiter on examination
• Lab findings include metabolically normal values in early stages, then increased TSH and decreased T_3 and T_4.
• High titers of antithyroid antibodies, namely antimicrosomal antibodies, are found, as are antithyroperoxidase antibodies
• Histologic confirmation is made by needle biopsy (usually not needed)

Treatment is L-thyroxine replacement.

Lymphocytic (silent, painless, or postpartum) thyroiditis is a self-limiting episode of thyrotoxicosis associated with chronic lymphocytic thyroiditis. It is common in women of any age.

• Unclear etiology and pathogenesis
• Thyroid is nontender, firm, symmetric, and slightly/moderately enlarged
• Lab findings include elevated T_3/T_4, low RAIU, and normal ESR; if antithyroid antibodies are present, they are only in low titer

This disease may last for 2–5 months and be recurrent (as in postpartum thyroiditis). Treatment is symptomatic with propranolol.

Reidel thyroiditis results from intense fibrosis of the thyroid and surrounding structures (including mediastinal and retroperitoneal fibrosis).

Neoplasia of the Thyroid

Thyroid adenomas may be nonfunctioning or hyperfunctioning. They are slow-growing over many years.

Thyroid adenomas can be follicular (most common; highly differentiated, autonomous nodule), papillary, or Hurthle.

Management for hyperfunctioning adenoma includes ablation with radioactive iodine.
Follicular carcinoma (15–20% of all thyroid cancers) is common in the elderly. Women > men.
- More malignant than papillary carcinoma
- Spreads hematogenously with distant metastasis to the lung and bone
- Treatment requires near total thyroidectomy with postoperative radioiodine ablation

Papillary carcinoma is the most common thyroid cancer (60–70% of all thyroid cancers are papillary). It is associated with history of radiation exposure.
- Women > men by 2–3x
- Bimodal frequency
- Peaks occur in decades 2 and 3, and then again later in life
- Slow-growing; spreads via lymphatics after many years

Treatment is surgery (small tumors limited to single area of thyroid) and surgery plus radiation (large tumors). TSH suppression therapy with levothyroxine is also used.

Anaplastic carcinoma (1–2% of all thyroid cancer) is seen primarily in elderly patients. Women > men. It is highly malignant with rapid and painful enlargement; 80% of patients die within 1 year of diagnosis. This cancer spreads by direct extension.

Medullary carcinoma (5% of all thyroid cancer) occurs as a sporadic form or familial form. It arises from parafollicular cells of the thyroid.
- More malignant than follicular carcinoma
- Often produces calcitonin (is the only thyroid cancer with elevated calcitonin)
- Is the component of 2 types of MEN (multiple endocrine neoplasia)
 - In MEN type IIa (Sipple syndrome), pheochromocytoma, medullary thyroid carcinoma, and (in 50% of cases) parathyroid hyperplasia occur.
 - In MEN type IIb, pheochromocytoma, medullary carcinoma, and neuromas occur.
- May occur in families without other associated endocrine dysfunctions
- Calcitonin levels can also be increased from cancer of the lung, pancreas, breast, and colon

The only effective treatment is thyroidectomy.

Thyroid carcinoma should be suspected with the following:
- Recent growth of thyroid or mass with no tenderness or hoarseness
- History of radiation to the head, neck, or upper mediastinum in childhood (~30 years to develop thyroid cancer)
- Presence of a solitary nodule or calcitonin production
- Calcifications on x-ray such as psammoma bodies suggest papillary carcinoma; increased density is seen in medullary carcinoma. Do thyroid function tests first; cancer is never hyperfunctioning.

Evaluation of a solitary nonfunctioning nodule is done with fine-needle aspiration (FNA) for cytology for most patients. Five percent of nonfunctioning thyroid nodules prove to be malignant; functioning nodules are very seldom malignant.
The first test to do in a patient with a thyroid nodule is TSH; if that is normal, then proceed to FNA. U/S is useful to distinguish cysts from solid nodules.

Clinical Recall

Which of the following is the best initial step (most sensitive test) for the diagnosis of a patient suspected of having hyperthyroidism?

A. RAIU scan
B. Free T4 level
C. Free T3 level
D. TSH level
E. TSI including antithyroglobulin and antimicrosomal Ab

Answer: D

PARATHYROID GLANDS

The function of parathyroid hormone (PTH) is to maintain extracellular fluid calcium concentration.

- Acts directly on the bone and kidney, and indirectly on intestine (through its effects on synthesis of 1,25-dihydroxycholecalciferol \([1,25(OH)_{2}D_{3}]\) to increase serum calcium
- Is closely regulated by the concentration of serum-ionized calcium
- Increases osteoclast activity, which releases calcium.
- Inhibits phosphate reabsorption in the kidney tubule, also favoring bone dissolution and calcium release from bones
- Activates vitamin D, which increases the GI absorption of calcium

Calcium regulation involves 3 tissues (bone, kidney, and intestine) and 3 hormones (PTH (hypercalcemic), calcitonin (hypocalcemic), and activated vitamin D (hypercalcemic)).

Hypercalcemia

Hypercalcemia represents an increase in the total or free calcium level. About 98% of calcium is stored in bone. Calcium is absorbed from the proximal portion of the small intestine, particularly the duodenum. About 80% of an ingested calcium load in the diet is lost in the feces, unabsorbed.

Of the 2% of calcium that is circulating in blood, free calcium is 50%, protein bound is 40%, with only 10% bound to citrate or phosphate buffers.

The most common cause of hypercalcemia is **primary hyperparathyroidism**; it is usually asymptomatic and is found as a result of routine testing. Hypercalcemia due to malignancy is caused by a PTH-like protein produced by squamous cell carcinoma of the lung or metastatic disease to the bone. Granulomatous diseases such as sarcoidosis, tuberculosis, berylliosis, histoplasmosis, and coccidioidomycosis are all associated with hypercalcemia. Neutrophils in
granulomas have their own 25-vitamin D hydroxylation, producing active 1,25 vitamin D. Rare causes include vitamin D intoxication, thiazide diuretics, lithium use, and Paget disease, as well as prolonged immobilization. Hyperthyroidism is associated with hypercalcemia because there is a partial effect of thyroid hormone on osteoclasts. Acidosis results in an increased amount of free calcium. This is because albumin buffers acidosis. Increased binding of hydrogen ions to albumin results in the displacement of calcium from albumin.

Familial hypocalciuric hypercalcemia (FHH) is a benign form of hypercalcemia. It presents with mild hypercalcemia, family history of hypercalcemia, urine calcium to creatinine ratio <0.01, and urine calcium <200 mg/day (hypocalciuria). Most cases are associated with loss of function mutations in the CaSR gene, which encodes a calcium sensing receptor (expressed in kidney and parathyroid tissue). The perceived lack of calcium levels by the parathyroid leads to high levels of parathyroid hormone. FHH is indicated by the presence of hypercalcemia at the same time with hypocalciuria. (In all other causes of hypercalcemia, elevated calcium levels in the blood are correlated with elevated calcium urine levels, as a properly sensing kidney works to excrete calcium.) No treatment is generally required, since patients are most commonly asymptomatic.

Clinical Presentation.

- Neurologic: decreased mental activity such as lethargy and confusion
- GI: decreased bowel activity such as constipation and anorexia but also possible nausea and vomiting; pancreatitis due to precipitation of calcium in the pancreas (severe pancreatitis, however, is associated with hypocalcemia because of binding of calcium to malabsorbed fat in the intestine)
- Possible ulcer disease (unclear reasons)
- Renal: polyuria and polydipsia due induction of NDI; calcium precipitation in the kidney, causing kidney stones and nephrolithiasis
- Cardiovascular: hypertension (30–50% of patients); EKG will show a short QT
Figure 2-10. Calcium Regulation

PTH
- Stimulates osteoclasts
- ↑ distal tubular reabsorption of Ca²⁺
- ↓ PO₄ reabsorption
- ↑ production of 1,25 (OH)₂ Vit D

Calcitonin
- Inhibition of bone resorption
- Secreted by parafollicular cells of thyroid gland
- Physiologic role incompletely understood

Vit D
- ↑ CaPO₄ intestinal absorption
- ↑ proximal tubular reabsorption of PO₄

Dietary endogenous Vit D₃
- 25-OH-Vit D

Absorption
- 400 mg Ca²⁺/d
- Absorption: 30–35%

Figure 2-10. Calcium Regulation
Treatment. For severe, life-threatening hypercalcemia, give vigorous fluid replacement with normal or half-normal saline, followed by a loop diuretic such as furosemide to promote calcium loss.

- Use loop diuretic only after hydration in severe cases.
- Use IV bisphosphonate such as zoledronate or pamidronate to inhibit osteoclasts and stimulate osteoblasts (maximum effect takes 2–3 days).
- If fluid replacement and diuretics do not lower the calcium level quickly enough and you cannot wait the 2 days for the bisphosphonates to work, use calcitonin for a more rapid decrease in calcium level. Calcitonin inhibits osteoclasts.

Primary Hyperparathyroidism
Primary hyperparathyroidism represents 90% of mild hypercalcemias. It is most commonly due to adenoma of 1 gland (80%), but hyperplasia of all 4 glands can lead to primary hyperparathyroidism (20%). Parathyroid cancer is a rare cause of this disease (<1%).

Primary hyperparathyroidism can occur as part of MEN.

- In MEN type I, hyperparathyroidism, pituitary tumors (3 “Ps”), and pancreatic tumors are seen.
- In MEN type II, hyperparathyroidism, pheochromocytoma, and medullary carcinoma of the thyroid are seen.

Clinical Findings. 50% of patients with hyperparathyroidism are asymptomatic. Osteitis fibrosa cystica with hyperparathyroidism occurs because of increased rate of osteoclastic bone resorption and results in bone pain, fractures, swelling, deformity, areas of demineralization, bone cysts, and brown tumors (punched-out lesions producing a salt-and-pepper-like appearance). Urinary tract manifestations of hypercalcemia include polyuria, polydipsia, stones, and nephrocalcinosis with renal failure (the polyuria and polydipsia are from NDI). Neurologic manifestations include CNS problems, mild personality disturbance, severe psychiatric disorders, mental obtundation or coma, neuromuscular weakness, easy fatigability, and atrophy of muscles. GI manifestations include anorexia, weight loss, constipation, nausea, vomiting, thirst, abdominal pain with pancreatitis, and peptic ulcer disease. Cardiovascular findings include hypertension and arrhythmias (short QT).

Diagnosis. Lab findings will include serum calcium >10.5 mg/dL, with elevated PTH. Urine calcium elevation is common, but because of the calcium-reabsorbing action of PTH, 35% of patients may have normal levels. Serum phosphate is usually low (<2.5 mg/dL). The differential diagnosis includes all other causes of hypercalcemia, especially hypercalcemia of malignancy. In every other cause of hypercalcemia, the PTH level will be low. In primary hyperparathyroidism, PTH is always elevated.

Imaging studies such as CT, MRI, sonography, and nuclear scan are not used to diagnose hyperparathyroidism. A nuclear parathyroid scan (sestamibi) can be used to localize the adenoma. When combined with a neck sonogram, specificity rises significantly.
Treatment. Medical treatment, used if surgery is contraindicated or if serum calcium ≤11.5 mg/dL and patient is asymptomatic, includes bisphosphonates (pamidronate).

- Reduce dietary calcium to 400 mg/d
- Give oral hydration with 2–3 L of fluid
- Give phosphate supplementation with phospho-soda
- Consider estrogen for hyperparathyroidism in postmenopausal women

Surgical removal of the parathyroid glands is effective. Imaging studies may help localize the site of the affected gland prior to surgery.

Parathyroidectomy should be performed if there are symptoms of hypercalcemia, bone disease, renal disease, or if the patient is pregnant. Asymptomatic mild increases in calcium from hyperparathyroidism do not necessarily need to be treated.

In primary hyperparathyroidism, surgery is indicated if any of the following are present:

- Symptomatic hypercalcemia
- Calcium >11.5 mg/dL
- Renal insufficiency
- Age <50
- Nephrolithiasis
- Osteoporosis

Emergency treatment for severe hypercalcemia includes IV normal saline to restore volume and rarely furosemide after hydration. Everyone gets IV bisphosphonates such as pamidronate. Bisphosphonates are useful only temporarily for hyperparathyroidism and may take 2–3 days to reach maximum effect.

Hungry bones syndrome is hypocalcemia that occurs after surgical removal of a hyperactive parathyroid gland, due to increased osteoblast activity. It usually presents with rapidly decreasing calcium, phosphate, and magnesium 1–4 weeks post-parathyroidectomy.

Cinacalcet is a calcimimetic agent that has some effect in hyperparathyroidism by shutting off the parathyroids. This increases the sensitivity of calcium sensing (basolateral membrane potential) on the parathyroid. Cinacalcet is used as treatment of secondary hyperparathyroidism in hemodialysis patients. It is also indicated for the treatment of hypercalcemia in patients with parathyroid carcinoma and in moderate-to-severe primary hyperparathyroidism unamenable to surgery.

Note
Calcitonin is an intermediary measure while waiting for IV bisphosphonate to act.
Primary hyperparathyroidism is due to a hyperfunction of the parathyroid glands themselves. Most commonly, there is oversecretion of PTH due to a parathyroid adenoma. The elevated PTH then causes elevated serum calcium and low serum phosphate.

Secondary hyperparathyroidism is due to physiologic (i.e., appropriate) secretion of PTH by the parathyroid glands in response to hypocalcemia (resulting vitamin D deficiency, chronic kidney disease, etc.). Serum calcium level is low (that is what causes the elevated PTH) and serum phosphate is low (because of elevated PTH). In the case of chronic kidney failure and anuria, the phosphate—in this form of secondary hyperparathyroidism—is elevated (the kidney is unable to ‘trash’ phosphate).

Tertiary hyperparathyroidism is seen with long-term secondary hyperparathyroidism, which can lead to hyperplasia of the parathyroid glands and a loss of response to serum calcium levels. It is most often seen in patients with chronic renal failure, and is an autonomous activity of the parathyroid glands. Treatment is sometimes surgical removal.

Hypocalcemia
Hypocalcemia is most commonly caused by hypoparathyroidism, renal failure, hyperphosphatemia, and hypomagnesemia. Drugs such as loop diuretics, phenytoin, alendronate, and foscarnet will also lower calcium levels. Renal failure causes hypocalcemia because of the loss of activated 1,25-dihydroxy-vitamin D. This leads to decreased calcium absorption from the gut. In addition, hyperphosphatemia will cause the precipitation of calcium in tissues. Low magnesium levels from malnutrition of alcoholism prevent the release of parathyroid hormone from the parathyroid glands. Alkalosis decreases free calcium levels by causing increased binding of calcium to albumin. Pseudo hypocalcemia occurs with low albumin levels. The free calcium level remains normal, while the total calcium level decreases.

To correct for albumin, add 0.8 to calcium level for every 1 gram below 4 of albumin. Massive blood transfusion gives hypocalcemia because of binding of the calcium to the citrate in the transfused units of blood.

Clinical Findings. Hypocalcemia results in increased neural hyperexcitability such as seizures, tetany, circumoral numbness, and tingling of the extremities. Arrhythmias may develop because of a prolonged QT. Cataracts develop for unclear reasons.

Treatment of hypocalcemia is IV or oral calcium replacement, and vitamin D replacement as necessary.

Hypoparathyroidism
The most common cause of hypoparathyroidism is surgical removal of the thyroid. Low PTH levels are also seen in hereditary hypoparathyroidism, acquired hypoparathyroidism (surgical removal), and hypomagnesemia.

Magnesium deficiency prevents release of PTH from the gland. Hypomagnesemia occurs from decreased GI absorption or alcoholism. High PTH levels are seen in chronic renal failure, and decreased levels of active vitamin D, which is caused by decreased dietary intake or defective metabolism (secondary to anticonvulsant therapy or vitamin D-dependent rickets, type I).
Ineffective vitamin D can also lead to high PTH levels; this is seen in intestinal malabsorption and vitamin D-dependent rickets, type II. Low or ineffective vitamin D is also associated with low calcium levels.

Clinical Findings. Clinical findings depend on the level of calcium, duration, acid-base disorder, and age at onset of disease.

- Neuromuscular irritability: tetany, laryngospasm, cramping, seizures, impaired memory function
- Possible positive Chvostek sign (percussion of the facial nerve in front of ear, which elicits a contraction of facial muscles and upper lip)
- Possible positive Trousseau sign (inflation of a blood pressure cuff on arm to a pressure higher than patient’s systolic pressure for 3 min elicits flexion of the metacarpophalangeal joints and extension of interphalangeal joints)
- Ocular findings: cataracts, soft tissue calcifications
- Possible cardiovascular effects: QT prolongation, refractory CHF, and/or hypotension

Hypocalcemia frequently causes circumoral tingling as well as tingling of the hands and feet. Hyperventilation worsens symptoms of hypocalcemia because the alkalosis decreases free calcium levels.

Diagnosis is suggested when serum calcium is low; it is important to check albumin and make the correction in calcium level. A low calcium may be due to low albumin; for a 1.0 g/dL drop in albumin, total calcium will decrease by 0.8 mg/dL. It is better to measure ionized calcium. Depending on the etiology, PTH can be low (hypoparathyroidism) or high. Low calcium with high phosphorous can be due to renal failure, massive tissue destruction, hypoparathyroidism, and pseudohypoparathyroidism. Low calcium with low phosphorous is due to absent or ineffective vitamin D.

Management. In the acute stage of hypocalcemia, give IV calcium gluconate. Maintenance therapy includes oral calcium 2–4 g/d, vitamin D, and if there is hyperphosphatemia, diet restriction and phosphate binders (CaCO₃ or aluminum hydroxide).

Clinical Recall

Which of the following is a clear indication for surgery in a patient with primary hyperparathyroidism?

A. Calcium level 10.5 mg/dL
B. Creatinine level 1.0 mg/dL
C. EKG showing prolonged QT interval
D. Male gender, age 38
E. DEXA T-score +1.0

Answer: D
DISORDERS OF CARBOHYDRATE METABOLISM

Diabetes Mellitus

Diabetes mellitus (DM) is a disorder of carbohydrate metabolism, caused by relative or absolute deficiency of insulin, hyperglycemia, and end-organ complications (e.g., nephropathy, retinopathy, neuropathy, accelerated atherosclerosis). DM affects approximately 6% of the population in the United States, and approaches 20% of patients over age 65.

Classification

- **Type 1 IDDM (insulin-dependent or juvenile onset)** accounts for 5–10% of diabetes worldwide, with males = females. The age of onset is usually age <30. Genetically, <10% of first-degree relatives are affected with a 50% occurrence in identical twins.

- There is an increased prevalence of autoantibodies to islet cells, glutamic acid decarboxylase (GAD), and other tissues with IDDM. Type 1 diabetes is associated with HLA-B8, HLA-B15, HLA-DR3, and HLA-DR4. Patients usually have a lean body build and are prone to ketosis owing to absent insulin production.

- **Type 2, or NIDDM (non-insulin-dependent or maturity onset)**, is the most common type of diabetes, accounting for 90% of cases, with males > females. Age of onset is usually age 40. Genetically >20% of first-degree relatives are affected with 90–100% occurrence in identical twins.

- No autoantibodies are associated with NIDDM. The body build of these patients is usually obese with >80% being >15% above ideal body weight. NIDDM patients are ketosis-resistant, and insulin levels may be high, normal, or low. About 90% of diabetes is type 2.

For IDDM, by the time the condition appears, most of the beta cells in the pancreas have been destroyed. The destructive process is most likely autoimmune in nature.

For NIDDM, there are 2 clear physiologic defects: abnormal insulin secretion and resistance to insulin action in target tissues.

Clinical Findings. Manifestations of symptomatic DM vary from patient to patient. Most often symptoms are associated with hyperglycemia, and polyuria, polydipsia, and polyphagia can be seen. The first event may be an acute metabolic decompensation, resulting in coma (ketoadidosis for IDDM and hyperosmolar coma for NIDDM). Occasionally the initial expression of DM is a degenerative complication like neuropathy.

Diagnosis. Symptomatic patients will have polyuria, polydipsia, ketonuria, and weight loss. Plasma glucose >200 mg/dL in these patients is sufficient for diagnosis with no further testing needed. A random glucose >200 mg/dL is diagnostic.

In asymptomatic patients, an elevated plasma or urine glucose during routine screening does not establish diagnosis but indicates a need for further evaluation. Patients who have DM will have a fasting plasma glucose ≥126 mg/dL on 2 occasions. The oral glucose tolerance test is rarely required. DM is diagnosed when plasma glucose ≥200 mg/dL at 2 h and on at least one of the earlier samples. HbA$_1c$ >6.5% is diagnostic of diabetes.
Glycosylated hemoglobin A\(_1c\) (HbA\(_1c\)) is produced by nonenzymatic condensation of glucose molecules with free amino groups on the globin component of hemoglobin. It is used both for diagnosis and to follow compliance of the treatment and glucose control in diabetic patients. HbA\(_1c\) is high in diabetics with chronic hyperglycemia during the preceding 8–12 weeks.

Management. The objectives of diabetic therapy are to control symptoms, prevent acute complications, and limit long-term complications. Several steps should be considered, such as patient education, weight loss, low-fat diet, physical activity, and pharmacologic therapy with oral hypoglycemic drugs or insulin.

Weight reduction of as little as 4–7% body fat has an enormous effect on peripheral insulin sensitivity and on reduction of postprandial hyperglycemia. Exercise lowers glucose levels. Exercising muscle needs no insulin for glucose to enter. Resting muscle, in comparison, needs insulin for glucose entry. As many as 25% of diabetic patients can be kept off of medication with diet and exercise alone.

The effects of diet, exercise, and weight loss can last for many years. When diet and exercise do not keep the HbA1c <7%, medications are introduced.

Oral hypoglycemics should be prescribed for all type 2 diabetics. Metformin is the drug of choice and along with lifestyle intervention should be used in all newly diagnosed patients. One major advantage of metformin is that it does not cause hypoglycemia. Another is that it does not cause weight gain. (Metformin is contraindicated in those with renal insufficiency.)

• If a patient is initiated on metformin yet the diabetes does not become well-controlled, add a sulfonylurea.

• If a patient is already on sulfonylurea but the diabetes is not well-controlled, add metformin.

• If a patient is already taking both metformin and a sulfonylurea yet there is still poor glycemic control, then either switch to insulin or add a glitazone.
 – Glitazones can lead to fluid retention.
 – If one drug is not sufficient, a second or third oral agent may be combined to keep the patient off insulin.

• If metformin cannot be used, use a new glucagon-like peptide (GLP-1) agonist (exenatide or liraglutide). GLP-1 agonists are second-line agents that can be added to metformin or used individually if metformin cannot be used.

In all cases, metformin is clearly the “best initial therapy” for type 2 diabetes. After metformin, the choices are less clear.

1. Sulfonylureas (glyburide, glipizide, glimepiride): increase weight, cause hypoglycemia; sulfa drugs

2. Thiazolidinediones (rosiglitazone or pioglitazone): can worsen CHF
 – Thought to act by decreasing the resistance of tissues to insulin
 – Recent studies suggest pioglitazone may be linked to bladder cancer
 – Rosiglitazone only available through a special assessment program

3. Incretin mimetics (exenatide, liraglutide): must be given by injection
 – Augment the naturally occurring hormones that are secreted from the GI tract in response to food; when food enters the intestine, incretins are released
– Increase the release of insulin from the pancreas
– Also called gastric inhibitory peptide or glucose-dependent insulinotropic peptide (both abbreviated as GIP); GIP increases insulin release and slows gastric motility

The “incretin mimetic” drugs exenatide and liraglutide are direct analogues of GIP and GLP, except that their actions last much longer. The problem with these drugs is that they must be given by injection. They have an outstanding effect on slowing gastric motility and promoting weight loss, but because they are given by injection they are not used as one of the first three classes of medications to treat type 2 diabetes.

The other incretin is “glucagon-like peptide” or GLP. Though “glucagon-like,” GLP does not raise glucose levels or mimic the effect on glucagon in terms of breaking down glycogen or increasing gluconeogenesis. The term “glucagon-like peptide” is very confusing because the effect of GLP is strictly to LOWER glucose levels. GLP also raises insulin levels and slows gastric motility. GLP is normally released from the small bowel but in the native form lasts only for 2 minutes.

4. Dipeptidyl peptidase IV (DPP-IV) inhibitors (sitagliptin, saxagliptin, linagliptin):
 - Increase insulin release from the pancreas and slow stomach emptying
 - Can be given orally

Only after therapy with multiple oral hypoglycemic fails should an insulin regimen be considered. When starting insulin, divide 50% into long-acting and 50% into pre-meal short-acting. This regimen is usually given as glargine insulin 1x/day injection along with 2–3x/day ultra-short-acting insulin such as lispro or aspart before meals. Glargine causes fewer episodes of hypoglycemia compared with NPH. Levemir is a newer, long-acting insulin, lasting 16–18 hours.

Table 2-4. Oral Hypoglycemic Drugs

<table>
<thead>
<tr>
<th>Class</th>
<th>Generic Name</th>
<th>Brand Name</th>
<th>Doses/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylureas</td>
<td>Glyburide, glipizide, glimepiride</td>
<td>Micronase, Diabeta, Amaryl</td>
<td>1–2</td>
</tr>
<tr>
<td>Biguanides</td>
<td>Metformin</td>
<td>Glucophage</td>
<td>2–3</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>Rosiglitazone, pioglitazone</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>Glucosidase inhibitors</td>
<td>Acarbose, miglitol</td>
<td>Precose</td>
<td>With every meal</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>Repaglinide, nateglinide</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DPP-IV inhibitors</td>
<td>Sitagliptin, saxagliptin, linagliptin</td>
<td>Januvia, Onglyza, Tradjenta</td>
<td>—</td>
</tr>
<tr>
<td>Subcutaneous agents</td>
<td>GLP-1</td>
<td>Byetta, Victoza</td>
<td>2/day, 1/day</td>
</tr>
</tbody>
</table>

Table 2-5. Insulin Preparations

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Action (Hours)</th>
<th>Duration of Action (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-short-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin lispro</td>
<td>30–60 min</td>
<td>4–6</td>
</tr>
<tr>
<td>Insulin aspart</td>
<td>20–30 min</td>
<td>3–5</td>
</tr>
<tr>
<td>Rapid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>2–4</td>
<td>6–8</td>
</tr>
<tr>
<td>Semilente</td>
<td>2–6</td>
<td>10–12</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH</td>
<td>6–12</td>
<td>12–18</td>
</tr>
<tr>
<td>Lente</td>
<td>6–12</td>
<td>12–18</td>
</tr>
<tr>
<td>Long-acting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glargine</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Leveimir</td>
<td>18–24</td>
<td>36</td>
</tr>
</tbody>
</table>

Clinical Recall

Which of the following medications is the best initial drug to start in a patient with newly diagnosed non-insulin-dependent diabetes mellitus?

A. PO glyburide
B. PO chlorpropamide
C. PO acarbose
D. IM insulin glargine
E. PO metformin

Answer: E

Complications of diabetes mellitus

Acute Complications. Diabetic ketoacidosis (DKA) is a result of severe insulin insufficiency. It occurs in type 1 diabetics and may be the presenting manifestation. Precipitating factors of DKA include insufficient or interrupted insulin therapy, infection, emotional stress, and excessive alcohol ingestion.
The main problems in DKA stem from acidosis with increased anion gap and dehydration. Clinical findings include anorexia, nausea or vomiting, abdominal pain, rapid breathing (Kussmaul respiration), “fruity” breath odor of acetone, signs of dehydration (dry skin and mucous membranes and poor skin turgor), and altered consciousness to coma. Acidosis can result in fatal rhythm disturbance.

The diagnosis of DKA can be made by finding elevated blood glucose, increased serum levels of acetoacetate, acetone, and hydroxybutyrate, metabolic acidosis (low serum bicarbonate and low blood pH), and increased anion gap (sodium – [bicarbonate + chloride]). DKA is managed with insulin, fluids, and electrolyte replacement. Normal saline should be given in high volume with insulin replacement. Bolus with 5–10 units of regular insulin. Acutely, DKA is associated with hyperkalemia. The total body level of potassium is depleted because of the urinary loss of potassium. As soon as the potassium level falls to ≤5 mEq/L, potassium replacement should be given.

Clinical points in the management of DKA

- Begin management with IV insulin, then switch to subcutaneous insulin when the anion gap normalizes and serum bicarbonate levels are normal.
- Do not stop the IV insulin before starting subcutaneous insulin; instead, overlap them both for 6–8 hours.
- Add 5% dextrose to the normal saline as blood glucose reaches 200–250 mg/dL, and continue IV insulin until the anion gap normalizes.
Hyperosmolar nonketotic coma (HONK) is a syndrome that occurs predominantly in patients with type 2 diabetes and is characterized by severe hyperglycemia in the absence of significant ketosis. Precipitating factors include noncompliance with treatment plus the inability to drink sufficient water to keep up with urinary losses. This is common in elderly diabetics living in nursing homes. Infections, strokes, steroids, immunosuppressant agents, and diuretics are other precipitating factors. HONK can occur after a therapeutic procedure such as peritoneal/hemodialysis, tube feeding of high-protein formulas, or high-carbohydrate infusion. The pathophysiology involved is profound dehydration resulting from a sustained hyperglycemic diuresis. Clinical findings are weakness, polyuria, polydipsia, lethargy, confusion, convulsions, and coma.

The diagnosis of HONK is suggested by elevated blood glucose (typically ≥700 mg/dL) and extremely high serum osmolality.

Serum osmolality in mOsm/L = 2[sodium] + [glucose/18] + [BUN/2.8]

A high BUN (prerenal azotemia) and mild metabolic acidosis (bicarbonate ~20 mEq/L) is also seen without ketosis.

Management of HONK involves high-volume fluid and electrolyte replacement, and insulin.

Chronic Complications. Chronic complications of diabetes involve the macro- and microvasculature, and are a major result of disease progression. These complications reduce patients’ quality of life, incur heavy burdens to the health care system, and increase diabetic mortality. Microvascular disease of diabetes includes diabetic nephropathy, neuropathy, and retinopathy. Macrovascular disease contains coronary artery disease, peripheral arterial disease, and stroke. The effect of glycemic control is much more evident on the morbidity and mortality associated with microvascular complications.

Cardiovascular Complications. The number 1 cause of death in patients with diabetes is cardiovascular disease. About 75% of all deaths in diabetes are from myocardial infarction, congestive failure, or stroke. The central pathological mechanism in macrovascular disease is atherosclerosis, which leads to narrowing of arterial walls throughout the body. Atherosclerosis is thought to result from chronic inflammation and injury to the arterial wall in the peripheral or coronary vascular system.

Lipid testing should be performed in patients with diabetes at least annually. Diabetes is considered the equivalent of coronary disease in terms of management of hyperlipidemia. Lipid goals for adults with diabetes are as follows:

- LDL <100 mg/dL (or <70 mg/dL in cases of overt CVD)
- HDL >50 mg/dL
- Fasting triglycerides <150 mg/dL
- If LDL >100 mg/dL, patient should implement lifestyle modification (diet, exercise) along with drug therapy (statin). Combination therapy of statin plus another drug such as a fibrate or niacin may be necessary to achieve ideal lipid control, but monitor patients closely for possible adverse reaction to therapy.
- Coronary artery bypass should be performed in a diabetic patient even if there is only 2-vessel coronary disease.

Diabetic nephropathy. Nephropathy affects 30–40% of type 1 diabetics and 20–30% of type 2 diabetics. Hyperproliferation, proteinuria, and end-stage renal disease can develop. The pathology can be diffuse, which is more common, and lead to widening of glomerular basement membrane

Note
The most common pattern of dyslipidemia in patients with type 2 diabetes is elevated triglyceride and decreased HDL cholesterol.
and mesangial thickening. Nodular pathology can occur and results in hyalinization of afferent glomerular arterioles (Kimmelstiel-Wilson syndrome). Management of nephropathy involves strict control of diabetes, ACE-inhibitors, and dialysis or renal transplantation.

All diabetics should be screened for proteinuria annually. Proteinuria is detectable on a standard dipstick when the level >300 mg per 24 hours. Microalbuminuria is defined as a level 30–300 mg. All those with proteinuria should receive therapy with an ACE inhibitor or angiotensin receptor blocker. Diabetes is the most common cause of end-stage renal disease in the United States.

Diabetic retinopathy. The retina is affected, and diabetes is the leading cause of blindness in middle-aged patients. Simple/background, or proliferative (microaneurysms, hemorrhages, exudates, retinal edema) damage can occur.

- For type 2 diabetic patients, screen at diagnosis, then annually.
- For type 1 diabetes, the first screening should take place 5 years after diagnosis, then annually.

Proliferative retinopathy is defined as the presence of vitreous hemorrhages or neovascularization; treatment is with laser photoagulation. Nonproliferative or background retinopathy can only be prevented with tight control of glucose levels.

Diabetic neuropathy. Neuropathy is another complication of diabetes, and it has various types.

- **Peripheral neuropathy** (most common) is symmetrical, with symptoms of numbness, paresthesia, and pain being prevalent. Physical exam reveals absent reflexes and loss of vibratory sense. Podiatric exam (monofilament testing) should occur annually to look for early signs of neuropathy since it leads to increased injury from trauma. Diabetes is responsible for 50% of all nontraumatic amputations in the United States.
- **Mononeuropathy** affects a single nerve or nerve trunk (mononeuritis multiplex) and is vascular in origin; patients will have sudden foot drop, wrist drop, or paralysis of CN III, IV, or VI.
- **Autonomic neuropathy** can be devastating; patients will have orthostatic hypotension and syncope as main manifestations. Gastrointestinally, patients may have difficulty swallowing, delayed gastric emptying (gastroparesis), constipation, or diarrhea. The diagnostic test of choice for gastroparesis is the gastric emptying scintigraphy study. Bladder dysfunction or paralysis can lead to urinary retention. Impotence and retrograde ejaculation can occur; the prevalence of erectile dysfunction is as high as 50% in patients with 10 years of diabetes.
As with other microvascular complications, prevention of neuropathy in diabetes is by tight glycemic control. Management once it occurs depends on the type. For peripheral neuropathy, analgesics, gabapentin, pregabalin, amitriptyline, and carbamazepine are used (gabapentin and pregabalin are the best). For gastroparesis, metoclopramide or erythromycin can be used. Erectile dysfunction is treated with sildenafil and similar drugs.

Additional Concepts. The “honeymoon” period (in IDDM patients) is an initial episode of ketoacidosis followed by a symptom-free interval during which no treatment is required. Presumably stress-induced epinephrine release blocks insulin secretion, causing the syndrome. In normal individuals insulin reserve is such that hormone release is adequate even in the face of stress.

The Somogyi effect is rebound hyperglycemia in the morning because of counterregulatory hormone release after an episode of hypoglycemia in the middle of the night.

The Dawn phenomenon is an early morning rise in plasma glucose secondary to a rise in counter-regulatory hormones cortisol, epinephrine, and GH requiring increased amounts of insulin to maintain euglycemia.

Hypoglycemia

Glucose is the primary energy source of the brain. Symptoms of hypoglycemia are divided into 2 groups and can occur because of excessive secretion of epinephrine, leading to sweating, tremor, tachycardia, anxiety, and hunger. Hypoglycemia can also occur because of dysfunction of the CNS, leading to dizziness, headache, clouding vision, blunted mental activity, loss of fine motor skills, confusion, abnormal behavior, convulsions, and loss of consciousness. There is no uniform correlation between a given level of blood sugar and symptoms. Major symptoms in normal persons may not be seen until blood sugar is 20 mg/dL.

Classification. Postprandial hypoglycemia (reactive) can be secondary to alimentary hyperinsulinism (after gastrectomy, gastrojejunostomy, pyloroplasty, or vagotomy), idiopathic, and galactosemia.

Fasting hypoglycemia can result from conditions in which there is an underproduction of glucose, such as hormone deficiencies (panhypopituitarism, adrenal insufficiency), enzyme defects, substrate deficiency (severe malnutrition, late pregnancy), acquired liver disease, or drugs (alcohol, propanolol, salicylates). Fasting hypoglycemia can also occur in conditions related to overutilization of glucose such as hyperinsulinism. Hyperinsulinism can occur secondary to insulinoma, exogenous insulin, sulfonylureas, drugs (quinine), endotoxic shock, and immune disease with insulin receptor antibodies. Overutilization of glucose can also occur in states in which there are appropriate insulin levels, such as extrapancreatic tumors and rare enzyme deficiencies.

Insulinoma (pancreatic B-cell tumor) can cause hypoglycemia. Ninety percent of these tumors are single and benign. Clinical findings include symptoms of subacute or chronic hypoglycemia such as blurred vision, headache, feelings of detachment, slurred speech, and weakness. Symptoms occur in the early morning or late afternoon or after fasting or exercise.

Diagnosis. This is made by finding a serum insulin level ≥8 mg/mL in the presence of blood glucose <40 mg/dL (i.e., inappropriately high serum insulin level when glucose is low), noted either spontaneously or during a prolonged fast (72 hours). CT scan, U/S, and arteriography may also be useful in detecting the tumor(s). Management of insulinoma is by surgery, diet, and medical therapy.
Factitious hyperinsulinism is caused by self-administration of insulin or ingestion of Equal or oral sulfonylureas. It is common and exceeds the incidence of insulinomas. Most often, these patients are associated with the health professions or have access to these drugs by a diabetic member of the family. A triad of hypoglycemia, high immunoreactivity, insulin, and suppressed plasma C-peptide is pathognomonic of exogenous insulin administration.

Ethanol-induced hypoglycemia can also occur with prolonged starvation, when glycogen reserves become depleted in 18–24 hours and hepatic glucose output depends completely on gluconeogenesis. Ethanol at a concentration of 45 mg/dL can induce hypoglycemia by blocking gluconeogenesis.

Table 2-6. Differential Diagnosis of Insulinoma and Factitious Hyperinsulinism

<table>
<thead>
<tr>
<th>Test</th>
<th>Insulinoma</th>
<th>Exogenous Insulin</th>
<th>Sulfonylureas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma insulin</td>
<td>High (usually <200 µU/mL)</td>
<td>Very high (usually >1,000 µU/mL)</td>
<td>High</td>
</tr>
<tr>
<td>Proinsulin</td>
<td>Increased</td>
<td>Normal or low</td>
<td>Normal</td>
</tr>
<tr>
<td>C peptide (insulin connective peptide) 1:1</td>
<td>Increased</td>
<td>Normal or low</td>
<td>Increased</td>
</tr>
<tr>
<td>Insulin antibodies</td>
<td>Absent</td>
<td>+/- Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Plasma or urine sulfonylurea</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
</tr>
</tbody>
</table>

Clinical Recall

Which of the following medications is contraindicated in patients with acute pulmonary edema with an ejection fraction of 25%?

A. Glyburide
B. Metformin
C. Rosiglitazone
D. Exenatide
E. Sitagliptin

Answer: C

DISEASES OF THE ADRENAL GLAND

The adrenal gland is divided into 2 areas: the cortex and medulla. The cortex is divided into 3 areas, the outer zone (glomerulosa), which is the site of aldosterone synthesis; the central zone (fasciculata), which is the site of cortisol synthesis; and the inner zone (reticularis), which is the site of androgen biosynthesis. The disorders of hyperfunction of the gland are associated with the following specific hormones: increased cortisol is seen in Cushing syndrome; increased aldosterone in hyperaldosteronism; and increased adrenal androgens with virilization in women.
Figure 2-13. Adrenal Cortex Regions

Hyperfunctioning of the Gland

Cushing syndrome

Cushing syndrome is a group of clinical abnormalities caused by prolonged exposure to increased amounts of cortisol or related corticosteroids. The most common causes are exogenous, iatrogenic, and those secondary to prolonged use of glucocorticoids.

The etiology of Cushing syndrome includes adrenal hyperplasia. This can be secondary to pituitary ACTH production, which occurs in pituitary-hypothalamic dysfunction, and pituitary ACTH-producing adenomas (microadenoma, e.g., Cushing disease). ACTH-producing pituitary adenomas cause about 60–80% of Cushing cases. Adrenal hyperplasia can also be secondary to ACTH or corticotropin-releasing hormone (CRH), produced by nonendocrine tumors (bronchogenic carcinoma, carcinoma of the thymus, pancreatic carcinoma, and bronchial adenoma). Adrenal neoplasia, such as adenoma or carcinoma, and adrenal nodular hyperplasia account for about 30% of Cushing cases. Excessive cortisol production by an autonomous adrenal tumor results in a low ACTH level. About 15% of Cushing cases are from ACTH from a source that cannot be located.

Clinical Findings. The clinical findings of Cushing syndrome include deposition of adipose tissue in characteristic sites such as upper fat, moon facies; interscapular buffalo hump; and mesenteric bed, truncal obesity. Other clinical findings include hypertension, muscle weakness, and fatigability related to mobilization of peripheral supportive tissue; osteoporosis caused by increased bone catabolism; cutaneous striae; and easy bruising. Women may have acne, hirsutism, and oligomenorrhea or amenorrhea resulting from the increased adrenal androgen secretion. Emotional changes range from irritability or emotional lability to severe depression or confusion; even psychosis can occur as well. Glucose intolerance is common in Cushing disease, with 20% of patients having diabetes.
Cushing and glucocorticoid use are also associated with hypokalemia and leukocytosis. Hypokalemia occurs because of the mineralocorticoid effect of the steroids.

Clinically significant hypokalemia is uncommon.

Other manifestations are delayed wound healing, renal calculi from increased calcium levels, and glaucoma. Polyuria is from hyperglycemia. There is increased susceptibility to infections because neutrophils exhibit diminished function because of high glucocorticoid levels.

Diagnosis. The diagnostic tests used to establish the syndrome of cortisol excess are the 1-mg overnight dexamethasone suppression test and the 24-hour urine-free cortisol. The tests used to establish a precise etiology of the cortisol excess are the ACTH level, high-dose dexamethasone suppression test, CT and MRI scanning, and occasionally sampling of the petrosal venous sinuses, which drains out of the pituitary.

The 1-mg overnight dexamethasone suppression test is used to rule out the diagnosis of Cushing syndrome or glucocorticoid excess. If you give a milligram of dexamethasone at 11 p.m., the cortisol level at 8 a.m. should come to normal if there is the normal ability to suppress ACTH production over several hours. The problem with this test is that there can be falsely abnormal or positive tests. Any drug that increases the metabolic breakdown of dexamethasone will prevent its ability to suppress cortisol levels. Examples of drugs increasing the metabolism of dexamethasone are phenytoin, carbamazepine, and rifampin. Stress increases glucocorticoid levels. The 1-mg overnight dexamethasone suppression test can be falsely positive in stressful conditions such as starvation, anorexia, bulimia, alcohol withdrawal, or depression.

An abnormality on the 1-mg overnight test should be confirmed with a 24-hour urine-free cortisol. The 24-hour urine-free cortisol is more accurate and is the gold standard for confirming or excluding Cushing's syndrome.

A third screening test for Cushing is the midnight salivary cortisol. In normal patients, cortisol is at its lowest at midnight. In Cushing patients, cortisol is abnormally elevated at midnight.

The precise etiology of the Cushing syndrome is established by using ACTH levels, sometimes in combination with high-dose dexamethasone suppression testing. ACTH levels are elevated with either a pituitary source of ACTH such as an adenoma or with an ectopic source. High-dose dexamethasone suppression testing can distinguish the difference. The output of a pituitary adenoma will suppress with high-dose dexamethasone. The output of an ectopic source will not suppress with high-dose dexamethasone.

If the ACTH level is low, then the etiology is most likely from an adrenal tumor such as an adenoma, cancer, or from adrenal hyperplasia. When the adrenal gland is the source of increased cortisol production, there is feedback inhibition on the pituitary and the ACTH level is suppressed.

When there is a low ACTH level, the precise etiology is confirmed with a CT scan of the adrenals.

When there is a high ACTH level, the precise etiology is confirmed with an MRI of the pituitary looking for an adenoma or a CT scan of the chest looking for an ectopic focus. If neither of these shows a lesion or the MRI of the brain is equivocal, then inferior petrosal sinus sampling should be done to see if there is increased ACTH coming out of the brain.

Single random cortisol levels are not reliable.

- High plasma ACTH levels = pituitary or ectopic source
- Low plasma ACTH levels = adrenal tumors or hyperplasia
Management. Depends on the etiology, and can be surgical or medical. Unresectable adrenal tumors are treated with ketoconazole or metyrapone.
Hyperaldosteronism
Hyperaldosteronism is a syndrome associated with hypersecretion of the major adrenal mineralocorticoid, aldosterone. The normal function of aldosterone is to reabsorb sodium and excrete potassium and acid (H\(^+\)). Hyperaldosteronism can be divided into the following:

- **Primary aldosteronism**, in which the stimulus for the excessive aldosterone production is within the adrenal gland
- **Secondary aldosteronism**, in which the stimulus is extraadrenal

The most common cause of primary hyperaldosteronism is a unilateral adrenal adenoma (70%). Bilateral hyperplasia accounts for 25–30%. Excessive black licorice ingestion can mimic this effect. Licorice has aldosterone-like qualities.

Primary Aldosteronism

<table>
<thead>
<tr>
<th>Initiating event</th>
<th>↑ Intravascular volume</th>
<th>↑ Aldosterone production</th>
<th>↓ Renin</th>
<th>↑ Na(^+) retention</th>
</tr>
</thead>
</table>

Secondary Aldosteronism

<table>
<thead>
<tr>
<th>Initiating event</th>
<th>↓ Intravascular volume</th>
<th>↑ Aldosterone production</th>
<th>↓ Renin</th>
<th>↑ Na(^+) retention</th>
</tr>
</thead>
</table>

Figure 2-15. Mechanism of Hyperaldosteronism

Clinical. Primary hyperaldosteronism is characterized by hypertension and low potassium levels. Most of the other symptoms, such as muscle weakness, polyuria, and polydipsia, are from the hypokalemia. Metabolic alkalosis occurs because aldosterone increases hydrogen ion (H\(^+\)) excretion. Aldosterone causes alkalosis. Edema is uncommon with primary hyperaldosteronism because of sodium release into the urine.

Table 2-7. Clinical and Laboratory Findings in Primary and Secondary Aldosteronism

<table>
<thead>
<tr>
<th></th>
<th>Primary Aldosteronism</th>
<th>Secondary Aldosteronism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic hypertension</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Muscle weakness</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Polyuria, polydipsia</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Edema</td>
<td>–</td>
<td>+/-</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Diagnosis. The preliminary screen for hyperaldosteronism is a plasma aldosterone concentration (PAC) and plasma renin activity (PRA). A positive screen is a PAC/PRA ratio >20:1 and a PAC >15. To confirm hyperaldosteronism, an NaCl challenge is required. This can be via normal saline, NaCl tabs, or fludrocortisone. After an NaCl challenge, PAC should be suppressed as in a normal individual. If PAC is still elevated, this confirms the diagnosis.

Management. Adrenal adenomas are removed surgically. Bilateral hyperplasia is treated with spironolactone, which blocks aldosterone.

Bartter Syndrome. The exception of secondary hyperaldosteronism without edema or hypertension is Bartter syndrome. Bartter syndrome is caused by a defect in the loop of Henle in which it loses NaCl. This is due to a defect in the Na-K-2Cl cotransporter. This is like having a furosemide-secreting tumor.

In Bartter syndrome there is juxtaglomerular hyperplasia, normal to low blood pressure, no edema, severe hypokalemic alkalosis, defect in renal conservation of sodium or chloride, and renal loss of sodium, which stimulates renin secretion and aldosterone production.

Syndromes of adrenal androgen excess

Syndromes of adrenal androgen excess result from excess production of dehydroepiandrosterone (DHEA) and androstenedione, which are converted to testosterone in extraglandular tissues. The elevated testosterone accounts for most androgenic effects.

Clinical Signs and Symptoms. Hirsutism, oligomenorrhea, acne, and virilization. Etiology includes congenital adrenal hyperplasia, adrenal adenomas (rare), and adrenal carcinomas.

Congenital adrenal hyperplasia

Congenital adrenal hyperplasia (CAH) is the most common adrenal disorder of infancy and childhood. It is associated with increased adrenal androgen production because of enzymatic defects. CAH arises from autosomal recessive mutations, which produce deficiencies of enzymes necessary for the synthesis of cortisol.

Common Enzymatic Defects Associated with CAH. Enzymatic defects include C-21 hydroxylase deficiency in 95% of all cases. C-21 hydroxylase deficiency is associated with reduction in aldosterone secretion in one-third of patients. Adrenal virilization occurs with or without an associated salt-losing tendency, owing to aldosterone deficiency, which leads to hyponatremia, hyperkalemia, dehydration, and hypotension.

Patients are female at birth with ambiguous external genitalia (female pseudohermaphroditism), enlarged clitoris, and partial or complete fusion of the labia. Postnatally CAH is associated with virilization. Patients may be male at birth with macrogenitosomia; postnatally this is associated with precocious puberty.

C-11 hydroxylase deficiency can also occur. The mineralocorticoid manifestations in C-11 deficiency can be ‘biphasic.’ In early infancy, despite having excessive mineralocorticoid hormones, patients sometimes present with relative ‘salt wasting’ (aldosterone deficiency). This is because some infants have inefficient salt conservation as well as immature aldosterone production. During this phase, infants can present with hypotension and hyperkalemia (very similar to 21 hydroxylase deficiency). Later in life (childhood and adulthood), there is better ability to hold onto salt, so the patient develops the typical C-11 deficiency syndrome: hypertension and hypokalemia.

Note

The ‘biphasic’ presentation is rare. When you think about 11 deficiency, think mineralocorticoid excess (hypertension and hypokalemia) with low cortisol production (remember you need C-11 for the final step in converting to cortisol).
C-17 hydroxylase deficiency can occur as well, and is characterized by hypogonadism, hypokalemia, and hypertension resulting from increased production of 11-deoxycorticosterone.

Diagnosis. CAH should be considered in all infants exhibiting failure to thrive, especially those with episodes of acute adrenal insufficiency, salt wasting, or hypertension. The most useful measurements are of serum testosterone, androstenedione, dehydroepiandrosterone, 17-hydroxyprogesterone, urinary 17-ketosteroid, and pregnanetriol.

Management. Treatment is glucocorticoid (hydrocortisone) replacement.

Clinical Recall

An elderly, obese, diabetic patient comes to the clinic with LDL levels of 150 mg/dL. Which medication should be given at this time?

A. Niacin
B. Atorvastatin
C. Gemfibrozil
D. Lisinopril
E. Gabapentin

Answer: B

Hypofunctioning of the Gland

Adrenal insufficiency

Adrenal insufficiency can be divided into primary adrenocortical insufficiency (Addison disease) and secondary failure in the elaboration of ACTH.

Primary adrenocortical insufficiency is a slow, usually progressive disease due to adrenocortical hypofunction. The etiology can be secondary to anatomic destruction of the gland (chronic and acute). Idiopathic atrophy is the most common cause of anatomic destruction, and autoimmune mechanisms are probably responsible. Autoimmune destruction accounts for 80% of cases. Anatomic destruction can also be secondary to surgical removal, infection (TB, fungal, cytomegalovirus), hemorrhagic, trauma, and metastatic invasion. Metabolic failure in hormone production can also lead to Addison disease and can be secondary to CAH, enzyme inhibitors, and cytotoxic agents (mitotane).

Clinical Findings. The clinical findings in Addison disease include weakness, paresthesias, cramping, intolerance to stress, and personality changes such as irritability and restlessness. Chronic disease is characterized by a small heart, weight loss, and sparse axillary hair. Hyperpigmentation of the skin can occur and appears as diffuse brown, tan, or bronze darkening of both exposed and unexposed body parts. Arterial hypotension is seen and is often orthostatic owing to lack of effect of cortisol on vascular tone. Abnormalities of GI function are found, and symptoms vary from mild anorexia with weight loss to nausea, vomiting, diarrhea, and abdominal pain. Acute Addisonian crisis is characterized by fever and hypotension. A low sodium with a high potassium level and mild acidosis are also present.
Diagnosis. The diagnosis of Addison disease is made through rapid ACTH administration and measurement of cortisol. Laboratory findings include white blood cell count with moderate neutropenia, lymphocytosis, and eosinophilia; elevated serum potassium and urea nitrogen; low sodium; low blood glucose; and morning low plasma cortisol.

The definitive diagnosis is the cosyntropin or ACTH stimulation test. A cortisol level is obtained before and after administering ACTH. A normal person should show a brisk rise in cortisol level after ACTH administration.

Differences between primary and secondary adrenal insufficiency:

- Hyperpigmentation (occurs only with primary insufficiency)
- Electrolyte abnormalities
- Hypotension

![Diagram of Diagnosis of Adrenal Insufficiency](image)

Figure 2-16. Diagnosis of Adrenal Insufficiency

Management. The management of Addison disease involves glucocorticoid, mineralocorticoid, and sodium chloride replacement, in addition to patient education.
Adrenal Crisis. In an adrenal crisis, fever, vomiting, abdominal pain, altered mental status, and vascular collapse may occur. Get a cortisol level, then rapidly administer fluids and hydrocortisone. This may occur in:

- Previously undiagnosed patient with adrenal insufficiency who has undergone surgery, serious infection, and/or major stress
- Bilateral adrenal infarction or hemorrhage
- Patient who is abruptly withdrawn from chronic glucocorticoid therapy

Pheochromocytoma

Pheochromocytoma is a rare, usually benign, tumor that arises from the chromaffin cells of the sympathetic nervous system. The rule of 10% applies in pheochromocytoma with 10% being extraadrenal, 10% malignant, 10% in children, and 10% bilateral or multiple (>right side). Also, 10% are not associated with hypertension.

Epidemiology. Pheochromocytoma occurs in approximately 0.1% of the hypertensive population. Familial pheochromocytoma occurs in 5% of cases, and is transmitted as an autosomal dominant trait alone or in combination with MEN type IIa or IIb, von Recklinghausen neurofibromatosis, or von Hippel-Lindau retinal cerebellar hemangioblastomatosis.

Pathology. In adults, 80% of pheochromocytomas occur as a unilateral solitary lesion with 10% being bilateral and 10% extraadrenal. In children, 25% of the tumors are bilateral and 25% are extraadrenal. Solitary lesions favor the right side. Extraadrenal pheochromocytomas are mostly located within the abdomen and near the celiac, superior mesenteric, and inferior mesenteric ganglia.

Catecholamine Secretion. Secretion of dopamine occurs more in familial syndromes and is not associated with hypertension. Epinephrine secretion causes tachycardia, sweating, flushing, and hypertension. Norepinephrine is secreted by all extraadrenal tumors.

Clinical Findings. Clinical findings of pheochromocytoma include paroxysms or crisis. This accounts for the typical manifestations occurring in >50% of patients. The attack has a sudden onset, lasting from a few minutes to several hours or longer. Headache, profuse sweating, palpitations, and apprehension are common in this setting. Pain in the chest or abdomen may be associated with nausea and vomiting. Blood pressure is elevated with tachycardia in crisis. Forty percent of patients have blood pressure elevation only during the attack, and 60% have stable hypertension. Anxiety, tremor, and weight loss are also found.

>33% of pheochromocytomas cause death prior to diagnosis; death is often due to cardiac arrhythmia and stroke.

Other clinical features include orthostatic hypotension and glucose intolerance. The hyperglycemia is only found in about 33% of patients and is mild.

Diagnosis. Diagnosis is established by demonstrating increased amounts of catecholamines or catecholamine metabolites in a 24-hour urine collection. Urinary-free catecholamines, urinary metanephrines, vanillylmandelic acid, and plasma catecholamines are tests of choice. Metanephrines are catecholamine metabolites. A 24-hour urinary VMA, metanephrines, and free catecholamines are the best initial tests. Recently, plasma metanephrine levels have been used in conjunction with urinary tests. Overall, metanephrines are the most sensitive and specific individual test. Smoking can increase plasma-free metanephrines. The patient must not smoke at least 4 hours before the test.
Clonidine should suppress epinephrine levels. Failure of epinephrine levels to fall after clonidine administration is highly suggestive of pheochromocytoma. A clonidine-suppression test is used when the screening tests are equivocal.

When the catecholamine or metanephrine levels are abnormal, the tumor is confirmed with CT or MRI scan. If the biochemical tests (catecholamines, metanephrines) are positive and the CT scan does not show the location of the pheochromocytoma, then do an MIBG (metaiodobenzylguanidine) scan.

The differential diagnosis of pheochromocytoma includes essential hypertension, anxiety attacks, factitious crisis, intracranial lesions, and autonomic epilepsy.

Management. Alpha-adrenergic blockade, phentolamine and/or phenoxybenzamine, is required to control BP and prevent a hypertensive crisis, since high circulating catecholamine levels stimulate alpha receptors on blood vessels and cause vasoconstriction.

- Beta blockers are used if significant tachycardia occurs after alpha blockade; beta blockers are not administered until adequate alpha blockade has been established, since unopposed alpha-adrenergic receptor stimulation can precipitate a hypertensive crisis.
- Noncardioselective beta blockers (propranolol, nadolol) are the usual choice, though cardioselective agents (atenolol, metoprolol) may be used.
- Labetalol has been associated with paradoxic episodes of hypertension thought to be secondary to incomplete alpha blockade.

Curative surgical removal of the pheochromocytoma is performed only after BP has been stabilized; during surgery, IV phentolamine—a rapid-acting alpha-adrenergic antagonist—is used for controlling BP.

DISEASES OF THE TESTES, HYPOGONADISM

In hypogonadism there is decreased function of the testes or ovaries, resulting in the absence or impairment of secondary sexual characteristics and infertility.
Primary hypogonadism (hypergonadotropic: increased LH, FSH) can result from Klinefelter syndrome (small testes, eunuchoid, 47XXY), anorchia, surgical or accidental castration or radiotherapy, infections (mumps, TB, leprosy), or chemotherapeutic agents.

Secondary hypogonadism (hypogonadotropic: low LH, FSH) can result from hypopituitarism secondary to idiopathic causes or tumors, hypothalamic lesions, and Kallmann syndrome (hypogonadic hypogonadism, associated with decreased sense of smell).

Clinical Findings.

- Prepubertal hypogonadism, usually caused by a specific gonadotropic deficiency of the pituitary
- Underdeveloped external genitalia, high-pitched voice, beard that does not grow, lack of libido and potency
- Youthful appearance (adult patients), with obesity, disproportionately long extremities, lack of temporal recession of the hairline, and small Adam's apple
- Possible gynecomastia
- Skin that is fine-grained, wrinkled, and free of acne
- Possible testes absent from scrotum
- Retarded bone age
- Low to normal urinary 17-ketosteroid and below-normal serum testosterone
- Serum FSH and LH: low in hypothalamic or pituitary origin but elevated in primary testicular failure

Treatment is testosterone.

Klinefelter syndrome is the most common primary developmental abnormality causing hypogonadism (testicular damage), affecting 1 of every 400–500 males. It is caused by one or more supernumerary X chromosomes.

- 47,XXY karyotype (80% of patients)
- Gynecomastia, with elevated LH and FSH
- Sterility and lack of libido
- Small and thin testes
- Possible intellectual disability
- Low-normal or normal urinary 17-ketosteroids; low to normal serum testosterone; elevated LH and FSH; and elevated serum estradiol

Treatment is testosterone replacement.

Note
Males affected by Klinefelter syndrome have a 20 × increased risk of breast cancer.
Clinical Recall

Which of the following tests are most specific in the diagnosis of pheochromocytoma?

A. Urinary-free catecholamines with plasma catecholamine
B. 24 hour urinary VMA and free catecholamines
C. Urinary VMA with plasma catecholamine
D. Plasma catecholamines and VMA with urinary VMA and catecholamine levels
E. Plasma metanephrine with 24 hour urinary metanephrine and VMA levels

Answer: E
Learning Objectives

- List the steps for evaluating a patient with arthritis
- Differentiate between autoimmune arthritis, seronegative arthritis, osteoarthritis, crystal-induced arthritis, and septic arthritis
- Differentiate and describe the treatment approaches to rheumatoid arthritis, systemic lupus erythematosus, drug-induced lupus, scleroderma, Sjögren syndrome
- Differentiate and describe treatment approaches to seronegative arthropathies, including ankylosing spondylitis, reactive arthritis, psoriatic arthritis, and enteropathic arthritis
- Answer questions about the management of osteoarthritis, crystal-induced arthropathies, and septic arthritis
- Describe the diagnosis and management of vasculitis syndromes and inflammatory myopathies

EVALUATING A PATIENT WITH ARTHRITIS

When a patient presents with joint swelling, a differential diagnosis is generated based on the answers to the following questions:

1. **What is the distribution of joint involvement and how many joints are involved?**

 Polyarticular symmetric involvement is characteristically seen with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), parvovirus B19, and hepatitis B.

 Monoarticular arthritis is consistent with osteoarthritis (OA), crystal-induced arthritis (gout, pseudogout), septic arthritis (gonococcus), trauma, and hemarthrosis.

 Migratory arthropathy (inflammation and pain migrate from joint to joint while the previous involved joints improve) is caused by rheumatic fever, disseminated gonococcal infection, and Lyme disease.
Oligoarticular asymmetric arthritis is common with the spondyloarthropathies (ankylosing spondylitis) and OA involving the small joint of the upper extremities. It is rarely in the presentation of polyarticular gout.

2. Are the symptoms acute or chronic?

OA is a chronic disease; patients have symptoms for months to years. With septic arthritis or crystal-induced arthropathy, patients have short-lived symptoms, i.e., only a few days.

3. Does the patient have systemic symptoms (beyond the arthritis)?

SLE presents with lung (pleural effusions), kidney (proteinuria and renal failure), CNS (vasculitis, strokes, and change in personality), skin (malar and photosensitivity rash), and hematologic (immune-mediated anemia, thrombocytopenia) manifestations.

Sjögren syndrome has keratoconjunctivitis sicca (dry eyes/mouth) and parotid enlargement.

Systemic sclerosis has skin involvement and Raynaud phenomenon.

Wegener granulomatosis presents with upper respiratory (sinusitis and rhinitis), lower respiratory (lung nodules and hemoptysis), and renal (necrotizing glomerulonephritis) involvement.

OA presents with an absence of systemic symptoms.

4. Is there evidence of joint inflammation?

Evidence of joint inflammation includes joint stiffness in the morning >1 hour, joint erythema and warmth, and elevated erythrocyte sedimentation rate (ESR) and C-reactive protein. RA would produce inflammation, while OA would not.

Do not go further into a history unless you have answered these 4 questions.

Examples

• A 62-year-old man presents with right knee pain
• A 24-year-old woman presents with bilateral wrist, MCP, PIP joint swelling, and pain
• A 32-year-old man presents with knee swelling after you had seen him 1 week ago for left wrist pain and swelling, which has now resolved
• A 29-year-old man has right knee pain and swelling and left hip pain

TESTS IN RHEUMATOLOGIC DISEASE

Joint Aspiration

If there is fluid in the joint, it needs immediate analysis. The basic tests to run on the synovial fluid are the 3 Cs (cell count, crystals, and cultures) and the Gram stain.

Synovial fluid may be stratified according to the number of cells:

• **OA and traumatic arthritis**: 200–2,000 WBCs/mm³ in synovial fluid
• **Inflammatory diseases** (RA, gout): 5,000–50,000 WBC/mm³
• **Septic arthritis**: >50,000 WBC/mm³
Table 3-1. Synovial Fluid Analysis in Rheumatologic Disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>WBCs</th>
<th>Crystals/Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJD</td>
<td><2,000</td>
<td>Negative traumatic</td>
</tr>
<tr>
<td>Inflammatory</td>
<td>5,000–50,000</td>
<td>Gout: needle-shaped, negative birefringent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudogout (CPPD): rhomboid-shaped, positive birefringent</td>
</tr>
<tr>
<td>Septic</td>
<td>>50,000</td>
<td>Negative (Gram stain and culture usually negative for GC but positive in Staph, strep, and gram-negatives)</td>
</tr>
</tbody>
</table>

There are a few exceptions to the above:

- Septic arthritis can be present with <50,000 WBC/mm³ in the joint aspirate if antibiotics are given before the joint aspiration. Consider it if patient has >5,000 WBC/mm³ in the synovial fluid and monoarticular arthritis, but there is an absence of crystals.
- Gout and pseudogout uncommonly present with >50,000 WBC/mm³ in the absence of infection. Consider them if there is evidence of crystals in the aspirate.
- Culture of joint fluid is positive in only ≤50% of gonococcal arthritis cases.

Antinuclear Antibodies

Antinuclear antibodies (ANAs) are antibodies with the capability to bind to certain structures within a cell nucleus. They are typically found in patients whose immune system is predisposed to generating antibodies against their own body tissues (called *autoimmunity*), such as SLE, Sjögren syndrome, and systemic sclerosis. However, they are also found in ~5% of healthy people (though usually in low titers [<1:80]).

The ANA test is performed by exposing the antibodies in the serum of the blood to the laboratory test cells. It is then determined whether there are antibodies that react with various parts of the nucleus. Fluorescent techniques are now often used, thus the test may be referred to as a fluorescent antinuclear antibody test (FANA).

ANAs present in different patterns depending on the staining of the cell nucleus: homogeneous, speckled, nucleolar, and peripheral (or rim). While these patterns are not specific for any one disease, certain diseases can more frequently be associated with one pattern or another.

- Peripheral (rim) pattern may be seen with SLE
- Nucleolar pattern is commonly seen with systemic sclerosis
- Speckled pattern is more commonly seen in healthy people

Subsets of ANAs are associated with specific autoimmune diseases and thus used to further diagnose those diseases. For example, anti ds-DNA and anti-SM antibodies are found in patients with SLE; anti-histone antibodies are found in patients with drug-induced lupus.
Clinical Correlate
Overall, >95% of SLE patients have positive ANA test results, making a negative ANA result a good rule-out test for SLE.

Interpret a positive ANA test in the context of the clinical symptoms:
- Positive ANA with no symptoms or abnormal tests is likely to be a false-positive (5% of population)
- Positive ANA with arthritis, proteinuria, and pleural effusion is likely to be associated with SLE

Table 3-2. ANA Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral (Rim)</td>
<td>SLE</td>
</tr>
<tr>
<td>Diffuse</td>
<td>Nonspecific</td>
</tr>
<tr>
<td>Speckled</td>
<td>Nonspecific</td>
</tr>
<tr>
<td>Centromere</td>
<td>CREST</td>
</tr>
<tr>
<td>Nucleolar</td>
<td>Systemic sclerosis</td>
</tr>
</tbody>
</table>

Table 3-3. Specific ANAs

<table>
<thead>
<tr>
<th>ANA</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti (native DNA)</td>
<td>SLE only (60%); an indicator of disease activity and lupus nephritis</td>
</tr>
<tr>
<td>Anti-SM</td>
<td>SLE only (25–30%)</td>
</tr>
<tr>
<td>Anti-histone</td>
<td>Drug-induced lupus (95%)</td>
</tr>
<tr>
<td>Anti-Ro (SSA)</td>
<td>Neonatal lupus, Sjögren and in the 3% of ANA-negative lupus</td>
</tr>
<tr>
<td>Anti-LA (SSB)</td>
<td>Sjögren</td>
</tr>
<tr>
<td>Anti-centromere</td>
<td>CREST</td>
</tr>
<tr>
<td>Anti-RNP</td>
<td>100% mixed connective tissue disease (MCTD)</td>
</tr>
</tbody>
</table>

Rheumatoid Factors
Rheumatoid factors (RFs) are autoantibodies against the Fc portion of IgG.
- Found in ~70% of patients with RA although they are not specific for RA
- Found in 5% of healthy adults (prevalence increases with age, i.e., up to 20% in those age >65)

While RFs are neither sensitive nor specific for the diagnosis of RA, their presence can be of prognostic significance: patients with high titers tend to have more aggressive disease with extraarticular manifestations.

Antineutrophil Cytoplasmic Antibodies
Antineutrophil cytoplasmic antibodies (ANCAs) are antibodies directed against certain proteins in the cytoplasm of neutrophils.
- **Cytoplasmic (c) ANCA** is the diffuse staining pattern observed when serum antibodies bind to indicator neutrophils; it is seen in >90% of patients with Wegener granulomatosis.
- **Perinuclear (p) ANCA** is a localized staining pattern observed on the indicator neutrophils (the major target of these antibodies is the enzyme myeloperoxidase); it is found in PAN and Churg-Strauss but is a nonspecific test.
Antiphospholipid Antibody Syndrome

Antiphospholipid antibody syndrome (lupus anticoagulant or anticardiolipin antibodies) is a hypercoagulable state associated with a group of antibodies that are directed against phospholipids or cardiolipins. It is unclear whether the antibodies are directly involved in the etiology of the clotting disorder associated with this syndrome. The nature of these antibodies causes the common lab abnormalities associated with the syndrome, i.e., elevated partial thromboplastin time (PTT) and false-positive RPR or VDRL.

Clinically, it presents with spontaneous abortions in otherwise healthy women or thromboembolism (pulmonary embolism, DVT) in other patients. Two first-trimester spontaneous abortions suggest antiphospholipid antibodies.

RHEUMATOID ARTHRITIS

A 26-year-old woman with no prior medical history presents with a 3-week history of joint swelling and stiffness. She informs you that she has had stiffness for about 2 h every morning since the symptoms started and that the symptoms improve as the day progresses. She denies back stiffness or back pain. She has fatigue and low-grade fever. On examination of the wrist, MCPs and PIPs are red and swollen on both hands. The DIPs are not involved. There is fluid in the wrist joints. Otherwise the examination is normal.

Rheumatoid arthritis (RA) is a chronic inflammatory multisystemic disease with the main target being the synovium. The hallmark of RA is inflammatory synovitis which presents in a symmetric distribution. The intense joint inflammation that occurs has the potential to destroy cartilage and cause bone erosions and eventually deform the joint.

Anti-CCP (cyclic citrullinated peptide) is also positive in RA and carries a very high specificity.

The cause of RA is unknown.

- May be triggered as a reaction to an infectious agent (mycoplasma, parvovirus) in a susceptible host
- Of the environmental factors, only cigarette smoking seems to be associated with RA
- Women affected 3× more than men
- Age of onset usually age 35–50 (80%)

An initiation phase of nonspecific inflammation occurs, followed by an amplification phase resulting from T-cell activation, and finally the stage of chronic inflammation and tissue injury.

The predominant infiltrating cell is the T lymphocyte. Diseases such as HIV, where T cells are decreased, will characteristically improve preexisting RA; this also explains why RA is very rare in patients with HIV.

Recent studies have shown that excessive amounts of the pro-inflammatory cytokines—tumor necrosis factor alpha (TNF-α), interleukin-1, and interleukin-6 (IL-6)—mediate most of the pathogenic features of RA. This underscores the focus of new treatment modalities on inhibiting these cytokines (see TNF inhibitors on following pages).
Clinical Presentation. Required for a diagnosis of RA are 4 of the following diagnostic criteria:

- Morning stiffness (>1 h) for 6 weeks
- Swelling of wrists, MCPs, PIPs for 6 weeks
- Swelling of 3 joints for 6 weeks
- Symmetric joint swelling for 6 weeks
- RF positive or anti-cyclic citrullinated peptide
- CRP or ESR

X-ray abnormalities and nodules are not needed for a diagnosis of RA.

Criteria. RA is a chronic inflammatory symmetric arthropathy. There needs to be involvement of multiple joints, but some joints are never involved in RA:

- DIPs
- Joints of the lower back

Because RA is a systemic disease, ~70% of patients present with constitutional symptoms—fatigue, anorexia, weight loss, generalized weakness—before the onset of the arthritis.

Extraarticular Manifestations

- Damage to the ligaments and tendons
 - Radial deviation of the wrist with ulnar deviation of the digits
 - Boutonnière deformity
 - Swan-neck deformity
- Rheumatoid nodules
 - Initial event caused by focal vasculitis
 - 20–30% of patients with RA; usually occur in areas of mechanical stress (olecranon, occiput, Achilles tendon)
 - Methotrexate may flare this process
- Felty syndrome (RA + splenomegaly + neutropenia)
- Caplan syndrome (RA + pneumoconiosis)

Laboratory Findings. RF or anti-CCP; anemia; ESR or C-reactive protein (CRP); x-rays; synovial fluid analysis

Diagnosis. The diagnosis is based on the use of clinical criteria; there is no single test or finding that will diagnose RA. Anti-CCP is more specific than RF.

Treatment. None of the nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to be better than aspirin in RA, but they have fewer GI side effects.

There is no single NSAID superior to other agents, and the newer agents have not been shown to have a decreased incidence in toxicity (GI, renal, etc.).

Cyclooxygenase 2 (COX-2) inhibitors are a type of NSAID which selectively blocks the COX-2 enzyme at the site of inflammation. The benefit of COX-2 inhibitors is that they do not inhibit COX-1, an enzyme that helps with the production of the protective stomach lining. The nonselective (traditional) types of NSAIDs block both COX-2 and COX-1, which can lead to increased risk for GI side effects (bleeding, etc.).
Because of the increased risk of MI, both rofecoxib and valdecoxib have been recalled; currently only celecoxib is available.

Other drugs used in RA:
- Glucocorticoids (usually for short courses only)
- Disease-modifying agents: antimalarials, gold, sulfasalazine, methotrexate (MTX), and tumor necrosis factor (TNF) receptor inhibitors

Disease-Modifying Anti-Rheumatic Drugs

The best initial DMARD is methotrexate (MTX). If MTX does not control disease, an anti-TNF medication is added to treatment.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Profile/Side Effects</th>
<th>Screening Tests for Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine</td>
<td>Retinopathy</td>
<td>Regular eye examination</td>
</tr>
<tr>
<td>MTX (methotrexate; most utilized agent and mainstay of treatment)</td>
<td>Rapid onset of action; hepatitis and hepatic fibrosis; pneumonitis; may flare rheumatoid nodules</td>
<td>CBC and liver enzymes every 4–8 weeks</td>
</tr>
</tbody>
</table>

Hydroxychloroquine and sulfasalazine are used in early, mild disease. Steroids are used briefly to control disease while waiting for methotrexate to work.

Biologic Agents. Tumor necrosis factor (TNF) inhibitors. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine produced by macrophages and lymphocytes. It is found in large quantities in the rheumatoid joint and is produced locally in the joint by synovial macrophages and lymphocytes infiltrating the joint synovium. TNF inhibitors relieve the signs and symptoms of RA, and slow or halt radiographic damage. These drugs have been shown to be effective in patients who were thought to be resistant to all methotrexate.

Latent assessment and treatment for TB are required before use of any of these agents.

There are 3 TNF inhibitors approved for the treatment of RA:
- Infliximab (Remicade) is a monoclonal antibody to TNF-α that binds to TNF-α in the joint and in the circulation. The combination of infliximab and methotrexate is very effective in reducing clinical manifestations of disease. Infliximab is given as an IV infusion. Cases of sepsis, disseminated tuberculosis, and other opportunistic infections have been reported for patients treated with infliximab or other anti-TNF therapy.
- Adalimumab (Humira) is an anti-TNF mAb that differs from infliximab in that its sequences are entirely human.
- Etanercept (Enbrel) is a human fusion protein that is entirely human, and anti-etanercept antibodies are relatively uncommon.

Complications/Follow-Up. Aggressive disease is likely to occur with the following features: high titers of RF, diffuse rheumatoid nodules, early joint erosions, late age of onset, and certain subtypes of the HLA-DR4.

Note

Screen for TB before using TNF inhibitors.

Clinical Pearl

Consider atlantoaxial subluxation in patients with RA who complain of occipital headaches and upper extremity tingling and numbness.

Always rule out subclinical subluxation in patients with RA who are undergoing surgery and intubation electively.
Atlantoaxial subluxation may occur in patients with RA when there is excessive movement at the junction between the atlas (C1) and axis (C2), due to a bony or ligamentous abnormality. In RA, the incidence of cervical involvement has been reported to be 25–80% and results from pannus formation at the synovial joints between C1 and C2. Neurologic symptoms occur when the spinal cord is involved (paraplegia, quadriplegia). Commonly, patients have subtle symptoms, which include neck pain (occipital), C2 radicular pain (paresthesias of the hands and feet), and myelopathy.

Consider this diagnosis in patients who have RA and neck pain, paresthesias, etc. The first test to do when considering the diagnosis is an x-ray of the cervical spine (order multiple views of the cervical spine, including an open-mouth view). You may further investigate with a CT scan or an MRI. Refer always to a spine surgeon (orthopedic specialist or neurosurgeon) if the radiologic testing is positive. All patients with RA should be screened with a plain x-ray for C1–C2 subluxation before intubation or anesthesia is performed.

If a patient with RA presents with a swollen painful calf, consider a ruptured Baker cyst. Baker cyst is the extension of inflamed synovium into the popliteal space.

Clinical Recall

A 39-year-old woman presents to the outpatient clinic with pain and stiffness in her hands and wrists for the past 6 weeks. She is diagnosed with rheumatoid arthritis, although there is no evidence of erosion on x-ray. Which of the following is the management of choice at this time?

A. NSAID alone
B. NSAID and corticosteroids
C. Corticosteroids alone
D. Corticosteroids and methotrexate

Answer: A

SYSTEMIC LUPUS ERYTHEMATOSUS

A 35-year-old woman is brought for the evaluation of confusion lasting 1 day. Her friends and family inform you that “she did not know how to come home from work” and that lately “she has not been herself.” You find that the patient has elevated blood pressure, decreased air entry on the right lung base with dullness to percussion, and symmetrical joint swelling of the wrists and MCPs. Chemistry profile shows elevated creatinine 2.4 mg/dL and protein in the urine on the urinalysis.

Systemic lupus erythematosus (SLE) is a systemic disease in which tissues and multiple organs are damaged by pathogenic autoantibodies and immune complexes. Etiology is unknown.

- Ninety percent of cases are women.
- The abnormal immune response probably depends on interactions between a susceptible host and environmental factors. Ultraviolet (UV)-B light is the only environmental factor known to cause flares.
Clinical Presentation. Required for a diagnosis of SLE are 4 of the following diagnostic criteria:

- Malar rash
- Discoid rash
- Photosensitivity
- Oral ulcers
- Arthritis
- Serositis (pleuritis or pericarditis)
- Renal involvement
- Neurologic disorder (seizures or psychosis)
- Hematologic disorder (hemolytic anemia, leukopenia, thrombocytopenia)
- Immunologic disorder (anti-dsDNA, anti-SM, and other ANAs)

Summary of Criteria

- Arthritis is identical to that of RA except that it is non-erosive.
- Both the malar rash and photosensitivity rash (diffuse, maculopapular) flare with exposure to UV-B light (thus are considered photosensitive) and resolve with no scarring of the skin. The discoid lupus (DLE) is a circular rash with a raised rim that occurs over the scalp and face; it can be disfiguring because of central atrophy and scarring. Only 5% of patients with DLE will go on to develop SLE.
- All patients with renal involvement must undergo renal biopsy before treatment is initiated.
- Change of personality and psychosis may be manifestations of CNS lupus. Seizures, paralysis, and aphasia may follow.
- Libman-Sacks endocarditis is a noninfectious endocarditis that is occasionally seen in lupus patients.

Diagnosis. A positive ANA supports the diagnosis but is not specific for SLE. Complement levels (C3, C4) are decreased in those with active lupus, as are elevated levels of ds-DNA antibodies.

Treatment. There is no cure; treat to control symptoms.

- NSAIDs are used to treat arthritis and pleurisy.
- Corticosteroid creams are used to treat skin rash; antimalaria drugs (hydroxychloroquine) and oral corticosteroids may also be used for skin and arthritic symptoms.
- Cytotoxic drugs (azathioprine, cyclophosphamide) are used for severe symptoms (lupus nephritis, heart and lung involvement, hemolytic anemia, CNS involvement), along with corticosteroids.
- Mycophenolate is often used to treat lupus nephritis.

All patients should be advised to wear protective clothing, sunglasses, and sunscreen when in the sun. Belimumab is an inhibitor of B-cell activation; it is an IgG monoclonal antibody given intravenously to prevent B-cell activation.
Prognosis. The prognosis of patients with SLE has improved significantly in recent years with a 10-year survival rate >85%. People with severe involvement of the CNS, kidney, heart, and lungs have a worse prognosis in terms of overall survival and disability. Lupus nephritis is probably the most common cause of disability in patients with SLE.

Note the following with respect to SLE and pregnancy:

- Fertility rates are normal in patients with SLE, but spontaneous abortion and stillbirth are more common when compared with healthy patients; one reason for the spontaneous abortion may be anti-phospholipid antibodies, which cause placental infarcts. This is treated with low-molecular weight heparin (LMWH) during pregnancy.
- It is unclear whether lupus worsens with pregnancy. In the case of a lupus flare during pregnancy, steroids may be used safely to suppress the disease.
- All pregnant patients with lupus need to be screened for SSA/anti-Ro antibodies. These antibodies cross the placenta and are passively transferred to the fetus, causing neonatal lupus and heart block.

DRUG-INDUCED LUPUS

Drug-induced lupus erythematosus is a side effect of certain medications. Over 40 drugs have been implicated to cause drug-induced lupus, but the most common are hydralazine, isoniazid, procainamide, and quinidine. Symptoms typically include arthritis, fatigue, fever, and pleurisy (rare).

Acute onset SLE is usually not confused with drug-induced lupus, due to the lack of skin disease, kidney disease, and milder symptoms seen in the latter. Also, photosensitivity, hair loss, and CNS disease are uncommon in drug-induced lupus.

Patients with drug-induced lupus develop ANAs, although those with drug-induced lupus related to quinidine often are ANA-negative. The ANAs in drug-induced lupus are autoantibodies that react with a histone-DNA complex, which is the major component of the nucleus (anti-histone antibodies).

Anti-histone antibody testing is a sensitive marker for the diagnosis of drug-induced lupus. Hydralazine is the exception, as only 35% of patients will have positive anti-histone antibodies.

Once the suspected medication is stopped, symptoms resolve in 1–2 weeks. This confirms with certainty the diagnosis of drug-induced lupus.

SCLERODERMA

A 36-year-old woman presents with skin tightness and painful fingertips with exposure to cold for >1 year. Physical examination reveals blood pressure 165/100 mm Hg and diffuse shiny, thickened skin. Lab tests reveal elevated serum creatinine. The examination is otherwise normal.

Systemic sclerosis (SSc) is a chronic multisystem disease characterized clinically by thickening of the skin caused by accumulation of connective tissue and by involvement of visceral organs (GI, lungs, kidneys).
Clinical Presentation. All patients with SSc have skin thickening and Raynaud phenomenon (due to vascular damage and diminished blood flow to the extremities).

- GI: esophageal dysmotility; hypomotility of small intestine with bacterial overgrowth and malabsorption; dilatation of large intestine with formation of large diverticula

- Pulmonary: pulmonary fibrosis with restrictive lung disease and cor pulmonale (**pulmonary involvement is now the leading cause of death in SSc**)

- Renal: scleroderma renal crisis in which malignant hypertension develops and causes acute renal failure (had been leading cause of death but is now easily treated with ACE inhibitors)

Scleroderma renal crisis has been used to characterize the renal involvement in scleroderma, where malignant hypertension occurs over days to weeks and is associated with acute renal failure (rapid rise in creatinine and proteinuria). ACE inhibitors (enalapril, lisinopril) have been effective at reducing the devastating consequences of renal crisis in patients where treatment is initiated before the onset of renal failure.

Figure 3-1. Shiny Skin of Scleroderma

CREST syndrome, a variant of scleroderma, is now called **limited scleroderma** or **limited cutaneous systemic sclerosis.** The acronym CREST represents the hallmarks of the disease:

- Calciosis (a condition in which calcium deposits occur in soft tissues, usually fingers (especially PIP joints), knees, and elbows; deposits occur near skin surface and may ulcerate and become infected)

- Raynaud

- Esophageal dysfunction

- Sclerodactyly (skin thickening, primarily affecting fingers and toes)

- Telangiectasias
Limited scleroderma generally has the following features:

- Skin involvement that does not extend above the elbow or above the knee (rarely, the face may be affected)
- Slow progression, as compared with the diffuse cutaneous form of scleroderma, which is more likely to affect internal organs
- Pulmonary arterial hypertension (25–50% of patients)
- Interstitial lung disease (10% of patients)
- Positive ANA test, showing a pattern of anticentromere antibodies (up to 90% of patients)
- Negative antibodies to Scl-70, as compared with positive antibodies to Scl-70 with diffuse scleroderma

Raynaud phenomenon is defined as episodes of pallor or cyanosis in response to cold or emotional stimuli. The pallor is caused by vasoconstriction of blood vessels (arteries and arterioles) that results in reduced blood flow, while cyanosis is created by deoxygenation of slow-flowing blood. After rewarming the hands, the blood flow will rebound (hyperemia) and the skin will appear reddened or blushed.

- Patients commonly complain of cold sensitivity and involvement of other areas of the skin, including the ears, nose, and lower extremities.
- Episodes come as sudden attacks and are most often triggered by rapid changes in ambient temperature; attacks may begin in 1 or 2 fingers but typically involve all fingers and/or toes symmetrically and bilaterally.

In primary Raynaud phenomenon (Raynaud disease), the patient has no associated underlying disease. In secondary Raynaud phenomenon, the patient has a defined secondary or associated disease (e.g., scleroderma). To differentiate them, do a nailfold capillaroscopy test (place a drop of oil on patient’s nailfold at the base of the fingernail) and examine that area under a microscope for any capillary changes. Enlarged, dilated, or absent nailfold capillaries are noted among patients with scleroderma and other autoimmune diseases.

About 5% of the general population has symptoms and signs consistent with Raynaud phenomenon. It is more common among young women, about 30% have a first-degree relative with Raynaud, and most have primary Raynaud phenomenon without any defined cause or associated systemic disease.

Treatment. There is no cure for SSc. For the skin manifestations, use D-penicillamine. For severe Raynaud phenomenon, use calcium-channel blockers, specifically nifedipine. For hypertension, use ACE inhibitors.

SJÖGREN SYNDROME

A 42-year-old woman presents with some peculiar symptoms lasting 1 year. She feels there is constantly something in her eyes—like dust or sand—and that dry and solid foods are painful to swallow. You are perplexed by her complaints but decide to examine her and find that she has bilateral parotid enlargement. The exam is otherwise unremarkable. ANA test is positive. What specific ANAs would you expect to be positive in this patient?
Sjögren syndrome is a chronic autoimmune disease characterized by lymphocytic infiltration of the exocrine glands, resulting in xerostomia and dry eyes. It may be seen alone (primary) or with other autoimmune diseases (secondary) such as RA, primary biliary cirrhosis, or SLE. As the syndrome progresses, it becomes a systemic disease involving major organs (lungs, kidneys, etc.) and may eventually evolve into a lymphoproliferative disease—malignant lymphoma.

Clinical Presentation.
- Itchy eyes, with a “sandy feeling” under the eyes due to reduced lacrimal production and destruction of the corneal epithelium—keratoconjunctivitis sicca
- Difficulty swallowing food
- Possible increase in dental caries
- Possible parotid enlargement
- Schirmer’s test will show decreased tear production, and rose bengal stain will document corneal ulcerations
- ANAs will be positive and specifically anti-Ro (SSA) and anti-La (SSB)
- Lymphocytic infiltration of the salivary glands will be noted on biopsy

Treatment. Treatment is symptomatic only. Use artificial tears. Pilocarpine and cevimeline increase acetylcholine and increase tear and saliva production.

Clinical Recall
A 24-year-old woman is recently diagnosed with systemic lupus erythematosus. Which of the following would be appropriate counseling at the time of diagnosis?

A. The disease does not have a cure
B. The patient should use sunscreen whenever outdoors to avoid flare-ups
C. The patient has a higher than normal chance of spontaneous abortion if she becomes pregnant
D. Prognosis is based on the severity and evolution of the disease
E. All of the above

Answer: E

SERONEGATIVE ARTHROPATHIES, SPONDYLOARTHROPATHIES
A 27-year-old man presents with complaints of severe lower back stiffness and pain that have been bothering him for the past 5 years. The stiffness is most apparent in the morning when he wakes up, lasting sometimes >2 h. The only thing improving these problems is exercise. On examination there is 2/6 murmur over the second right intercostal space and decreased range-of-motion of the lumbar spine.
The spondyloarthropathies are a group of disorders that share certain clinical features and an association with the B-27 allele. Their similarities suggest that these disorders share pathogenic mechanisms.

There are 4 diseases that have similar clinical and laboratory characteristics:

Table 3-5. Seronegative Arthropathies

<table>
<thead>
<tr>
<th>Disease</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankylosing spondylitis</td>
<td>Seronegative (ANA negative, RF negative)</td>
</tr>
<tr>
<td>Reactive arthritis</td>
<td>Involve lower back and sacroiliac joints</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>HLA-B27</td>
</tr>
<tr>
<td>Enteropathic arthropathy</td>
<td>Extraarticular manifestations</td>
</tr>
</tbody>
</table>

All of the diseases have most of the 4 characteristics, plus a few others that are disease-specific.

Ankylosing Spondylitis

Ankylosing spondylitis (AS) is an inflammatory disorder that affects primarily the axial skeleton and peripheral joints. Etiology is unknown.

- Usually starts by decade 2 or 3 of life (very rare age >40)
- Men > women by 3–4x (this is one of the few collagen vascular diseases that affects men more than women
- 90% of patients are positive for HLA B-27

Clinical Presentation. AS will usually present with **chronic lower back pain** in a young man (in his late twenties to early thirties). The giveaway is the **morning stiffness** lasting at least 1 h that **improves with exercise**.

- Extraarticular manifestations (common): anterior uveitis, aortic insufficiency sometimes leading to CHF and third-degree heart block
- Evidence of decreased spine mobility on examination: positive Schober test (measures spine flexion) and possible obliteration of the lumbar lordosis
 - Because of this, spine fracture can be seen in AS patients after minimal trauma (know that spine fractures occur with insignificant stress in older people with osteoporosis and young people with long-standing inflammatory disease of the spine, e.g., AS)
- Cervical spine is rarely, if ever, affected and only late in the disease
- X-ray shows evidence of sacroiliitis (**earliest finding**) and eventual fusing of the sacroiliac joint; chronic spine inflammation will eventually cause bamboo spine and squaring of vertebral bodies

Diagnosis is based on clinical and x-ray findings. The HLA-B27 is not commonly used as a diagnostic test.
Treatment. Treat with NSAIDs, physical therapy, and exercise. The most promising medications for AS and other spondyloarthropathies are the TNF blockers (infliximab, adalimumab, etanercept). These biologic agents are recommended for axial disease.

Unlike RA, anti-TNF medications are used first and methotrexate used later. Anti-TNF drugs work better for axial disease.

Reactive Arthritis

Reactive arthritis (ReA) is a seronegative arthropathy that occurs as a complication from an infection somewhere in the body. There are 2 types of infections causing different syndromes.

- One (Reiter syndrome) occurs after a nongonococcal urethritis (chlamydia, ureaplasma). These patients have distinct mucocutaneous manifestations: keratoderma blennorrhagica, circinate balanitis, oral or genital ulcers, conjunctivitis, and arthritis.
- The other ReA occurs after an infectious diarrhea caused by Campylobacter, Shigella, or Salmonella organisms (think of the organisms that cause enteroinvasive diarrheas; these are the same ones that cause ReA). The most common is Campylobacter.

Diagnosis is based on clinical criteria. X-ray findings will be consistent with a seronegative spondyloarthropathy.

Treatment. Treatment is the same as for AS. There are studies that support an accelerated recovery of Reiter syndrome caused by a chlamydial infection from prolonged tetracycline use (~3 weeks’ duration). There are also studies to support the notion that prompt antibiotic use in urethritis will decrease the chance of Reiter syndrome (this is the only exception to the rule that the seronegative arthropathies are untreatable diseases).

A severe form of Reiter syndrome and reactive arthritis has been described in HIV patients. The skin manifestations are particularly aggressive in these patients and improve with antiretroviral medications.
Psoriatic Arthritis
Psoriatic arthritis commonly involves the DIP joints when associated with psoriatic nail disease (pitting of the nails); this involvement may sometimes cause the characteristic sausage-shaped digit. Here, the peripheral arthritis is deforming.

Enteropathic Arthropathy
Enteropathic arthropathy occurs with UC and Crohn’s disease; sometimes the arthritis occurs with flares of the IBD. Patients may develop characteristic skin lesions: pyoderma gangrenosum and erythema nodosum.
OSTEOARTHRITIS

A 64-year-old man presents with knee pain. He tells you that he has had right knee pain for many years but it has recently gotten worse. He denies constitutional symptoms and other joint pain except for his left second and third DIPs. He has not noticed stiffness in the morning. On examination crepitations are heard as you move the right knee, but otherwise there is no evidence of swelling, warmth, or erythema of the knee. Laboratory testing is unremarkable.

Osteoarthritis (OA) is the most common joint disease in humans; the target tissue is articular cartilage. There is destruction of cartilage along with secondary remodeling and hypertrophy of the bone. Unlike RA, OA is not an inflammatory disease.

- Knee OA is the leading cause of chronic disability in the elderly.
- Major risk factors for OA include age, female sex, genetic factors, major joint trauma, repetitive stress, and obesity.
- Classification: idiopathic (most common form) where no predisposing factor is evident, and secondary, where there is an underlying cause, e.g., another arthropathies (gout), endocrine disease (DM, acromegaly), deposition diseases (hemochromatosis), and mechanical factors (valgus or varus deformity, unequal lower extremity length).
 - Any disease that causes stress or trauma to a joint may eventually cause secondary OA.
 - Idiopathic OA and secondary OA are pathologically indistinguishable.

The most common joint affected by OA is the knee, and the second most common is the base of the thumb.

Clinical Presentation. The major joints involved in OA are the weight-bearing joints (hip and knee) and the small joints of the fingers (PIPs and DIPs). These joints are affected in an oligoarticular-asymmetric or monoarticular pattern. The joint involvement is very slow, progressive, and irreversible. Because the cartilage fails and there is increased pressure on articular bone, joint pain increases with exercise and is relieved by rest. Morning stiffness is always <20–30 min. Crepitations may be noted with movement of the joint. There are no systemic manifestations in OA.

- Lab tests are always normal, especially indices of inflammation.
- Thus, ESR and C-reactive protein are always normal. (If ESR is elevated, some other process is complicating OA, e.g., septic joint, or it is not OA.)
- X-ray findings include osteophytes and unequal joint space.
- Osteophytes (spurs) are the reparative efforts by the bone; when these occur in the PIPs they are called Bouchard’s nodes, whereas similar changes occurring in the DIPs are called Heberden’s nodes.

Diagnosis is made with clinical and x-ray findings.

Treatment. There is no cure for OA, so focus on maintaining mobility and reducing pain. Therapy is palliative because no agent has been shown to change the natural course of the disease.

- Reduce joint loading with correction of poor posture and weight loss.
- Design physical therapy and exercise programs which maintain range of motion, strengthen periarticular muscles, and improve physical fitness.
• Use NSAIDs only to alleviate pain (chondroprotective effect of certain NSAIDs has not been proven). In double-blinded placebo trials, there was no difference in relief of joint pain among acetaminophen (4,000 mg/d), analgesic doses of ibuprofen (1,200 mg/d), and antiinflammatory doses of ibuprofen (2,400 mg/d).

• Use acetaminophen as the first drug to use for pain in OA. However, it is reasonable to add analgesic doses of NSAIDs if there is no relief. Use cautious dosing with the elderly because they are at highest risk for the side effects associated with NSAIDs, especially GI (ulcers, hemorrhage, etc.). Consider COX-2 inhibitors for those at high risk for GI complications (only available agent is celecoxib).

• Use capsaicin cream, which depletes local sensory nerve endings of substance P. Some patients do feel local burning.

• Perform orthopedic surgery and joint arthroplasty only when aggressive medical treatment has been unsatisfactory, especially if the patient’s quality of life has been decreased.

• Intraarticular injection of hyaluronic acid has been approved for treatment of knee OA that hasn’t responded to pharmacologic treatment. However, its effectiveness has been questioned since a large clinical trial failed to demonstrate superiority over intraarticular injections of saline. Similarly, glucosamine and chondroitin sulfate are not routinely used for OA since they have not been shown to be more effective than placebo. There is ongoing research to examine whether glucosamine is chondroprotective.

Clinical Recall

Which of the following is a major risk for osteoarthritis?

A. Onset at early age
B. Male gender
C. Long-term steroid use
D. Low BMI
E. Trauma

Answer: E

CRYSTAL-INDUCED ARTHROPATHIES

The crystal-induced arthropathies—monosodium urate (MSU), calcium pyrophosphate (CPPD), calcium oxalate (CaOx), and calcium hydroxyapatite (HA)—are caused by microcrystal deposition in joints. In spite of differences in crystal morphology, they have identical clinical presentations and can be distinguished only by synovial fluid analysis.

Gout

Gout is a type of inflammatory arthritis which develops as a result of high levels of uric acid in the blood. It affects mostly middle-aged men (85%), but women become increasingly susceptible to gout after menopause.
Gout presents most commonly with acute monoarthritis. As gout becomes chronic, multiple joints may be involved, and deposition of urate crystals in connective tissue (tophi) and kidneys may occur.

- Metatarsophalangeal joint of the first toe is commonly affected (podagra), but other joints such as the knee, ankle, PIPs, or DIPs may be initially involved
- First episode often occurs at night with severe joint pain waking the patient from sleep; the joint rapidly becomes warm, red, and tender (it looks exactly like cellulitis)
- Without treatment the joint pain goes away spontaneously within 3–14 days

Certain events can precipitate gout: excessive alcohol ingestion, red meat intake, trauma, surgery, infection, steroid withdrawal, drugs (diuretics such as hydrochlorothiazide and furosemide; anti-TB medications such as pyrazinamide and ethambutol), or serious medical illness.

MSU deposition causes an intense inflammatory process—red, warm joint.

Diagnosis. Serum uric acid level is of no value in the diagnosis of acute urate arthropathy. During an acute attack, serum uric acid may be normal or low, but many people with elevated serum uric acid never develop gout. Diagnosis is made by analysis of synovial fluid instead. On synovial fluid analysis, the MSU crystals are negative birefringent and needle-shaped. WBCs will range 5000–50,000. X-ray of a joint that has been involved in multiple gouty attacks will show erosive calcifications.

Treatment. With **acute gouty arthritis**, the goal is to decrease inflammation and thus prevent erosion and joint destruction; also in this stage it is very important to avoid fluctuations in serum uric acid level.

- NSAIDs
- Steroids oral (rarely intraarticular) in elderly patients who cannot tolerate NSAIDs/colchicine or in patients with renal impairment
- Colchicine is rarely to be used in acute gout but is still available.

With **chronic hyperuricemic gout**, the goal is to decrease uric acid levels. This is usually required for life and initiated in those whose recurrent gouty attacks cannot be corrected by low-purine diet, alcohol limitation, avoiding diuretics, etc. Unlike acute gout, the uric acid level here may help the physician to follow the effect of hypouricemic treatment.

- Allopurinol can be used in overproducers, undersecretors, or patients with renal failure or kidney stones
- Febuxostat is used in those intolerant of allopurinol.
- Pegloticase dissolves uric acid: used in refractory disease
- Probenecid can be used in the undersecretors (>80% of adults) only. Rarely used today.

Consider the following scenario.

A 32-year-old man comes with a history of right ankle swelling that occurred the night before. He has noticed that his ankle has been red, warm, and very painful. He occasionally drinks alcohol. On examination a red swollen ankle is noted with evidence of an effusion. Range of motion is restricted.

Note

Do not initiate allopurinol during an acute crisis of gout. However, if a patient has been taking allopurinol and an acute attack occurs, do not discontinue.

Clinical Pearl

Use primarily allopurinol in the chronic treatment of gout.
The first step with this patient is **aspiration**. After confirming the diagnosis, treat with **NSAIDs**.

Six months later, the patient returns with left knee swelling. On examination a red, warm knee is noted.

The first step now is **aspiration**. After confirming the diagnosis, treat with **NSAIDs**.

On a routine visit the same patient has had 4 documented episodes of gout, despite limiting alcohol and diet.

Now the next step is to consider **allopurinol** or **probenecid**.

You decide to place the patient on allopurinol. He does very well for 2 years with no gouty attacks. After that he then experiences another episode of right ankle swelling.

Pseudogout

CPPD crystal deposition is more common in elderly and in those with preexisting joint damage. A small percentage of the patients have metabolic abnormalities that are associated with CPPD deposition (secondary).

Remember the 4 Hs. The presence of pseudogout in a patient age <50 should raise suspicions about one of these metabolic abnormalities.

- Hyperparathyroidism
- Hemochromatosis
- Hypophosphatemia
- Hypomagnesemia

Clinical Presentation.

- Possible acute presentation like gout, or possible asymptomatic and chronic form
- Knee is most commonly affected joint; other joints commonly affected are the wrist, shoulder, and ankle

Definitive diagnosis requires the typical rectangular, rhomboid, positive birefringent crystals on synovial fluid evaluation. X-ray may reveal linear radiodense deposits in joint menisci or articular cartilage (chondrocalcinosis).

Treatment. Treat as you would treat gout. Low doses of colchicine may be considered to prevent frequent recurrences.
SEPTIC ARTHRITIS

A 67-year-old woman with history of RA for many years presents with right shoulder pain and swelling for 2 days. She has low-grade fever. Examination reveals decreased passive and active range of motion of the right shoulder joint, as well as erythema. She asks you if this is related to an RA flare and if she should start steroids to decrease the pain.

The first step would be to do an arthrocentesis.

The most common cause of infectious arthritis is gonorrhea, and gonococcal arthritis accounts for 70% of episodes in patients age <40. Women are at greater risk during menses and pregnancy, and women 2–3x more likely than men to develop disseminated arthritis.

In older patients, *Staphylococcus aureus* is a common cause of infectious arthritis and occurs in patients with preexisting joint destruction from other rheumatic diseases. Patients with RA have the highest risk because of chronic inflamed or destroyed joints, steroid therapy, and frequent skin breakdown over deformed joints.

Acute bacterial infection may cause rapid cartilage destruction, and thus a patient presenting with monoarticular arthritis needs prompt diagnosis. This is done by arthrocentesis. Further, *Staph* or *Strep* must be cleaned out of the joint space by arthrocentesis or arthroscopy.

Remember that most infected joints with gonococcal will not have positive cultures, and the Gram stain will be negative.

Treatment. Treatment should focus on the likely etiology. A 30-year-old woman with acute monoarticular arthritis who has >50,000 WBCs in the synovial fluid without crystals should be treated with ceftriaxone. A 72-year-old man with RA with the same findings should be treated with nafcillin or vancomycin.

This disease is discussed further in the Infectious Diseases chapter.

VASCULITIS SYNDROMES

Vasculitis is an inflammatory process involving the blood vessels, resulting in a decrease of the lumen diameter and eventual ischemia of the tissues supplied. The vasculitis syndromes are stratified according to the types of vessels involved.

Wegener Granulomatosis

Wegener granulomatosis is a small vessel vasculitis. It typically affects the respiratory tract (sinuses, nose, trachea, and lungs) and kidneys, but can involve any organ system.

The most common sign of Wegener granulomatosis is involvement of the upper respiratory tract, which occurs in nearly all patients. Symptoms include rhinitis, sinusitis, and, rarely, nasal ulcers.

- A common sign of the disease is chronic rhinitis that does not respond to usual treatment and that becomes increasingly worse.
- Despite lack of symptoms, lungs are affected in most people; if symptoms are present, they include cough, hemoptysis, and dyspnea.
Kidney involvement (>80% of patients) (major cause of morbidity and mortality)

Arthritis (60% of patients)

Presence of antineutrophil cytoplasmic antibodies (C-ANCA)

- Although a positive ANCA test is useful to support a suspected diagnosis of Wegener granulomatosis, it is never diagnostic.
- The C-ANCA test may be negative in some people with active Wegener. The only way to confirm the diagnosis is with a biopsy of an involved organ (usually nasal septum), demonstrating the presence of vasculitis and granulomas.

Standard treatment is combined glucocorticoid plus an immunosuppressive agent (cyclophosphamide). In a study of 158 patients who were treated with prednisone and cyclophosphamide at the National Institutes of Health (NIH), 90% markedly improved; after years of follow-up, 80% of the patients survived.

Polyarteritis Nodosa

Polyarteritis nodosa (PAN) is a multisystem disease which presents with nonspecific complaints such as fever, malaise, weight loss, anorexia, and abdominal pain. The disease can affect nearly any site in the body, except the lungs. It has a predisposition for organs such as the skin, kidney, nerves, and GI tract.

- Peripheral neuropathies are very common: tingling, numbness, and/or pain in the hands, arms, feet, and legs, and mononeuritis (e.g., foot drop).
- GI manifestations are common: abdominal pain and GI bleed (occasionally mistaken for inflammatory bowel disease).
- Active hepatitis B infection is seen in a minority of patients.

Diagnosis is made by biopsy of involved organs (most commonly taken from skin, symptomatic nerves, or muscle). The biopsy will show pathologic changes in medium-size arteries. Angiogram of the abdominal vessels may also be helpful for diagnosing PAN, since aneurysms affecting the arteries of the kidneys and/or GI tract are found.

Treatment is high doses of corticosteroids and immunosuppressive drugs (cyclophosphamide). (Before these treatments were available, untreated PAN was usually fatal within weeks to months, with most deaths occurring from kidney failure, or heart or GI complications.)

Churg-Strauss Syndrome

Churg-Strauss syndrome shares many of the clinical and pathologic features of PAN; both involve the small- and medium-sized arteries. Any organ can be involved.

The cardinal manifestations of Churg-Strauss are asthma, eosinophilia, and lung involvement. The typical patient is middle-aged, with new-onset asthma. Asthma symptoms may begin long before the onset of vasculitis. Other symptoms include mononeuropathy (mononeuritis multiplex similar to PAN), transient pulmonary infiltrates on chest x-ray, paranasal sinus abnormalities, nasal polyps, and allergic rhinitis.

Diagnosis is made by biopsy. Treatment is similar to PAN (combination of prednisone and cytotoxic agent).

Clinical Pearl

In patients with PAN, exclude co-existing chronic active viral hepatitis.

Note

To help remember Churg-Strauss syndrome, think of it as PAN in an asthmatic patient.
Temporal Arteritis

Temporal arteritis (TA) (also known as giant cell arteritis), is a vasculitis affecting the large arteries that supply the head, eyes, and optic nerves. New-onset headache in any patient age >50 prompts consideration of this diagnosis, which if left untreated may result in permanent vision loss. Symptoms include:

- Headache and pain in one or both temples (most common symptoms)
- Scalp tenderness (pain when combing hair)
- Jaw claudication (jaw pain when chewing)
- Decreased vision or blurry vision
- Tongue numbness
- Sudden loss of vision (rare)
- Proximal stiffness (neck, arms, hips) due to polymyalgia rheumatica, a coexisting condition (seen in >25% of patients with TA)

Erythrocyte sedimentation test (ESR) is always increased in TA, i.e., all patients will have elevated ESR (100% sensitive). Therefore, the first test to do when TA is suspected is ESR. Diagnosis is confirmed by biopsy of the temporal arteries, which will demonstrate the characteristic giant cells. When TA is suspected and ESR is elevated, start corticosteroids immediately, before the temporal artery biopsy is performed. Do not withhold treatment waiting for the biopsy to be done.

A 72-year-old woman presents with a right-sided headache for the past 4 weeks. She has never had migraine headaches and denies blurry vision, nausea, or vomiting. The headache does not get worse at any specific time of day. She has noticed a feverish feeling and hip stiffness along with the headache.

The first step is to do an ESR; if elevated, start prednisone.

INFLAMMATORY MYOPATHIES

A 42-year-old woman is admitted to your service with severe proximal weakness for 2 months. Examination shows a diffuse lilac rash over the sun-exposed areas. Motor strength is 3/5 in the upper and lower proximal muscle groups.

The inflammatory myopathies are inflammatory muscle diseases that present with progressive muscle weakness. They include polymyositis, dermatomyositis, and inclusion body myositis.

- Patients report difficulty with tasks that involve the proximal muscles: lifting objects, combing hair, getting up from a chair.
- Fine-motor tasks that involve the distal muscles, e.g., writing, are affected only late in the disease.
- Ocular muscles are never involved (this feature differentiates the inflammatory myopathies from myasthenia gravis and Eaton-Lambert syndrome).

Clinical Pearl

Always consider TA in patients with new-onset headache who are age >50–60.
Dermatomyositis will also have skin involvement; the heliotrope rash is a purple-lilac discoloration of the face, eyelids, and sun-exposed areas of the body. Gottron's papules are the scaly lesions seen sometimes over the knuckles.

Laboratory Findings. The inflammatory destruction of muscles causes elevated muscle enzymes (sometimes up to 50-fold), creatine phosphokinase (CPK), and aldolase. These are the most sensitive tests to perform in patients suspected of an inflammatory myopathy.

Autoantibodies (anti-Jo-1) occur in patients with inflammatory myopathies, supporting a possible autoimmune origin.

Diagnosis. Electromyography shows evidence of myopathic potentials characterized by short-duration, low-amplitude units. Diagnosis is confirmed by muscle biopsy.

Treatment. For polymyositis and dermatomyositis, steroids are useful. Inclusion body myositis is resistant to immunosuppressive therapy.

Clinical Recall

A 55-year-old man comes to the outpatient clinic complaining of right toe pain for the past 8 hours. He is diagnosed with acute gouty arthritis. Which of the following is the recommended drug for this patient?

A. Allopurinol
B. Indomethacin
C. Corticosteroids
D. Methotrexate

Answer: B
DISEASES OF THE ESOPHAGUS

Most diseases of the esophagus will result in dysphagia (difficulty swallowing), yet only a few of them will result in pain on swallowing (odynophagia). Both dysphagia and odynophagia will cause weight loss if symptoms persist for more than a few days.

Dysphagia can be classified as oropharyngeal or esophageal. Oropharyngeal dysphagia is caused by muscular and neurologic disorders, such as stroke, Parkinson, ALS, NG, muscular dystrophy, or Zenker’s diverticulum. Evaluation includes select videofluoroscopy (modified barium swallow); the patient swallows food under fluoroscopy and the upper esophageal sphincter is evaluated as the initial swallow is made. Patients with this condition present with:

- Coughing with swallowing
- Choking
- Nasal regurgitation with fluids
- Aspiration while swallowing

Patients with esophageal dysphagia report food “sticking” or discomfort in the retrosternal region.
Achalasia

A 32-year-old woman with no past medical history comes to your office for the evaluation of “difficulty swallowing” foods. She reports food “sticking” in her chest. She has had this problem for almost a year, and it is most difficult for her to eat solids. Her symptoms have not worsened at all over this time period, and her weight has been stable. Physical examination is unremarkable. What is the next step in evaluation?

Achalasia is caused by degeneration of the myenteric plexus with loss of the normal inhibitory neural structure of the lower esophageal sphincter (LES). There is failure of the LES to relax and decreased peristalsis. The LES is usually contracted to prevent the acidic gastric contents from refluxing backward into the esophagus.

The vast majority of cases are of unknown etiology. A very small number can be from Chagas disease, gastric carcinoma, or a disease that can infiltrate into the area such as lymphoma.

Clinical Presentation. Achalasia presents with progressive dysphagia to both solids and liquids simultaneously and can have regurgitation several hours after eating. The patient complains of esophageal dysphagia with possible weight loss. Achalasia has no relationship with alcohol or tobacco use. This is different from esophageal cancer, which not only usually presents with dysphagia to solid foods and progresses to difficulty swallowing liquids, but also is more common in older patients with a long history of alcohol and tobacco use.

Diagnosis. Heme-positive stools, >6-month duration of symptoms, and weight loss will confirm diagnosis. Barium esophagography is very accurate and shows dilation of the esophagus, which narrows into a “bird’s beak” at the distal end. The most accurate test overall (gold standard) is esophageal manometry, which shows increased lower esophageal (LES) resting pressure and absence of peristalsis.

Diagnostic evaluation should be done in the following order:

1. Barium swallow
2. Esophageal manometry (must be done to confirm diagnosis)
3. Upper endoscopy (to rule out adenocarcinoma [pseudoachalasia])
Chapter 4 ● Gastroenterology

Figure 4-1. Achalasia

Treatment. The best initial therapy is pneumatic dilation or laparoscopic surgical myotomy.

- Pneumatic dilation effective in 80–85% of patients, with 3–5% risk of perforation
- Botulinum toxin injections into the LES is second-line treatment, to relieve symptoms for 6 months; also used for patients who are poor surgical candidates, e.g., the elderly with multiple comorbid conditions
- Calcium channel blockers and nitrates are third-line treatment

Esophageal Cancer

A 62-year-old man comes for evaluation of progressive “difficulty swallowing solids and, recently, semisolids” for 4 months. He has noticed a 20-lb weight loss. His past medical history is significant for reflux esophagitis for 15 years and a 40-pack-year smoking history. On physical examination a 1.5-cm, left supraclavicular lymph node is found. The remainder of the physical examination is unremarkable.

Esophageal cancer is linked to the synergistic, carcinogenic effect of alcohol and tobacco use for cases of squamous cell cancer in the proximal two-thirds of the esophagus. Adenocarcinoma is found in the distal third of the esophagus and is associated with long-standing GERD and Barrett esophagus. The rate of development of cancer from Barrett esophagus is 0.4–0.8% per year. Squamous and adenocarcinoma are now of equal frequency.
Clinical Presentation. Esophageal cancer presents with progressive dysphagia first for solid food, then for liquids. Weight loss is prominent. Rarely, halitosis, regurgitation, and hoarseness occur. Hypercalcemia may arise, as it can with most cancers.

To diagnose, do barium swallow first, but endoscopy is mandatory because this is a diagnosis that requires a tissue biopsy. CT scan detects the degree of local spread, and bronchoscopy detects asymptomatic spread into the bronchi. Endoscopic U/S is performed for staging.

Treatment. The only truly effective therapy for esophageal carcinoma is surgical resection if the disease is sufficiently localized to the esophagus. Only 25% of patients are found to be operable. Five-year survival is 5–20%. Chemotherapy with a 5-fluorouracil-based chemotherapy is combined with radiation to control locally metastatic disease.

Scleroderma (Progressive Systemic Sclerosis)

As many as 80–90% of patients with scleroderma will develop diminished esophageal peristalsis from the atrophy and fibrosis of the esophageal smooth muscle.

Clinical Presentation. Although there is dysphagia, the main clue to the diagnosis is simply the presence of gastroesophageal reflux symptoms in a person with a history of scleroderma. The LES will neither contract nor relax and basically assumes the role of an immobile open tube.

The most accurate diagnostic test is a motility study. Barium studies are generally unnecessary.

Treatment. Treatment is a proton-pump inhibitor e.g., omeprazole. Metoclopramide, a promotility agent, has some modest effect.

Diffuse Esophageal Spasm and Nutcracker Esophagus

A 34-year-old man complains of “crushing” chest discomfort for 1 hour. He has no significant medical history. The ECG is normal. He is given sublingual nitroglycerin in the emergency room that improves his chest pain almost immediately.

Esophageal spastic disorders are idiopathic abnormalities of the neural processes of the esophagus. Fundamentally, diffuse esophageal spasm and nutcracker esophagus are the same disease; the only difference may be in the manometric pattern.

Clinical Presentation. Patients present with intermittent chest pain and dysphagia. The pain can simulate that of a myocardial infarction, but it bears no relationship with exertion. There is no relationship with eating, ruling out odynophagia. The pain can be precipitated by drinking cold liquids.

Barium study may show a “corkscrew” pattern at the time of the spasm. The most accurate test for diagnosis is a manometric study, which will show high-intensity, disorganized contractions. Because the contractions are disorganized, they do not lead to the forward flow of food and peristalsis.

Treatment is a calcium-channel blocker e.g., nifedipine, or a nitrate.
Rings and Webs
Schatzki’s ring and Plummer-Vinson syndrome (PVS) reveal thin, epithelial membranes made out of squamous epithelial cells. Neither is progressive in nature, distinguishing them from achalasia.

Schatzki’s ring (more common) leads to intermittent dysphagia and is not associated with pain. It is more distal and located at the squamocolumnar junction proximal to the lower esophageal sphincter.

PVS is more proximal and is located in the hypopharynx. It is typically seen in middle-aged women. PVS is associated with iron-deficiency anemia and squamous cell cancer.

Both disorders are diagnosed with a barium swallow or barium esophagogram.

Treatment. PVS may respond to treatment for the iron deficiency. Both are treated with dilation procedures.

Esophagitis
Esophagitis refers either to infection or inflammation of the esophagus. The most common infection is from Candida albicans. When Candida esophagitis occurs, it is almost exclusively in patients who are HIV-positive with CD4 count <200/mm3 (often even <100/mm3). The second most common risk for developing Candida esophagitis is diabetes mellitus. Much rarer infectious etiologies are herpes simplex, cytomegalovirus, and aphthous ulcers.

Barium swallow is the incorrect step for esophagitis. It is always the correct first step for dysphagia.

Clinical Presentation. Candida esophagitis presents with progressive odynophagia. Although the swallowing is painful, food is still able to pass (until the disease is extremely advanced).

- Note that the pain in esophagitis is only on swallowing, while the pain in spastic disorders is intermittent without even needing to swallow.
- Esophagitis pain is simply from the mechanical rubbing of food against an inflamed esophagus as it passes by.

Treatment. If the patient is HIV-positive, assume Candida esophagitis and start fluconazole; improved symptoms will confirm the diagnosis. If symptoms do not improve, perform endoscopy and biopsy to exclude other causes such as HSV and CMV.

Note that the treatment for Candida must be fluconazole. Nystatin swish and swallow will not work (and is a common incorrect answer on the exam).

- 35% of patients with Candida esophagitis will not have oral thrush (an absence of oral candida does not rule out esophageal candida)
- Because esophagitis can also result from ingestion of medication and caustic substances, the direct effect of contact between the mucosa and the pill causes inflammation rather than infection. As with most other toxin-mediated damage to an organ, diagnosis is based on the presentation and identification of the toxin in the history. The most common pills causing esophagitis are alendronate, quinine, risedronate, vitamin C, potassium chloride, doxycycline, NSAIDs, and iron sulfate. Consider pill esophagitis in a young patient who takes acne medication and who has an acute onset of odynophagia.

Pill esophagitis is prevented by simply swallowing pills in the upright position and drinking enough water to flush them into the stomach.
Eosinophilic Esophagitis

A young man with a history of allergies, asthma, or eczema presents with extreme solid food dysphagia. Upper endoscopy shows stacked circular rings and mucosal furrowing.

Biopsy shows marked infiltration with eosinophils. Also, there will be no improvement after an 8-week trial of PPIs.

GERD can also cause esophageal eosinophilia and can mimic EE. Therefore, GERD must be ruled out by a lack of response to an 8-week trial of PPIs. If the patient improves with PPIs, the diagnosis is GERD and not EE.

Treatment. Treat with swallowed fluticasone or budesonide. If the biopsy shows eosinophils, give PPIs before swallowed steroids.

Zenker Diverticulum

A 25-year-old medical student seeks your help because he thinks he “has bad breath.” This past weekend, a most disturbing event occurred while he was watching a football game: He coughed up the chicken teriyaki he ate 2 days earlier. He claims to brush his teeth every night. The physical examination is normal. What is the next step in evaluation?

Zenker diverticulum is the outpocketing of the posterior pharyngeal constrictor muscles at the back of the pharynx.
Clinical Presentation. Zenker diverticulum is a very slowly developing problem that occurs in older patients.

- Bad breath
- Difficulty initiating swallowing (due to such a proximal lesion)
- Need to repeatedly clear the throat
- Waking up with undigested, regurgitated food on the pillow (food from perhaps several days ago)

Barium study will confirm diagnosis.

Treatment. Treat with surgical resection. Endoscopy and the placement of nasogastric tubes are contraindicated because they could perforate the pharynx.

Mallory-Weiss Syndrome

Mallory-Weiss syndrome is a nontransmural tear of the lower esophagus that is related to repeated episodes of retching and vomiting.

Clinical Presentation. Although Mallory-Weiss syndrome is an esophageal disorder, the presentation is markedly different from the other problems described.

- No dysphagia or odynophagia, but rather, painless upper GI bleed
- Black stool from melena if volume of bleed >100 mL or with hematemesis if there is continued vomiting

Diagnosis is made with direct visualization on upper endoscopy.

Treatment. Typically, Mallory-Weiss tears will resolve spontaneously. It may be necessary to inject the tear with epinephrine or perform cauterization.

Clinical Recall

A 58-year-old patient presents with non-painful, progressive difficulty in swallowing solid foods for the past 6 weeks. Which of the following is the best initial test in this patient?

A. Barium swallow
B. Contrast CT of the chest
C. Endoscopy
D. Endoscopic ultrasound
E. Esophageal manometry

Answer: A
EPIGASTRIC PAIN
In most cases, there is no definite way to determine the etiology of epigastric discomfort or pain simply by examining the patient's history. Epigastric pain can be caused by the following:

- Pancreatitis (most common reason for epigastric tenderness and pain)
- Ulcer disease (associated with epigastric tenderness in <20% of patients)
- GERD
- Gastritis
- Gastric cancer (rare)

Helicobacter pylori is most strongly associated with the development of duodenal ulcers, gastric ulcers, and gastritis.

Despite these diagnostic possibilities, the most common etiology of epigastric pain is, in fact, never truly determined. This is referred to as nonulcer dyspepsia, a functional disorder in which there is persistent pain in the epigastric area but all tests are found to be normal.

Guidelines recommend upper endoscopy for patients with dyspepsia and alarm features, so the first step is to look for those. Alarm features include the following:

- Onset age >50
- Anemia
- Dysphagia
- Odynophagia
- Vomiting
- Weight loss
- Family history of upper GI malignancy
- Personal history of peptic ulcer disease
- Gastric surgery
- GI malignancy
- Abdominal mass or lymphadenopathy on examination

Any alarm feature requires **upper endoscopy**. Endoscopy is also indicated if symptoms have not resolved with antisecretory therapy, such as PPIs.

For patients age <50 without alarm features, use a test-and-treat approach for *H. pylori*, not endoscopy.

Treatment. Although endoscopy is the most accurate way to diagnose an ulcer, one can empirically treat ulcers, reflux disease, and gastritis.

- Treat young, generally healthy patients empirically with H₂ blocker, liquid antacid, or PPI; if no improvement, undergo endoscopy.
- Start by testing for *H. pylori*. If positive, treat. (Note: *H. pylori* testing should not be done on those with duodenal/gastric ulcer or gastritis.)
Gastroesophageal Reflux Disease

A 32-year-old man comes to the emergency department for substernal chest pain of 2 hours’ duration. He says that he sometimes gets this pain while lying in bed at night. He is otherwise free of symptoms, except for a nonproductive cough that he has had for the past month or so. Physical examination is unremarkable. ECG is normal. He is given sublingual nitroglycerin and notes that his chest discomfort is worsened.

Gastroesophageal reflux disease (GERD) is caused by the abnormal flow of the acid gastric contents backward from the stomach up into the esophagus. The lower esophageal sphincter (LES) is not a true anatomic sphincter (it cannot be found in a cadaver); it is created by the different response of the smooth muscle cells in the distal esophagus.

A number of factors can cause decreased tone or loosening of this sphincter.

- Nicotine, alcohol, caffeine
- Peppermint, chocolate
- Anticholinergics
- Calcium-channel blockers
- Nitrates

When the tone of the LES decreases, acid is more likely to reflux backward into the esophagus, particularly when the patient is lying flat. GERD can still occur in the absence of these precipitating factors and can often simply be idiopathic in origin.

Clinical Presentation. GERD will present with heartburn (burning substernal pain); sore throat; a metal-like taste in the mouth; hoarseness; cough and wheezing. In addition, it is often associated with pain in the substernal area. Symptoms are worse after a meal or while lying flat.

The most accurate diagnostic test is a 24-hour pH monitor; an electrode is placed several centimeters above the gastroesophageal junction, and a determination is made of what the average pH is in that area. Normal endoscopy does not exclude reflux disease.

Note the following order when working up GERD:

- Initiate PPI; if no improvement, increase PPI to 2x daily (before EGD) for 4–8 weeks and make sure patient is taking properly (30–60 min before meals)
- If no improvement, do EGD: If EGD shows esophagitis, that confirms GERD and 24-hour pH monitoring is not needed. If EGD is normal, do ambulatory 24-hour pH monitoring (while off the PPI) and if results are consistent with GERD, do Nissen fundoplication.

In clear cases of epigastric pain going under the sternum and associated with a respiratory complaint or bad taste in the mouth, initiate therapy immediately with antisecretory medications such as PPIs.

Note

There is no point in treating *H. pylori* without evidence of disease such as gastritis or ulcer disease.
Treatment. Treatment is a PPI and lifestyle modification (avoid nicotine/alcohol/caffeine/chocolate/late-night meals and elevate the head of the bed 6–8 inches with blocks to keep acid in the stomach)

- Omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole are all equally effective PPIs; they will increase the pH of the gastric contents to a level >4.0.
- PPI side effects include increased risk for *C. difficile* infection, aspiration pneumonia, osteoporosis, and hip fracture.
- A few people (<5%) will not respond to PPIs or will have refractory side effects (headaches, diarrhea); those patients will require surgery to tighten the sphincter (traditionally, a Nissen fundoplication is done laparoscopically).
 - Do motility studies prior to surgery to avoid iatrogenic dysphagia.
- Use H2 blockers only if the patient has very mild, intermittent symptoms, as they are less effective than PPIs.

Barrett Esophagus

Barrett esophagus is a complication of long-standing reflux disease. After several years of GERD, the epithelium of the lower esophagus undergoes histologic change from a normal squamous epithelium to a columnar epithelium.

Men age ≥50 with chronic GERD (5+ years) and additional risk factors (nocturnal symptoms, hiatal hernia, obese, smokers) should be screened.

Patients with Barrett esophagus should have repeat endoscopy every 3–5 years to see whether dysplasia or esophageal cancer has developed:

- If low-grade dysplasia, repeat endoscopy in 6–12 months
- If high-grade dysplasia, do radiofrequency ablation, photodynamic therapy, or endoscopic mucosal resection
- The usual rate of progression to cancer is about 0.5% per year.

Do not check barium swallow, as it will be normal.

Treatment. All patients with Barrett esophagus should receive PPIs.

Peptic Ulcer Disease

Peptic ulcer disease includes both duodenal and gastric ulcers.

Tobacco smoking, alcohol, and steroids by themselves do not cause ulcer disease, although tobacco and alcohol can delay healing and are associated with the development of gastritis.

- NSAIDs can cause ulcer formation because they decrease the normal production of the mucous barrier protecting the epithelial cells of the gastric mucosa. Prostaglandins, the major stimulant for mucous production that forms this protective barrier, are inhibited by NSAIDs and hence diminish the protective barrier of the stomach lining.
- Steroid use by itself does not cause peptic ulcer disease and is therefore not a routine indication for stress ulcer prophylaxis.
Parietal cells in the stomach produce acid. The 3 stimulants to the production of acid from the parietal cells are gastrin, acetylcholine, and histamine.

- Gastrin is produced by G cells in the stomach, and its release is stimulated by distention of the stomach, the presence of amino acids, and vagal stimulation. Vagal stimulation also releases acetylcholine and gastrin-releasing peptide. However, the single most important stimulant to gastrin release is distention of the stomach.

- Histamine is released by enterochromaffin-like cells present in the same glandular elements of the stomach that have the parietal and chief cells. Chief cells release pepsinogen, which is converted to pepsin by the acid environment of the gastric lumen. Histamine directly stimulates the parietal cells to both release acid and potentiate the effects of acetylcholine and gastrin on the parietal cells. This is why H2 blockers such as cimetidine, famotidine, and ranitidine inhibit acid release.

Zollinger-Ellison syndrome is the excessive production and release of gastrin from the pancreas. Somatostatin is the counterbalance to this system, inhibiting the release of gastrin and histamine, as well as having a direct inhibitory effect on the production of acid from the parietal cells. Secretin is released from the S cells of the duodenal lining. The main stimulant to the release of secretin is the presence of acid in the duodenum. Secretin inhibits the production of gastrin, as well as stimulates pancreatic and biliary bicarbonate production and release.

The most common cause of ulcer disease is *Helicobacter pylori* followed by the use of NSAIDs; 80–90% of duodenal ulcers and 70–80% of gastric ulcers are associated with *H. pylori*. Overall, 10–20% of ulcers are idiopathic, and no clear etiology is ever identified.

Clinical Presentation. The most common presentation of ulcer disease is midepigastic pain. There is no definite way to distinguish between duodenal and gastric ulcer simply by symptoms. Gastric ulcer is often associated with pain on eating (frequently leading to weight loss), while duodenal ulcer is thought to be relieved by eating. However, these associations are only rough approximations, and endoscopy is still required for a definite diagnosis.

Tenderness of the abdomen is unusual with ulcer disease. More than 80% are not associated with abdominal tenderness in the absence of a perforation. Nausea and vomiting are occasionally found with both of them.

Diagnosis. Ulcer disease is best diagnosed with upper endoscopy. Barium studies are inferior.

- If patient age <50 and has no alarm symptoms, test and treat for *H. pylori*. If *H. pylori* is negative, give trial of proton-pump inhibitors (PPIs). If symptoms persist, perform endoscopy.

- If patient age >50 or has alarm symptoms (weight loss, anemia, heme-positive stools, or dysphagia), perform endoscopy.

The diagnosis of *H. pylori* is based on urea breath testing, stool antigen testing, or biopsy with histology or rapid urease testing. The first 2 tests are non-invasive. Before testing for *H. pylori*, make sure the patient is off PPIs for 2 weeks and antibiotics for 4 weeks, as they can cause false-negatives. Biopsy with histology can be done on treatment. Biopsy with rapid urease testing can also be false-negative on treatment.

Do not check serum antibodies as they will not indicate whether this is a past or present infection.

Treatment. The treatment of ulcer disease centers largely on the treatment of *H. pylori*. Use a proton pump inhibitor (PPI) combined with clarithromycin and amoxicillin. The PPIs omeprazole, lansoprazole, pantoprazole, rabeprazole, and esomeprazole are all equal in efficacy.
The PPI/clarithromycin/amoxicillin regimen should be effective in >90% of patients. The other 2 choices of antibiotics are tetracycline and metronidazole.

- Bismuth subsalicylate is not necessary.
- Regimens that contain PPIs are superior to those that use H2 blockers, such as ranitidine or cimetidine.
- The duration of therapy is 10–14 days, but sometimes the PPI is continued for a few months in order to heal the gastric mucosa.
- Repeat endoscopy for gastric ulcers is needed only if symptoms persist or if biopsies were not done the first time. Follow-up endoscopy for duodenal ulcers is not required.

Testing for eradication is indicated only for persistent symptoms, ulcers, or malignancy.

- Wait 4–8 weeks after treatment to check for eradication. Do not use serology to test for eradication.
- If the organism was not eradicated, then repeat treatment with different antibiotics, plus bismuth subsalicylate. Explore sensitivity testing for the organism.
- If the organism was eradicated and the ulcer persists or worsens, consider evaluating the patient for Zollinger-Ellison syndrome.

Ordinary ulcers not related to Helicobacter can be treated with PPIs alone. Stop NSAIDs. If unable to stop aspirin or NSAIDs, add a PPI, although COX-2 inhibitors are just as good as NSAIDs plus PPI. Sucralfate does not help and should not be used.

Give PPI for prophylaxis if patient is high risk. Risk factors include:

- History of PUD or GI bleed
- Age 65 years or older
- Chronic comorbid illness
- High-dose NSAID use
- Concomitant use of aspirin (of any dose), anticoagulants, other NSAIDs, or glucocorticoids

Indications for surgery in peptic ulcer disease (PUD):

- UGI bleed not amenable to endoscopic procedures
- Perforation
- Refractory ulcers
- Gastric outlet obstruction (can change endoscopic dilation)

Gastritis

Gastritis is inflammation, erosion, or damage of the gastric lining that has not developed into an ulcer.

- Type B gastritis (most common) can be caused by alcohol, NSAIDs, *Helicobacter*, head trauma, burns, and mechanical ventilation. It is also associated with increased gastric acid production.
• **Type A** gastritis is caused by atrophy of the gastric mucosa and associated with an autoimmune process such as vitamin B12 deficiency. It is also associated with **diminished gastric acid** production and achlorhydria.
 - All patients with achlorhydria will have markedly elevated gastrin because acid inhibits gastrin release from G cells.
 - Mucosal-associated lymphoid tissue (MALT) leads to metaplasia as well as possible dysplasia and then to gastric cancer.

Clinical Presentation. Patients typically present with asymptomatic bleeding. When the gastritis is severe and erosive, abdominal pain will occur in the same area that patients with ulcer disease feel theirs. Nausea and vomiting may also occur. The bleeding can present as hematemesis or melena.

Diagnosis and Treatment.
- Diagnosis and treatment of *Helicobacter* are the same as that for gastritis (described for ulcer disease above).
- Diagnosis of vitamin B12 deficiency and pernicious anemia are made initially with low B12 and increased methylmalonic acid.
- Pernicious anemia is confirmed with the presence of antiparietal cell antibodies and anti-intrinsic factor antibodies; treatment is B12 replacement, as with all cases of B12 deficiency.

Zollinger-Ellison Syndrome

A 42-year-old woman comes to your office with complaints of diarrhea for 6 months. She has stopped all dairy products but there has been no improvement. There is no blood or pus with the stools. She takes maximum doses of omeprazole daily, along with famotidine, and still has ulcer symptoms. She has a mild hypercalcemia.

Zollinger-Ellison syndrome (ZES) is hypergastrinemia caused by cancer of the gastrin-producing cells. There is no known cause for gastrinoma or ZES. Half of these gastrinomas are located in the duodenum, and 25% in the pancreas. A small percentage (<20%) are associated with multiple endocrine neoplasia type 1 (MEN-1) or parathyroid, pituitary, and pancreatic tumor.

Clinical Presentation. More than 95% of patients with ZES present with ulcer disease. Fewer than 1% of people with ulcer disease have an underlying ZES or gastrinoma.

ZES presents with ulcers that are recurrent after therapy, multiple in number, occur in the distal portion of the duodenum, or are resistant to routine therapy. Diarrhea occurs in 70% of patients, i.e., ordinary watery diarrhea or steatorrhea (due to inactivated lipase from large volume of acid passed into the duodenum). Metastatic disease is evident at the time of diagnosis in 30% of patients; an additional 20% develop metastatic disease later.

Diagnosis. Although an elevated gastrin level is indicative of ZES, remember that all patients on H2 blockers or PPIs have elevated gastrin. That is because the main stimulus to the suppression of gastrin release is acid. If acid production is suppressed, then gastrin goes up. So to diagnose ZES, gastrin must be found elevated after the patient has been off antisecretory therapy for several days.

Note
The presence of hypercalcemia is due to detecting MEN-1. This is because of the hyperparathyroidism.
Diagnosis is the combination of elevated gastrin and increased gastric acidity (must check gastric pH to make diagnosis; if pH >4, it is not a gastrinoma). The secretin stimulation test is positive (abnormal) if there is a rise in gastrin level after the injection of secretin (normally, secretin should suppress gastrin release).

Other causes of increased gastrin include:
- Pernicious anemia
- Chronic gastritis
- Renal failure
- Hyperthyroidism

After confirming a diagnosis of gastrinoma, the most important step is to determine if the lesion is localized or metastatic.
- Localized lesions can be surgically removed.
- Metastatic disease can be suppressed only with PPIs
 - U/S, CT, and MRI have 60–80% sensitivity for the presence of metastatic disease—specific enough to prove the presence of tumor if positive but not sensitive enough to safely exclude disease if negative
- A nuclear test, somatostatin-receptor scintigraphy, is 90% sensitive for the detection of metastatic disease. The single most sensitive test is the endoscopic U/S. Typically, both tests are done.

Treatment. Localized disease is surgically resected and metastatic disease is treated with the long-term administration of PPIs simply to block acid production.

Gastroparesis

Gastroparesis, or delayed gastric emptying, results in delayed movement of food from the stomach to the small intestine. The most common association is diabetes. Electrolyte problems with potassium, magnesium, and calcium can also weaken the musculature of the bowel wall.

Clinical Presentation. Patients with gastroparesis present with early satiety, postprandial nausea, and a general sense of increased abdominal fullness due to decreased motility of the stomach and the accumulation of food there. Gastroparesis generally occurs in those presenting with abdominal pain and bloating, and those with a long-standing history of diabetes, a long-standing history of poor glycemic control, retinopathy, neuropathy, and nephropathy. It can accompany scleroderma, hypothyroidism, anti-cholinergic use, and narcotic use.

Diagnosis. The first test should be endoscopy. Although gastroparesis is often diagnosed clinically, the gastric-emptying study is the confirmatory test; radioisotope-labeled food is ingested to measure transit time through the stomach. In a long-term diabetic, a diagnosis of diabetic gastroparesis is generally obvious as the cause of bloating, vomiting, and nausea, after endoscopy excludes other diseases. Make sure blood glucose <275 mg/dL before testing because severe hyperglycemia can impair gastric emptying.

Treatment. Treatment is agents that will increase motility of the stomach, such as erythromycin or metoclopramide. Also, smaller, more frequent portions of food are recommended, since emptying from the stomach is faster when there is less food.

Metoclopramide can cause tardive dyskinesia, Parkinsonism, and dystonia.
Dumping Syndrome

Dumping syndrome is an increasingly rare disorder because surgery is so infrequently needed anymore for ulcer disease. It was far more common in the past, when vagotomy and gastric resection were performed to treat severe ulcer disease.

Dumping syndrome is caused by 2 phenomena.

- First, there is the rapid release of hypertonic chyme into the duodenum, which acts as an osmotic draw into the duodenum, causing intravascular volume depletion.
- Next, there is a sudden peak in glucose levels in the blood because of the rapid release of food into the small intestine. This is followed by the rapid release of insulin in response to this high glucose level, which then causes hypoglycemia to develop.

Patients present with sweating, shaking, palpitations, and lightheadedness shortly after a meal.

Treatment. Treatment is supportive. Eat multiple, small meals.

Nonulcer Dyspepsia

When all the causes of epigastric pain have been excluded and there is still pain, fullness, or burning sensation, the diagnosis is nonulcer (or functional) dyspepsia. The cause of nonulcer dyspepsia is unknown.

Treatment is symptomatic, with antacids, H2 blockers, PPIs,

- If there are no alarm symptoms, test and treat *H. pylori*. If negative, treat with PPI.
- If there are alarm symptoms or refractory symptoms, do endoscopy.
- Try a low-dose tricyclic antidepressant if symptoms do not respond to PPI or H2-blocker therapy.

Clinical Recall

A 36-year-old man complains of intermittent, worsening epigastric pain radiating to the back for the past 3 months. The patient claims to drink alcohol only during business trips but admits to blacking out several times from too much alcohol. Which of the following is the most likely cause of his symptoms?

A. Barrett’s esophagus
B. Candida esophagitis
C. Gastritis
D. GERD
E. Pancreatitis

Answer: E
INFLAMMATORY BOWEL DISEASE

Inflammatory bowel disease (IBD) describes 2 disease entities: **Crohn’s disease** (CD) and **ulcerative colitis** (UC). They can be discussed simultaneously because of the large degree of overlap in terms of presentation, testing, and treatment.

- Idiopathic disorders of the bowel associated with diarrhea, bleeding, weight loss, fever, and abdominal pain
- Most accurately diagnosed with endoscopy and sometimes barium study, “string sign” on small bowel follow through after barium meal in CD
- Treat with anti-inflammatory medications such as mesalamine, azathioprine, and 6-mercaptopurine (6MP); steroids are reserved for acute exacerbations

Clinical Presentation. IBD presents with fever, diarrhea, weight loss, and, occasionally, abdominal pain and bleeding. The extraintestinal manifestations of IBD are episcleritis, scleritis and iritis, sclerosing cholangitis, joint pains, and skin manifestations, such as pyoderma gangrenosum or erythema nodosum.

Table 4-1. CD versus UC

<table>
<thead>
<tr>
<th>Crohn’s Disease</th>
<th>Ulcerative Colitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear, stellate deep ulcerations with skip lesions involving entire GI tract</td>
<td>Mucosal edema, erythema, friability, ulceration</td>
</tr>
<tr>
<td>Granulomas, transmural involvement</td>
<td>Bloody diarrhea common; diarrhea prominent, tenesmus, urgency, hematochezia</td>
</tr>
<tr>
<td>Abdominal pain prominent; inflammatory masses</td>
<td>Altered crypt architecture with shortened branched crypts and crypt abscesses</td>
</tr>
<tr>
<td>Smoking is risk factor</td>
<td>Smoking alleviates</td>
</tr>
<tr>
<td>Rectal sparing</td>
<td>Rectum always involved</td>
</tr>
<tr>
<td>Cobblestone appearance</td>
<td>Limited to large bowel</td>
</tr>
<tr>
<td>Strictures and fistulas</td>
<td>No skip lesions, anal involvement, or fistulas</td>
</tr>
<tr>
<td>Complications include diarrhea, calcium oxalate kidney stones, and cholesterol gallstones</td>
<td></td>
</tr>
</tbody>
</table>

Diagnosis. IBD is diagnosed with endoscopy and sometimes barium study. (CD can cause deficiency of B12, K, calcium, and iron because of malabsorption.)

- Anti-\textit{Saccharomyces cerevisiae} antibodies (ASCA) are associated with CD, while antineutrophil cytoplasmic antibody (ANCA) is associated with UC.
- If a patient is ASCA-positive and ANCA-negative, he has a >90% chance of having CD.
- If a patient is ASCA-negative and ANCA-positive, he has a >90% chance of having UC.
- With CD, prothrombin time may be prolonged because of vitamin K malabsorption. Also, kidney stones are more often seen because the fat malabsorption causes reduced calcium and increased absorption of oxalate. Use cholestyramine to treat calcium oxalate stones.

Treatment. Therapy is divided into active and maintenance.
Table 4-2. Treatment of CD versus UC

<table>
<thead>
<tr>
<th>Crohn’s Disease</th>
<th>Ulcerative Colitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ASAs are often ineffective</td>
<td>Depends on severity of disease</td>
</tr>
<tr>
<td>Mild:</td>
<td>Mild: 4 bowel movements/day, mild bleeding, normal labs</td>
</tr>
<tr>
<td>For active disease prednisone or budesonide</td>
<td>Mesalamine or sulfasalazine (causes reversible infertility in men and leukopenia by its sulfapyridine group)</td>
</tr>
<tr>
<td>For maintenance azathioprine and 6-mercaptopurine</td>
<td></td>
</tr>
<tr>
<td>Moderate: fever, weight loss, anemia, abdominal pain, nausea/vomiting</td>
<td>Moderate: 4–6 bowel movements/day</td>
</tr>
<tr>
<td>For active steroids</td>
<td>For active disease prednisone</td>
</tr>
<tr>
<td>For maintenance azathioprine and 6-mercaptopurine or methotrexate</td>
<td>For remission budesonide</td>
</tr>
<tr>
<td>For remission anti-TNF antibodies</td>
<td>For long-term maintenance azathioprine and 6-mercaptopurine (associated with drug-induced pancreatitis) to try to keep patients off steroids</td>
</tr>
<tr>
<td>Severe to fulminant: high fever, vomiting, rebound, obstruction</td>
<td>Severe: >6 bowel movements/day, bleeding, fever, tachycardia, ESR >30 mm/h, anemia</td>
</tr>
<tr>
<td>For acute exacerbations, IV steroids or anti-TNF (better choice), possible surgery</td>
<td>For acute exacerbations that fail steroids, and for maintenance if azathioprine and 6-mercaptopurine fail or are contraindicated, IV steroids followed by anti-TNF-alfa (infliximab, adalimumab, golimumab)</td>
</tr>
<tr>
<td>Fistula: anti-TNF</td>
<td></td>
</tr>
<tr>
<td>For induction and maintenance anti-TNF antibodies (infliximab, adalimumab, certolizumab); if anti-TNF fails (can cause PML so check JC virus antibodies first) natalizumab (a monoclonal antibody to integrin-alfa-4 on leukocytes)</td>
<td></td>
</tr>
<tr>
<td>For those with perianal disease ciprofloxacin and metronidazole</td>
<td></td>
</tr>
<tr>
<td>For those who form fistulae or have disease refractory to other therapies infliximab</td>
<td></td>
</tr>
<tr>
<td>Surgery is not very effective; disease tends to recur at the site of anastomosis</td>
<td>Surgery is curative; almost 60% of patients will require surgery within 5 years after diagnosis due to refractory symptoms or severe disease</td>
</tr>
</tbody>
</table>

For both, start screening colonoscopy 8–10 years after diagnosis and repeat every 1–2 years.

Note

For Crohn’s disease, 5-ASAs have recently been proven to have little efficacy. TNF-alpha inhibitors are now the most common treatment for Crohn’s.
DIARRHEA
Diarrhea is increased frequency or volume of stool per day (alternatively, it can be defined as few stools per day but with watery consistency). The most common causes include an infectious, antibiotic-associated, or lactose-intolerance etiology, irritable bowel syndrome, and carcinoid syndrome.

The patient is often hypotensive, febrile, and experiencing abdominal pain.

Diagnosis. The first step in the evaluation of diarrhea is to see if there is hypovolemia as defined as hypotension or orthostasis. This is more important than determining specific etiology because the patient could die while waiting for the results to come back.

Treatment. No matter the etiology, if the patient is hypotensive, febrile, and having abdominal pain, admit as inpatient and give IV fluids and antibiotics. Blood in the stool is especially serious, and is probably the single strongest indication for the use of antibiotics, such as ciprofloxacin.

Infectious Diarrhea
The majority of acute diarrhea is viral and self-limited. *Clostridium difficile* toxin and stool *Giardia*-antigen testing are done when there are clues to these diagnoses in the history.

With bacterial diarrhea, the most common causes are *Campylobacter* and *Salmonella*, especially in patients with sickle cell and achlorhydria. A definitive determination of the etiology can only be made with a stool culture.

Note
Check PPD, HBV, HCV prior to initiating anti-TNF agent.

Note
With management of diarrhea, determine when to admit the patient and when to use IV fluids and antibiotics. That is more important than determining the precise causative agent.
Table 4-3. Clues to the Diagnosis of Infectious Diarrhea Prior to Results of Culture

<table>
<thead>
<tr>
<th>Causative Agent</th>
<th>Patient Symptoms or History</th>
<th>Additional Comments</th>
</tr>
</thead>
</table>
| *Bacillus cereus* | • Ingestion of refried Chinese food and the spores from *Bacillus* that it contains.
\n• Vomiting is prominent
\n• Blood is never present | Short incubation period (1–6 hours) |
| *Campylobacter* | Reactive arthritis, Guillain-Barré syndrome | Most common cause of bacterial gastroenteritis |
| Cryptosporidia, *Isospora* | Found in HIV-positive patients with <100/mm³ CD4 cells | — |
| *E. coli O157:H7* | Ingestion of contaminated hamburger meat; the organism can release a Shiga toxin, provoking hemolytic uremic syndrome | Hemolytic uremic syndrome happens when organism dies; that is why antibiotics are contraindicated. Platelet transfusion is also contraindicated, even if platelet count is low because new platelets may only make it worse |
| *Giardia* | • Ingestion of unfiltered water, as on a camping trip in mountains or lake
\n• Blood is never present Abdominal fullness, bloating, and gas | If not eradicated, can simulate celiac disease in terms of causing fat and vitamin malabsorption |
| *Salmonella* | Ingestion of chicken and eggs, dairy products | — |
| Scombroid | Ingestion of contaminated fish; almost immediate vomiting, diarrhea, flushing, and wheezing | Organisms invade, producing and then releasing histamine into the flesh of fish, such as tuna, mahi mahi, and mackerel |
| *Shigella, Yersinia* | No clues strong enough to point to etiology until the results of stool culture are known | *Yersinia* can mimic appendicitis. Also common in people with iron overload, e.g., hemochromatosis. |
| *Vibrio parahaemolyticus* | Ingestion of raw shellfish, such as mussels clams | Typically presents as severe systemic gastroenteritis in patients with underlying disease (esp. chronic liver disease) |
| *Vibrio vulnificus* | Ingestion of raw shellfish (particularly affects those with underlying liver disease)
\nSkin bullae | Typically presents as severe systemic gastroenteritis in patients with underlying disease (esp. chronic liver disease or disorders of iron metabolism) |
| Viral | Children in day-care centers; absence of blood and white cells | No systemic manifestation |
| *Staphylococcus aureus* | • Ingestion of dairy products, eggs, salads
\n• Upper GI symptoms (nausea/vomiting) predominate; rarely diarrhea | Short incubation period (1–6 hours) |
| Ciguatera-toxin | Ingestion of large reef fish (groupers, red snapper, barracuda); 2–6 hours after ingestion, neurological symptoms leading to paresthesia, weakness, reversal of hot/cold | — |
Diagnosis. Only send stool studies if condition does not resolve in 1 week. Invasive organisms need 24–36 hours to produce their effect and never produce blood in the stool within the first few hours of ingestion (except the protozoan *Entamoeba histolytica*, which can give blood or white cells in stool). The most definitive test for these bacterial organisms is stool culture.

The invasive organisms are:

- *Salmonella*
- *Shigella*
- *Campylobacter*
- *Vibrio parahaemolyticus*
- *Yersinia*
- *E. coli*
- *Vibrio vulnificus* (think people drinking sea water)

Cryptosporidiosis diagnosis requires a unique test—a modified acid-fast test; it cannot be detected reliably by the routine ova and parasite exam.

Giardia diagnosis is best made with an ELISA stool antigen test (a single test has 90% sensitivity, whereas 3 stool ova and parasite exams have only 80% sensitivity). Consider this for chronic diarrhea in patients exposed to young children or who drank water from a lake or stream.

Treatment. Most cases of food poisoning and infectious diarrhea will resolve spontaneously and will not need antimicrobial therapy. Even when they cause severe disease, as defined by high-volume stools with dehydration, antibiotics generally do not help. Use antibiotics if there is abdominal pain, blood in the stool, and fever >7 days.

The decision to use antibiotics is always made prior to knowing the result of the stool culture, so the treatment is always empiric and then modified when the culture results are known. The best empiric therapy for infectious diarrhea is ciprofloxacin or the other fluoroquinolones ± metronidazole.

Do not give antibiotics for *E. coli* 0157:H7, as that precipitate HUS.

Scombroid poisoning is treated with antihistamines, such as diphenhydramine. *Giardia* is still treated primarily with metronidazole. A newer agent for *Giardia* is tinidazole, which is effective in a single dose. Cryptosporidiosis is treated with nitazoxanide, although it has limited efficacy. The truly effective therapy for cryptosporidiosis is to raise the CD4 count to >100/mm3 with antiretrovirals. Nitazoxanide is superior to paromomycin for cryptosporidium.

There is no specific therapy for viral diarrhea. Patients are managed with fluid and electrolyte support until the infection resolves.

For chronic diarrhea (>4 weeks), think of the following:

- Use of artificial sweeteners (get diet history)
- *Giardia* if camping or exposed to children (daycare worker)
- If bloating and discomfort are relieved by bowel movement with no weight loss: IBS, **test for celiac**

Note

- TMP/SMX for *Isospora*
- Doxycycline for *Vibrio vulnificus*
- Rifaximin for travelers’ diarrhea

Note

Prophylactic antibiotics for traveler’s diarrhea is never a correct approach.
• If woman age 45–60, unrelated to food (nocturnal diarrhea), no abdominal pain or weight loss, normal colonoscopy, think microscopic colitis; biopsy must be done to diagnose (associated with NSAIDs and PPIs); treat with loperamide, bismuth, or budesonide (stop NSAIDs, PPIs)

• Nocturnal diarrhea and diabetes or scleroderma or gastric bypass surgery: small bowel bacterial overgrowth: check hydrogen breath test or give empiric antibiotics

• Flushing and wheezing: carcinoid syndrome; check urine 5-HIAA

Antibiotic- and C. difficile-Associated Diarrhea

Antibiotic-associated diarrhea (AAD) is a benign, self-limited diarrhea following the use of antimicrobials. Typically, no pathogens are identified; the diarrhea is caused by changes in the composition and function of the intestinal flora, as well as increased motility (common with agents like erythromycin). Most patients respond to supportive measures and discontinuation of antibiotics.

Clostridium difficile-associated diarrhea (*C.diff*) refers to a spectrum of diarrheal illnesses caused by the toxins produced by *C. diff*, including severe colitis with or without the presence of pseudomembranes. (For exam purposes, this discussion will focus on *C. diff*.)

Pathogenesis. Any antibiotic can lead to diarrhea with *C. diff*, although antibiotics that are broad spectrum are more likely to do so. Clindamycin may have one of the highest frequencies of association, as do fluoroquinolones and cephalosporins.

C. diff diarrhea is largely a nosocomial disease and is the most frequent cause of diarrhea in hospitalized patients. It occurs infrequently in the outpatient setting, other than in patients confined to nursing homes. Research suggests a significant association between *C. difficile* and the use of PPIs.

Clinical Presentation and Diagnosis. The clinical manifestations of *C. diff* may vary from mild diarrhea to fulminant colitis. If a patient develops diarrhea several days to weeks (even up to 8 weeks) after using antibiotics, evaluate for *C. diff*. Marked leukocytosis and systemic symptoms are evident in severe cases.

- Until a few years ago, the diagnostic method of choice for *C. difficile* colitis was the enzyme-linked immunosorbent assay (ELISA), based on toxin detection in the stool. While ELISA is fast, inexpensive, and has excellent specificity, its sensitivity is variable (75–85%).
- The newer preferred method of diagnosis is the nucleic acid amplification (LAMP, loop-mediated isothermal amplification) assay, which may include the real-time polymerase chain reaction (PCR) or loop-mediated isothermal amplification test (both of which detect the toxin A and B genes responsible for the production of toxins). LAMP has specificity 94–100% and sensitivity 90–100%. There is no benefit to testing multiple stool specimens or repeat testing following a positive test.

Treatment. Metronidazole is the drug of choice along with discontinuation of antibiotics (if feasible) and supportive therapy. If the diagnosis is highly likely and the patient is seriously ill, metronidazole may be given empirically before the test results. Oral vancomycin is reserved for the following conditions:

- Failed therapy with metronidazole
- Organisms resistant to metronidazole
- Allergy or intolerance to metronidazole

Note

Effective 2018, metronidazole is no longer considered first-line treatment for *C. difficile*. PO vancomycin or fidaxomicin is now considered first-line treatment.
• Pregnancy or young age (<10 years)
• Severe *C. diff* (WBC >15,000 or increased serum creatinine >1.5 × normal)

If symptoms resolve but there is a recurrence (~30% in some studies), then retreat with metronidazole. Use IV metronidazole if patient is unable to use oral medication (This is not true of vancomycin, i.e., IV vancomycin will have no effect in the bowel because it does not pass bowel wall. Similarly, oral vancomycin will have no systemic effect.)

If there is a second recurrence, use a prolonged course of oral vancomycin taper (6–8 weeks). It must be 6 weeks to be effective and it must be tapered. Alternatively, consider fecal transplant or a new drug, fidaxomicin (note that this is not more effective than vancomycin or metronidazole for the first episode). Fidaxomicin seems to reduce the number of episodes of recurrent *C. difficile* colitis.

Lactose Intolerance

Lactose intolerance is perhaps the single most common potential cause of diarrhea because of the enormously high prevalence of lactase deficiency. This is a disorder so common that the testing and treatment are generally empiric.

The diarrhea produced is associated with gas and bloating, but never contains blood or leukocytes. Despite the malabsorption of lactose, weight loss does not occur.

Diagnosis can be confirmed with increased stool osmolality and increased osmolar gap.

- Osmolar gap means that the difference between the osmolality measure in the stool and the osmolality calculated from the sodium and potassium levels is >50 mOsm/kg.
- Therefore, the measured stool osmolality is greater than would be expected just by the level of sodium and potassium. The extra osmoles are from lactose.
- Other causes of an increased stool osmolar gap are magnesium and polyethylene glycol in the stool, or nutrient malabsorption leading to pancreatic insufficiency, celiac sprue, and bacterial overgrowth.

The routine way to diagnose lactose intolerance is simply to remove milk, cheese, ice cream, and other dairy products (except yogurt) from the diet and observe for resolution of symptoms, which should occur within 24–36 hours. (This differs from celiac disease, where resolution of diarrheal symptoms make take weeks after stopping the ingestion of gluten-containing foods.) If resolution of symptoms does occur, then dietary changes are the best therapy. The patient can use lactase supplements.

Irritable Bowel Syndrome

Although it is often described at the same time as diarrheal illnesses, irritable bowel syndrome (IBS) is predominantly a pain syndrome of unknown etiology. IBS is an idiopathic disorder in which there is increased frequency of the normal peristaltic and segmentation contractions of the bowel. Pain is often relieved by a bowel movement.

- 20% of patients have constipation only, while a large percentage have diarrhea alone or diarrhea alternating with constipation.
- Everyone has pain.
- There are no nocturnal symptoms.
- There are no constitutional signs or symptoms, e.g., fever, weight loss, anorexia, or anemia.
Diagnosis. There is no specific diagnostic test for IBS. The first step is to exclude lactose intolerance, IBD, celiac disease, carcinoid, *Giardia* infection, and anatomic defects of the bowel as the cause.

The diagnostic criteria, called Rome criteria, must occur for at least 3 months:

- Pain relieved by a bowel movement or by a change in bowel habit (e.g., when you develop diarrhea, the pain goes away)
- Fewer symptoms at night
- Diarrhea alternating with constipation

Colonoscopy is not needed for diagnosis, but a work up for celiac sprue must be done if diarrhea is predominant.

Treatment.

- High-fiber diet to increase bulk of the stool
- Antidiarrheal agent such as loperamide or diphenoxylate for diarrhea-predominant disease
- Hyoscyamine or dicyclomine for abdominal pain (alternatively, tricyclic antidepressant or SSRI)
- Osmotic laxative polyethylene glycol for IBD-C; lubiprostone (women) and linaclotide for IBD-C unresponsive to PEG

Do not use alosetron due to risk of ischemic colitis.

Carcinoid Syndrome

Carcinoid syndrome describes tumors of the neuroendocrine system. They are most often located in the appendix and ileum. By definition carcinoid syndrome implies metastatic disease (except for bronchial carcinoids). Until there is an enormous tumor burden, the liver is able to neutralize all of the serotonin released by the carcinoid in the bowel. This usually does not happen until the metabolic capacity of the liver has been overwhelmed by metastatic disease.

Bronchial carcinoids are rare but highly symptomatic because the serotonin produced is released directly into the circulation without being detoxified in the liver.

Clinical Presentation. Carcinoid syndrome presents with diarrhea, flushing, tachycardia, and hypotension. A rash may develop from niacin deficiency, a direct result of the carcinoid. Serotonin and niacin are both produced from tryptophan, so if there is an overproduction of serotonin, a tryptophan deficiency and thus a niacin deficiency, will result. Endocardial fibrosis also occurs because of a constant exposure of the right side of the heart to the serotonin. This leads to tricuspid insufficiency and pulmonic stenosis.

Diagnosis. The diagnosis is confirmed with urinary 5-hydroxyindolacetic acid level (5-HIAA).

Treatment. Therapy is generally based on controlling the diarrhea with octreotide, a somatostatin analog. Very few carcinoids are sufficiently localized to be amenable to surgical resection. If a tumor does happen to be localized, then it should be resected. This is most often possible with bronchial carcinoid. Surgery is also used to relieve obstruction of the bowel.
MALABSORPTION SYNDROMES

The major causes of fat malabsorption are celiac disease and chronic pancreatitis, although in extremely rare cases it is caused by tropical sprue or Whipple disease. What they all have in common is the production of diarrhea characterized as greasy, oily, floating, and fatty, with a particularly foul smell, as if fat were fermenting. This type of diarrhea with fat is called *steatorrhea*.

All malabsorption syndromes are characterized by weight loss because fat has the highest caloric content of all the foods. In addition, there is malabsorption of the fat-soluble vitamins A, D, E, and K.

- **Vitamin A deficiency**: night blindness (early), complete blindness
- **Vitamin D deficiency**: hypocalcemia, hypophosphatemia, osteomalacia
- **Vitamin E deficiency**: neuromuscular disorders, hemolysis
- **Vitamin K deficiency**: prolongation of prothrombin time and easy bruising

Iron malabsorption occurs if there is involvement of the duodenum where iron is normally absorbed. Iron deficiency anemia is evident in all patients with celiac sprue. Macrocytic anemia occurs if folate is malabsorbed. Vitamin B12 *malabsorption* occurs from damage or loss of the mucosal surface of the terminal ileum.

Clinical Presentation. All malabsorption syndromes present with chronic diarrhea. The only unique feature of celiac disease is dermatitis herpetiformis, a vesicular skin rash on the extensor surfaces of the body (10% of patients). Even without dermatitis herpetiformis, celiac disease is the most likely etiology of fat malabsorption because it is the most common.

Chronic Pancreatitis

Chronic pancreatitis is diagnosed with the following:

- History of pain, recurrent attacks of acute pancreatitis, weight loss
- Pancreatic calcifications on imaging
- Exocrine pancreatic insufficiency (*steatorrhea*)
- Diabetes
- Chronic alcohol abuse (most common cause)

If CT does not show calcifications, get MRCP to detect abnormal pancreatic ducts.

For young adults with chronic pancreatitis, work up for cystic fibrosis (especially if there is recurrent pneumonia, sinusitis, and infertility).

Suspect tropical sprue when there is a history of being in a tropical country, and Whipple disease (very rare) if there is *dementia* (10%), *arthralgia* (80%), and *ophthalmoplegia*.

Treatment. Treatment includes pancreatic enzymes; pain control with NSAID/acetaminophen, tramadol (may cause hypoglycemia), tricyclic antidepressant, gabapentin, or pregabalin; insulin (required for diabetics, as it mimics type 1 diabetes due to destruction of beta cells). Do not use narcotics for pain control.

Clinical Pearl

Antibodies Seen in Celiac Disease

- IgA endomysial antibody
- IgA tissue transglutaminase antibody
- IgG tissue transglutaminase antibody
- IgA deamidated gliadin peptide
- IgG deamidated gliadin peptide

Anti-tissue transglutaminase antibody (IgA) is the most sensitive and specific. In patients with IgA deficiency, IgA endomysial and transglutaminase antibodies are *falsely normal.*

*Anti-tissue transglutaminase antibody (IgA) is the most sensitive and specific. In patients with IgA deficiency, IgA endomysial and transglutaminase antibodies are *falsely normal.*
Celiac Sprue

Celiac sprue is secondary to ingestion of wheat, gluten, or related rye and barley proteins. Patients present with the following:

- Chronic diarrhea or steatorrhea
- Bloating, weight loss, abdominal pain
- Pruritic papulovesicular rash on extensor surfaces (dermatitis herpetiformis)
- Isolated abnormalities in liver chemistry tests
- Unexpanded iron deficiency anemia (after a negative work up for GI bleed)
- Fat-soluble vitamin deficiencies
- Early onset osteoporosis
- Strong association with type 1 diabetes (should be screened)
- Malabsorption of thyroid hormone in patient with thyroiditis
- IBS-D

The antibodies seen in celiac disease include IgA endomysial antibody, IgA tissue transglutaminase antibody, IgG tissue transglutaminase antibody. **Anti-tissue transglutaminase antibody (IgA)** is the most sensitive and specific. In patients with IgA deficiency, IgA endomysial and transglutaminase antibodies are falsely normal. Check IgG anti-tTG.

Work up celiac in a patient with thyroiditis who is not responding to high doses of levothyroxine.

Diagnosis. The first step with celiac disease is to test for the presence of antiendomysial and anti-transglutaminase antibodies. The most accurate test is a small bowel biopsy, which shows flattening of villi. Even if the antibody tests confirm the diagnosis of celiac disease, the bowel biopsy should be done anyway to exclude small bowel lymphoma.

Just removing gluten (wheat, rye, oats) from the diet is not an accurate way to establish the diagnosis because the circulating antibodies will continue to be present for weeks after stopping the ingestion of gluten.

Tropical sprue and Whipple disease are diagnosed by finding organisms on a bowel-wall biopsy. The single most sensitive test for Whipple disease is a polymerase chain reaction (PCR) of the bowel biopsy. A positive Tropheryma whippelii biopsy shows foamy macrophages that are PAS positive.

Treatment. Celiac disease is managed by adhering to a gluten-free diet (no wheat, oats, rye, or barley); nonadherence is the most common reason for failure. Use dapsone when celiac patients have dermatitis herpetiformis.

- Trimethoprim/sulfamethoxazole or doxycycline × 6 months (for tropical sprue)
- Trimethoprim/sulfamethoxazole, doxycycline, or ceftriaxone × 1 year (for Whipple disease)

Although all malabsorption syndromes are associated with multiple deficiencies, note some complications:

- Celiac disease is associated with GI lymphoma and adenocarcinoma; patients are at risk for adenocarcinoma of the intestine
- Celiac sprue is associated with lymphoma (enteropathy-associated T cell lymphoma) (10-15% of cases); unclear whether therapy with gluten-free diet reduces incidence of lymphoma

Note

In chronic pancreatitis, lipase and amylase are usually normal due to a burnt out pancreas.

Clinical Correlate

Do not let the lack of diarrhea and weight loss keep you from considering celiac. Test for celiac in anyone with unexplained elevation in LFTs or multiple vitamin deficiencies.

Clinical Correlate

Do not let the lack of diarrhea and weight loss keep you from considering celiac. Test for celiac in anyone with unexplained elevation in LFTs or multiple vitamin deficiencies.
Clinical Recall

A 22-year-old woman complains of intermittent bloating and diarrhea for the past 3 months. Her symptoms are relieved when she avoids her morning coffee and ice cream. On diagnostic testing, her blood and stool tests were within normal limits except for a mild elevation in stool osmolality. What is the most likely cause of her symptoms?

A. Celiac sprue
B. Carcinoid syndrome
C. Irritable bowel syndrome
D. Lactose intolerance
E. Whipple disease

Answer: D

DIVERTICULAR DISEASE

In diverticular disease, small bulges or pockets develop in the lining of the intestine. They often develop where the muscles are weakest, e.g., where penetrating vessels cross through muscle.

Diverticulosis

Diverticulosis is so common in older populations throughout the Western world (50% of persons age >50, with higher rates in older populations) that it is almost considered a normal part of aging. The cause of diverticulosis is believed to a lack of fiber in the diet to give bulk to stool. There is a subsequent rise in intracolonic pressure, leading to outpocketing of the colon.

Clinical Presentation. Most of the time, patients are asymptomatic. When symptoms do exist, they are typically left lower quadrant abdominal pain that is colicky in nature.

Diverticulosis is diagnosed with colonoscopy. Endoscopy is superior to barium study, particularly when bleeding is present. Diverticula are more common on the left in the sigmoid, but bleeding occurs more often from diverticula on the right because of thinner mucosa and more fragile blood vessels. When bleeding occurs from diverticula, it is painless.

Treatment. Treatment is an increased-fiber diet, as is found in bran, bulking agents such as psyllium husks, and soluble fiber supplements.

Diverticulitis

Diverticulitis occurs when one of the bulges or pockets (diverticula) becomes infected. This can occur when the diverticular entrance in the colon becomes blocked, perhaps by nuts or corn.

Diverticulitis is distinguished from uninfected diverticula by the presence of fever, tenderness, more intense pain, and elevated white blood cell count.

Diagnosis is confirmed with CT scan. Barium study and endoscopy are contraindicated because there is a slightly higher risk of perforation.
Treatment. Diverticulitis is treated with antibiotics such as ciprofloxacin and metronidazole. The other choices are ampicillin/sulbactam, piperacillin/tazobactam, or combined cefotetan or cefoxitin with gentamicin. Mild disease can be treated with oral antibiotics such as amoxicillin/clavulanic acid. Do colonoscopy several weeks after recovery to evaluate.

CONSTITUTION

A 72-year-old woman has a history of upper GI tract bleed and iron-deficiency anemia, for which she has recently been started on oral ferrous sulfate iron replacement. She also has a history of diabetes with peripheral neuropathy, for which she takes amitriptyline. She has untreated hypothyroidism, but is treated for hypertension with nifedipine. Currently, she has constipation, and when the stool does pass, it is very dark in color, almost black.

The most common cause of constipation is lack of dietary fiber and insufficient fluid intake. Calcium-channel blockers, oral ferrous sulfate, hypothyroidism, opiate analgesics, and medications with anticholinergic effects such as the tricyclic antidepressants all cause constipation. In the patient above, the most likely cause of the constipation is the ferrous sulfate.

• Very dark stool, as in this patient, occurs only with bleeding, bismuth subsalicylate ingestion, and iron replacement.
• However, GI bleed produces diarrhea—not constipation—because blood acts as a cathartic.
• Blood causes diarrhea, and iron tablets cause constipation.

Treatment. Stop all medications that cause constipation; then make sure the patient stays well-hydrated and consumes 20–30 grams of daily fiber.

• Bulking agents, such as those used to manage diverticular diseases
• Drug treatment: milk of magnesia, cascara, bisacodyl, docusate
• Enema (acute and serious constipation)
• Lactulose and polyethylene glycol

COLON CANCER

The lifetime risk of colon cancer is >6%. Most cases occur sporadically, which is to say there is no clearly identified etiology.

A diet high in red meat and fat leads to an increased risk, as does smoking.

• When the cancer is in the right side of the colon, patients present with heme-positive, brown stool and chronic anemia.
• When the cancer is in the left side or in the sigmoid colon, patients present with obstruction and narrowing of stool caliber.
• That is because the right side of the colon is wider than the left, and the stool is more liquid in that part of the bowel, making obstruction less likely on the right.
• Endocarditis by *Streptococcus bovis* and *Clostridium septicum* have a strong association with colon cancer. Anyone presenting with endocarditis due to one of these organisms requires a GI work-up.

Diagnosis. Colonoscopy is the most accurate diagnostic test. Sigmoidoscopy will reach the lesion only within the distal 60 cm of the colon. If the lesion is in the distal area then the sigmoidoscopy will be equally sensitive as colonoscopy, but only 60% of cancers occur there. Barium study is not as accurate as colonoscopy, nor can you biopsy.

Treatment. Treatment depends on the stage of disease and extent of its spread.

- Single liver metastatic lesion: surgical resection
- Cancer localized to the mucosa, submucosa, and muscularis layers: surgical resection; curable
- Cancer penetrated to the serosa and spread into surrounding tissue and lymph nodes: surgical resection not effective in eradicating disease
- Widespread disease: chemotherapy (mainstay of chemotherapy for GI malignancies such as colon cancer is 5-fluorouracil [5FU])

Screening. The standard screening recommendation for colon cancer is as follows. Screening should occur in the general population after age 50.

- High-sensitivity fecal occult blood testing (FOBT) every year
- Flexible sigmoidoscopy every 5 years
- Combined high-sensitivity FOBT (every 3 years) plus flexible sigmoidoscopy (every 5 years) OR colonoscopy every 10 years

If adenomatous polyps were found on previous colonoscopy, repeat colonoscopy in 3–5 years. In cases of family history of colon cancer, begin screening at age 40 or 10 years earlier than the family member got cancer, whichever is younger (also see Preventive Medicine chapter).

Hereditary Nonpolyposis Syndrome (Lynch Syndrome)

Certain families carry a genetic defect with a high degree of penetrance for colon cancer. The genetic defect does not cause polyps, however. By definition, the syndrome is defined as:

- Three family members in at least 2 generations with colon cancer
- One of these cases should be premature, i.e., occurred in someone age <50

Patients with this syndrome are also at increased risk for ovarian and endometrial cancer (up to 30%).

Screening. Start screening at age 25 and undergo colonoscopy every 1–2 years.

Hereditary Polyposis Syndromes

Familial adenomatous polyposis has a very clear genetic defect. The adenomatous polyposis coli gene (APC) confers 100% penetrance for the development of adenoma by age 35 and of colon cancer by age 50. Polyps can be found as early as age 25. Start screening at age 12 and do flexible sigmoidoscopy every 1–2 years. As soon as polyps are found, perform a colectomy; a new rectum should be made from the terminal ileum.

By contrast, **juvenile polyposis syndrome** confers about a 10% risk of colon cancer. There are only a few dozen polyps, as opposed to the thousands of polyps found in those with familial
polypsis. In addition, the polyps of the juvenile polyposis syndrome are hamartomas, not adenomas. Hamartomas confer very little risk of developing into cancer. There is no specific recommendation for screening.

Cowden syndrome is another polyposis syndrome with hamartomas that gives only a slightly increased risk of cancer compared with the general population. These polyposis syndromes can present with rectal bleeding in a child.

Other Polyposis and Colon Cancer Syndromes

Gardner syndrome is the association of colon cancer with multiple, soft-tissue tumors, such as osteomas, lipomas, cysts, and fibrosarcomas. Osteomas are frequently found on the mandible. If osteomas are found as an incidental finding on x-ray, do a colonoscopy.

Peutz-Jeghers syndrome is the association of hamartomatous polyps in the large and small intestine with hyperpigmented spots. These are melanotic spots on the lips, buccal mucosa, and skin. The risk of cancer is slightly increased above the general population. Most common presentation is with abdominal pain due to intussusception/bowel obstruction.

Turcot syndrome is simply the association of colon cancer with central nervous system malignancies.

Screening. There is no recommendation for increased cancer screening for any of these syndromes; they are not common enough to warrant a clear recommendation for uniform early screening. There is an association of endocarditis from *Streptococcus bovis* with colon cancer, so if a patient has endocarditis from *S. bovis*, colonoscopy should be performed.

GASTROINTESTINAL BLEEDING

A 72-year-old man with a history of aortic stenosis is brought to the emergency department with red/black stool several times today. His blood pressure is 94/60 mm Hg and pulse 110/min.

The first thing to consider for a patient with GI bleed is the treatment, not the etiology.

- **Upper GI bleed** is most commonly caused by ulcer disease, gastritis, Mallory-Weiss syndrome, esophagitis, and gastric cancer. By definition, upper GI bleed is defined as bleeding occurring proximal to the ligament of Treitz, which anatomically separates the duodenum from the jejunum. If there is a history of abdominal aortic aneurysm repair in the past 6 months to 1 year, consider aortoenteric fistula.

- **Variceal bleed** is common in those with portal hypertension from cirrhosis.

- **Lower GI bleed** is most commonly caused by diverticulosis, angiodysplasia (also know as AVM or vascular ectasia), hemorrhoids, cancer, and IBD.

Clinical Presentation. Typically, **upper GI bleed presents with black stool or melena**, while **lower GI bleed presents with red blood** in the stool.

- Upper GI bleed can also cause hematemesis if the volume of bleeding is high enough.

- About 10% of cases of red blood from the rectum can be from an upper GI source. This can happen if the volume of blood is so high that it is rapidly transported to the bowel without time for it to oxidize and turn black.
• In upper GI bleed, occult blood–positive brown stool can occur with as little as 5–10 mL of blood loss. Melena develops when at least 100 mL of blood has been lost.

Orthostasis is defined as a >10-point rise in pulse when the patient goes from the supine to the standing or sitting position. It is also defined as a >20-point drop in systolic blood pressure on a change in position. There should be at least a minute in between the position change and the measurement of the pulse and blood pressure to allow time for the normal autonomic discharge to accommodate to the position change.

Orthostasis is when the rise in pulse or drop in blood pressure persists after the position has been changed. It indicates a 15–20% blood loss. The measurement of orthostatic changes is not necessary in the patient described in this case because a pulse >100/min or a systolic blood pressure <100/mmHg already indicates a >30% blood loss.

Diagnosis. Endoscopy is the most accurate test to determine the etiology of both upper and lower GI bleed. Barium study is always less accurate. Should biopsy be needed, an endoscopy must be performed.

Treatment. The most important step in the initial management of severe GI bleeding is to begin fluid resuscitation with normal saline or Ringer's lactate. A complete blood count, prothrombin time, and type and crossmatch should be done, but if the patient is having a high volume bleed as in the patient above, never wait for the test results to begin fluid resuscitation.

- If prothrombin time is elevated above the control, prothrombin concentrate complex should be given, and IV vitamin K if on warfarin (replacing fresh frozen plasma)
- Platelets should be transfused if platelet count <50,000/mm3 and if patient is actively bleeding
- Nasogastric tube should not be used

All of the management described is more important than performing endoscopy to determine a specific etiology. Fluids, blood, platelets, and plasma are indicated in all forms of severe GI bleeding if there is a coagulopathy. More than 80% of GI bleeding cases will stop spontaneously with appropriate fluid resuscitation, irrespective of the etiology. Endoscopy is performed later to determine the etiology.

Acute Bleeding. For acute bleeding, fluid resuscitation should be performed as described. The hematocrit should be maintained at ≥30% in older patients and those who may have coronary artery disease. Younger patients will form their own reticulocytes and make their own blood over a few days and do not need to be transfused, unless their hematocrit is closer to 20%. Patients with gastritis or the possibility of ulcer disease should be treated with PPIs empirically until a definitive diagnosis can be made. H$_2$ blockers have no efficacy in acute GI bleeding.

Esophageal varices are treated with octreotide during acute episodes of bleeding in order to lower portal pressure. If this is ineffective, emergency endoscopy should be performed to place bands around the bleeding varices. Sclerotherapy will also stop acutely bleeding varices, but there is a much higher complication rate later on, such as stricture formation. If banding is not effective in stopping the acutely bleeding esophageal varix, then TIPS (transjugular intrahepatic portosystemic shunting) should be performed. A catheter is placed into the jugular vein and guided radiographically through the liver to form a shunt between the systemic circulation in the hepatic vein and the portal circulation through the portal vein. TIPS has largely replaced the need to surgically place the shunt. The most common, long-term complication of TIPS is worsening of hepatic encephalopathy.
A Blakemore tube to tamponade the site of bleeding in the stomach or esophagus is rarely used and is only a temporary bridge to surgery.

Propranolol is a nonselective beta-blocker used in the long-term management of portal hypertension to decrease the frequency of bleeding. Everyone with varices from portal hypertension and cirrhosis should be on a beta-blocker.

Pathogenesis. The most common causes of upper GI bleeding are ulcer disease, gastritis, Mallory-Weiss syndrome, esophagitis, and gastric cancer. Variceal bleeding is common in those with portal hypertension from cirrhosis. By definition, upper GI bleeding is defined as bleeding occurring proximal to the ligament of Treitz, which anatomically separates the duodenum from the jejunum. If there is a history of abdominal aortic aneurysm repair in the past 6 months to a year, think about an aortoenteric fistula.

Lower GI bleeding is most commonly caused by diverticulosis, angiodysplasia (also known as AVM or vascular ectasia), hemorrhoids, cancer, and inflammatory bowel disease.

Clinical presentation. Generally, lower GI bleeding presents with red blood in the stool, and upper GI bleeding presents with black stool, or melena.

Upper GI bleeding can also give hematemesis if the volume of bleeding is high enough. About 10% of cases of red blood from the rectum can be from an upper GI source. This can happen if the volume of bleeding is so high that the blood is rapidly transported to the bowel without the time for it to oxidize and turn black. In upper GI bleeding, occult blood-positive brown stool can occur with as little as 5 to 10 mL of blood loss. The same is true of “coffee-ground” emesis. Melena develops when at least 100 mL of blood has been lost.

Orthostasis is defined as a >10-point rise in pulse when the patient goes from the supine to the standing or sitting position. It is also defined as a >20-point drop in systolic blood pressure on a change in position. There should be at least a minute in between the position change and the measurement of the pulse and blood pressure to allow time for the normal autonomic discharge to accommodate to the position change. Orthostasis is when the rise in pulse or drop in blood pressure persists after the position has been changed. It indicates a 15 to 20% blood loss. The measurement of orthostatic changes is not necessary in the patient described in this case because a pulse >100/min or a systolic blood pressure <100/min already indicates a >30% blood loss.

Diagnosis. Endoscopy is the most accurate test to determine the etiology of both upper and lower GI bleeding. Barium studies are always less accurate. You also cannot biopsy unless endoscopy is performed.

Occasionally, in lower GI bleeding, endoscopy will not reveal the etiology even when there is active bleeding. A nuclear bleeding scan can detect low volume bleeds 0.1–0.5 mL/min. Red cells from the patient are tagged with technetium and reinjected back into the patient. These tagged cells are then detected to determine the site of bleeding.

Angiography is rarely used in the evaluation of lower GI bleeding because it needs a higher volume of blood loss >0.5 mL/min compared with the tagged nuclear scan. Angiography, however, is useful in extremely high-volume bleeding in which so much blood is coming out that endoscopy cannot see the source. It may then be used prior to either embolization of the site of the bleeding or hemicolectomy. Angiography can also help guide the occasional use of a local vasopressin injection in the control of severe lower GI bleeding.

Note
Consider the treatment, not the etiology, first when a patient is experiencing GI bleed.

Note
Lower GI bleeding presents with red blood in the stool, whereas upper GI bleeding presents with black stool.
Despite all of these methods, an etiology of GI bleeding cannot be determined in about 5% of patients. This is often because the upper endoscope only goes as far as the ligament of Treitz, and the lower endoscope only reaches just past the ileocecal valve. When both of these modalities are unrevealing, the most likely source of the bleeding is in the small bowel. The small bowel is very difficult to visualize, and barium studies are inaccurate. The newest modality to visualize the small bowel is capsule endoscopy, in which a patient swallows a capsule with an electronic camera that can transmit thousands of images to a receiver near the patient. This will allow anatomic localization of the lesion.

Virtual endoscopy is a CT scan used to try to detect cancer without the need of endoscopy. Virtual endoscopy lacks both sensitivity and specificity to detect causes of GI bleed, and therefore should not be ordered for this purpose.

Clinical Recall

Which of the following colonic conditions requires additional colonoscopy screening?

A. Cowden syndrome
B. Gardner syndrome
C. Juvenile polyposis syndrome
D. None of the above

Answer: D

ACUTE PANCREATITIS

Acute pancreatitis is inflammation of the pancreas due to premature activation of trypsinogen into trypsin while still in the pancreas (common pathway of most causes of pancreatitis). This results in autodigestion of the pancreas. Circulating cytokines can lead to many complications.

The majority of cases of pancreatitis are caused by alcoholism and gallstones.

Other causes include:

- Medications such as valproate, pentamidine, didanosine (DDI), azathioprine, and sulfa derivatives, e.g., sulfamethoxazole/trimethoprim and thiazide diuretics
- Hypercalcemia
- Hypertriglyceridemia, where elevated triglycerides are broken down to fatty acids, causing inflammation of the biliary tract and eventual pancreatitis
- Endoscopic retrograde cholangiopancreatography (ERCP), presumably because of back pressure from injection of the contrast material into the ductal system; most patients who have pancreatic injury from ERCP have just an asymptomatic increase in amylase and only 2–8% actually develop symptomatic pancreatitis
- Trauma and various viruses, such as mumps

Clinical Presentation. The classic presentation of acute pancreatitis is midepigastic pain with tenderness, nausea, and vomiting. The pain typically radiates straight through to the back. When
extremely severe, pancreatitis can mimic many of the features of septic shock, with fever, hypotension, respiratory distress from ARDS, elevation of white cell count, and a rigid abdomen.

Diagnosis. To diagnose, there must be 2 of the following 3 features:
- Acute onset of upper abdominal pain
- Amylase or lipase >3x the upper limit of normal
- Evidence on imaging

The initial tests remain as amylase and lipase (lipase is more specific to the pancreas than is amylase). CT scan should not be given routinely; only do if pancreatitis is severe, lasts longer than 48 hours, or complications are suspected.

The most important sign of severe pancreatitis and poor prognosis is elevated or raising BUN. Hypertriglyceridemia can give a falsely normal amylase and lipase levels.

The most accurate test to determine the severity of pancreatitis is the CT scan, which is more accurate than a sonogram for detecting the presence of inflammation, necrosis, pseudo-cysts, abscesses, and ductal stones. The APACHE score is also used to stratify acute pancreatitis.

The single most accurate test for the detection of biliary and pancreatic ductal pathology is ERCP.

Treatment. Treat with aggressive IV fluids (250–500 mL/hr), bowel rest, and pain medication (use morphine, as it does not constrict the sphincter of Oddi, and never use meperidine [black box warning label for seizures]).
- Aggressive IV fluids are most beneficial in first 12–24 hours and may be harmful after that time; reduce after 24 hours (Lactated Ringer's is preferred over normal saline based on clinical data).
- Resume oral feeding as soon as pain and nausea resolve; no need to wait.
- Administer antibiotics only if evidence of infected necrosis based on biopsy; do not give antibiotics for necrosis without infection.
- Do ERCP only if ascending cholangitis or nonresolving biliary obstruction, as it can otherwise worsen pancreatitis.

For gallstone pancreatitis, do cholecystectomy prior to discharge.

For severe acute pancreatitis that does not resolve within 72 hours, give enteral feeding via NGT or nasojunal feeds, not total parental nutrition. Data shows that enteral feeding improves mortality (vs parental). Do not keep patient NPO after 72 hours, as that leads to increased risk for sepsis and death.
- When pancreatitis is very severe, e.g., >30% necrosis visible on CT, the risk of infected and hemorrhagic pancreatitis markedly increases.
- Severe necrosis, particularly when there is persistent fever, is also an indication to perform a percutaneous needle biopsy of the pancreas. If infection of the pancreas accompanies the necrosis, imipenem and urgent surgical debridement are indicated.
- Antibiotics should not be routinely given for pancreatic necrosis; they should be reserved for those with proven infection.
- If patient does not improve or deteriorates 7–10 days after presentation, perform CT-guided fine-needle aspiration.

Note
Signs of Severe Necrotizing Pancreatitis
- **Cullen sign:** blue discoloration around umbilicus → due to hemoperitoneum
- **Turner’s sign:** bluish purple discoloration of the flanks → tissue catabolism of Hb.

Note
IV fluid intake in large volumes is the most important management of acute pancreatitis; it must be given in the first 12–24 hours.

Note
Other complications of pancreatitis include:
- Ascites (high in amylase)
- Pleural effusion (transudate, increased amylase)
- Splenic vein thrombosis (think when there are gastric varices but no esophageal varices)
In stable patients with infected necrosis, the preferred approach is to initiate antibiotics and to ideally delay drainage procedures for at least 4 weeks to allow the collection to become encapsulated, which facilitates drainage.

Pseudocysts develop only 2–4 weeks after the episode of pancreatitis; drain them if there is pain, fistula formation, or rupture (asymptomatic pseudocysts need not be drained).

AUTOIMMUNE PANCREATITIS

Type I presents with painless jaundice or acute pancreatitis (rare).
- ‘Sausage-shaped’ pancreas on CT
- Older man
- Elevated IgG4

IgG4-related disease (IgG4-RD) is a chronic inflammatory condition characterized by tissue infiltration with lymphocytes and IgG4-secreting plasma cells various degrees of fibrosis (scarring) involving multiple organs.

Multiple autoimmune conditions are seen, including Sjögren syndrome, primary sclerosing cholangitis, hepatomegaly interstitial nephritis (enlarged kidneys) and inflammatory bowel disease.

Type II presents with chronic pancreatitis.
- No systemic disease
- Normal IgG4
- Need biopsy to diagnose

Treatment. Steroids are used.
LIVER DISEASE AND CIRRHOSIS

Cirrhosis develops when there is chronic and severe inflammation of the liver for an extended period of time. The regenerative capacity of the liver is enormous; however, over a long time, fibrosis will develop. And when at least 70–80% of liver function has been lost, the synthetic capacity of the liver is diminished.

In the United States the most common cause of cirrhosis is alcohol. Other causes include primary biliary cirrhosis, sclerosing cholangitis, alpha-1 antitrypsin deficiency, hemochromatosis, and Wilson disease.

The complications of cirrhosis are due to portal hypertension. Portal hypertension develops because of mechanical factors of fibrosis and regenerative liver nodules, as well as increased intrahepatic vascular resistance in increased portal inflow. The high pressure in the portal vein is decompressed through collateral portosystemic shunts that occur in the esophagus and the stomach.

Clinical Presentation. Despite the etiology, all forms of cirrhosis have the following features:

- Low albumin
- Portal hypertension
- Esophageal varices
- Ascites
- Peripheral edema
- Elevated prothrombin time (prolonged due to loss of ability to synthesize clotting factors)
- Splenomegaly
- Thrombocytopenia
- Spider angiomas
- Palmar erythema
- Asterixis
- Encephalopathy (possible)
- Jaundice (possible)

All of the clotting factors are made in the liver (except factor VIII and von Willebrand factor, made by endothelial cells). **If factor VIII is low in addition to other factors, it is not liver disease—think disseminated intravascular coagulation (DIC).**

Ascites is the result of portal hypertension. A paracentesis is a sample of the ascitic fluid obtained by needle through the anterior abdominal wall. A paracentesis is used to exclude infection, as well as to determine the etiology of the ascites if it is not clear from the history.

Spontaneous bacterial peritonitis (SBP) is an idiopathic infection of ascites. The Gram stain is rarely positive because the density of microorganisms is so low. Although culture of the fluid is the most specific test, do not wait for the results to make a decision as to whether to give antibiotics. The presence of >250/mm³ neutrophils are the criteria to determine the presence of infection. **Cefotaxime or ceftriaxone is the drug of choice for SBP, and albumin infusion will decrease the risk of hepatorenal syndrome.**
Once a patient has SBP, the risk of recurrence is 70% per year. Therefore, treat the patient with norfloxacin or ciprofloxacin daily (indefinitely) to prevent recurrence. Also, all beta-blockers must be stopped due to increased mortality.

Note
Although a culture of the ascitic fluid is the most specific test for SBP, do not wait for culture results when considering antibiotics.

Clinical Pearl
Remember to subtract the lower number (ascites albumin) from the higher number (serum albumin) when calculating SAAG.

Note
For HCC, do U/S screening every 6 months.

Serum-Ascites Albumin Gradient. Normally, the ascitic fluid albumin level is less than the serum level. The difference between them is referred to as the serum-ascites albumin gradient (SAAG). Total protein in the ascites fluid must also be checked.

When SAAG \(\geq 1.1 \), portal hypertension, the cause of ascites is increased hydrostatic pressure. The ascites total protein will tell you the cause of the elevated hydrostatic pressure.

- When SAAG \(\geq 1.1 \) and total protein \(< 2.5 \text{ g/dL} \), the portal hypertension is due to cirrhosis. (liver produces less protein due to decreased function).
- When SAAG \(\geq 1.1 \) and total protein \(> 2.5 \text{ g/dL} \), heart failure, Budd-Chiari (check JAK2 to work up P. vera).

When SAAG \(< 1.1 \), it means the ascitic fluid albumin level is high. Cancer and infections generally produce SAAG \(< 1.1 \).

- When SAAG \(< 1.1 \) and total protein \(< 2.5 \text{ g/dL} \), there is nephrotic syndrome (protein is lost in urine).
- When SAAG \(< 1.1 \) and total protein \(> 2.5 \text{ g/dL} \), there is carcinomatosis (think ovarian), Tb (do peritoneum biopsy, which will have high lymphocytes in ascites, too)

Treatment. There is no specific therapy to reverse cirrhosis; one can only manage the complications and treat the underlying causes. (A complication to consider is hepatocellular carcinoma.) Edema and fluid overload in third spaces, such as ascites, are managed with diuretics (spironolactone most useful in cirrhosis). That is because cirrhotics have intravascular volume depletion, producing a high aldosterone state (secondary hyperaldosteronism). Furosemide is commonly added after spironolactone to increase volume removal. Giving furosemide without spironolactone will lead to hypokalemia, which can cause encephalopathy.

Figure 4-4. Ascites
Propranolol is used to prevent bleeding in portal hypertension and varices. Discontinue after SBP, refractory ascites, or hypotension.

Encephalopathy is managed with lactulose, a nonabsorbed disaccharide that bacteria metabolize in the colon, making it more acidic. This converts the NH₃ to NH₄⁺, or ammonia to ammonium. Ammonium is not absorbed very well, and that leads to an overall increased excretion of ammonia from the body.

If patient is not responsive, add rifaximin, an RNA polymerase blocker not absorbed which changes the flora of the GI tract. Neomycin is not used for encephalopathy due to renal toxicity.

Hepatorenal syndrome is diagnosed by the following:
- Increased creatinine >1.5 mg/dL over days to weeks
- Lack of response to albumin infusion for 48 hours (stop diuretics, too)
- Exclusion of other causes of AKI (sepsis); must have normal urine (no blood or protein)
- Type 1 is more severe with doubling of creatinine in 2 weeks.
- Type 2 is less severe with more gradual increase in creating.

Treat with midodrine, octreotide and albumin (must give for 48 hours first to rule out pre-renal). If it fails, perform liver transplant.

Although vitamin K is often given because of the elevated prothrombin time, it is not effective because the liver is unable to synthesize clotting factors regardless of how much vitamin K is present.

Primary Biliary Cirrhosis

Primary biliary cirrhosis is an idiopathic autoimmune disorder that is often seen in middle-aged women. Bilirubin does not elevate until the disease is extremely far advanced (5–10 years). There is a strong association with other autoimmune diseases, such as Sjögren syndrome, rheumatoid arthritis, and scleroderma.

Clinical Presentation. The most common symptoms are fatigue and pruritus. At least 30% of patients are asymptomatic but are found to have an elevated alkaline phosphatase when measured for other reasons. Osteoporosis and hypothyroidism are found in 20–30% of patients.

Diagnosis. The transaminases are often normal. The most common abnormality is elevated alkaline phosphatase and gamma glutamyl transpeptidase (GGTP). Total IgM levels are also elevated. The most specific blood test is the antimitochondrial antibody.

Biopsy is always the best way to diagnose liver disease. It is the only test more specific than antimitochondrial antibodies.

Treatment. There is no specific therapy for primary biliary cirrhosis. Steroids will not help. Ursodeoxycholic acid is primary treatment. Cholestyramine will help with the pruritus, as will ultraviolet light. Liver transplant for late stage PBC may also be considered.

Note

Give octreotide during a bleed, then band. Give propranolol after the bleed to prevent another bleed.

Note

In a patient with ascites, stop ACE-I, ARBs, and NSAIDs.
Primary Sclerosis Cholangitis

Primary sclerosis cholangitis is an idiopathic disorder of the biliary system most commonly associated with inflammatory bowel disease (IBD). Although it is more often found with ulcerative colitis, it can also occur with Crohn’s disease. Cancer of the biliary system can develop in 15% of patients from the chronic inflammation.

Clinical Presentation and Diagnosis. The presentation and general lab tests are typically the same as those for primary biliary cirrhosis, except that the antimitochondrial antibody test will be negative. The most specific test for primary sclerosis cholangitis is ERCP or MRCP: “string of beads of MRCP or ERCP.” This is the only chronic liver disease in which a liver biopsy is not the most accurate test.

Treatment. Treat with endoscopic therapy for strictures; cholestyramine for itching.

Hemochromatosis

Hemochromatosis is one of the most common inherited genetic diseases. There is an overabsorption of iron in the duodenum, leading to iron buildup in tissue throughout the body, thus resulting in chronic hepatic inflammation and fibrosis. Presentation includes the following:

- Cirrhosis (most common finding)
- Hepatocellular cancer (15–20% of patients)
- Restrictive cardiomyopathy (15% of patients)
- Arthralgias, osteoarthritis in the MPC joints, osteophytes on x-ray, skin hyperpigmentation, diabetes, and secondary hypogonadism (decreased libido and impotence)
- *Vibrio vulnificus* and *Yersinia* infections occur with increased frequency because of their avidity for iron.

Screening for hemochromatosis is made with elevated transferrin saturation >55%. Ferritin is also elevated. C282Y homozygous and C282Y/H63D are diagnostic of hemochromatosis and do need a liver biopsy for diagnosis.

The most accurate test is a liver biopsy.

Treatment. Phlebotomy is used to remove large amounts of iron from the body—it removes far more iron than do the chelating agents deferoxamine and deferasirox. Deferoxamine and deferasirox are used only for those who cannot undergo phlebotomy.

Wilson Disease

Wilson disease is an autosomal recessive disorder leading to a diminished ability to excrete copper from the body. There is also increased copper absorption from the small intestine.

- Copper builds up in the liver, brain, and cornea.
- Basal ganglia dysfunction contributes to the movement disorder which develops.
- Psychiatric disturbance is seen in 10% of patients.
- Kayser-Fleischer rings are found in the eye on slit-lamp examination.
- Tremor and Parkinson result in 35% of patients.
Fanconi syndrome and type II proximal renal tubular acidosis develop due to copper deposition in the kidney.

Hemolytic anemia may be present (copper destabilizes the RBC membranes).

The most specific blood test for diagnosis is decreased ceruloplasmin but that alone is not enough. There is also increased urinary copper. The single most specific test is liver biopsy, which will demonstrate increased copper deposition in the liver. Occasionally, hemolytic anemia is seen when copper levels go high and are toxic to the red cells.

Treatment. Penicillamine and trientine are copper chelators. Oral zinc interferes with copper absorption. Steroids will not help. Liver transplantation is curative.

Alpha-1 Antitrypsin Deficiency

Alpha-1 antitrypsin deficiency (AATD) is an autosomal recessive condition which causes a low level (or no level) of alpha-1 antitrypsin (AAT) in the blood. The condition is found in all ethnic groups but occurs most often in whites of European ancestry. AAT protects the lungs so they can have normal function. AAT is made in the liver; without enough of it, the lungs become damaged, leading to emphysema.

- Everyone has 2 copies of the gene for AAT and receives 1 copy of the gene from each parent.
- Patients with AATD have 1 normal copy and 1 damaged copy, or they have 2 damaged copies.
 - Most patients with 1 normal gene can produce enough AAT to live healthy lives, especially if they do not smoke.
 - Those with 2 damaged copies of the gene are generally not able to produce enough AAT, leading them to have more severe symptoms.

The most prominent finding is emphysema developing at a young age in a nonsmoker. Approximately 15% of those with AATD develop cirrhosis. Large amounts of abnormal AAT are made in the liver; nearly 85% of this protein accumulates in the liver causing inflammation and eventually, fibrosis.

Diagnosis. Testing for AATD, using a blood sample from the individual, is simple, quick and highly accurate. Three types of tests are usually done on the serum sample:

- Alpha-1 genotyping, which examines a person’s genes and determines his genotype
- AAT PI type of phenotype test, which determines the type of AAT protein a person has
- AAT level test, which determines the amount of AAT in a person’s blood

Treatment. There is no specific therapy for the liver disease. Those with emphysema should receive replacement of the enzyme and stop smoking.

Chronic Hepatitis B and C

Hepatitis B and C are transmitted by blood products, needlestick injury, and sexual contact. Injection drug use is also strongly associated with both viruses.
• Hepatitis C virus causes 60–70% of cases of chronic hepatitis; at least 80% of acute hepatitis C cases become chronic
• About 10% of hepatitis B cases, sometimes with hepatitis D coinfection, become chronic; hepatitis D does not occur by itself but rather only as a coinfection with hepatitis B
• Rarely, hepatitis E virus causes chronic hepatitis in those with weakened immune systems (organ transplant treatment, chemotherapy for cancer, HIV infection)
• Hepatitis A virus does not cause chronic hepatitis

Hepatitis C is the most common cause of chronic hepatitis in the United States; it is also the most common cause of cirrhosis and hepatocellular carcinoma.

Most patients are asymptomatic until the disease is very far advanced.

Diagnosis.

• To confirm hepatitis B: persistence of hepatitis B surface antigen >6 months (though it takes years for cirrhosis to develop)
 – Remember, in chronic hepatitis B, the hep B surface antibody is negative.
• To confirm hepatitis C: finding an antibody to hepatitis C, and then finding an elevation of the viral load by PCR methods
 – Single most accurate test to diagnose the extent of liver disease is liver biopsy

Treatment. Chronic hepatitis B is treated with interferon, lamivudine, entecavir, telbivudine, or adefovir. Combining these agents does not lead to increased efficacy.

Chronic hepatitis C is now cured with the new combination antiviral drugs. The most commonly used is **ledipasvir/sofosbuvir** (trade name Harvoni), a 2-drug combination. It is administered as a 1x/ daily pill containing the viral NS5A inhibitor ledipasvir and a nucleotide inhibitor of the viral RNA polymerase, sofosbuvir. Taken daily for 8–12 weeks, it provides cure rates of 94–99% in those infected with genotype 1 (the most common form of hepatitis C in the United States and some European countries), irrespective of the presence or absence of liver cirrhosis or prior unsuccessful treatment. It has also been evaluated for the treatment of infection with other hepatitis C genotypes and has shown promising results in genotypes 3 and 4.

Clinical Recall

Which of the following is not a cause of cirrhosis?

A. Alpha-1 antitrypsin deficiency
B. Budd-Chiari syndrome
C. Hepatitis A
D. Hemochromatosis
E. Primary biliary cirrhosis

Answer: C
Learning Objectives

- Outline a differential diagnosis and diagnostic plan for patients with acute chest pain or chest discomfort
- List the causes of and treatment for heart rate and rhythm disturbance
- Describe the physiology of valvular disease and CHF, and describe the mechanism of action of appropriate treatments
- Give an overview of presentation, epidemiology, and management of ischemic heart disease, acute coronary syndrome, myocardial disease, and pericardial disease
- Describe the most common medications used to treat cardiovascular disease and their most serious or common side effects

ACUTE CHEST PAIN/DISCOMFORT

Chest pain or discomfort is one of the most common complaints that brings patients to the physician’s office or emergency department. Patients presenting with this symptom may either have an underlying cause that is benign and requires only moderate analgesic medication or is life-threatening (e.g., acute myocardial ischemia or aortic dissection) which mandates prompt diagnosis and treatment.

In the evaluation of chest pain, the focus should be on excluding the more serious conditions.

History

Assessing the setting in which the chest pain occurs is one of the most important aspects of the evaluation. The healthy 26-year-old medical resident with chest pain that occurred after on-call is unlikely to have cardiovascular disease, no matter the quality or duration of chest pain. The 58-year-old man who has type 2 diabetes and dyslipidemia with chest discomfort of any type has a much higher probability for cardiac-related chest pain.

Overall, the chest pain history is more useful than the physical examination. Important aspects of the history include duration, quality, location, radiation, frequency, alleviating or precipitating factors (especially exercise), and associated symptoms.
• For both stable angina and acute coronary syndromes, the quality of chest pain is described by the patient as “tightness,” “heaviness,” or “pressure,” but symptoms resembling acute abdomen (pain in upper abdomen, nausea) are not uncommon. Nausea and vomiting are sometimes the main symptoms in inferoposterior wall ischemia (also, vagal reflexes may cause bradycardia and hypotension, presenting as dizziness or fainting).

• “Sharp” or “knife-like” chest pain and pain which the patient can pinpoint to an “exact area” are less likely to be related to ischemia or infarction, especially if the chest pain is reproduced by changes in position or palpation.

• Myocardial infarction is associated with pain that lasts >20–30 minutes in duration.

• Response of chest pain to nitroglycerin (within a few minutes) is most consistent with transient ischemia or esophageal spasm. Chest pain that worsens with nitroglycerin sometimes occurs with gastroesophageal reflux disease. The response to nitroglycerin is not enough to confirm coronary disease as the cause of chest pain.

• Acute coronary syndromes in women often present without “classic” symptoms: instead, they may have dyspnea, shortness of breath, fatigue.

Physical Examination

One of the most important parts in a chest pain examination is the “initial impression.”

- Diaphoresis, tachypnea, and anxious expression should alert you to a potentially life-threatening process.
- Tachycardia and tachypnea are both nonspecific but occur in almost all cases of pulmonary embolism.
- Check BP in both arms: a difference >20 mm Hg systolic suggests aortic dissection (present in ~70% of cases).
- Hypotension may suggest massive pulmonary embolism or cardiac shock.
- Fever may suggest pneumonia or mediastinitis (esophageal rupture) as the cause of chest pain.
- Evidence of atherosclerosis (corneal lipid rings, narrowed retinal arteries, and pigment and hair changes in the legs) is commonly seen in patients with coronary syndromes.

Inspect the chest wall for tender areas, respiratory motion, respiratory retractions, or accessory muscle use. If the tender area corresponds to the location of the patient’s pain and palpation exactly reproduces the pain, consider musculoskeletal chest pain as the cause of chest pain.

Abnormal heart sounds and new murmurs are commonly found in certain chest pain syndromes.

- Wide physiologic splitting of the second heart sound (splitting wider with inspiration) can be found in right bundle branch block or in right ventricular infarction.
- New paradoxical splitting is most often due to left bundle branch block (LBBB), or anterior or lateral infarction.
- A new fourth heart sound can occur with angina or infarction. An S3 is more likely due to underlying heart failure.
- A new murmur may be significant: aortic regurgitation occurs in over half of patients with aortic dissection, while mitral regurgitation can occur in patients with angina or infarction and is due to papillary muscle dysfunction.

The lungs should be auscultated for crackles and asymmetrical breath sounds. Asymmetry of breath sounds may be found in patients with spontaneous pneumothorax. Absent lung sounds also may occur in pneumothorax and pleural effusions.
The extremities should be examined for pulses, edema, and signs of atherosclerotic vessel disease. Absence of pedal pulses may occur in aortic dissection. Calf swelling or edema raises the odds of pulmonary embolism as the cause of chest pain.

Testing

All patients with chest pain should have a 12-lead **electrocardiogram (ECG)** since the ECG is the **single most important test** to evaluate the cause. It should be done immediately after initial stabilization and taking of vital signs. In patients with acute coronary syndromes, the ECG is the sole test required to select patients for emergency reperfusion.

Most patients with myocardial infarction will have an abnormal initial ECG:

- 50% with acute MI will have diagnostic findings (ST elevation, new LBBB, or Q waves)
- 35% will have findings consistent with ischemia (ST depression and/or T wave inversion)
- In patients presenting with acute chest pain who have normal ECG, the chance of acute MI is much less than 10% (in some studies 1–2.6%).
- An abnormal ECG can be seen in many non-cardiac conditions (pulmonary embolism, electrolyte abnormalities, aortic dissection).

Serum **cardiac biomarker** determinations play a vital role in the evaluation of patients who present with acute chest pain and in the diagnosis of acute myocardial infarction. Serum markers such as aspartate transaminase, lactate dehydrogenase, and lactate dehydrogenase subforms no longer are used because they lack cardiac specificity and their delayed elevation precludes early diagnosis. Creatine kinase (CK) is found in striated muscle and tissues of the brain, kidney, lung, and GI tract. This marker has low sensitivity and specificity for cardiac damage, and total CK levels may be elevated in a number of noncardiac conditions, including trauma, seizures, renal insufficiency, hyperthermia, and hyperthyroidism. As a result, the total CK marker largely has been replaced by cardiac troponins and CK-MB.

CK-MB isoenzyme: CK-MB is cardiac specific and is useful for the early diagnosis of acute myocardial infarction. CK-MB typically is detectable in the serum 4–6 hours after the onset of ischemia, peaks in 12–24 hours, and normalizes in 2–3 days.

Like the CK level, the peak CK-MB level does not predict infarct size; however, it can be used to detect early reinfarction since it normalizes 2–3 days after the initial MI. Serial CK-MB levels commonly are obtained at admission to the emergency department and are repeated in 6–12 hours.

CK-MB subform (not routinely used): CK-MB may be further characterized into subforms (or isoforms). CK-MB2 is found in myocardial tissue, and CK-MB1 is found in plasma.

Cardiac troponins: Troponins (T, I, C) are found in striated and cardiac muscle. Because the cardiac and skeletal muscle isoforms of troponin T and I differ, they are known as the “cardiac troponins.” They are the preferred markers for the diagnosis of myocardial injury. Troponin T and I have similar sensitivity for the detection of myocardial injury, but unlike troponin I levels, troponin T may be elevated in patients with renal disease, polymyositis, or dermatomyositis. Thus, troponin I is preferred in most settings.

Note

Make every effort to obtain a previous ECG for comparison. Any ECG finding is assumed to be new unless proven otherwise by an old ECG (if one is available).
The cardiac troponins typically are measured at emergency department admission and repeated in 6–12 hours. Patients with a normal CK-MB level but elevated troponin levels are considered to have sustained minor myocardial damage, or microinfarction, whereas patients with elevations of both CK-MB and troponins are considered to have had acute myocardial infarction. The cardiac troponins may remain elevated up to 2 weeks after symptom onset, which makes them useful as late markers of recent acute myocardial infarction.

An elevated troponin T or I is helpful for identifying patients at increased risk for death or the development of acute myocardial infarction. Increased risk is related to the high serum troponin levels. The troponins also can help identify low-risk patients who may be sent home with close follow-up. Those with a normal or nearly normal ECG and a normal troponin I test 6 hours after admission had a very low risk of major cardiac events (0.3%) during the next 30 days.

Myoglobin levels begin to rise as early as 1–4 hours after the onset of pain. Normal myoglobin at 4 hours has a very high negative predictive value.

![Figure 5-1. Progression of Cardiac Enzyme Serum Levels](image)

Chest x-ray should be obtained on patients with chest pain; it may show pneumothorax, pneumomediastinum (i.e., from esophageal rupture), pleural effusion, or infiltrates. Aortic dissection can cause widening of the mediastinum. Subtle findings such as loss of lung volume or unilateral decrease in vascular markings may suggest pulmonary embolism.

Especially if a noncardiac diagnosis is suspected, arterial blood gases, BNP, and CT angiogram may be helpful for evaluating acute chest pain.

Causes of Chest Pain

Aortic dissection. The pain is sharp, tearing, and extremely severe. It typically radiates to back, and a loss of pulses or aortic insufficiency often develops.

- On chest x-ray, mediastinum is widened
- MI may occur if dissection extends into coronary artery
- Diagnosis confirmed by MRI, CT scan, or transesophageal echocardiogram
Pulmonary embolism. Dyspnea, tachycardia, and hypoxemia are prominent; pain is usually pleuritic, especially when pulmonary infarction develops.
- EKG is usually nonspecific but may show S wave in lead I, Q wave in lead III, or inverted T wave in lead III
- Diagnosis confirmed by CT angiogram

Pericarditis. May be preceded by viral illness; pain is sharp, positional, pleuritic, and relieved by leaning forward.
- Pericardial rub often present
- Diffuse ST elevation occurs without evolution of Q waves
- CK level usually normal
- Responds to anti-inflammatory agents

<table>
<thead>
<tr>
<th>Table 5-1. Differential Diagnosis of Conditions Causing Chest Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncardiovascular Disorders</td>
</tr>
<tr>
<td>Costochondritis</td>
</tr>
<tr>
<td>Pain exacerbated with inspiration; reproduced with chest wall palpitation</td>
</tr>
<tr>
<td>Hiatal hernia</td>
</tr>
<tr>
<td>Reflux of food; relief with antacids</td>
</tr>
<tr>
<td>GERD</td>
</tr>
<tr>
<td>Acid reflux; relief with antacids</td>
</tr>
<tr>
<td>Peptic ulcer</td>
</tr>
<tr>
<td>Epigastric pain worse 3 h after eating</td>
</tr>
<tr>
<td>Gallbladder disease</td>
</tr>
<tr>
<td>Right upper quadrant abdominal pain and tenderness</td>
</tr>
<tr>
<td>Cardiovascular Disorders</td>
</tr>
<tr>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Pain more severe, usually >20 min in duration</td>
</tr>
<tr>
<td>Aortic stenosis</td>
</tr>
<tr>
<td>Typical systolic ejection murmur</td>
</tr>
<tr>
<td>Myocarditis</td>
</tr>
<tr>
<td>Pain is usually vague and mild if present</td>
</tr>
<tr>
<td>Pericarditis</td>
</tr>
<tr>
<td>Pain is sharper, pain worse with lying down and relieved by sitting up</td>
</tr>
<tr>
<td>Dissecting aortic aneurysm</td>
</tr>
<tr>
<td>Pain is sharp, tearing, often occurs in back</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
</tr>
<tr>
<td>Transient pain, midsystolic click murmur, and young female with no risk factors</td>
</tr>
<tr>
<td>Pulmonary Disorders</td>
</tr>
<tr>
<td>Pulmonary embolus-infarction</td>
</tr>
<tr>
<td>Tachypnea, dyspnea, cough, pleuritic pain, hemoptysis, calf pain</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
</tr>
<tr>
<td>Signs of right ventricle (RV) failure</td>
</tr>
<tr>
<td>Pneumothorax</td>
</tr>
<tr>
<td>Sudden onset of pain and dyspnea</td>
</tr>
</tbody>
</table>
Myocarditis. May be preceded by viral illness; pain is generally vague and mild if present; total CK and MB fraction of CK (CK-MB) are often elevated; conduction abnormalities and Q waves may occur.

Musculoskeletal disorders. Most common cause of chest pain. Includes costochondritis, cervical osteoarthritis, radiculitis; pain is atypical, stabbing, localized, may be pleuritic; reproduced by motion or palpation; EKG changes absent.

GI disorders. Esophageal reflux is often made worse with recumbency or after meals, may be associated with regurgitation and relieved by antacids; episodes of spasm may be brought on by cold liquids, relieved by nitroglycerin, and may closely resemble angina or infarction; diagnosis may be confirmed by upper endoscopy or esophageal manometry. Peptic ulcer disease, pancreatitis, and cholecystitis may occasionally mimic infarction; abdominal tenderness is present, with radiation to back and elevated amylase in pancreatitis; sonography can confirm cholecystitis.

Pneumothorax. Onset abrupt with sharp pleuritic chest pain and dyspnea; breath sounds absent; chest x-ray confirms.

Pleuritis. Pain is sharp and increases on inspiration; friction rub or dullness may be present; other respiratory symptoms and underlying pulmonary infection usually present.

Clinical Recall

Which of the following is the single most important test in the management of chest pain?

A. CKMB
B. Troponin
C. Echocardiography
D. Electrocardiogram
E. Chest CT

Answer: D

ISCHEMIC HEART DISEASE

Ischemic heart disease (IHD), also known as coronary heart disease, is an imbalance in coronary oxygen demand and supply resulting from insufficient blood flow. In nearly all cases, the reduction in blood flow is caused by coronary atherosclerotic disease.

When the atherosclerotic plaque ruptures, there is superimposed thrombus formation that acutely occludes the artery; this is the most common cause of life-threatening acute coronary syndromes.

Rarely, other abnormalities may occur (coronary artery embolism, coronary artery spasm, coronary arteritis, and coronary artery dissection) which may cause IHD in the absence of atheroma formation.
IHD is one of the most prevalent diseases in society, and those affected are likely to die from their disease (though age-specific deaths have declined over the past 30 years). As part of a systemic process that involves all arteries in the body, it is an insidious process that begins in early adulthood with fatty streaks; these lesions progress into plaques and thrombus formation in middle age.

![Figure 5-2. Ischemic Heart Disease](image)

The more risk factors a person has, the greater the chance that he will develop heart disease. Also, the greater the level of each risk factor, the greater the risk. For example, a person with total cholesterol 260 mg/dL has a greater risk than someone with total cholesterol 220 mg/dL, even though all people with total cholesterol ≥220 mg/dL are considered high risk.

Major Modifiable Risk Factors

Elevated cholesterol levels: The risk of IHD rises as blood cholesterol levels increase. The concentrations of lipid fractions, especially low-density lipoprotein (LDL) and high-density lipoprotein (HDL), are also important. LDL cholesterol is the single most important subgroup that carries risk for IHD, although there are several other abnormalities that increase coronary risk: low HDL cholesterol, hypertriglyceridemia, increased total-to-HDL-cholesterol ratio and increased lipoprotein A. When other risk factors (such as high blood pressure and tobacco smoke) are present, this risk increases even more.
Proof of the importance of serum cholesterol has come from randomized trials, which showed that reductions in total LDL levels reduce coronary events and mortality.

Tobacco: Cigarette smoking is an important factor for IHD because a smoker’s risk of heart attack is >2x that of a nonsmoker. Cigarette smoking also acts with other risk factors (hypertension, dyslipidemia) to greatly increase the risk for IHD.

- Cigar or pipe smokers have a higher risk of death from IHD, though less than cigarette smokers.
- Secondhand smoke or passive smoking increases the risk of heart disease, even for nonsmokers.
- The risk for myocardial infarction in those who quit smoking was reduced to that of nonsmokers within 2 years of cessation; the benefits were seen regardless of how long or how much the patient smoked.

Hypertension (HTN): HTN is a well-established risk factor for increase in risk of myocardial ischemia, stroke, kidney failure, and heart failure. Studies in the general population have shown that the risk for cardiovascular events increases at BP >110/75 mm Hg. Systolic BP is as important as diastolic BP in terms of risk for IHD, especially in older patients.

Treatment of HTN to optimal levels reduces the risk of IHD and all cardiovascular events. In fact, data from recent randomized trials suggest that reducing BP below 130/80 mm Hg is beneficial in patients with cardiovascular disease and those with calculated 10-year cardiovascular risk >10%.

Physical inactivity and exercise: Inactivity and sedentary lifestyle are risk factors for IHD. Exercise of moderate degree has a protective effect against IHD and cardiovascular events. More vigorous activities are associated with more benefits. Physical activity can help increase HDL cholesterol and control diabetes and obesity, as well as help to lower blood pressure.

Obesity: Patients with increased body fat (elevated body mass index), especially if a lot is in the waist area, are more likely to develop heart IHD and stroke. Excess weight raises blood pressure, blood cholesterol, and triglyceride levels, and it lowers HDL cholesterol levels. It can also increase risk for type 2 diabetes by causing insulin resistance.

Studies have shown that loss of as little as 10–20 lb can significantly reduce the risk of cardiovascular disease.

Diabetes mellitus: Elevated blood glucose levels and insulin resistance are associated with IHD and overall cardiovascular events. All-cause mortality in diabetic patients is comparable to that of all-cause mortality in patients with prior myocardial ischemia; hence, diabetes is now considered an “IHD equivalent.” Even when glucose levels are under control, diabetes greatly increases the risk of IHD. Almost 75% of patients with diabetes die of some form of cardiovascular disease.

There is compelling evidence that aggressive treatment of HTN and cholesterol, as well as tight glycemic control, reduces the risk of cardiovascular events in these patients significantly.

Major Unmodifiable Risk Factors

Age: Four out of 5 people who die of IHD are age ≥65. Also, women who develop myocardial ischemia at older ages have a higher mortality than men within the first few weeks of the cardiac event.
Sex: Men have a greater risk of IHD than women, and overall they develop cardiovascular disease earlier in life.

Hereditability: Family history is a significant independent risk factor if there is a family history of premature disease (age <55 in male relative and <65 in female relative).

Minor Contributing Risk Factors
Sex hormones: Men have more heart attacks than women before menopause. Several studies show that the decrease of natural estrogen as women age may contribute to a higher risk of heart disease after menopause.

Stress: Various studies have shown relationship between IHD risk and stress in a person's life. This may be a true association or just a secondary correlation: for example, people under stress may overeat, start smoking, or be less active than people who are not under stress.

Myocardial Ischemia As a Manifestation of IHD
During ischemia, an imbalance occurs between myocardial oxygen supply and demand. Ischemia may manifest in any of the following ways:

- Anginal chest discomfort
- ST-segment deviation on ECG
- Reduced uptake of tracer during myocardial perfusion scanning
- Regional or global impairment of ventricular function

Myocardial ischemia can be caused by increased myocardial oxygen demand, reduced myocardial oxygen supply, or both. In the presence of coronary obstruction, an increase of myocardial oxygen requirements caused by exercise, tachycardia, or emotion leads to a transitory imbalance. (This condition is called "demand ischemia" and is responsible for most episodes of chronic stable angina.)

In other situations, the imbalance is caused by acute reduction of oxygen supply secondary to marked reduction or cessation of coronary flow as a result of platelet aggregates or thrombi. This condition ("supply ischemia") is responsible for myocardial infarction (MI) and most episodes of unstable angina (UA). In many circumstances, ischemia results from both an increase in oxygen demand and a reduction in supply.

Angina (Stable Angina)

A 62-year-old man presents with substernal chest pain that occurs with exertion and is relieved by rest. He has been having this on and off for 8 months, and the last episode occurred 3 days ago while he was running to the bus. He has a history of well-controlled diabetes and dyslipidemia. Vital signs, physical examination, and ECG are normal. An exercise stress test shows a 2-mm ST depression.

Stable angina occurs when the myocardium becomes ischemic. This occurs during periods of increased demand for oxygen, such as exercise, or decreased supply, such as hypotension or
anemia (see demand ischemia, above). Stable angina is typically a substernal pressure lasting 5–15 minutes. It may be accompanied by radiation to the jaw, neck, shoulders, or arms. It is less likely to have the symptoms often associated with MI: sweats, nausea, and shortness of breath. Anginal pain is not typically affected by respiration or by position. Typically, patients with stable angina will have pain after a predictable amount of exertion and will have identical symptoms with each attack.

In certain patients, symptoms other than pain may occur. For example, a profound sense of weakness and breathlessness may be an “angina equivalent.” These symptoms are more likely to occur in women, the elderly, and diabetics.

The physical exam is usually normal. A new S4 may be heard, suggesting a stiff ventricle due to ischemia.

Most patients with angina will have ECG changes during an attack. Most commonly, ST segment depression is seen. ST segment elevation occurs in variant angina (Prinzmetal angina) where coronary artery spasm is responsible and rarely during ischemia caused by stable angina (where atherosclerotic disease is responsible).

Diagnosis. The exercise stress test (EST) (treadmill test) is the most useful test for evaluating the cause of chronic chest pain when there is concern about IHD (stable angina). EST provides a controlled environment for observing the effects of increases in the myocardial demand for oxygen. To do an appropriate and accurate analysis, a target heart rate must be reached. Target heart rate is 85% of predicted maximum heart rate: $85\% \times (220 - \text{patient's age})$.

Significant fixed stenoses (>50%) of the coronary arteries will result in ECG evidence of ischemia. Low-grade stenoses (<50%) may not produce sufficient impairment of blood flow to affect the ECG; in these cases the stress test will be normal.

An EST is considered positive for myocardial ischemia when large (>2 mm) ST-segment depressions or hypotension (a drop >10 mm Hg in systolic pressure) occur either alone or in combination. In general, the earlier the angina or ECG abnormalities occur, the more significant they will be. The exercise stress testing can help to do the following:

- Determine the severity of IHD and the need for further intervention, i.e., severe symptoms (hypotension) early in the test usually occur in those with triple-vessel disease
- Assess the effectiveness of treatment, i.e., coronary artery disease patients who have undergone surgical intervention or are receiving medical therapy have an exercise stress test when they are medically stable and symptom-free
- Determine functional capacity and identify any ECG changes or symptoms during (low level) exercise for patients who are post-MI

EST is contraindicated when it may place the patient at increased risk of cardiac instability, e.g., aortic dissection, acute myocardial infarction, unstable angina, or symptomatic supraventricular arrhythmia.

Patients who are unable to exercise or walk should be considered for chemical stress testing, such as dipyridamole (Persantine) or dobutamine stress test. Presence of baseline ECG abnormalities such as bundle branch block, left ventricular hypertrophy, or with a pacemaker, may make it more difficult to interpret test results. In those cases patients should be evaluated by nuclear stress imaging instead of the exercise stress test. These tests may also be used in patients who are taking digoxin.
In most cases, medications should not be withheld in preparation for an exercise stress test. Certain medications require special consideration:

- Beta blockers may blunt the heart rate during exercise and thus should be held 24 hours prior to the test. While patients receiving beta blockers may perform the exercise required for the test, the usual age-adjusted target heart rate may not be a realistic end point for them.
- Also, the antihypertensive effect of beta blockers, alpha blockers, and nitroglycerin may cause significant hypotension during exercise.

Digoxin may depress the ST segments, so if ST-segment depression of ≥1 mm is present on baseline ECG, the stress test results will be difficult to interpret.

A number of other situations or conditions may reduce the validity of the exercise stress test. Exercise testing in asymptomatic, young women yields an increased number of false-positive results, while exercise testing in patients with known CAD may result in an unacceptably high false-negative rate (e.g., a negative stress test in a 64-year-old man with diabetes, hyperlipidemia, and typical stable angina is likely to be a false-negative result).

A 29-year-old woman has a routine stress test done that shows a 1-mm ST depression. She has no history of chest pain, and she exercises routinely (runs 2–3 miles per day, 3 times per week). Her physical examination is unremarkable.

The most likely cause of her abnormal stress test? False-positive test.

Other types of stress tests include:

- **Nuclear stress test**: A radioactive substance is injected into the patient and perfusion of heart tissue is visualized. The perfusion pictures are done both at rest and after exercise. An abnormal amount of thallium will be seen in those areas of the heart that have a decreased blood supply. Compared to regular stress tests, the nuclear stress tests have higher sensitivity and specificity (92% sensitivity, 95% specificity vs. 67% sensitivity, 70% specificity). These tests are also not affected by baseline changes in the ECG (LBBB, ST-segment depression at baseline, etc.).

- **Dobutamine or adenosine stress test**: Used in people who are unable to exercise. A drug is given to induce tachycardia, as if the person were exercising.

- **Stress echocardiogram**: Combines a treadmill stress test and an echocardiogram (ECHO). The latter can recognize abnormal movement of the walls of the left ventricle (wall motion abnormalities) that are induced by exercise.

Invasive techniques: Cardiac catheterization is also used in patients with stable angina for (1) diagnosis and (2) prognosis/risk stratification. Angiography is an appropriate diagnostic test when noninvasive tests are contraindicated or inadequate due to the patient's illness or physical characteristics (e.g., morbid obesity, COPD). Cardiac angiography is also used after conventional stress tests are positive to identify patients that will benefit from stent placement or bypass surgery.

Treatment: For individual episodes of angina, nitroglycerin (NTG) sublingual tablets typically alleviate the pain within 3 minutes. Long-term management is with long-acting nitrates and/or beta blockers. Other medications patients with stable angina should be taking, unless contraindicated, include aspirin and statins (for lipid lowering). Also, modify the risk factors (tobacco cessation, exercise, control of hypertension, etc.).
All patients with stable angina need evaluation of the severity of IHD (cardiac angiography or stress testing, see above), and those who will benefit from revascularization (stent or bypass surgery) need to be identified.

Lipid lowering treatment for secondary prevention is important in IHD patients who should be treated aggressively. Most patients will require both pharmacologic and nonpharmacologic interventions to reach target goals.

Target goals for hyperlipidemic patients with coronary artery disease include:

- LDL <100 mg/dL
- HDL ≥40 mg/dL
- Triglycerides <150 mg/dL

The optimal LDL-cholesterol goal is considered to be <70 mg/dL for patients considered to be **very high risk**. These are patients with established cardiovascular disease plus diabetes and patients with acute coronary syndromes.

Every effort should be made to ensure that patients with coronary artery disease receive optimal lipid therapy. Statin medications are strongly supported as first-line medications due to compelling evidence of mortality reduction from multiple clinical trials. If patients are intolerant to a statin, consider other statins in reduced doses.

Better medical therapy with aspirin, beta blockers, ACE inhibitors, and statins are decreasing the need for all revascularization procedures.

Percutaneous coronary intervention

Percutaneous coronary intervention (PCI) is most useful in acute coronary syndrome. It is not required for most cases of stable angina. (Recent studies have shown that most patients with stable angina can be medically managed.)

Coronary bypass graft

Coronary artery bypass graft surgery (CABG) is recommended for patients with obstructive coronary artery disease whose survival will be improved compared to medical therapy or percutaneous coronary intervention. Typically, this means patients with left main disease or triple-vessel disease and low ejection fraction. In addition, patients with angina refractory to medical therapy qualify for CABG.

CABG is more efficacious in diabetics and in those who have a low ejection fraction. The procedure involves the construction of 1 or more grafts between the arterial and coronary circulations. (Many patients receive both arterial and venous grafts.) Long-term graft patency is significantly better with the arterial graph (e.g., internal mammary artery). Potential consequences of graft failure (loss of patency) include the development of angina, myocardial infarction, or cardiac death.

Note

Almost all patients with chronic stable coronary artery disease will likely need statin therapy, unless contraindicated.
Clinical Recall

Which of the following is most likely to decrease a patient's risk for developing ischemic heart disease?

A. Tight glycemic control of patients with diabetes mellitus
B. Aggressive treatment of HTN
C. Aggressive treatment of hyperlipidemia
D. Smoking cessation
E. All of the above

Answer: E

ACUTE CORONARY SYNDROME

Acute coronary syndrome (ACS) describes a range of thrombotic coronary diseases, including unstable angina (UA), non-ST elevation myocardial infarction (NSTEMI), and ST-elevation myocardial infarction (STEMI). Collectively they represent one of the most common causes of acute medical admission to U.S. hospitals.

The term ACS is clinically useful because the initial presentation and early management of unstable angina, STEMI, and NSTEMI are frequently similar. ACS should be distinguished from stable angina, which develops during exertion and resolves at rest.

ACS is due to coronary vessel atherosclerotic obstruction with superimposed thrombotic occlusion. The natural course of coronary atherosclerotic plaque development and subsequent occlusion does not proceed in a step-wise, uniform manner, gradually progressing to luminal obstruction (and symptoms) over many years. This process is characterized by plaque disruption and mural thrombosis. Angiographic data support the concept that noncritical lesions account for the majority of the ACS. Thus, the pathogenic rate-limiting mechanism of the ACS appears to be acute thrombosis and the resultant obstruction of the coronary lumen.

An operational classification is clinically helpful since it allows the simple distinction of the different types of ACS. In this classification, the ECG is the most important clinical tool. The initial ECG findings, in particular, the presence or absence of ST-segment elevation, will further define the patient's condition and dictate treatment options.
Unstable Angina and NSTEMI

UA and NSTEMI are closely related in terms of clinical presentation and pathogenesis, but patients with these conditions have widely varying risks. Both are usually caused by atherosclerotic CAD and present an increased risk for death and MI.

- At the time of presentation, UA and NSTEMI may be indistinguishable and can be identically managed. Therefore, in establishing a diagnosis of NSTEMI, cardiac troponins (elevated enzymes show evidence of infarction) should be used to distinguish this entity from UA.

- NSTEMI is more severe than UA, and is considered to have occurred if ischemia produces damage detectable by biochemical markers of myocardial injury (troponin I or CK-MB).

- If there are no detectable serum markers of myocardial injury 12–18 hours after symptom onset, the patient should be diagnosed with UA.

Outcomes in UA/NSTEMI are generally better than in STEMI, but certain UA/NSTEMI patients are at high risk for MI or death, and it is important to identify these patients at initial screening because they may require intensive monitoring and management.

Thrombolytic therapy is not effective in UA or NSTEMI and may be harmful, unlike the clear benefit in STEMI.
Sometimes referred to as “crescendo” or “preinfarction” angina, UA is defined as angina of increasing severity/frequency/duration, angina showing increased resistance to nitrates, or angina occurring at rest. Experts also regard any new-onset angina as unstable. Sudden change in the pattern of angina usually means a physical change within the coronary arteries, such as hemorrhage into an atherosclerotic plaque or rupture of a plaque with intermittent thrombus formation.

About 35% of patients with the clinical syndrome of UA will already have coronary thrombosis on catheterization. In fact, untreated UA progresses to MI in 50% of cases, thus the patient with new-onset or unstable angina should be hospitalized for intensive medical treatment.

Most patients with NSTEMI have a normal physical examination. An abnormal ECG, particularly dynamic ST-segment deviation (≥0.5 mm), or new T-wave inversion (≥2 mm), will confirm the diagnosis, but the ECG may be normal or show minor changes in up to 50% of cases.

High-risk features for patients with presumed UA/NSTEMI include:

- Repetitive or prolonged chest pain (>10 min)
- Elevated cardiac biomarkers
- Persistent ECG changes of ST depression >0.5 mm or new T-wave inversion
- Hemodynamic instability (SBP <90)
- Sustained ventricular tachycardia
- Syncope
- LV ejection fraction <40%
- Prior angioplasty or prior CABG
- Diabetes
- Chronic kidney disease

General management

Initial nonspecific management for all patients with possible MI (anyone with a compatible chest pain history) is to keep them on a cardiac monitor. Oxygen therapy and an IV line should be established as quickly as possible. Aspirin should be given unless contraindicated, as early as possible. Nitroglycerin and pain control (morphine) should be given as required.

High-risk patients should be treated with aggressive medical management and arrangements should be made for coronary angiography and possible revascularization, except in those with severe comorbidities. Age alone should not be a barrier to aggressive therapy.

Medical management

Aspirin is recommended (unless contraindicated) in all patients. **Antiplatelet therapy (beyond aspirin):** Early treatment should be initiated with aspirin and clopidogrel, prasugrel, or ticagrelor with the following considerations:

- Avoid clopidogrel in patients likely to require emergency coronary bypass surgery. Prasugrel and ticagrelor are alternatives to clopidogrel.
- If possible, discontinue clopidogrel 5 days before coronary bypass surgery.

Antithrombin therapy: Give unfractionated heparin or subcutaneous enoxaparin until angiography or for 48–72 hours. The enoxaparin dose must be reduced in patients with impaired renal function. Give **beta blockers** on admission unless there are contraindications (severe asthma or cardiogenic shock).
Glycoprotein (GP) IIb/IIIa inhibitors: This class of antithrombotic agents inhibits platelet function by blocking a key receptor involved in platelet aggregation. The use of these agents provides a more comprehensive platelet blockade than the combination of aspirin and heparin alone. These drugs take advantage of the fact that platelets play an important role in the development of ischemic complications that may occur in patients with UA/NSTEMI.

- Tirofiban or eptifibatide is particularly recommended in high-risk patients in whom a PCI/stenting is planned. The drug is given before and during PCI.
- Concomitant tirofiban is particularly beneficial and recommended in patients with diabetes.
- Complications include bleeding and thrombocytopenia (occurs with all GP IIb/IIa agents; incidence ranges 1–5.5% in clinical studies; an immune mechanism is likely responsible; all patients receiving parenteral GP IIb/IIa antagonists should be monitored for 24 hours for development of thrombocytopenia).

Other: IV nitroglycerin (NTG) can be given for refractory pain.

In patients with diabetes, good glycemic control should be targeted in the hospital and after discharge. This may require considering an insulin-based regimen in hospital.

Patients with UA/NSTEMI do not benefit from thrombolytics.

Invasive management

Early coronary angiography (within 48 hours) and revascularization are recommended in patients with NSTEMI and high-risk features, except in patients with severe comorbidities. Pain or ischemia refractory to medical therapy and high-risk features on early exercise testing can also identify patients suitable for early invasive therapy.

Clinical Recall

Which of the following medications must be withheld before performing an exercise stress test?

A. Clopidogrel
B. Metoprolol
C. Nimodipine
D. Aspirin
E. Lisinopril

Answer: B

ST Elevation MI

The pain of typical MI (STEMI; in the past referred to as Q wave MI) is substernal, diffuse with a pressure quality. It may radiate to the neck or jaw, shoulders, or arms. Often, the pain is accompanied by additional symptoms, such as dizziness (lightheadedness), nausea or vomiting, diaphoresis, or shortness of breath (dyspnea).
The symptoms of MI last >20 minutes and do not respond completely to nitroglycerin. The duration of the pain is variable. Pain may resolve completely after a few hours or may persist for over a day.

Women, elderly, and diabetic patients are prone to atypical symptoms such as nausea or dyspnea as the sole symptoms of infarction. As many as 20% of MI are “silent,” that is, whatever symptoms were present did not impress the patient enough for them to seek medical care or even to remember the incident.

• The exam usually shows the patient to have anxiety and pain.
• Diaphoresis is often present.
• Pulse rate may be normal, but often bradycardia is present in inferior infarctions. Tachycardia is often seen with large infarctions.
• Blood pressure is often elevated.
• Cardiac exam is usually normal.
• Large infarctions may cause signs of ventricular failure or valve dysfunction. A fourth heart sound (S4) is common due to a stiffened ventricle. Mitral regurgitation may occur if papillary muscles malfunction. The second heart sound may be paradoxically split as the left ventricular contraction time increases due to LBBB and weakened left ventricle.

Later in the course of MI, other findings may be present: mild fever, pericardial friction rub, ventral septal defect murmur due to septal rupture, or severe mitral regurgitation due to papillary muscle rupture.

STEMI is defined as clinical symptoms consistent with ACS and ECG features including any of these:

• Persistent ST-segment elevation of ≥1 mm in 2 contiguous limb leads
• ST-segment elevation of ≥2 mm in 2 contiguous chest leads
• New LBBB pattern

Initially, you don’t need increased cardiac biomarkers (troponin, CPK-MB, etc.) to make the diagnosis of STEMI (although these are usually eventually positive at some point during the course of the disease).

Management of STEMI
Initial general and medical management of STEMI is as for UA/NSTEMI. However, patients with STEMI usually have a completely occluded coronary artery with thrombus at the site of a ruptured plaque. This eventually leads to myonecrosis. Restoring coronary patency (emergency reperfusion) as promptly as possible is a key determinant of short-term and long-term outcomes.

Patients with STEMI who present within 12 hours of the onset of ischemic symptoms should have a reperfusion strategy implemented promptly. Reperfusion may be obtained with fibrinolytic therapy or percutaneous coronary intervention (PCI).

Patients presenting with NSTEMI will not benefit from thrombolytics.
Figure 5-4. Anteroseptal STEMI with Changes in V_1–V_3

Figure 5-5. Inferior STEMI with Changes in II, III, and aVF

Figure 5-6. NSTEMI Affecting Leads II, III, and aVF
Table 5-2. Localization of STEMI

<table>
<thead>
<tr>
<th>Area of Infarction</th>
<th>EKG Changes (Q Waves, ST Elevation, T Wave Inversions)</th>
<th>Artery Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior</td>
<td>II, III, aVF</td>
<td>Right coronary</td>
</tr>
<tr>
<td>Anteroseptal</td>
<td>V₁–V₃</td>
<td>Left anterior descending</td>
</tr>
<tr>
<td>Anterior</td>
<td>V₂–V₄</td>
<td>Left anterior descending</td>
</tr>
<tr>
<td>Lateral</td>
<td>I, aVL, V₄, V₅, and V₆</td>
<td>Left anterior descending or circumflex</td>
</tr>
<tr>
<td>Posterior</td>
<td>V₁–V₂: tall broad initial R wave, ST depression, tall upright T wave; usually occurs in association with inferior or lateral MI</td>
<td>Posterior descending</td>
</tr>
</tbody>
</table>

Table 5-3. Typical Electrocardiographic Evolution of a STEMI

<table>
<thead>
<tr>
<th>EKG Abnormality</th>
<th>Onset</th>
<th>Disappearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute T waves (tall, peaked T waves in leads facing infarction)</td>
<td>Immediately</td>
<td>6–24 hours</td>
</tr>
<tr>
<td>ST-segment elevation</td>
<td>Immediately</td>
<td>1–6 weeks</td>
</tr>
<tr>
<td>Q waves longer than 0.04 seconds</td>
<td>One to several days</td>
<td>Years to never</td>
</tr>
<tr>
<td>T wave inversion</td>
<td>6–24 hours</td>
<td>Months to years</td>
</tr>
</tbody>
</table>

Emergent reperfusion therapy

The choice of reperfusion therapy is between PCI and thrombolysis therapy. PCI is the best available treatment if provided promptly. PCI improves short-term and long-term outcomes (reduction of deaths and MI) in patients with STEMI presenting within 12 hours when compared with thrombolytic therapy. This benefit over thrombolysis is seen only if the additional time delay associated with PCI is <1 hour. In general, a time delay of 120 minutes from first medical encounter to PCI is the maximum desirable. For patients presenting with STEMI at a facility without PCI access, transfer to another facility capable of performing PCI usually takes too long. Where PCI is delayed or not available, reperfusion with thrombolytic therapy should occur unless contraindicated.

Thrombolytics (fibrinolytics) such as streptokinase or tissue-type plasminogen activator (tPA) restore perfusion to the ischemic area by lysing the clot, thereby reducing infarct size and improving survival.

Thrombolysis benefits patients with all types of ST elevation infarction, but the benefit is several times greater in those with **anterior infarction**. The earlier the treatment is given, the greater the absolute benefit. The greatest benefit is in patients who have had symptoms <12 hours.
Streptokinase and alteplase are given by IV infusion. Reteplase and tenecteplase can be given by rapid bolus injection. tPA is the most common agent used in the U.S. Prolonged persistence of antibodies to streptokinase may reduce the effectiveness of subsequent treatment; therefore, streptokinase should not be used if used within the previous 12 months in the same patient. Complexity of administration differs among the different thrombolytics: tenecteplase and reteplase are ready in about 1 minute; for streptokinase or tPA, the typical time from physician order to administration is 12 to 15 minutes.

Bottom line: consider a thrombolytic agent as an alternative to primary PCI in suitable candidates with ST-elevation MI (>1 mm ST elevation in 2 contiguous leads) or new LBBB.

There are several contraindications to thrombolytic therapy.

Absolute contraindications include:
- Active bleeding or known bleeding diathesis
- Significant closed head or facial trauma within 1 month
- Aortic dissection
- Prior intracranial hemorrhage, tumor, or AVM
- Ischemic stroke within 3 months
- GI bleed within 1 month

Relative contraindications include:
- Recent major surgery (<3 weeks)
- Traumatic or prolonged cardiopulmonary resuscitation
- Active peptic ulcer
- Advanced liver disease
- Severe, poorly controlled HTN (>180/100 mm Hg)
- Ischemic stroke (<3 months)
- Pregnancy or <1 week post-partum

Late presentation (>12 hours after symptom onset): Reperfusion therapy with either PCI or fibrinolysis is not routinely recommended in patients who are asymptomatic and hemodynamically stable, and who present >12 hours after symptom onset.

Other interventions may include coronary artery bypass grafting (CABG). CABG surgery may occasionally be more appropriate—particularly in patients who have suitable anatomy and are not candidates for fibrinolysis or PCI. CABG surgery may also be considered in patients with cardiogenic shock or in association with mechanical repair.

Adjuvant therapy used together with reperfusion

Antiplatelet Therapy

Aspirin should be given to all patients with presumed STEMI unless contraindicated, and, in the absence of significant side effects, low-dose therapy should be continued in the long term.

Clopidogrel or prasugrel should be prescribed in addition to aspirin for patients undergoing PCI with a stent. Ticagrelor is an alternative to clopidogrel or prasugrel.
In patients selected for fibrinolytic therapy, clopidogrel should be given in addition to aspirin, unless contraindicated. Note, however, that if it is thought that the patient is likely to require CABG acutely, clopidogrel should be withheld.

Clopidogrel should be continued for at least a month after fibrinolytic therapy, or for up to 9–12 months after stent implantation, depending on the type of stent used.

Antithrombin Therapy

With PCI: Antithrombin therapy should be used in conjunction with PCI. The dose of unfractionated heparin therapy will depend on concomitant use of glycoprotein (GP) IIb/IIIa inhibitors. It may be advisable to give a bolus of heparin while the patient is in transit to the catheterization laboratory.

The role of enoxaparin in acute STEMI in conjunction with PCI remains to be fully determined, but it appears to be safe and effective.

With fibrinolysis: Antithrombin therapy should be used with fibrin-specific fibrinolytic agents.

IV unfractionated heparin should be given as an initial bolus, adjusted to attain the activated partial thromboplastin time (APTT) at 1.5 to 2 times control. IV unfractionated heparin is used when rapid reversal is needed. The half-life is shorter with unfractionated heparin.

Glycoprotein IIb/IIIa Inhibitors

It is reasonable to use abciximab with primary PCI. Eptifibatide and tirofiban are the other GPIIb/IIIa inhibitors. Full-dose GP IIb/IIIa inhibitors should be avoided with fibrinolytic therapy as there is evidence of excessive bleeding (including intracranial hemorrhage) with this combination.

The combination of GP IIb/IIIa inhibitors with reduced doses of fibrinolytic therapy is not recommended. There is no significant advantage over full-dose fibrinolytic therapy alone, and the risk of bleeding is increased, particularly in the elderly.

Cardiac surgery

Emergency bypass surgery should be considered in patients with STEMI and: (1) failed PCI with persistent pain or hemodynamic instability and coronary anatomy suitable for surgery or (2) persistent or recurrent ischemia refractory to medical therapy and suitable anatomy.

Discharge Medications after ACS

- **Aspirin:** All patients should take daily unless contraindicated.
- **Clopidogrel:** There is evidence that clopidogrel or prasugrel should be prescribed for up to 9–12 months after acute myocardial infarction, particularly after stent placement. Clopidogrel may also be prescribed as an alternative when aspirin is contraindicated, or to those intolerant to aspirin, in patients with recurrent cardiac events.
- **Beta-blocker:** These drugs should be prescribed for all patients after an ACS unless contraindicated, and continued indefinitely. Metoprolol and carvedilol particularly should be used in patients after ACS who have heart failure.
- **ACE inhibitors:** Should be given in patients who have CHF with left ventricular dysfunction (ejection fraction <40%). Its use should be reviewed later on the course of the patient and discontinued if the heart failure resolves.

Note

To remember issues that need to be considered at the time of discharge, remember “ABCDE” (aspirin and antianginals, beta blockers and blood pressure, cholesterol and cigarettes, diet and diabetes, education and exercise).
• Statins: Statin therapy should be initiated in the hospital in all patients with ACS (the exception is the rare ACS that is not related to atherosclerosis).
• Nitrates: Long-acting nitrates (isosorbide) should be reserved for the patients with persistent chest pain.
• Warfarin: It is recommended after ACS only for those at high risk of systemic thromboembolism because of atrial fibrillation or mural thrombus.

Secondary prevention through the control or elimination of known risk factors for coronary artery disease (e.g., hyperglycemia in patients with diabetes mellitus, HTN control, tobacco cessation, physical inactivity) also should be part of discharge planning.

You are asked by your patient, who has a history of ischemic heart disease, about drug treatments that have been shown to decrease mortality in his case. (It doesn’t matter if he has stable angina or prior history of acute coronary syndrome.)

Answer: Lipid lowering agents (statins), ASA, beta-blocking agents and CABG in patients with triple vessel disease or left main disease.

Other testing in ACS

Exercise ECG testing: Increasingly, submaximal testing is performed 4–7 days after infarction. A maximal test can be performed at 3–6 weeks postinfarction. It is used to assess prognosis and to identify those patients with reversible ischemia who should then have an angiogram (if one has not been done) to assess the need for coronary artery bypass graft.

Myocardial perfusion imaging can be performed before hospital discharge to assess the extent of residual ischemia if the patient has not already undergone cardiac catheterization and angiography.

Complications of ACS

Electrical disturbances dysrhythmias
• Bradycardia: sinus, atrioventricular junctional, idioventricular. These are treated acutely with atropine and temporary pacing if severe.
• Premature beats: atrial, ventricular. No treatment is needed for ectopy such as these.
• Tachyarrhythmias (supraventricular): atrial tachycardia, atrial fibrillation, atrial flutter, AV junctional; are seldom caused by ischemia
• Tachyarrhythmias (ventricular): ventricular tachycardia, accelerated idioventricular rhythm, ventricular fibrillation

Conduction Abnormalities
• Atrioventricular nodal: first-, second-, and third-degree block
• Intraventricular: hemiblocks (left anterior, left posterior), bundle branch block, third-degree atrioventricular block
Pump dysfunction
- Contractile dysfunction: left ventricular, right ventricular, and biventricular failure; true ventricular aneurysm; infarct expansion
- Mechanical disruption: acute mitral regurgitation (papillary muscle dysfunction or rupture), ventricular septal rupture, free wall rupture, pseudoaneurysm; treated with emergency surgical repair
- Electromechanical dissociation

Ischemia
- Postinfarction ischemia: ischemia in the infarct and ischemia distant to the infarct
- Early recurrent infarction or infarct extension
- *Postinfarction angina* after thrombolytics or PCI should be treated with bypass surgery

Pericarditis: Dressler syndrome
- Positional CP 2-4 weeks after MI
- Rare after PIC or CABG
- Treated with aspirin, NSAIDs, and later steroids if there is no response.

Thromboembolic
- Mural thrombus with systemic embolism
- Deep vein thrombosis with prolonged immobilization

Sudden cardiac death
Most often due to arrhythmia.
- Ventricular fibrillation (most commonly)
- Ventricular tachycardia

Right ventricular infarction
Accompanies 30% of inferior MIs. It is diagnosed with RV leads and treated with fluids.

Non-Cardiac Complications of ACS
Depression is 3 times more common in those who have had a heart attack than in the general population, with 20% of heart attack victims qualifying for a diagnosis of major depressive disorder. Beyond the accompanying emotional distress and suffering, depression also increases one's risk of having another heart attack or dying over the ensuing months and years.

There is reliable evidence that both antidepressant medications and certain psychotherapies are effective at reducing depression in the post-MI state. Selective serotonin reuptake inhibitors (SSRIs) such as sertraline and citalopram have been found to be both effective in reducing depression and relatively safe for use in patients with coronary heart disease. Cognitive behavior therapy has also been found to be effective in treating depression.
Erectile dysfunction (ED) is prevalent among patients with CAD and post-MI (in some series ~40%). ED is a complication of the conditions that are primary risk factors for developing CAD, in particular, diabetes, hypertension, dyslipidemias, and arteriosclerosis. Smoking and stress are implicated in the development of ED.

- Treatment of post-MI patients includes management of depression, reassurance, and modification of medications that may cause ED.
- Sildenafil is contraindicated in men post-MI who are taking nitrates up to 55 mm Hg, because it can cause a drop in BP.

Although sexual activity can trigger MI, the relative risk is low with a slight increase in risk within 2 hours of sexual activity. This risk appears to apply equally to men and women. After MI, patients can be risk-stratified and counseled about safely returning to sexual activity:

- **Low risk**: asymptomatic patients with <3 risk factors for CAD, stable angina, recent uncomplicated MI, mild valvular heart disease, mild CHF, controlled hypertension, or post successful revascularization; patients can be managed medically
- **Intermediate risk**: those with recent MI (but >2 wks), moderate CHF (New York Heart Association class II) and those with >3 risk factors for CAD; patients may benefit from functional testing, i.e., EST, echocardiography, or nuclear imaging study with re-stratification based on results of testing
 - EST can assist in gauging cardiac risk of sexual activity, both for induction of ischemia or arrhythmia. In general, if a patient can achieve 5 METs on ETT without demonstrable ischemia or significant arrhythmia, he is not at high risk to resume normal sexual activities
 - Similarly, if echocardiography does not yield evidence of more than moderate left ventricular dysfunction, resumption of sexual activity is probably safe
- **High-risk**: those with unstable angina, MI within 2 weeks, poorly controlled hypertension, severe CHF (New York Heart Association class III/IV), significant arrhythmias, severe cardiomyopathies; patients should be referred for cardiovascular evaluation and stabilization prior to recommending resumption of sexual activity.

Nonatherosclerotic Acute Coronary Syndromes

Although thrombotic complications of the atherosclerotic process account for most cases of acute coronary syndromes, there are a few rare etiologic factors that have been proposed as causes of or contributors to acute coronary occlusion. These causes include coronary artery spasm, spontaneous coronary dissection, coronary artery embolization, coronary arteritis, and hypercoagulability states such as factor V gene mutation, deficiencies of proteins C and S, antithrombin III deficiency, antiphospholipid antibody syndrome, and prothrombin gene mutation. Cocaine use has been documented to induce coronary vasoconstriction in nondiseased coronary segments but is more pronounced in atherosclerotic segments.
Prinzmetal angina, or variant angina, is a very uncommon condition in which episodes of severe angina are triggered when one of the major coronary arteries suddenly goes into spasm. These episodes are accompanied by ST-segment elevation on the ECG. Although the spasm almost always terminates spontaneously, Prinzmetal angina may be associated with acute MI, serious ventricular arrhythmias, and sudden death.

As opposed to typical angina, Prinzmetal angina usually occurs during periods of rest, most often at night and in the early morning hours. Frequently, episodes appear in clusters. In men, Prinzmetal angina is often associated with atherosclerosis; in women it is not. Women with Prinzmetal tend to have few risk factors for CAD, though many have a history of migraine headaches (another condition associated with arterial spasm).

Exercise testing and routine coronary angiography usually give normal results. Ergonovine has been used to trigger coronary artery spasm in susceptible patients, confirming the diagnosis. Treatment with calcium channel blockers or nitrates eliminates spasm in most of these patients. Once adequately treated, their prognosis is good.

During an acute episode of pain and ST segment elevation, you cannot tell who has Prinzmetal variant angina and who has an acute ST elevation MI. Therefore, you must initially treat everyone with chest pain and ST elevation as if they were having an acute MI. Prinzmetal angina can be confirmed only after coronary angiography.
Clinical Recall

Which of the following is not an absolute contraindication to thrombolytic therapy?

A. Active bleeding from factor VIII deficiency
B. Epidural hematoma within the last 3 months
C. Cholecystectomy 3 weeks ago
D. Prior basal ganglia hemorrhage
E. Large MCA stroke within the last 3 months

Answer: C

CONGESTIVE HEART FAILURE (CHF)

Heart failure (HF) arises from the inability of the ventricle to efficiently pump blood throughout the circulation. Clinically, HF presents with symptoms of breathlessness, exercise intolerance, and fatigue.

Case 1:

A 62-year-old man with hypertension and dyslipidemia presents with dyspnea and lower-extremity edema for 2 months. On exam there is jugular venous distention (about 9 cm.), an S3 gallop, and the apical impulse is displaced to the left of the mid-clavicular line at the 6th intercostal space. The chest x-ray shows enlarged cardiac silhouette. The echocardiogram shows a dilated left ventricle with an ejection fraction of 35%.

Case 2:

A 57-year-old man with history of multiple myeloma presents with dyspnea and lower-extremity edema for 2 months. On exam there is jugular venous distention (about 8 cm.), an audible S4, and the apical impulse is non-displaced at the 5th intercostal space. The chest x-ray shows normal cardiac silhouette. The echocardiogram shows a thickened left ventricle with an ejection fraction of 65%.

Pathophysiology of CHF

As HF evolves, changes in vascular function, blood volume, and neurohumoral status occur throughout the body. These changes serve as compensatory mechanisms to help maintain cardiac output (primarily by the Frank-Starling mechanism) and arterial blood pressure (by systemic vasoconstriction). However, these compensatory changes over time can worsen cardiac function. Cardiac changes during HF include increased end-diastolic volume; ventricular...
dilatation or hypertrophy; decreased stroke volume and cardiac output; reduced ejection fraction (systolic dysfunction) or impaired filling (diastolic dysfunction). Compensatory mechanisms during HF include:

- **Cardiac**: Frank-Starling mechanism, tachycardia, ventricular dilatation
- **Neuronal**: increased sympathetic adrenergic activity, reduced cardiac vagal activity
- **Hormonal**: activation of renin-angiotensin-aldosterone system with renal sodium retention and ECV expansion), vasopressin, catecholamines, and natriuretic peptides

In clinical practice, HF is commonly categorized by whether the abnormality is due to contraction or relaxation of the heart. **Systolic HF** (systolic dysfunction) is due to a loss of contractile strength of the myocardium accompanied by ventricular dilatation. This type of HF is also accompanied by a decrease in normal ventricular emptying (usually ejection fraction <45%). Examples of systolic HF include ischemic cardiomyopathy and dilated cardiomyopathy (Case 1 in this section).

Heart failure with preserved ejection fraction (diastolic dysfunction) occurs when the filling of one or both ventricles is impaired while the emptying capacity is normal (echocardiogram confirms that the ejection fraction is normal). Hypertensive heart disease and the infiltrative cardiomyopathies (amyloidosis) are typical examples (Case 2 in this section).

Congestive HF indicates a clinical syndrome of dyspnea and fatigue as well as evidence of features of circulatory congestion (peripheral edema, elevated jugular venous pressure [JVP]). In heart failure, intravascular congestion occurs with elevation of left ventricular diastolic and pulmonary venous pressures that eventually causes transudation of fluid from the pulmonary capillaries into the interstitial space. The kidneys retain salt and water, worsening the ECV expansion. **Pulmonary edema** develops when the rate of fluid accumulation goes above the rate of lymphatic absorption. Pulmonary edema is detected by audible crackles, increased JVP and edema on exam, and chest x-ray findings.

Figure 5-7. Inter-related Cycles in Congestive Heart Failure
Decompensated HF or exacerbation of HF denotes worsening of symptoms and clinical findings in pre-existing HF. This can be due to precipitating factors such as non-adherence to medication, increase in dietary salt, acute ischemia, tachycardia, or pulmonary infection.

In evaluating patients with HF or worsening of pre-existing HF, it is also important to exclude precipitating factors. Commonly, HF manifests for the first time when a precipitating factor places additional burden on the heart. Such factors include:

- Cardiac ischemia and myocardial infarction
- Infections (especially pulmonary infections)
- Arrhythmias (especially atrial fibrillation)
- Excessive dietary salt (commonly after holiday meals)
- Uncontrolled hypertension (especially after abrupt cessation of anti-hypertensive medication)
- Thyrotoxicosis
- Anemia

HF may occur as a consequence of most causes of heart disease, but ischemic heart disease is responsible for over 70% of all cases in the western world. Other common causes include: hypertensive heart disease, the cardiomyopathies (idiopathic, alcohol related, etc.), and valvular and congenital heart diseases.

Clinical Presentation of CHF

Symptoms of HF include dyspnea (differentiate from pulmonary dyspnea), orthopnea, paroxysmal nocturnal dyspnea, and fatigue/weakness.
Table 5-4. Most Common Causes of Acute Pulmonary Edema

<table>
<thead>
<tr>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemia</td>
</tr>
<tr>
<td>Arrhythmia</td>
</tr>
<tr>
<td>Non-adherence with medication</td>
</tr>
<tr>
<td>Dietary indiscretion</td>
</tr>
<tr>
<td>Infection</td>
</tr>
</tbody>
</table>

Physical findings in HF:
- Pulmonary rales
- Peripheral edema, ascites
- Hepatomegaly
- Jugular venous distention
- Displaced apical impulse (systolic HF)

Clinical Pearl
In the work-up of patients with exacerbation of HF, always:
- Check cardiac enzymes to exclude myocardial ischemia or infarction
- Do a chest x-ray to exclude infection

The severity of heart failure is commonly classified by using an HF staging system. The New York Heart Association Functional Classification (NYHA staging system) relates symptoms to everyday activities and the patient’s quality of life:
- **Class I**: patients have no limitation of activity; they suffer no symptoms from ordinary activities
- **Class II**: patients with slight, mild limitation of activity; they are comfortable with rest or with mild exertion
• **Class III:** patients with marked limitation of activity; they are comfortable only at rest
• **Class IV:** patients are confined to bed or chair; any physical activity brings on discomfort and symptoms occur at rest

Diagnosis. The best test to confirm the diagnosis of HF and classify the type is **echocardiogram.** With the echocardiogram, the clinician is able to determine ejection fraction and identify valvular heart disease as well as other cardiac anomalies (dilated ventricle, thickened ventricle, etc.). Chest x-ray is also used the diagnosis of heart failure; it may show cardiomegaly, vascular redistribution, Kerley B-lines, or interstitial edema.

Electrocardiogram is used to identify ventricular hypertrophy and/or the presence of ischemic heart disease, arrhythmias, or conduction delays which may cause or precipitate HF.

Clinical Pearl

Echocardiography is the best test to confirm CHF. **BNP** is best used to rule out CHF and save further workup.

Brain natriuretic peptide (BNP) (or type B natriuretic peptide) is a polypeptide secreted by the heart in response to excessive stretching of the myocytes. It is a valuable screening tool in the evaluation of patients with presumed HF or decompensated HF in the acute setting. BNP is best used for **ruling out HF**, and a normal BNP generally excludes CHF as the cause of dyspnea.

BNP is almost always elevated (97% sensitivity) in patients with decompensated HF. The only exception is obesity, where BNP can be falsely low. BNP lacks specificity (renal failure can lead to elevated BNP). A positive BNP warrants a follow-up echocardiogram.

Management of Systolic CHF

Treatment goals in HF are to improve hemodynamics, relieve symptoms (improve quality of life), and prolong survival. Remember, always evaluate for reversible causes at the same time. Non-pharmacologic treatment includes primarily reduction of salt intake. Monitoring of patients with HF includes calculation of fluid intake and excretion (in the hospital) as well as monitoring body weight (in the outpatient setting).
For pharmacologic treatment, ACE inhibitors are the basis of therapy and recommended for all patients with HF (especially systolic HF), irrespective of blood pressure status. They improve survival and reduce ventricular hypertrophy—and eventually, symptoms. ACE inhibitors through vasodilation reduce preload and afterload, thereby reducing right atrial, pulmonary arterial, and pulmonary capillary wedge pressures. All ACE inhibitors have been studied and are considered equal in terms of HF treatment. Angiotensin receptor blockers (ARB) are acceptable alternatives if the patient is unable to tolerate ACE inhibitors (cough, angioedema).

Newer drugs include:

- Combination drug valsartan-sacubitril, an angiotensin receptor-neprilysin inhibitor (ARNI). Valsartan is an ARB, while sacubitril inhibits the degradation of natriuretic peptide. Neprilysin is a neutral endopeptidase that degrades several vasoactive peptides, including natriuretic peptides (ANP, BNP) and bradykinin. Inhibition of neprilysin increases levels of these substances, which then counteract the effects of neurohormonal activation such as vasoconstriction and sodium retention. They block the RAAS system and lead to natriuresis and decrease cardiac hypertrophy and fibrosis.

- Ivabradine, used for heart failure and tachycardia unresponsive to beta blockers, is an inhibitor of the If or “I-funny” channel, which contributes to normal sinus node function. Its sole effect is to slow the heart rate by decreasing sinus node automaticity.

Table 5-5. Vasodilators Used in Congestive Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Site of Action</th>
<th>Route of Administration</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captopril</td>
<td>Arteriolar and venous ACE</td>
<td>Oral</td>
<td>Rash, nonproductive cough, proteinuria, renal failure, taste disturbance, agranulo-cytosis, hypotension</td>
</tr>
<tr>
<td>Enalapril</td>
<td>inhibitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisinopril</td>
<td>Arteriolar and venous ACE</td>
<td>Oral</td>
<td></td>
</tr>
<tr>
<td>Sacubitril</td>
<td>inhibitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitroprusside</td>
<td>Arteriolar and venous</td>
<td>IV</td>
<td>Thiocyanate toxicity, methemoglobinemia</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>Venous (arteriolar at high doses IV)</td>
<td>SL, IV, cutaneous ointment, or patch</td>
<td>Headache, postural hypotension, methemoglobinemia</td>
</tr>
<tr>
<td>Isosorbide dinitrate</td>
<td>Venous</td>
<td>Oral or SL</td>
<td>Headache, postural hypotension</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>Arteriolar</td>
<td>Oral</td>
<td>Positive ANA, SLE-like syndrome (10–20% if >400 mg/d) drug fever, rash</td>
</tr>
</tbody>
</table>

Diuretic therapy, especially loop diuretics, is the treatment of choice for the relief of acute pulmonary edema symptoms. Several classes are used but the loop diuretics (furosemide) are the most commonly used. Thiazide diuretics (hydrochlorothiazide) are useful only in mild HF. Spironolactone and eplerenone (aldosterone antagonists) have been used as add-on therapy to ACE inhibitors in severe heart failure to prolong survival by presumed aldosterone inhibition.

Note

Recent guidelines updates, as per the American College of Cardiology/AHA, include the following:

- ARNI (not an ACE inhibitor or ARB) for patients with CHF and reduced ejection fraction (HFrEF) who are mildly/moderately symptomatic. Valsartan-sacubitril has been shown to lower risk for the composite endpoint of cardiovascular death or heart failure hospitalization compared with enalapril in patients with HFrEF. Do not administer valsartan-sacubitril concurrently with an ACE inhibitor or within 36 hrs of the last dose of an ACE inhibitor, due to angioedema risk. Also, avoid in those with a history of angioedema.

- Ivabradine for reduction of heart failure-associated hospitalizations in patients with chronic symptomatic heart failure with left ventricular ejection fraction ≤35% if they are in sinus rhythm, taking guideline-directed medical therapy, and HR >70/min while on maximum dose of beta-blocker.

Note

ACE inhibitor (any) and a diuretic are considered first line for all patients with HF. Once the patient is stable, add carvedilol or metoprolol. Don’t substitute β-blockers in HF since not all β-blockers have the same efficacy.
Table 5-6. Commonly Used Diuretics in Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Site of Action</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiazides</td>
<td>Distal tubule</td>
<td>Hyponatremia, hypokalemia, hypercalcemia, metabolic alkalosis, hyperuricemia,</td>
</tr>
<tr>
<td>(inhibits NaCl</td>
<td></td>
<td>allergy, agranulocytosis, leukenopia, pancreatitis, glucose intolerance</td>
</tr>
<tr>
<td>cotransport)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Hydrochlotraizide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chlorothiaizide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indapamide</td>
<td>Distal tube (direct</td>
<td>As above, but hypokalemia and lipid abnormalities less common</td>
</tr>
<tr>
<td></td>
<td>vasodilator)</td>
<td></td>
</tr>
<tr>
<td>Loop diuretics</td>
<td>Loop of Henle</td>
<td>Hyponatremia, hypokalemia, hypocalcemia, metabolic alkalosis, hyperuricemia,</td>
</tr>
<tr>
<td>(inhibitors Na/K,</td>
<td></td>
<td>interstitial nephritis, ototoxicity, thrombocytopenia, agranulocytosis,</td>
</tr>
<tr>
<td>2Cl cotransport)</td>
<td></td>
<td>leukenopia</td>
</tr>
<tr>
<td>• Furosemide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ethacrynlic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bumetanide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium-sparing</td>
<td>Distal tubule</td>
<td>Hyperkalemia, gynecomastia (spironolactone only)</td>
</tr>
<tr>
<td>diuretics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Spironolactone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aldosterone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antagonist)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chronic adrenergic activation has been implicated in the pathogenesis of HF and thus, **beta-adrenergic blocking agents** are an important part of HF therapy. Along with ACE inhibitors, beta blockers have been demonstrated to decrease mortality, reduce hospitalizations, improve functional class, and improve ejection fraction in several large-scale, randomized, placebo-controlled trials. Start patients on beta blockers after stabilization of symptoms with diuretic and ACE inhibitor therapy when blood pressure is normal or high. Beta blockers are contraindicated in cardiogenic shock and severe active asthma. **Metoprolol, succinate, carvedilol** and **bisoprolol** are the agents best shown to benefit mortality.

Other vasodilators such as combination hydralazine/isosorbide may be used when ACE inhibitors and ARBs are not tolerated or contraindicated (e.g. renal failure). When a combination of hydralazine and isosorbide is used, there is a reduction in death and a decrease in hospitalizations.

In severe HF and especially if there is no improvement of symptoms while the patient is on standard therapy (diuretic, ACE inhibitor, and beta blocker), the addition of **spironolactone** may be of benefit, reducing (about 30%) the relative risk of death and hospitalizations among treated patients. Spironolactone is used in patients with NYHA class III-IV. Once the patient is started on spironolactone, serum potassium levels have to be monitored closely to prevent hyperkalemia. Eplerenone is an alternative to spironolactone that does not cause gynecomastia.
The addition of inotropic agents to patients with severe HF improves symptoms and quality of life and reduces hospitalizations but does not improve survival. The most commonly used inotropic agent is digitalis. Digitalis inhibits Na\(^+\)/K\(^+\)-ATPase pump which results in increased intracellular concentration of Na\(^+\) and decreased exchanges of intracellular Ca\(^{2+}\). The end result is an in systolic dysfunction increase in intracellular concentration of Ca\(^{2+}\) which results in improved cardiac contractility.

Cardiac glycosides work by inhibition of Na\(^+\)/K\(^+\)-ATPase pump, which results in:
- Increased intracellular concentration of Na\(^+\)
- Decreased exchange of intracellular Ca\(^{2+}\) for extracellular Na\(^+\)
- The end result is an increase in the intracellular concentration of Ca\(^{2+}\), which gives the (+) inotropic effect characteristic of glycosides

Digitalis will increase both the force and the velocity of the myocardial contraction. It will also promote a more complete emptying of the ventricles.

Digitalis should only be added after all drugs that reduce mortality have been tried. Then it can be used for the treatment of systolic HF, atrial fibrillation/flutter, and paroxysmal atrial tachycardia/SVT.

The serum potassium should be carefully monitored in all patients taking digitalis. Remember that K\(^+\) and digitalis compete for myocardium binding sites. Hyperkalemia will decrease digitalis action, whereas hypokalemia increases digitalis toxicity. Other conditions which predispose to digitalis toxicity are renal insufficiency; electrolyte disturbances (hypercalcemia, hypomagnesemia); advanced age; sinoatrial and atrioventricular block; and thyroid disease (especially hypothyroidism).

Toxic effects of digitalis include nausea and vomiting; gynecomastia; blurred vision; yellow halo around objects; arrhythmias (commonly paroxysmal atrial tachycardia) with block PVCs (premature ventricular contractions), and bradycardia.

Treatment for intoxication is to stop the drug, add lidocaine and phenytoin (for arrhythmia). Digibind is used only for acute overdose.

Table 5-7. Drug Interactions Associated with Digoxin

<table>
<thead>
<tr>
<th>Drug</th>
<th>Effect</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinidine</td>
<td>Increase</td>
<td>Decreases renal clearance of digoxin</td>
</tr>
<tr>
<td>Verapamil, diltiazem</td>
<td>Increase</td>
<td>Decreases renal clearance of digoxin</td>
</tr>
<tr>
<td>Cholestyramine, colestipol</td>
<td>Decrease</td>
<td>Binds digoxin in GI tract; interferes with enterohepatic circulation</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>Increase</td>
<td>Inhibits tubular secretion of digoxin</td>
</tr>
<tr>
<td>Thiazides, furosemide</td>
<td>Increase</td>
<td>Diuretic-induced hypokalemia and/or bumetanide hypomagnesemia potentiates digitalis action</td>
</tr>
</tbody>
</table>

*Increase enhances digitalis effect; decrease diminishes digitalis effect.

Note

ACE inhibitors/ARB, beta blockers, spironolactone, AICD, and biventricular pacing all lower mortality in systolic CHF. Digitalis and diuretics do not reduce mortality but help in management.
Medical Devices for Systolic Dysfunction

After medical management has been initiated, several mechanical devices may be added to further improve prognosis in HF.

The automatic implantable cardioverter/defibrillator (AICD) is a standard therapy for severe ischemic dilated cardiomyopathy (EF <35%). Since the most common cause of death in CHF is an arrhythmia, it logical that a device which interrupts arrhythmia will lower mortality in patients with systolic CHF. Indications for AICD include dilated cardiomyopathy with persistent ejection fraction <35%.

A biventricular pacemaker will “resynchronize” the heart when there is dilated cardiomyopathy and QRS duration >120 msec. When there is a wide QRS, the 2 ventricles do not beat or depolarize in synchrony. The biventricular pacemaker will “resynchronize” the 2 ventricles, causing an immediate decrease in symptoms. This device also includes an automatic defibrillator, since patients are at risk for ventricular arrhythmia. Indications for biventricular pacemaker include dilated cardiomyopathy with QRS >120 mSec. Mortality benefit is greatest for LBBB with QRS >150 mSec.

Summary of therapy for dilated cardiomyopathy

The following classes of medications lower mortality in systolic HF:

- ACE inhibitor or ARBs; use one or the other but not both
- Beta blockers (not all are equal; best mortality benefit is metoprolol, carvedilol, or bisoprolol)
- Spironolactone (or eplerenone)
- AICD (if EF <35%)
- Biventricular pacemaker (if QRS >120 mSec)

Management of Severe Systolic CHF (Cardiogenic Shock)

Additional support may be needed in hospitalized patients with cardiogenic shock. Patients are admitted to critical care units for support and treatment of hypotension and pulmonary edema. Fluid management is difficult, since increasing preload with fluids in an attempt to raise blood pressure may worsen pulmonary edema. In such hypotensive patients, beta blockers are now contraindicated, unlike outpatient CHF where they are first line.

Sympathomimetic inotropic amines (especially dobutamine) and phosphodiesterase inhibitors (amrinone, milrinone) are sometimes used to raise cardiac output in the management of severe acute systolic HF in hospitalized patients. They must be administered by IV infusion and need continuous monitoring of the blood pressure and cardiac rhythm. Patients with ongoing infarction or ischemia are challenging, in that increasing the cardiac output also increases cardiac work and energy consumption, thus potentially extending the myocardial infarction.

In extreme HF with hypotension, the above medications may fail, and the patient’s heart may not be able to support circulatory function. In that case, an intra-aortic balloon pump can be used to improve perfusion and improve mortality. Extracorporeal membrane oxygenation (ECMO) may be used to remove the patient's RBCs, remove the CO2 and supply O2, then re-infuse into the patient. Biventricular assist devices (previously called “artificial hearts”) may be used if the patient is awaiting heart transplantation. Heart transplantation is typically the only long-term effective treatment for very severe HF.
Pulmonary edema may occur in any patient with CHF, but is particularly likely in hospitalized patients with cardiogenic shock. It is considered a medical emergency and requires hospitalization. It leads to impaired gas exchange and may cause respiratory failure. There are non-cardiogenic causes of pulmonary edema but in this section we will discuss only cardiogenic pulmonary edema. Cardiogenic pulmonary edema is caused by an acute increase in left ventricular pressure due to ventricular dysfunction which leads to fluid accumulation in the pulmonary interstitium.

Signs and Symptoms
- Tachypnea
- Cough with pink frothy sputum
- Cyanosis
- Pulmonary crackles or wheezes

Lab workup includes monitoring of blood oxygen and CO2 content; chest x-ray (prominent pulmonary vessels, effusions, Kerley B lines); and ECG to exclude arrhythmias and ongoing MI.

Treatment in hospitalized patients includes all CHF treatments above, but also includes oxygen; IV loop diuretics (furosemide); morphine sulfate; nitroglycerin (reduces preload); IV ACE inhibitors; non-invasive positive-pressure ventilation in patients with severe hypoxia or hypercapnia after medications; and intubation/ventilation in patients who fail all of the above.

Management of Diastolic HF
Patients with diastolic HF (thick ventricles, preserved EF) do not benefit from inotropic agents, since their cardiac contractility is normal. ACE inhibitors are less useful than in systolic HF. Diuretics must be used cautiously, since limited preload (filling) is a hallmark of their disease.

Preferred management for HF with preserved systolic function includes the following:
- Diuresis as needed for volume overload
- BP control (CCBs, BBs, or ACE inhibitors/ARB)
- Exercise program and cardiac rehabilitation

Beta blockers are now used less often but may be added for rate control of atrial fibrillation or if patient has concurrent CAD.

Clinical Recall
What is the best therapy for hypertrophic cardiomyopathy?
A. Digoxin
B. Hydralazine/nitroglycerin
C. Lisinopril
D. Metoprolol
E. Nifedipine

Answer: D
VALVULAR HEART DISEASE

Mitral Stenosis

Mitral stenosis is the most common lesion caused by rheumatic fever, with possible progression to right ventricular failure. It becomes clinically symptomatic during pregnancy. Mitral stenosis consists of thickened mitral valve leaflets, fused commissures, and chordae tendineae. Most cases are secondary to rheumatic fever. Rarely, it is caused by a congenital defect, calcification of the valve, or post-radiation treatment to the chest.

Pathogenesis. Mitral valve stenosis impedes left ventricular filling. Increased left atrial pressure is referred to the lungs, causing pulmonary congestion. Forward cardiac output becomes reduced, secondary pulmonary vasoconstriction occurs, and eventually right ventricular failure results.

Clinical Symptoms. Usually manifest slowly over years.
- Dyspnea
- Orthopnea
- Paroxysmal nocturnal dyspnea
- Fatigue
- Wasting
- Hemoptysis (due to rupture of pulmonary vessels)
- Systemic embolism (due to stagnation of blood in an enlarged left atrium)
- Hoarseness (due to impingement of an enlarged left atrium on the recurrent laryngeal nerve)
- Right-sided heart failure: hepatomegaly, ascites, peripheral edema

Physical Signs
- Atrial fibrillation (irregular cardiac rhythm)
- Pulmonary rales
- Decreased pulse pressure
- Loud S_1
- Opening snap following S_2
- Diastolic rumble (low-pitched apical murmur)
- Sternal lift (due to right ventricular enlargement)

Diagnosis is made with the following:
- EKG: possible signs of right ventricular hypertrophy; possible left and right atrial abnormalities; atrial fibrillation (common)
- Chest x-ray: large left atrium (indicated by a double-density right heart border, posterior displacement of esophagus, and elevated left mainstem bronchus), straightening of left heart border; possible signs of pulmonary hypertension, including Kerley B lines and increased vascular markings; large pulmonary artery
- Echocardiogram (best test): thickening of mitral valve leaflets and a reduction in the excursion and area of the valve leaflets; possible left atrial enlargement; trans-esophageal echocardiogram often needed to visualize valve
Treatment. **Medical therapy** includes diuretics and salt-restricted diet; digitalis to control the ventricular rate in patients with AF; anticoagulants in patients with AF; balloon valvulotomy (standard of care for MS).

Surgical management is indicated when patient remains symptomatic (functional class III) despite medical therapy. Mitral commissurotomy or valve replacement is done if balloon dilation fails. Pulmonary hypertension is not a contraindication for surgery.

Mitral Regurgitation

Mitral regurgitation is backflow of blood from the left ventricle into the left atrium, due to inadequate functioning (insufficiency) of the mitral valve, most commonly from ischemia. Men > women.

The etiology of mitral regurgitation is due to abnormalities of the mitral leaflets, annulus, and chordae tendineae. Common causes include hypertension, CHF, ischemic heart disease, rheumatic fever, and any cause of dilation of the left ventricle.

Table 5-8. Acute versus Chronic Etiologies of Mitral Valve Regurgitation

<table>
<thead>
<tr>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rupture chordae tendineae</td>
<td>• Rheumatic heart disease (causing scarring and retraction of valve and leaflets)</td>
</tr>
<tr>
<td>(permits prolapse of a portion of a mitral valve leaflet into the left atrium)</td>
<td>• Papillary muscle dysfunction</td>
</tr>
<tr>
<td>• Papillary muscle rupture</td>
<td>• Mitral valve prolapse (click-murmur syndrome, Barlow syndrome, floppy mitral valve)</td>
</tr>
<tr>
<td>• Endocarditis (may lead to valvular destruction)</td>
<td>• Endocarditis</td>
</tr>
<tr>
<td>• Trauma</td>
<td>• Calcification of the mitral valve annulus</td>
</tr>
<tr>
<td></td>
<td>• Accompanying hypertrophic obstructive cardiomyopathy</td>
</tr>
<tr>
<td></td>
<td>• Congenital endocardial cushion defect, corrected transposition</td>
</tr>
<tr>
<td></td>
<td>• Endocardial fibroelastosis</td>
</tr>
<tr>
<td></td>
<td>• Severe left ventricular dilatation</td>
</tr>
</tbody>
</table>

Pathogenesis

- A portion of the left ventricular stroke volume is pumped backward into the left atrium instead of forward into the aorta, resulting in increased left atrial pressure and decreased forward cardiac output. Traditional measurement of the cardiac output by EF may be normal, since the LV empties well. It is just not all in the correct direction. A regurgitant fraction needs to be estimated by Doppler during echocardiography.
- Volume overload occurs, increasing preload.
- Afterload is decreased as the left ventricle empties part of its contents into the relatively low-pressure left atrium.
- This helps to compensate for the regurgitation by augmenting ejection fraction.
- Left ventricular dysfunction occurs after prolonged compensation.
Clinical Manifestations
Left ventricular failure is manifested by dyspnea, orthopnea, and paroxysmal nocturnal dyspnea.

Severe and chronic mitral regurgitation lead to right-sided failure, presenting with edema, ascites, anorexia, and fatigue.

Pulmonary hypertension may be a late finding.

Physical Signs
- Hyperdynamic and displaced (downward and to the left) left ventricular impulse
- Carotid upstroke diminished in volume but brisk
- Holosystolic apical murmur radiating to the axilla and often accompanied by a thrill
- \(S_3 \) heard with a soft \(S_1 \) and widely split \(S_2 \)
- Distended neck veins when severe or acute

Diagnosis
- EKG shows signs of left ventricular hypertrophy and left atrial enlargement.
- Chest x-ray shows cardiac enlargement, with vascular congestion when the regurgitation has led to heart failure.
- Echocardiography (best first test): The mitral valve can prolapse into the left atrium during systole in cases of a ruptured chordae or mitral valve prolapse. Regardless of the cause, left atrial and left ventricular enlargement occurs if the condition is chronic.
- Left-heart catheterization is the single most accurate test.

Treatment. Medical therapy. The goal is to relieve symptoms by increasing forward cardiac output and reducing pulmonary venous hypertension. ARBs/hydralazine, arteriolar vasodilators (ACE inhibitors), digitalis, and diuretics are used.

Surgical therapy. Mitral valve replacement is indicated when symptoms persist despite optimal medical management.
- Indicated with significantly limiting symptoms and severe mitral regurgitation; the risk of surgery rises in chronic heart failure.
- Indicated when symptoms persist despite optimal medical management.
- Repair is preferable to replacement.

Patients with regurgitation but few symptoms should defer surgery, as their condition may remain stable for years.

Mitral Valve Prolapse
Mitral valve prolapse is the most common congenital valvular abnormality (2–3% population) typically seen in young women. It may occur with greater frequency in those with Ehlers-Danlos syndrome, polycystic kidney disease, and Marfan syndrome.

Most patients are asymptomatic. Lightheadedness, palpitations, syncope, and chest pain may occur (often due to arrhythmias, which may occur.)
Auscultation

- Mid-to-late systolic click and a late systolic murmur at the cardiac apex
- Worsens with Valsalva or standing
- Improves with squatting or leg raise

Complications (all very rare)

- Serious arrhythmias
- Sudden death
- CHF
- Bacterial endocarditis (but does not mean routine dental prophylaxis is indicated)
- Calcifications of valve
- Transient cerebral ischemic attacks

Lab tests include 2-dimensional/Doppler echocardiography showing marked systolic displacement of mitral leaflets with coaptation point at or on the left atrial side of the annulus; moderate systolic displacement of the leaflets with at least moderate mitral regurgitation.

Treatment. No specific treatment is needed in most cases. Use beta blockers for chest pain and palpitations. Mitral valve replacement is rarely needed.

Aortic Stenosis

Aortic stenosis is most commonly caused by calcification and degeneration of a congenitally normal valve. It is common in the elderly. Other etiologies include:

- Calcification and fibrosis of a congenitally bicuspid aortic valve
- Rheumatic valvular disease, i.e., if the aortic valve is affected by the rheumatic fever, the mitral valve is also invariably affected

Aortic stenosis results in elevation of left ventricular systolic pressure, and the resultant left ventricular hypertrophy maintains cardiac output without dilation of the ventricular cavity. Therefore, the stroke volume is normal until the late stages of the disease.

Forceful atrial contraction augments filling at the thick, noncompliant ventricle and generates a prominent S4 gallop that elevates the left ventricular end-diastolic pressure.

Left ventricular hypertrophy and high intramyocardial wall tension account for the increased oxygen demands and, along with decreased diastolic coronary blood flow, account for the occurrence of angina pectoris.

As the myocardium fails, mean left ventricular diastolic pressure increases, and symptoms of pulmonary congestion ensue.

Clinical Presentation.

- Angina, syncope, and dyspnea from CHF (classic symptoms)
- Pulsus tardus et parvus
- Carotid thrill
- Systolic ejection murmur in aortic area, usually with thrill, harsh quality, radiates to carotids

Clinical Pearl

Look for AS in older patients presenting with syncope related to exertion.
• S4 gallop
• A2 decreased, S2 single or paradoxically split
• Aortic ejection click

Diagnosis. EKG often shows left ventricular hypertrophy. Chest x-ray may present with calcification, cardiomegaly, and pulmonary congestion. Echocardiography shows thick aortic valve leaflets with decreased excursion and LVH.

Treatment. Endocarditis prophylaxis is no longer recommended.
• Surgery (valve replacement) is advised when symptoms develop, usually when the valve area is reduced <0.8 cm2 (normal aortic orifice, 2.5–3 cm2). Generally, if patient has symptoms, surgery is the treatment of choice.
• Balloon valvuloplasty may be useful in those too ill to tolerate surgery.

Table 5-9. Differential Diagnosis of Aortic Valve Stenosis

<table>
<thead>
<tr>
<th>Disease Entity</th>
<th>Differentiating Features</th>
</tr>
</thead>
</table>
| Aortic valve sclerosis of the elderly, without stenosis | Systolic murmur does not peak late
Carotids do not have delayed upstrokes
No left ventricular hypertrophy by EKG
Echocardiographic visualization of excursion of valve leaflets usually normal or mildly reduced, but valves may not be visualized
No hemodynamically significant aortic valve gradient by cardiac catheterization |
| Hypertrophic obstructive cardiomyopathy | Brisk bifid carotid upstrokes
Murmur usually does not radiate into neck
Characteristic change in murmur with various maneuvers
Pseudoinfarct pattern (large septal Q waves) on EKG
Characteristic echocardiographic features |
| Mitral regurgitation | Murmur is holosystolic and radiates to axilla and not carotids
Carotid upstroke may be normal
Dilated left ventricle
Aortic valve normal on echocardiogram unless there is associated aortic valve disease |
| Pulmonic stenosis | Murmur does not radiate into neck; loudest along the left sternal border; increases with inspiration
Physical examination, chest x-ray, and EKG may reveal enlarged right ventricle
Echocardiogram reveals right ventricular enlargement and hypertrophy |

Note: All of the above have a systolic murmur that can be confused with aortic stenosis.
Table 5-10. Effect of Various Maneuvers on Systolic Murmurs

<table>
<thead>
<tr>
<th></th>
<th>Valsalva</th>
<th>Phenylephrine Handgrip</th>
<th>Squatting</th>
<th>Amyl Nitrite</th>
<th>Leg Raising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic stenosis</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Increase or decrease</td>
<td>Increase</td>
<td>Increase</td>
</tr>
<tr>
<td>Hypertrophic obstructive cardiomyopathy</td>
<td>Increase</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>Decrease</td>
<td>Increase</td>
<td>No change</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>Decrease</td>
<td>Increase</td>
<td>Increase</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Aortic Regurgitation

The most common causes of aortic regurgitation are systemic hypertension and ischemic heart disease.

- May occur after infectious endocarditis
- May result from a condition which affects the ascending aorta: syphilis, ankylosing spondylitis, Marfan syndrome, rheumatic fever, aortic dissection, aortic trauma

Pathophysiology

Aortic regurgitation results in a volume overload of the left ventricle.

- The ventricle compensates by increasing its end-diastolic volume according to the Frank-Starling mechanism.
- The left ventricular dilation is thought to overstretch the myofibrils, leading to less actin–myosin interaction and decreased contractility.
- In acute severe aortic regurgitation, the left ventricle has not had the opportunity to dilate, its compliance is relatively high, and the aortic regurgitation therefore leads to very high left ventricular end-diastolic pressure.
- If mitral regurgitation ensues, the elevated left ventricular diastolic pressure is reflected back to the pulmonary vasculature, and acute pulmonary edema may occur.

Acute aortic regurgitation results in a lower cardiac output, narrower aortic pulse pressure, and a smaller left ventricle than does chronic aortic regurgitation.

Aortic diastolic pressure decreases in chronic aortic regurgitation because of both the regurgitation of blood into the left ventricle and a compensatory decrease in systemic vascular resistance to maintain forward cardiac flow to the periphery. The increased pulse pressure in chronic aortic regurgitation is due to the large stroke volume, causing increased systolic and decreased diastolic pressure.
Clinical Manifestations

- Dyspnea (most common complaint)
- Diastolic decrescendo murmur is the most typical.
- Systolic flow murmur
- Duroziez sign: systolic and/or diastolic thrill or murmur heard over the femoral arteries
- \(S_3 \) in early left ventricular decompensation
- Austin-Flint murmur

Diagnosis

- Echocardiography (best initial test): Dilated LV and aorta; left ventricular volume overload; fluttering of anterior mitral valve leaflet
- EKG: LV hypertrophy often with volume overload pattern (narrow deep Q waves in left precordial leads)
- Chest x-ray: LV and aortic dilation

Treatment. Endocarditis prophylaxis is no longer recommended.

- Salt restriction, diuretics, after load reduction (e.g., ACE inhibitors)
- Aortic valve replacement when symptoms worsen or ejection fraction decreases.
- Vasodilators such as an ACE, ARB, or nifedipine are the standard of care.
- Perform aortic valve replacement when the ejection fraction is <50% with HF symptoms (NYHA level II-IV) or left ventricular systolic diameter is >55 mm.

Clinical Recall

Which of the following is most appropriate in the management of a patient with aortic stenosis?

A. Warfarin to patients who develop atrial fibrillation
B. Surgical replacement when the EF <60% or LV end systolic diameter >40 mm
C. Surgical replacement when the valve area <0.8 cm\(^2\)
D. Surgical replacement when the EF <55% or LV systolic diameter >55 mm
E. None of the above

Answer: C
CARDIOMYOPATHIES

Cardiomyopathy is a disease involving the heart muscle itself. Cardiomyopathies can be classified according to morphologic and hemodynamic characteristics.

Table 5-11. Morphologic and Hemodynamic Characteristics of Cardiomyopathies

<table>
<thead>
<tr>
<th></th>
<th>Dilated</th>
<th>Hypertrophic</th>
<th>Restrictive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biventricular dilatation</td>
<td>Marked hypertrophy of left ventricle and occasionally of right ventricle; can have disproportionate hypertrophy of septum</td>
<td>Reduced ventricular compliance; usually caused by infiltration of myocardium (e.g., by amyloid, hemosiderin, or glycogen deposits)</td>
</tr>
<tr>
<td>Cardiac output</td>
<td>↓</td>
<td>Normal or ↓</td>
<td>Normal to ↓</td>
</tr>
<tr>
<td>Stroke volume</td>
<td>↓</td>
<td>Normal or ↑</td>
<td>Normal or ↓</td>
</tr>
<tr>
<td>Ventricular filling pressure</td>
<td>↑</td>
<td>Normal or ↑</td>
<td>↑</td>
</tr>
<tr>
<td>Chamber size</td>
<td>↑</td>
<td>Normal or ↓</td>
<td>Normal or ↑</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>↓</td>
<td>↑</td>
<td>Normal to ↓</td>
</tr>
<tr>
<td>Diastolic compliance</td>
<td>Normal</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Other findings</td>
<td>May have associated functional mitral or tricuspid regurgitation.</td>
<td>Obstruction may develop between interventricular septum and septal leaflet of mitral valve.</td>
<td>Characteristic ventricular pressure tracing that resembles those recorded in constrictive pericarditis, with early diastolic dip-and-plateau configuration</td>
</tr>
</tbody>
</table>

Dilated (Congestive) Cardiomyopathy

Characterized by diminished myocardial contractility, usually involving both ventricles; most common cause for heart transplants.

Etiologies of Dilated (Congestive) Cardiomyopathy

- Ischemic (most common)
- Idiopathic (next most common)
- Alcoholic
- Peripartum
- Postmyocarditis due to infectious agents (viral, parasitic, mycobacterial, Rickettsiae)
• Toxins (cobalt, lead, arsenic)
• Doxorubicin hydrochloride, cyclophosphamide, vincristine
• Metabolic: chronic hypophosphatemia, hypokalemia, hypocalcemia, uremia

Clinical Manifestations. Symptoms and signs of left and right ventricular failure. Typical symptoms of systolic dysfunction.

Diagnosis
• X-ray: cardiomegaly with pulmonary congestion
• EKG: sinus tachycardia, arrhythmias, conduction disturbances
• Echo (key diagnostic study): dilated left ventricle, generalized decreased wall motion, mitral valve regurgitation; transesophageal echo is more sensitive and specific than transthoracic
• Catheterization: dilated hypocontractile ventricle, mitral regurgitation

Treatment. Patients are treated as those with systolic heart failure. ACE, beta blockers, and spironolactone lower mortality. Diuretics and digoxin decrease symptoms. Implantable defibrillator may decrease risk of sudden death when the ejection fraction is <35%.

Hypertrophic Cardiomyopathy
These disorders with thickened ventricles present with diastolic dysfunction.
• Hypertensive cardiomyopathy (from years of untreated hypertension, similar to hypertensive nephrosclerosis in the kidney)
• Hypertrophic obstructive cardiomyopathy (HOCM).

Hypertrophic Obstructive Cardiomyopathy
Although hypertrophic obstructive cardiomyopathy (HOCM) can apparently develop sporadically, it is hereditary in >60% of cases and is transmitted as an autosomal dominant trait.
• An abnormality on chromosome 14 has been identified in the familial form of the disease.
• The distinctive hallmark of the disease is unexplained myocardial hypertrophy, usually with asymmetric thickening of the interventricular septum.

Pathophysiology. As a result of the hypertrophy, left ventricular compliance is reduced, but systolic performance is not depressed. Diastolic dysfunction is characteristic, resulting in decreased compliance and/or inability for the heart to relax.
• The heart is hypercontractile, and systole occurs with striking rapidity.
• Ejection fractions are often 80–90% (normal is 60%, ±5%), and the left ventricle may be virtually obliterated in systole.
• An aberrantly protruding mitral valve with long leaflets may obstruct LV outflow (the obstructive component of HOCM).
• Obstruction is influenced by several factors.
Table 5-12. Factors That Modify Obstruction in Hypertrophic Obstructive Cardiomyopathy

<table>
<thead>
<tr>
<th>Increase Obstruction</th>
<th>Decrease Obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Physiologic or Pharmacologic Factors</td>
</tr>
<tr>
<td>Increase in contractility</td>
<td>Tachycardia, Digitalis glycosides, β-adrenergic stimulation (e.g., epinephrine, exercise), Premature beats</td>
</tr>
<tr>
<td>Reduction in preload</td>
<td>Valsalva maneuver, Decrease in intravascular volume, Standing, Nitroglycerin, Vasodilator drugs, Tachycardia</td>
</tr>
<tr>
<td>Reduction in afterload</td>
<td>Hypovolemia (diuretics), Nitroglycerin and related drugs, Vasodilator drugs</td>
</tr>
</tbody>
</table>

Clinical Manifestations

- Dyspnea, angina, presyncope, syncope with exertion, and palpitations
- Large jugular A wave, bifid carotid pulse, palpable S₄ gallop, systolic murmur and thrill, mitral regurgitation murmur
- Sudden death can sometimes be the first manifestation.

Diagnosis

- EKG: left ventricular hypertrophy, pseudo Q waves (often seen V₁–V₃), ventricular arrhythmias
- Echocardiogram is the mainstay of diagnosis. It typically shows hypertrophy, systolic anterior motion of mitral valve, and midsystolic closure of aortic valve
Clinical Pearl
With HOCM, avoid the following:
- Digitalis
- Diuretics
- Vasodilators
- Exercise

Treatment
- Beta-blockers
- Calcium channel blockers that reduce heart rate: diltiazem, verapamil
- Disopyramide, occasionally
- Use implantable defibrillator if there is syncope
- Surgery in severe cases—septoplasty

Restrictive Cardiomyopathy
Restrictive cardiomyopathy (least common cause of cardiomyopathy) is a myocardial disorder characterized by rigid noncompliant ventricular walls.

Etiologies are infiltrative (sarcoidosis/amyloidosis; hemochromatosis; neoplasia); scleroderma; and radiation.

Pathophysiology. The myocardium is rigid and noncompliant, impeding ventricular filling and raising cardiac filling pressures from abnormal diastolic function. Systolic performance is often reduced, but the overriding problem is impaired diastolic filling, which produces a clinical and hemodynamic picture that mimics constrictive pericarditis.

Clinical manifestations
- Dyspnea, exercise, intolerance, weakness
- Elevated jugular venous pressure, edema, hepatomegaly, ascites, S₄ and S₃ gallop, Kussmaul sign

Diagnosis
- X-ray: mild cardiomegaly, pulmonary congestion
- EKG: low voltage, conduction disturbances, Q waves
- Echo: characteristic myocardial texture in amyloidosis with thickening of all cardiac structures
- Catheterization: square root sign; elevated left- and right-sided filling pressures

Treatment. There is no good therapy; death ultimately results from CHF or arrhythmias. Consider heart transplantation.
PERICARDIAL DISEASE

Acute Pericarditis

Acute pericarditis is inflammation of the pericardial lining around the heart.

![Figure 5-11. Acute Pericarditis with Diffuse ST Segment Elevation](image)

Etiology
- Idiopathic
- Infections (viral)
- Uremia
- Vasculitis (connective tissue diseases)
- Lupus (and other rheumatoid disorders)
- Disorders of metabolism
- Neoplasms
- Trauma

Clinical Manifestations. Chest pain, often localized substernally or to the left of the sternum, is usually worsened by lying down, coughing, and deep inspiration (which helps in the differential diagnosis with MI) and is relieved by sitting up and leaning forward.

Pericardial friction rub (diagnostic of pericarditis) is a scratchy, high-pitched sound that has 1 to 3 components corresponding to atrial systole, ventricular systole, and early diastolic ventricular filling. The ventricular systole component is present more consistently. The rub is often transient and is best heard with the diaphragm of the stethoscope as the patient sits forward at forced-end expiration.
Diagnosis. EKG may be diagnostic and reveals a diffuse ST-segment elevation with upright T waves at the onset of chest pain. PR segment depression is very specific. The **diffuseness of the ST-segment elevation, absence of reciprocal leads, and absence of the development of Q waves** distinguish the characteristic pattern of acute pericarditis from the pattern seen in acute MI.

Treatment of acute pericarditis involves treating its etiology. In idiopathic pericarditis, treat with anti-inflammatory medications (NSAIDs, aspirin, corticosteroids). Adding colchicine to an NSAID decreases recurrence.

Pericardial Effusion

Fluid may accumulate in the pericardial cavity in virtually all forms of pericardial disease. The fluid may be a transudate, as in the serous cavity effusions that develop in patients with CHF, overhydration, or hypoproteinemia. More often, however, the pericardial effusion is an exudate, reflecting the presence of pericardial injury.

- Serosanguineous pericardial fluid is a classic sign in tuberculosis and neoplastic diseases.
- Frank blood in the pericardial space may occur in cases of aortic aneurysm or aortic dissection.
- Hemopericardium may also be produced by closed or penetrating trauma, rupture of the heart in acute MI, and bleeding caused by coagulation defects.
- When fluid accumulates slowly, the pericardium expands to accommodate it. When fluid accumulates rapidly, however, it compresses the heart and inhibits cardiac filling (cardiac tamponade).

Diagnosis. Echocardiography is the most effective laboratory technique available. The presence of pericardial fluid is recorded as a relatively echo-free space between the posterior pericardium and the posterior left ventricular epicardium in patients with small effusions. In patients with large effusions, the heart may swing freely within the pericardial sac, and this motion may be associated with electrical alternans.

Chest x-ray may show a “water-bottle” configuration of the cardiac silhouette.

Treatment. Treatment includes fluid aspiration and management of the etiology.

Cardiac tamponade

Cardiac tamponade is a life-threatening condition in which a pericardial effusion has developed so rapidly or has become so large that it compresses the heart.

Etiology

- Neoplasia
- Idiopathic (usually viral) pericarditis
- Nonviral infection: tuberculous; suppurative
- Intrapericardial hemorrhage with or without pericarditis
- Wounds, including surgery of chest; heart; pericardium
- Postpericardiotomy syndrome
Clinical Manifestations. Most patients with cardiac tamponade complain of dyspnea, fatigue, and orthopnea.

- Pulsus paradoxus, characterized by a decrease in systolic blood pressure >10 mm Hg with normal inspiration (very common)
 - The paradoxical pulse often can be noted by marked weakening or disappearance of a peripheral pulse during inspiration.
 - Paradoxical pulse is not diagnostic of cardiac tamponade; it can occur in chronic lung disease, acute asthma, severe CHF, and even hypovolemic shock.

- Neck vein distension with clear lung
- Shock (hypotension)
- Decreased heart sounds
- Beck’s triad is associated with acute tamponade: low blood pressure, distended neck veins, and decreased heart sounds

Diagnosis. Clinical manifestations followed by echocardiography. A surgical pericardial window may be needed for chronic effusions. Cardiac catheterization will confirm that left and right atrial pressures are equal.

Treatment. Treat with pericardiocentesis and subxiphoid surgical drainage.

Constrictive Pericarditis
Constrictive pericarditis is the diffuse thickening of the pericardium in response to prior inflammation, resulting in reduced distensibility of the cardiac chambers.

- Cardiac output is limited and filling pressures are increased to match the external constrictive force placed on the heart by the pericardium.
- The fundamental hemodynamic abnormality is abnormal diastolic filling.

Etiology
- Idiopathic, unknown
- Following open-heart surgery
- Following thoracic radiation
- Postviral infection

Clinical Manifestations. Most patients complain of dyspnea on exertion due to limited cardiac output. Orthopnea occurs in about 50% of patients. Symptoms and signs related to systemic venous hypertension are often reported: ascites, edema, jaundice, hepatic tenderness, and hepatomegaly (manifestations of right-side failure). Jugular venous distension increases with inspiration (Kussmaul sign). Heart sounds are distant, and an early diastolic apical sound, or “pericardial knock,” is often present and can be confused with an S3 gallop.
Diagnosis

- Chest CT or MRI (best test): thickened pericardium; pericardial calcifications may be seen in tuberculous constriction
- EKG: low-voltage and nonspecific T-wave changes
- Chest x-ray: heart is usually normal in size
- Cardiac catheterization
 - Marked “y” descent is present in right atrial pressure tracing
 - Characteristic “dip and plateau” or “square root” sign is present in left and right ventricular pressure tracing
 - Equalization of end-diastolic pressures in all 4 chambers and pulmonary artery

It is sometimes difficult to distinguish constrictive pericarditis from restrictive cardiomyopathy. Left ventricular ejection fraction is more likely to be decreased in the latter.

Treatment. Treated conservatively at first with mild sodium restriction and diuretics. Pericardectomy may be needed.

Clinical Recall

Which of the following clinical or diagnostic findings is most specific for the diagnosis of acute pericarditis?

A. Echocardiography showing ventricular wall thickening with a Kussmaul sign

B. Echocardiography showing echo-free space between the posterior pericardium and the posterior LV epicardium with distant muffled heart sounds

C. Cardiac catheterization showing a marked “y” descent in the right atrial pressure tracing with a Kussmaul sign

D. EKG showing a decrease in SBP >10 mm Hg with normal inspiration

E. EKG showing diffuse ST-segment elevation with PR segment depression

Answer: E
RATE AND RHYTHM DISTURBANCES

Disorders of Sinus Node Function

Sinus bradycardia
Ventricular complexes are normal width, evenly spaced, rate <60/min.

Etiology
- Excessive vagal tone causes: acute MI (particularly diaphragmatic); carotid sinus pressure; vomiting; Valsalva maneuver; phenothiazines; digitalis glycosides
- Depression of sinus node automaticity: beta-adrenergic blocking agents; calcium-blocking drugs
- Marathon running and swimming
- Hypothyroidism
- Normal variant

Treatment. In the absence of symptoms, no treatment is needed. If symptoms are present, administer atropine acutely. If symptoms and bradycardia still continue, consider a pacemaker.

Atrioventricular block
Atrioventricular (AV) block can be classified in 2 ways: anatomical (based on site of block as determined by His bundle electrocardiography) or clinical (based on the routine ECG). The classic clinical types are first-, second-, and third-degree (or complete) AV block.

First-Degree AV Block
First-degree AV block is pulse rate (PR) interval >0.20 s at heart rate 70 beats/min. It is caused by a cardiomyopathy or by a degenerative change in the AV conduction system due to aging, digitalis, exaggerated vagal tone, ischemia (diaphragmatic infarction, or inflammation (myocarditis, acute rheumatic fever). No treatment is needed.
Second-Degree AV Block

Table 5-13. Type I versus Type II Second-Degree AV Block

<table>
<thead>
<tr>
<th></th>
<th>Type I (Mobitz I, Wenckebach)</th>
<th>Type II (Mobitz II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobitz Type I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Progressive prolongation of the PR interval until a P wave is completely blocked and a ventricular beat is dropped. PR interval of the next conducted beat is shorter than preceding PR interval.</td>
<td>Blocked beat occurs suddenly and is not preceded by a change in duration of the PR interval. Patient is equipped with a pacemaker, which cuts in to sustain a regular ventricular rhythm.</td>
</tr>
<tr>
<td>Site of block</td>
<td>Usually AV nodal (supra-Hisian)</td>
<td>Infranodal (intra- or infra-Hisian)</td>
</tr>
<tr>
<td>QRS complex</td>
<td>Usually normal in width</td>
<td>Usually wide (bundle branch block) with infra-Hisian block; narrow with intra-Hisian block</td>
</tr>
<tr>
<td>Causes</td>
<td>Degenerative changes in AV node; diaphragmatic myocardial infarct; digitalis toxicity; myocarditis; rheumatic fever; increased vagal tone</td>
<td>Extensive anterior myocardial infarct; degenerative changes in His-Purkinje system; massive calcification of mitral or aortic valve anulus</td>
</tr>
<tr>
<td>EKG</td>
<td>PR interval lengths progressively until ventricular beat is dropped</td>
<td>PR interval is usually normal in duration and constant in length</td>
</tr>
<tr>
<td></td>
<td>PR interval shortens after dropped beat</td>
<td>if PR interval is prolonged, the duration of prolongation is fixed</td>
</tr>
<tr>
<td></td>
<td>RR interval lengths progressively up to the dropped beat</td>
<td>Blocked beats occur suddenly without progressive lengthening of the PR interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR interval of conducted beats is constant or a multiple of a basic RR interval cycle length</td>
</tr>
<tr>
<td>Effect of carotid sinus pressure</td>
<td>May increase degree of block</td>
<td>No effect</td>
</tr>
<tr>
<td>Effect of atropine</td>
<td>Frequently shortens PR interval and increases AV conduction</td>
<td>No effect</td>
</tr>
<tr>
<td>Consequences of progression to complete heart block</td>
<td>Escape focus usually junctional; narrow QRS complex; rate >45 beats/min; Adams-Stoke attacks uncommon</td>
<td>Escape focus infrajunctional (usually ventricular) wide QRS complex; rate <45 beats/min; Adams-Stoke attacks common. Junctional escape may be present with intra-Hisian block.</td>
</tr>
<tr>
<td>Treatment</td>
<td>None unless symptoms</td>
<td>Pacemaker</td>
</tr>
</tbody>
</table>
Third-Degree (Complete) AV Block

In third-degree (complete) heart block, all atrial beats are blocked, and the ventricles are driven by an escape focus distal to the site of block.

![EKG of complete atrioventricular block](image)

Figure 5-12. Third-Degree AV Block

The most common cause in adults is simple fibrous degenerative changes in the conduction system as a result of aging (Lenègre disease).

- Inferior or posterior infarction
- Infectious and inflammatory processes, such as abscesses, tubercles, tumors, infiltrative disease of the myocardium, sarcoid nodules, and gummas, myocarditis, and rheumatic fever
- Drugs like digitalis
- Ankylosing spondylitis

Clinical Manifestations. Symptoms are associated with Adams-Stoke attacks and occasionally CHF. Adams-Stoke attacks are caused by sudden asystole or the development of a ventricular tachyarrhythmia (transient ventricular tachycardia or ventricular fibrillation), leading to circulatory arrest. The bradycardia associated with complete heart block may lead to constrictive heart block in patients with myocardial disease.

Treatment. Pacing.

Supraventricular arrhythmias

Sinus tachycardia is defined as a normal rhythm with a rate of >100 beats/minute. The ventricular complexes are of normal width, evenly spaced, and a P-wave precedes a QRS complex. It usually represents a physiologic response to fever, hypotension, volume depletion, anxiety, and pain. Other causes include thyrotoxicosis, anemia, and some drugs.

Transient sinus tachycardia is occasionally the result of a rebound phenomenon following the discontinuation of beta-adrenergic blocking drugs.

Treatment is of the underlying cause. Beta blockers are useful for symptoms.

Paroxysmal supraventricular tachycardia is a group of ectopic tachyarrhythmias characterized by sudden onset and abrupt termination. They are usually initiated by a supraventricular premature beat (includes paroxysmal atrial tachycardia). Eighty percent are caused by re-entry, mainly in the AV node. It manifests as an absolutely regular rhythm at a rate 130–220 beats/min (average 160).
Treatment.

- Carotid (particularly right carotid) sinus massage, which increases vagal tone
- IV adenosine (effective in >90% of cases)
- Others: IV propranolol or esmolol, verapamil; IV digoxin; synchronized external cardioversion if patient is unstable

Multifocal atrial tachycardia is characterized by an irregular supraventricular rhythm, at rates 100–200 beats/min.

- The morphology of the P waves (at least 3 different P wave forms) varies from beat to beat, as does the PR interval. Each QRS complex, however, is preceded by a P wave.
- Generally seen in elderly patients or those with chronic lung disease who are experiencing respiratory failure
- Use diltiazem, verapamil, or digoxin; avoid beta blockers because of lung disease

Atrial flutter generally presents as an absolutely regular rhythm with a ventricular rate 125–150 beats/min and an atrial rate 250–300 beats/min (i.e., 2:1 block). It has been associated with:

- Chronic obstructive lung disease
- Pulmonary embolism
- Thyrotoxicosis
- Mitral valve disease
- Alcohol
- Paroxysmal arrhythmia in persons with normal heart

Therapy is cardioversion if hemodynamically unstable (e.g., hypotension), digitalis, verapamil, diltiazem, and beta-blockers.

![Figure 5-13. Atrial Flutter](image-url)
Atrial Fibrillation

Atrial fibrillation (AF) is the most common sustained cardiac rhythm disturbance. It is associated with heart disease but also occurs with no detectable disease. Thromboembolic events occur with AF and can cause significant morbidity and mortality.

![Figure 5-14. Atrial Fibrillation](image)

Figure 5-14. Atrial Fibrillation

AF is a supraventricular tachyarrhythmia characterized by uncoordinated atrial activation with subsequent decline of atrial function.

- On ECG, there is replacement of consistent P waves by fibrillatory waves that vary in size, shape, and timing, associated with an irregular, frequently rapid ventricular response (irregularly, irregular).
- The ventricular response to AF depends on electrophysiologic properties of the AV node, the level of vagal and sympathetic tone, and the action of drugs.
- Extremely rapid rates (>200 bpm) suggest the presence of an accessory pathway (W-P-W syndrome), which may manifest as AF.

When AF is compared with atrial flutter, atrial flutter is found to be more organized than AF, with a sawtooth pattern of regular atrial activation called flutter (f) waves on the ECG, particularly visible in leads II, III, and aVF.

The diagnosis of AF should be considered in elderly patients who present with complaints of shortness of breath, dizziness, or palpitations. The arrhythmia should also be suspected in patients with acute fatigue or exacerbation of CHF. In some patients, AF may be identified on the basis of an irregularly irregular pulse or ECG obtained for another condition.
Figure 5-15. Management of Atrial Fibrillation (AF)

Cardiac conditions commonly associated with the development of AF include rheumatic mitral valve disease, coronary artery disease, CHF, and hypertension (cause atrial structures to dilate). Noncardiac conditions which can predispose patients to develop AF include hyperthyroidism, hypoxemia, and alcohol intoxication.
Evaluation of Patients with AF (Minimum Workup):

- **H and P:** identifies severity of symptoms associated with AF, as well as the clinical type (paroxysmal, persistent, first episode); also allows assessment of frequency and duration of AF, as well as identification of precipitating factors and presence of underlying heart or lung disease.
- **ECG:** verifies the rhythm as well as identifies LVH, pre-excitation, prior MI.
- **Chest x-ray:** allows evaluation of lung parenchyma and identifies coexisting lung disease.
- **Echocardiogram:** identifies LVH, valvular disease, atrial size, and possible left atrial thrombus.
- **Thyroid function tests:** excludes hyperthyroidism as a cause of AF.

Management. The goals of initial management are hemodynamic stabilization, ventricular rate control, and prevention of embolic complications. When AF does not terminate spontaneously, the ventricular rate should be treated to slow ventricular response and anticoagulation started. Two approaches are used in management:

- **Ventricular rate control**
- **Rhythm control** (attempts to convert to and maintain sinus rhythm)

There is little difference in outcome between rate control and pharmacologic rhythm control; <25% of patients on an antiarrhythmic regimen remained in sinus rhythm at the end of 1 year.

As a general concept, rate control alone is considered for the patient who notices very few of the symptoms of the arrhythmia, while rhythm control is applied to the patient who immediately notices the arrhythmia and is experiencing the consequences (shortness of breath, or development of heart failure), or who is symptomatic on rate control.

Cardioversion (rhythm control)—mechanical cardioversion involves an electrical shock synchronized with the intrinsic activity of the heart. The synchronization ensures that electrical stimulation does not occur during the vulnerable phase of the cardiac cycle.

- May be performed electively to restore sinus rhythm in patients with persistent AF.
- May be performed for immediate need, i.e., when arrhythmia is main factor responsible for hemodynamic instability (acute heart failure, hypotension, or angina).
- Carries a risk of thromboembolism, so in cases of elective cardioversion, initiate anticoagulation before the procedure.

Cardioversion (rhythm control)—pharmacologic cardioversion can be achieved with drugs. It is less effective than electrical cardioversion, but it does not require conscious sedation or anesthesia, as does mechanical cardioversion.

- Carries a risk of thromboembolism, so initiate anticoagulation.
- Drugs proven effective for AF include amiodarone, dofetilide, flecainide, ibutilide, propafenone, and quinidine.
- Drugs used to maintain sinus rhythm in patients with AF include amiodarone, disopyramide, dofetilide, flecainide, propafenone, and sotalol.

Catheter ablation of AF foci is sometimes used as one of the nonpharmacologic therapies for eradicating AF. The techniques evolved with the demonstration that most AF is initiated by ectopic beats from focal areas that may be targeted for ablation. These foci arise more commonly from the 4 pulmonary veins. Thus, techniques have focused on the identification and elimination of these foci.
Ventricular rate control is preferred in most patients. The initial goal is <100–110 beats/min, although slower rates are sometimes recommended for severely ill patients. Beta blockers, calcium channel blockers, and digoxin are the drugs most commonly used for rate control. These agents do not convert atrial fibrillation to sinus rhythm and should not be used for that purpose. Beta blockers and calcium channel blockers are effective in reducing the heart rate at rest and during exercise in patients with AF. Digoxin, because of the inotropic effects, is the drug of choice in patients with coexisting systolic heart failure. Factors that should guide drug selection include the patient’s medical condition and the presence of concomitant heart failure. The following drugs are recommended for their demonstrated efficacy in rate control at rest and during exercise: atenolol, metoprolol, verapamil, and diltiazem.

Anticoagulation. The rate of ischemic stroke among patients with nonrheumatic AF averages 5% per year, which is 2–7x the rate for people without AF. Therefore, anticoagulation is beneficial for many patients despite its risk of bleeding.

The CHADS score is a clinical prediction rule for estimating the risk of stroke in a patient with AF. It is used to determine whether treatment is required with anticoagulation or antiplatelet therapy. A high CHADS score corresponds to a greater risk of stroke.

- C for CHF, H for hypertension, A for age >75, D for diabetes, S for prior stroke or TIA
- Each condition receives 1 point except prior stroke, which gets 2.

<table>
<thead>
<tr>
<th>CHADS Score</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>• No treatment</td>
</tr>
<tr>
<td>1</td>
<td>• Give aspirin or anticoagulate</td>
</tr>
<tr>
<td>≥2</td>
<td>• Anticoagulate</td>
</tr>
</tbody>
</table>

Control the heart rate, then anticoagulate. Use no medication for CHADS 0, aspirin or anticoagulants for CHADS 1, and dabigatran, rivaroxaban, or warfarin for CHADS 2 or more. Heparin is not necessary prior to starting oral anticoagulants. Anticoagulation is continued indefinitely.

Pre-excitation syndrome
Wolf-Parkinson-White Syndrome (WPW)
Pre-excitation is a condition in which all or some portion of the ventricle is activated by atrial impulses earlier than if the impulses were to reach the ventricles by way of the normal cardiac conduction pathways. This is achieved by the use of accessory pathways (Kent bundle).

- Classically, EKG shows a short PR interval followed by a wide QRS complex with a slurred initial deflection, or delta wave, representing early ventricular activation.
- WPW is associated with paroxysmal supraventricular arrhythmias alternating with ventricular arrhythmias, AF, and atrial flutter.

Treatment. If the patient is hemodynamically unstable, then immediate synchronized cardioversion is indicated (synchronized cardioversion). If the patient is hemodynamically stable, use procaainamide.
Avoid digoxin, beta blockers, and calcium-channel blockers, as they can inhibit conduction in the normal conduction pathway, increasing aberrant conduction. That could increase the likelihood of developing ventricular or supraventricular tachycardia.

Ablation is used as definitive treatment.

Figure 5-16. Wolff-Parkinson-White Syndrome

Ventricular arrhythmia

Ventricular tachycardia (VT) is defined as ≥3 consecutive beats of ventricular origin at a rate >120 beats/min. QRS complexes are wide and often bizarre.

Etiology

- After an acute MI
- Cardiomyopathies
- Hypokalemia, hypercalcemia, hypomagnesemia, and hypoxia
- Digitalis toxicity
- Thioridazine drugs

Clinical Presentation. Patients with VT often present with concomitant hypotension, CHF, syncope, or cardiac arrest.

- Independent and asynchronous atrial and ventricular contractions produce the following signs. These signs are absent when AF is present.
 - Variation in systolic blood pressure, as measured peripherally
 - Variation in intensity of the heart sounds
 - Intermittent cannon A waves in jugular venous pulses caused by the simultaneous contraction of the atrium and ventricles
 - Extra heart sounds
- Because of asynchronous activation of the right and left ventricles, the first and second sounds are widely split.
Table 5-14. QRS Complex

<table>
<thead>
<tr>
<th>Wide (>0.12 s)</th>
<th>Narrow (<0.12 s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>Irregular</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>Atrial fibrillation (rarely)</td>
</tr>
<tr>
<td>Supraventricular tachycardia (aberration)</td>
<td>Paroxysmal supraventricular tachycardia</td>
</tr>
<tr>
<td>Wolff-Parkinson-White syndrome</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-17. Management of VT

- No pulse: Treat as VF
- Stable:
 - O₂
 - IV access
 - Amiodarone or lidocaine
 - Lidocaine until VT resolves
 - Procainamide until VT resolves
 - Cardiovert if patient becomes unstable
- Unstable:
 - O₂
 - IV access
 - Consider sedation
 - Cardiovert 100 J
 - Cardiovert 200 J
 - Cardiovert 300 J
 - Cardiovert 360 J
Clinical Recall

Which of the following is the most appropriate management in the treatment of Wolf-Parkinson-White syndrome?

A. Procainamide
B. Propranolol
C. Verapamil
D. Nimodipine
E. Sotalol

Answer: A

Torsade de Pointes

Torsade de Pointes is characterized by undulating rotations of the QRS complexes around the electrocardiographic baseline. Arrhythmias are initiated by a ventricular premature beat in the setting of abnormal ventricular repolarization characterized by prolongation of the QT interval.

Figure 5-18. Torsade de Pointes

Etiology. Antiarrhythmic drugs that prolong ventricular repolarization include:

- Quinidine
- Procainamide
- Disopyramide
- Psychotropic drugs: phenothiazines, thioridazine, tricyclics, lithium
- Electrolyte imbalance: hypokalemia, hypomagnesemia
- CNS lesion: subarachnoid or intracerebral hemorrhage

Clinical Presentation. Patients with long QT interval are prone to recurrent dizziness or syncope from the ventricular tachycardia.

Sudden auditory stimuli, such as the ringing of the telephone at night, may initiate torsade de Pointes in a vulnerable individual with a long QT interval syndrome.

Treatment. Treat the underlying disorder. In the case of the antiarrhythmics, use a drug such as lidocaine. With electrolyte imbalance disorders, replace potassium and magnesium. Cardiac pacing or isoproterenol infusion may suppress episodes of tachycardia, useful for emergency treatments. If hemodynamically unstable (e.g., hypotension), consider cardioversion (but this dysrhythmia often reoccurs).
Ventricular Fibrillation
See the Emergency Medicine section.

Figure 5-19. ACLS Pulseless Arrest Algorithm
DRUGS FOR CARDIOVASCULAR DISEASE

Amiodarone
Amiodarone is a very effective antiarrhythmic drug and can be used in ventricular tachycardia, AF, and atrial flutter. Because it has a long half-life (>50 days), drug interactions are possible for weeks after discontinuation.

Side effects may be severe, even fatal:
- **Lungs**: severe interstitial disease with hypoxia, cough, fever, and chest pain
- **Nervous** (20%): abnormal gait, coordination, and balance, tremor, muscle weakness, numbness
- **Thyroid**: hypo- or hyperthyroidism (the drug is structurally similar to thyroxine)
- **Dermatology**: photosensitivity, blue-grey skin discoloration
- **Eye**: visual loss, blurriness, halos, corneal deposits

Nitrates
In **low doses**, nitrates increase venous dilation and subsequently reduce preload. In **medium doses**, they increase arteriolar dilatation and subsequently decrease afterload and preload. In **high doses**, they increase coronary artery dilatation and subsequently increase oxygen supply.

Side effects of nitrates include orthostatic hypotension, reflex tachycardia, throbbing headache, and blushing—all caused by vasodilation. Nitrates are contraindicated if systolic BP <90 mm Hg. There must be a window-free period of >8 hours with nitrate therapy to reduce the incidence of tachyphylaxis.
Antiarrhythmic Drugs

Table 5-15. Antiarrhythmic Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adverse Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disopyramide</td>
<td>Anticholinergic effects; hypotension; heart failure; heart block; tachyarrhythmia</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>CNS (drowsiness, agitation, seizures); heart block</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>CNS (ataxia, nystagmus, drowsiness); hypotension and heart block with rapid IV injection</td>
</tr>
<tr>
<td>Procaainamide</td>
<td>Lupus-like syndrome; GI; rash; hypotension; aggravation of arrhythmia; blood dyscrasias</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Aggravation of arrhythmias (“quinidine syncope”); thrombocytopenia; fever, rash; cinchonism; GI symptoms; digoxin-quinidine interaction (elevation of digoxin levels)</td>
</tr>
<tr>
<td>(\beta)-adrenergic blocking agents</td>
<td>Heart block; hypotension; asthma; hypoglycemia; lethargy; impotence</td>
</tr>
<tr>
<td>Verapamil</td>
<td>CHF, asystole, constipation</td>
</tr>
<tr>
<td>Adenosine</td>
<td>Transient dyspnea, noncardiac chest pain, rarely hypotension</td>
</tr>
<tr>
<td>Mexiletine</td>
<td>Lidocaine-like drug; local anesthetic</td>
</tr>
<tr>
<td>Tocainide</td>
<td>Lidocaine-like drug</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>Very long half-life (20–40 d); may increase digoxin level; may worsen existing cardiac conduction disturbances; may prolong Coumadin effect</td>
</tr>
<tr>
<td>Encainide</td>
<td>Negative inotropism; QRS and PR prolongation</td>
</tr>
<tr>
<td>Flecaainide</td>
<td>Negative inotropism; QRS and PR prolongation</td>
</tr>
<tr>
<td>Propafenone</td>
<td>Negative inotropism; QRS and PR prolongation</td>
</tr>
</tbody>
</table>

Beta Blockers

Beta blockers have been shown to improve survival after an acute MI and in CHF. They decrease heart rate, BP, and contractility, which decrease myocardial oxygen requirement. They are contraindicated in presence of severe asthma in about 35% of patients.

Nonselective beta blockers may mask hypoglycemic symptoms in insulin-dependent diabetics.

Beta blockers can cause fatigue/insomnia, mental depression, lipid abnormalities, hallucinations, Raynaud phenomenon, bronchoconstriction, mask signs/symptoms of insulin-induced hypoglycemia, and sexual dysfunction.

Nebivolol is a unique beta blocker; it is a beta-1 specific blocker that increases nitric oxide and thus does not cause erectile dysfunction.
Table 5-16. Pharmacologic Properties of Select β-Blocking Agents

<table>
<thead>
<tr>
<th>Generic Name (Trade Name)</th>
<th>Cardio-Selective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metoprolol (Lopressor)</td>
<td>Yes</td>
</tr>
<tr>
<td>Atenolol (Tenormin)</td>
<td>Yes</td>
</tr>
<tr>
<td>Propranolol (Inderal)</td>
<td>No</td>
</tr>
<tr>
<td>Nadolol (Corgard)</td>
<td>No</td>
</tr>
<tr>
<td>Timolol (Blocadren)</td>
<td>No</td>
</tr>
<tr>
<td>Pindolol (Visken)</td>
<td>No</td>
</tr>
<tr>
<td>Acebutolol (Sectral)</td>
<td>Yes</td>
</tr>
<tr>
<td>Labetalol (Normodyne or Trandate)</td>
<td>No</td>
</tr>
<tr>
<td>Esmolol (IV)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Calcium Channel Blockers

Calcium channel blockers work by decreasing preload and afterload. They may be harmful in the postinfarction period, especially if the patient has left ventricular failure. Their efficacy in angina is very limited—there is no mortality benefit.

Adverse effects of calcium channel blockers can be cardiac and noncardiac:

- **Cardiac**: CHF, reflex tachycardia, hypotension, lightheadedness, AV block
- **Noncardiac**: flushing, headache, weakness, constipation, nasal congestion, wheezing, peripheral edema, gingival hyperplasia

SHOCK SYNDROMES

Shock is a broad term that describes a state where oxygen delivery to the tissues is inadequate to meet the demands. It could be described as the imbalance between tissue oxygen supply and demand.

Four general types of shock syndromes are recognized: distributive, cardiogenic, hypovolemic, and obstructive. There are many etiologies within each class.

- **Distributive shock**: caused by pathologic peripheral blood vessel vasodilation
 - Examples are sepsis (especially gram-negative), anaphylaxis, neurogenic
 - Septic shock is most common form of shock among those admitted to ICU (followed by cardiogenic and hypovolemic shock)
- **Cardiogenic shock**: related to impaired heart pump function
 - Examples are acute coronary syndrome, valve failure (especially acute) and dysrhythmia
• **Hypovolemic shock**: caused by decreased circulatory volume
 – Examples are hemorrhage (GI bleed) and fluid loss

• **Obstructive shock**: non-cardiac obstruction to blood flow
 – Examples are pulmonary embolus, tension pneumothorax, and cardiac tamponade

The diagnosis of shock is a clinical diagnosis.

Table 5-17. Physiologic Characteristics of Various Forms of Shock

<table>
<thead>
<tr>
<th>Type of Shock</th>
<th>Heart Rate</th>
<th>Central Venous Pressure</th>
<th>Contractility</th>
<th>Systemic Vascular Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiogenic</td>
<td>↑</td>
<td>↑</td>
<td>↓↓</td>
<td>↑</td>
</tr>
<tr>
<td>Hypovolemic</td>
<td>↑</td>
<td>↓↓</td>
<td>±↑</td>
<td>↑</td>
</tr>
<tr>
<td>Distributive (sepsis)</td>
<td>↑</td>
<td>↓↓</td>
<td>±</td>
<td>↓</td>
</tr>
<tr>
<td>Obstructive</td>
<td>↑</td>
<td>±↑</td>
<td>±</td>
<td>↑ (tamponade, PE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑ (tension PTX)</td>
</tr>
</tbody>
</table>

In shock, cardiac output varies, **increasing** in the hyperdynamic state of distributive shock (and sometimes in hypovolemic shock depending on how much volume has been lost), but is always **decreasing** in cardiogenic shock. Treatment should begin quickly, since delayed therapy worsens outcomes.

- Start with ABCs and consider intubation for airway protection and to enhance ventilation and oxygenation, given the high incidence of cardiogenic and non-cardiogenic pulmonary edema.
- Maximize arterial oxygen saturation
- Circulatory support with normal saline or blood is used early. The exception might be in cardiogenic shock with pulmonary edema, where ECV is already expanded.
- Blood transfusion is the norm in traumatic hypovolemic shock.
- Hypotensive patients who do not respond to saline or blood will need pressor support: dopamine, vasopressin, or epinephrine in distributive shock, and dobutamine in cardiogenic shock.
- Hypotensive patients with septic shock who do not respond promptly to saline should be given a single dose of hydrocortisone, since adrenal insufficiency is common in severely ill patients. An ACTH stimulation test can also be done quickly to diagnose unsuspected adrenal failure.
Clinical Recall

Which of the following is a side effect of amiodarone?

A. Constipation
B. Orthostatic hypotension
C. Pulmonary fibrosis
D. Thrombocytopenia
E. Major depression

Answer: C
Learning Objectives

- List the types of anemia and describe their pathophysiology, diagnosis, and treatment
- Describe the presentation and diagnosis of hematologic neoplasias including acute leukemia, chronic leukemias, plasma cell disorders, and lymphomas
- Describe common platelet disorders
- List defects that can occur in the coagulation cascade and their associated disorders

ANEMIA

Anemia is a condition marked by the following:

- Hematocrit <41% in men or <36% in women, or
- Hemoglobin <13.5 g/dL in men or <12 g/dL in women

Etiology. Anemias are most easily classified according to their cell size.

- **Microcytic anemia** means a low mean corpuscular volume (MCV) <80. It is most commonly a result of iron deficiency, anemia of chronic disease, thalassemia, sideroblastosis, or lead poisoning. Anemia of chronic disease can be either microcytic or normocytic.

- **Macrocytic anemia** is characterized by an elevated MCV >100. This is most commonly from vitamin B12 or folic acid deficiency but can also result from the toxic effects of alcohol, liver disease, or chemotherapeutic agents such as methotrexate or medications such as zidovudine (AZT) or phenytoin.

- **Normocytic anemia** is characterized by a normal MCV. It can be caused by an early form of the conditions described, as well as most forms of hemolysis and aplastic anemia.

Clinical Presentation. The symptoms of anemia tend to be based on the severity of the anemia rather than the specific etiology. Early symptoms include fatigue and poor exercise tolerance. As the anemia worsens, there is dyspnea on exertion and lightheadedness. Eventually, confusion and altered mental status may develop as oxygen delivery to the brain decreases. Death from anemia is most often caused by decreased oxygen delivery to the heart and resulting myocardial ischemia.
The severity of symptoms is related to the underlying condition of the patient. A healthy young patient may have no symptoms at all with hematocrit 27–29%, whereas an older patient with heart disease may develop dyspnea or anginal symptoms with the same hematocrit.

Diagnosis. Once a diagnosis of anemia is determined based on a low hematocrit or hemoglobin, the first step is to determine the MCV. Iron studies, reticulocyte count, peripheral smear, red cell distribution width (RDW), Coombs test, vitamin B12, folate level, and even a possible bone marrow biopsy may be necessary to determine a specific etiology.

Treatment. Besides blood transfusion, treatment cannot be generalized. Packed RBCs are used to maintain a hematocrit >25–30%. This is based on the underlying condition of the patient. A healthy young patient can have transfusion withheld until hematocrit is in the low 20%. An older patient with coronary artery disease will need to be maintained when hematocrit >30%. Hematocrit should rise approximately 3 points for every unit of packed RBCs given. Whole blood is rarely, if ever, used.
Chapter 6 ● Hematology

Hematology

Anemia

- Hct <41%
 - <36%
- Hb <13.5 g/dL
 - <12 g/dL

MCV <80

Microcytic Anemia
- Iron deficiency anemia
- Anemia of chronic disease
- Sideroblastic anemia
- Thalassemia trait

Microcytic Anemia
- Check MCV
- MCV 80–100
 - Check Reticulocyte Count

Reticulocyte Count <3% (bad bone marrow response)

Normocytic Anemia
- Early stages iron deficiency anemia
- Early stages anemia of chronic disease
- Aplastic anemia
- Chronic renal failure

Reticulocyte Count >3% (good bone marrow response)

Intravascular Hemolysis
- Hemoglobinuria
- Decreased haptoglobin

- Autoimmune: cold agglutinin disease (IgM Ab)
 - Mycoplasma pneumoniae
 - EBV
 - Cryoglobulinemia (hepatitis)
- Microvascular
 - TTP
 - HUS
 - DIC
- Macrovascular
 - Aortic stenosis
 - Prosthetic valves
- Infection
 - Malaria
 - Babesia
- Complement
 - Paroxysmal nocturnal hemoglobinuria
- Enzyme
 - G6PD (severe type B)

- Autoimmune: warm agglutinin disease (IgG Ab)
 - SLE
 - CLL
 - HIV
- Membrane defect
 - Hereditary spherocytosis
- Abnormal Hb
 - Sickle cell anemia
 - HbS and HbC
- Enzyme
 - G6PD deficiency
 - Pyruvate kinase deficiency

Macrocytic Anemia
- Reticulocytosis (acute hemolysis)
- Alcoholism
- Drugs (AZT, phenytoin)

Megaloblastic Anemia
- Macrocytosis + hypersegmented neutrophils
- Folic acid deficiency
- Vitamin B12 deficiency

Macrocytic Anemia
- Check MCV
- MCV >100

Extravascular Hemolysis
- Jaundice
- Increased unconjugated bilirubin
- Pigment stones

Figure 6-1. Evaluation of Patients with Anemia
Microcytic Anemia

Iron Deficiency Anemia

Iron deficiency anemia is anemia with diminished RBC production and MCV <80, characterized by hypochromic cells and low levels of stored iron. It is almost always caused by blood loss, most commonly GI or menstrual.

Iron absorption is tightly regulated. A man requires 1 mg per day and a woman 2–3 mg per day on average. It is difficult for the body to increase the level of iron absorption. If there is even a modest increase in blood loss— occult blood in the stool, heavier menstrual flow, or increased demand such as in pregnancy—the body is poorly equipped to increase its level of absorption to exceed 3–4 mg per day. Other etiologies are increased urinary loss of blood, malabsorption, hemolysis, and poor oral intake.

Clinical Presentation. Mild anemia may have no or very limited symptoms. As hematocrit approaches 30%, fatigue and poor exercise tolerance may develop. As hematocrit lowers to 25%, tachycardia, palpititations, dyspnea on exertion, and pallor develop. Older patients and those with coronary artery disease may become dyspeptic at higher levels of hematocrit. More severe anemia results in lightheadedness, confusion, syncope, and chest pain. A systolic ejection murmur (“flow” murmur) may develop in any patient with moderately severe anemia. These symptoms are not specific for iron deficiency anemia and may develop with any form of anemia provided it is sufficiently severe.

Symptoms specific to iron deficiency are rare and cannot be relied upon to determine the diagnosis: brittle nails, spoon-shaped nails, glossitis, and pica. Iron deficiency anemia as a specific diagnosis is determined by laboratory findings, not symptoms.

Diagnosis. A low serum ferritin <10 ng/mL is the most characteristic finding of iron deficiency anemia. Low ferritin has good specificity (>99%) but poor sensitivity (60%); the ferritin level may be falsely elevated because it is an acute phase reactant and may be elevated in other inflammatory states or with malignancy. MCV is low except in very early cases. The serum iron is low and the total iron binding capacity is high. The RDW is elevated. The most specific test, although rarely necessary, is a bone marrow biopsy looking for stainable iron stores. The reticulocyte count is low. Platelet levels rise.

Treatment. Treatment usually includes oral therapy with ferrous sulfate tablets, continued until Hb and Ht have normalized and an additional 2-3 months to “restore” iron stores. With replacement of iron, a brisk increase in reticulocytes will be seen 2 weeks into treatment. Parenteral iron is used in patients with malabsorption, kidney disease, or an intolerance to oral therapy. Blood transfusion is the most effective way to deliver iron but is reserved for those with severe symptoms.

Anemia of Chronic Disease

Anemia of chronic disease is a defect in the body’s ability to make use of iron sequestered in stores within the reticuloendothelial system. It can be microcytic or normocytic. Anemia can accompany virtually any chronic inflammatory, infectious, or neoplastic condition. Hepcidin, a regulator of iron metabolism, plays an important role in anemia of chronic disease. In states where hepcidin level is abnormally high (e.g., inflammation), serum iron falls due to iron trapping within macrophages and liver cells and decreased gut iron absorption. This typically leads to anemia caused by an inadequate amount of serum iron being available for developing red cells.
Hepcidin inhibits iron transport by binding to the iron export channel ferroportin located on the surface of gut enterocytes and the plasma membrane of macrophages. By inhibiting ferroportin, it prevents iron from being exported and the iron is sequestered in the cells. It also prevents enterocytes from allowing iron into the hepatic portal system, thereby reducing dietary iron absorption. The iron release from macrophages is also reduced by ferroportin inhibition. In genetic diseases where hepcidin level is abnormally low, iron overload may occur (hemochromatosis) due to unwarranted ferroportin facilitated iron influx.

Clinical Presentation. Symptoms are based on the severity of the anemia. The only other symptoms are based on the specifics of the underlying disease.

Diagnosis. Serum ferritin level is normal or elevated. Serum iron level and total iron binding capacity (TIBC) are both low. Reticulocyte count is low.

Treatment. Correct the underlying disease. Iron supplementation and erythropoietin will not help, except in renal disease and anemia caused by chemotherapy or radiation therapy.

Sideroblastic Anemia
Sideroblastic anemia is a microcytic anemia caused by a disorder in the synthesis of hemoglobin, characterized by trapped iron in the mitochondria of nucleated RBCs. There are both hereditary and acquired forms. The hereditary form is due to a defect in aminolevulinic acid synthase or an abnormality in vitamin B6 metabolism. The acquired form is due to drugs such as chloramphenicol, isoniazid, or alcohol. Lead poisoning can cause sideroblastic anemia as well.

There is an association with myelodysplastic syndromes and refractory anemia. Sideroblastic anemia may progress to acute myelogenous leukemia in a small percentage of patients.

Clinical Presentation. Symptoms are related to the severity of the anemia. There is no specific finding that will be sufficiently suggestive of sideroblastic anemia to allow a diagnosis without significant lab evaluation.

Diagnosis. Serum ferritin level is elevated. Transferrin saturation is very high, and thus TIBC is very low. Serum iron level is high. The most specific test is a Prussian Blue stain of RBCs in the marrow that will reveal the ringed sideroblasts. Marrow reticuloendothelial iron is strikingly increased. Sideroblastic anemia is the only microcytic anemia in which serum iron is elevated.

Treatment. Remove the offending drug. Some patients, especially those with INH-associated sideroblastic anemia, will respond to pyridoxine therapy 2-4 mg per day. Consider transfusion for serious cases and BMT for refractory cases.

Clinical Pearl
Both iron deficiency and anemia of chronic disease may have decreased serum iron.

Chapter 6 • Hematology
Thalassemia
Thalassemia is a hereditary underproduction of either the alpha or beta globin chains of the hemoglobin molecule, resulting in a hypochromic, microcytic anemia. Gene deletion results in variable levels of disease. There are 4 genes coding for the alpha chain of hemoglobin. There can be deletions of 1, 2, 3, or all 4 genes.

- Beta thalassemia can be mutated in either 1 or 2 genes.
- Alpha thalassemia is more common in Asian populations, while beta thalassemia is more common in Mediterranean populations.

Clinical Presentation. Presentation depends on the number of abnormal genes.

- **Alpha thalassemia**
 - 1 gene deletion yields a normal patient; CBC, hemoglobin, and MCV are normal.
 - 2 gene deletion yields a mild anemia with hematocrit 30–40% and strikingly low MCV.
 - 3 gene deletion yields a more profound anemia with hematocrit 22–32% and very low MCV.
 - 4 gene deletion alpha thalassemia causes patients to die in utero, secondary to gamma chain tetrads called hemoglobin Barts.
In beta thalassemia trait there is a mild anemia with marked microcytosis (low MCV).

Patients with beta thalassemia major (or Cooley’s anemia) are homozygous for mutations of both genes coding for the beta hemoglobin gene. Patients become severely symptomatic starting age 6 months, when the body would normally switch from fetal hemoglobin to adult hemoglobin. They are severely symptomatic with growth failure, hepatosplenomegaly, jaundice, and bony deformities secondary to extramedullary hematopoiesis. They are later symptomatic from hemochromatosis, cirrhosis, and CHF from chronic anemia and transfusion dependence.

Diagnosis. Clues to the diagnosis of thalassemia trait is a mild anemia with a profound microcytosis. Beta thalassemia major has the severe symptoms, large spleen, and bone abnormalities described. Both forms of thalassemia are diagnosed by having a microcytic anemia with normal iron studies. Hemoglobin electrophoresis differentiates which type of thalassemia is present. In beta thalassemia, there is an increased level of hemoglobin F and hemoglobin A₂. In beta thalassemia major, the hemoglobin is as low as 3–4 g/dL. Those with alpha thalassemia will have normal amounts of hemoglobins F and A₂. Tetrads of beta chains are called hemoglobin H. Hemoglobin H is present in alpha thalassemia with 3 of 4 genes deleted. Target cells are present in all forms of thalassemia trait and thalassemia major. The RDW is normal in all forms because all of the cells are of the same size.

Treatment. Thalassemia traits of both the alpha and beta types do not require specific treatment. Beta thalassemia major patients require blood transfusions once or twice a month. The chronic transfusions lead to iron overload, which requires treatment with deferasirox. Oral deferasirox is the standard of care. This is easier to give than deferoxamine, which requires a subcutaneous pump. Splenectomy eliminates a major area of hemolysis and therefore helps reduce transfusion requirements. A small number of patients can be treated with a bone marrow transplantation.

Table 6-1. Iron Indices in Microcytic Anemia Syndromes

<table>
<thead>
<tr>
<th>Fe Panel</th>
<th>Iron Deficiency Anemia</th>
<th>Anemia of Chronic Disease</th>
<th>Sideroblastic Anemia</th>
<th>Thalassemia Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Iron</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Increased</td>
<td>Normal</td>
</tr>
<tr>
<td>Serum Ferritin</td>
<td>Decreased or Normal (early)</td>
<td>Increased</td>
<td>Increased</td>
<td>Normal</td>
</tr>
<tr>
<td>Transferrin/ TIBC</td>
<td>Increased</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Normal</td>
</tr>
<tr>
<td>% Saturation</td>
<td>Decreased</td>
<td>N/ Decreased</td>
<td>Increased</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Clinical Pearl

Thalassemia trait syndromes are asymptomatic.
Clinical Recall

Which of the following laboratory investigations has the highest specificity and sensitivity in the diagnosis of iron deficiency anemia?

A. Serum ferritin level
B. Serum iron level
C. Serum TIBC
D. Serum MCV
E. Bone marrow biopsy

Answer: E

MACROCYTIC ANEMIA

A 72-year-old alcoholic man comes to the office with several weeks of memory loss and tingling in his feet. His hematocrit is 32% and MCV 110.

Vitamin B12 (Cyanocobalamine) Deficiency

Vitamin B12 deficiency is decreased absorption or intake of vitamin B12, resulting in hematologic and/or neurologic abnormalities. The most common cause is pernicious anemia, a disorder causing decreased intrinsic factor production due to autoimmune destruction of parietal cells. The incidence of pernicious anemia increases with age. Gastrectomy and atrophic gastritis can also decrease intrinsic factor production. Various forms of malabsorption such as sprue, regional enteritis, and blind loop syndrome can block absorption of vitamin B12. Pancreatic insufficiency can result in the inability to absorb the vitamin. Rarely, tapeworm infection with Diphyllobothrium latum can decrease absorption. Decreased intake is unusual and requires several years to produce disease.

Clinical Presentation. Manifestations vary with the severity of the anemia. As such, you cannot specifically determine that a patient has B12 deficiency only from the symptoms of anemia. Neurologic manifestations may involve almost any level of the neurologic system. Patients may have peripheral neuropathy, position sense abnormality, vibratory, psychiatric, autonomic, motor, cranial nerve, bowel, bladder, and sexual dysfunction. Glossitis, diarrhea, and abdominal pain may occur. You may have either the hematologic or neurologic deficits individually or combined.

Diagnosis. Anemia with macrocytosis (increased MCV). A smaller number of patients may have the neurologic deficits alone. The WBCs have hypersegmented neutrophils with a mean lobe count >4. The red cells are characterized by macro-ovalocytes. Although macrocytosis can occur with hemolysis, liver disease, and myelodysplasia, these give round macrocytes. B12 and folate deficiency produce oval macrocytes. The hematologic pattern of vitamin B12 deficiency is indistinguishable from folate deficiency. The reticulocyte count is reduced, although the bone marrow is hypercellular. Pancytopenia may occur. An elevated LDH, bilirubin, and iron level may occur and are due to mild hemolysis of immature erythrocytes.
The most specific test is a low B12 level. Antibodies to intrinsic factor and parietal cells confirm the etiology as pernicious anemia. The Schilling test is rarely used to determine the etiology of vitamin B12 deficiency. It is not necessary if the patient has a low B12 level combined with the presence of antibodies to intrinsic factor. An elevated methylmalonic acid level occurs with B12 deficiency and is useful if the B12 level is equivocal.

Treatment. Replace the vitamin B12 lifelong. Options available for treating clinical vitamin B12 deficiency include **oral (daily)** and **parenteral (monthly intramuscular or subcutaneous)** preparations. Parenteral route is recommended for patients with neurologic manifestations of B12 deficiency. IV dosing is not recommended because that would result in most of the vitamin being lost in the urine.

Response of vitamin B12 deficiency anemia to treatment is usually rapid, with reticulocytosis occurring within 2–5 days and hematocrit normalizing within weeks. Treatment with cobalamin effectively halts progression of the deficiency process but might not fully reverse more advanced neurologic effects. If the underlying cause of the vitamin B12 deficiency is treatable (e.g., fish tapeworm infection or bacterial overgrowth), then treatment should include addressing the underlying etiology.

Patients who have vitamin B12 deficiency with associated megaloblastic anemia might experience severe **hypokalemia** and fluid overload early in treatment due to increased erythropoiesis, cellular uptake of potassium, and increased blood volume. Once treated for a vitamin B12 deficiency due to pernicious anemia or other irreversible problems with absorption, patients need to continue some form of cobalamin therapy **lifelong**.

Folic acid replacement can correct the hematologic abnormalities of B12 deficiency, but not the neurologic abnormalities.

Folic Acid Deficiency

Folic acid deficiency is almost always caused by some form of decreased dietary intake. It can lead to anemia. Occasionally, increased requirements from pregnancy, skin loss in diseases like eczema, or increased loss from dialysis and certain anticonvulsants such as phenytoin may occur. Consumption of high amounts of alcohol may have a direct effect on the folate absorption, due to inhibition of the enzyme intestinal conjugase. Folate is presented in foods as polyglutamate, which is then converted into monoglutamates by intestinal conjugase.

Clinical Presentation. Presentation depends entirely on the severity of the anemia.

Diagnosis. The hematologic presentation of folic acid deficiency is identical to B12 deficiency. The diagnosis is based on a low red-blood-cell, folic-acid level.

Treatment. Replace folic acid, almost always orally.

HEMOLYTIC ANEMIA

Hemolytic anemias are caused by decreased RBC survival from increased destruction of the cells. The destruction may be inside the blood vessels (intravascular) or outside (extravascular), which generally means inside the spleen. Hemolytic anemia may be **chronic** (sickle cell disease, paroxysmal nocturnal hemoglobinuria, and hereditary spherocytosis) or **acute** (drug-induced hemolysis, autoimmune hemolysis, or glucose 6-phosphate dehydrogenase deficiency).
Table 6-2. Classification of Hemolytic Anemias

<table>
<thead>
<tr>
<th>Hereditary Anemias</th>
<th>Acquired Anemias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane: hereditary spherocytosis, hereditary</td>
<td>Immune</td>
</tr>
<tr>
<td>elliptocytosis</td>
<td>• Autoimmune: warm antibody type, cold antibody</td>
</tr>
<tr>
<td></td>
<td>type</td>
</tr>
<tr>
<td></td>
<td>• Alloimmune: hemolytic transfusion reactions,</td>
</tr>
<tr>
<td></td>
<td>hemolytic disease of the newborn, allografts</td>
</tr>
<tr>
<td></td>
<td>(especially stem cell transplantation)</td>
</tr>
<tr>
<td></td>
<td>• Drug-associated</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism: G6PD deficiency, pyruvate kinase</td>
<td>Red Cell Fragmentation Syndromes</td>
</tr>
<tr>
<td>deficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin: genetic abnormalities (Hb S, Hb C,</td>
<td>Infections: malaria, clostridia</td>
</tr>
<tr>
<td>unstable)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical and Physical Agents: drugs, industrial/</td>
</tr>
<tr>
<td></td>
<td>domestic substances, burns</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secondary: liver and renal disease</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paroxysmal Nocturnal Hemoglobinuria</td>
</tr>
</tbody>
</table>

Clinical Presentation. The usual symptoms of anemia are present based on the severity of the disease, not necessarily the etiology. Fatigue and weakness occur with mild disease. Dyspnea and later confusion occur with more severe disease. The major difference between hemolytic anemia and the micro- and macrocytic anemias is that hemolysis is more often the etiology when the onset is sudden. This is, of course, provided that simple blood loss has been excluded. Hemolysis is often associated with jaundice and dark urine as well. Specific findings associated with each disease are described below. Fever, chills, chest pain, tachycardia, and backache may occur if the intravascular hemolysis is particularly rapid.

Diagnosis. Patients with hemolytic anemias generally have a normal MCV, but the MCV may be slightly elevated because reticulocytes are somewhat larger than older cells. The reticulocyte count is elevated. The LDH and indirect bilirubin are elevated. Bilirubin levels above 4 are unusual with hemolysis alone. The peripheral smear may aid in the specific diagnosis, and the haptoglobin may be low with intravascular hemolysis. Hemoglobin may be present in the urine when intravascular hemolysis is sudden and severe because free hemoglobin spills into the urine. There should not be bilirubin in the urine because indirect bilirubin is bound to albumin and should not filter through the glomerulus. Hemosiderin is a metabolic product of hemoglobin. Hemosiderin may be present in the urine if the hemolysis is severe and lasts for several days.

Treatment. Transfusion is needed as in all forms of anemia when the hematocrit becomes low. Hydration is, in general, useful to help prevent toxicity to the kidney tubule from the free hemoglobin. Specific therapy is discussed with each disease below. Patients with chronic hemolytic anemia need to be maintained on chronic folic acid therapy, as there is an increase in cell turnover.
Sickle cell disease is a hereditary form of chronic hemolysis, ranging from asymptomatic to severe, overwhelming crisis. It is characterized by irreversibly sickled cells and recurrent painful crises.

- Autosomal recessive hereditary disease
- Hemoglobin S is due to a substitution of a valine for glutamic acid as the sixth amino acid of the beta globin chain.
- **Heterozygous form (trait)** (8% of African-Americans); all those with the trait are asymptomatic
- **Homozygous form (disease)** (1 in 400 African-Americans)
- A sickle cell acute painful crisis may be precipitated by hypoxia, dehydration, acidosis, infection, and fever. However, the crisis may occur without the presence of these factors.
- Sickle cell crisis is usually not associated with an increase in hemolysis or drop in hematocrit.
 - If increased hemolysis occurs, consider another etiology such as concomitant glucose 6 phosphate dehydrogenase deficiency (G6PD) or acute splenic sequestration in a child.
 - If a sudden drop in hematocrit occurs, consider another etiology such as Parvovirus B19 infection or folate deficiency. The drop in hematocrit is from acute aplasia (decrease in cell production), not from hemolysis.

Clinical Presentation. Chronic manifestations include renal concentrating defects (isosthenuria), hematuria, ulcerations of the skin of the legs, bilirubin gallstones, aseptic necrosis of the femoral head, osteomyelitis, retinopathy, recurrent infections from *Pneumococcus* or *Haemophilus*, growth retardation, and splenomegaly followed in adulthood by autosplenectomy. The acute painful crisis consists of back, rib, chest, and leg pain. Occasionally some patients will have very severe and life-threatening manifestations of sickling. These include the acute chest syndrome consisting of severe chest pain, fever, leukocytosis, hypoxia, and infiltrates on the chest x-ray. The acute chest syndrome is indistinguishable from pneumonia. Stroke and TIA may also occur. Priapism can occur from infarction of the prostatic plexus of veins. Blindness and even myocardial infarction and cardiomyopathy may also occur. Pregnant patients experience increased rates of spontaneous abortion and low birth weight.

Sickle trait gives normal hematologic picture with no anemia and a normal MCV. The only significant manifestation of trait is the renal concentrating defect presenting with isosthenuria and **microscopic hematuria**. Sickle trait also increases the frequency of UTI. Those with trait will rarely develop the acute pain crisis under conditions of profound hypoxia and acidosis.
Diagnosis. Patients with sickle cell disease typically have a mild to moderate anemia with a normal MCV. The reticulocyte count should always be elevated in the 10–20% range unless they have folate deficiency or Parvovirus B19 aplastic crisis. LDH and bilirubin are elevated as in all types of hemolytic anemias. The hemoglobin electrophoresis is the most specific test. The peripheral smear shows sickled cells. The sickle prep (or Sickledex) is a quick screening test used to diagnose evidence of sickle cell trait and cannot distinguish between trait and homozygous disease. The urinalysis usually has blood present, although it is often microscopic. The white blood cell count is often elevated in the 10,000–20,000 range, although this can also indicate the presence of infection.

Treatment. An acute sickle cell pain crisis is treated with fluids, analgesics, and oxygen. Antibiotics are given with infection or even to patients with fever and leukocytosis even if a definite site of infection has not been documented. Ceftriaxone is the preferred agent because it covers Pneumococcus and Haemophilus influenza. Severe or life-threatening manifestations such as acute chest syndrome, CNS manifestations, priapism, and acute cardiac manifestations are managed with red blood cell transfusions if the hematocrit is low, and exchange transfusion if the hematocrit is high. Chronic management includes folic acid replacement and vaccinations against Pneumococcus and influenza. Hydroxyurea is used to decrease the frequency of the vaso-occlusive pain crisis. Bone marrow transplantation can be curative in severe cases.

Autoimmune, Cold Agglutinin, and Drug-Induced Hemolytic Anemia

Various forms of acquired hemolytic anemias can result from the production of IgG, IgM, or activation of complement C3 against the red cell membrane. They are often sudden and idiopathic. The lysis can be intravascular or extravascular (far more common). That is because the destruction of the cells most often occurs through macrophages in the spleen or by Kupffer cells in the liver.
Autoimmune destruction is often idiopathic. Known causes of autoimmune destruction are from antibodies produced in relationship to various forms of leukemia, especially chronic lymphocytic leukemia, viral infections, lymphoma, collagen vascular diseases like lupus, or in relationship to drugs. The most common drugs are the penicillins, cephalosporins, sulfa drugs, quinidine, alpha-methyldopa, procainamide, rifampin, and thiazides.

Ulcerative colitis can also lead to autoimmune hemolytic anemia. **Cold agglutinin disease** is an IgM antibody produced against the red cell in association with malignancies such as lymphoma or Waldenstrom macroglobulinemia and infections such as *Mycoplasma* or mononucleosis. Cold agglutinin destruction occurs predominantly in the liver. Liver-mediated destruction is not affected by steroids. Up to 50% of patients do not have an associated underlying disorder.

Clinical Presentation. Symptoms are generally related to the severity of the anemia, not the etiology. The onset may be very sudden resulting in fever, syncope, congestive failure, and hemoglobinuria. Mild splenomegaly is present when the disease has been occurring long enough for the time it takes for the spleen to enlarge. The drug history is often the clue with drug-induced varieties. Cold agglutinin disease results in cyanosis of the ears, nose, fingers, and toes. Weakness, pallor, jaundice, and dark urine may occur as it can in all forms of hemolysis of sufficient severity.

Diagnosis. Autoimmune hemolysis gives a normocytic anemia, reticulocytosis, increased LDH, absent or decreased haptoglobin, and increased indirect bilirubin, as can all forms of hemolysis. The Coombs test is the specific test that diagnoses autoimmune, cold agglutinin, and often even drug-induced hemolysis. Spherocytes are often present on the smear.
Treatment. Mild disease often occurs, which needs no treatment. In cases of drug-induced hemolysis, stop the offending drug. More severe autoimmune hemolysis is treated with steroids first. Splenectomy is done for those unresponsive to steroids. Cold agglutinin disease is primarily managed by avoiding the cold. Most cases of cold agglutinin disease are mild, but in those who have severe disease despite conservative measures, azathioprine, cyclosporine, or cyclophosphamide can be used. Rituximab is also useful. This is an anti-CD20 antibody. Steroids and splenectomy don’t work well with cold agglutinin disease because the destruction occurs in the liver. You need to control the lymphocytes which control the production of IgM.

Hereditary Spherocytosis

Hereditary spherocytosis is a chronic mild hemolysis with spherocytes, jaundice, and splenomegaly from a defect in the red cell membrane. It is an autosomal dominant disorder where the loss of spectrin in the red cell membrane causes the red cell to form as a sphere, rather than as a more flexible and durable biconcave disc. Hemolysis occurs because the spheres are not able to pass the narrow passages in the spleen.

Clinical Presentation. A chronic disorder with mild to moderate symptoms of anemia. Because the hemolysis occurs in the spleen, there is often splenomegaly and jaundice. Severe anemia occasionally occurs from folate deficiency or Parvovirus B19 infection such as in sickle cell disease. Bilirubin stones often occur, leading to cholelithiasis, often at a young age.

Diagnosis. A normal to slightly decreased MCV anemia with the elevated LDH; indirect bilirubin and reticulocyte count similar to any kind of hemolysis. Although spherocytes may be present with autoimmune hemolysis, hereditary spherocytosis has a negative Coombs test. The cells have increased sensitivity to lysis in hypotonic solutions known as an osmotic fragility test. The mean corpuscular hemoglobin concentration (MCHC) is elevated.

Treatment. Most patients require no treatment beyond folate replacement chronically. In those with more severe anemia, removal of the spleen will eliminate the site of the hemolysis. The symptoms and jaundice will resolve but the spherocytes will remain.

Figure 6-5. Features of Hereditary Spherocytosis
Seen on Peripheral Blood Smear
Paroxysmal Nocturnal Hemoglobinuria
Paroxysmal nocturnal hemoglobinuria (PNH) is a red cell membrane defect leading to intermittent dark urine and venous thrombosis and a chronic form of hemolysis. A red cell membrane defect in phosphatidyl-inositol glycan A (PIG-A) allows increased binding of complement to the red cell, leading to increased intravascular hemolysis. It is a clonal stem-cell disorder, and so can develop into aplastic anemia and leukemia. The cells are more susceptible to lysis by complement in an acid environment. Everyone becomes a little acidotic at night because of a relative hypoventilation.

Clinical Presentation. In addition to symptoms of anemia, these patients characteristically present with dark urine from intravascular hemolysis. Thrombosis of major venous structures, particularly the hepatic vein (Budd-Chiari syndrome), is a common cause of death in these patients. The hemoglobinuria is most commonly in the first morning urine because the hemolysis occurs more often when patients develop a mild acidosis at night.

Diagnosis. Besides the usual lab findings of hemolysis, such as an increased LDH, bilirubin, and reticulocyte count, these patients have brisk intravascular hemolysis and therefore have a low haptoglobin and hemoglobin in the urine. Hemosiderinuria occurs when the capacity of renal tubular cells to absorb and metabolize the hemoglobin is overwhelmed, and the sloughed off iron-laden cells are found in the urine. The gold standard test is flow cytometry for CD55 and CD59 on white and red cells. In PNH, levels are low or absent.

Treatment. Treatment for PNH depends on the severity of symptoms. Some patients with few or no symptoms require only folic acid and possible iron supplementation. Over time, the disease may progress and thus require more aggressive care.

- In the anemic patient with signs of hemolysis, prednisone is often given to slow the rate of red blood cell destruction.
- In the patient with acute thrombosis, thrombolytic therapy (streptokinase, urokinase, or tissue plasminogen activator) is often administered, followed by long-term anticoagulation drugs to help prevent further blood clots.
- Antiplatelet agents such as aspirin and ibuprofen may also help prevent blood clots. Unfortunately, some patients will continue to develop blood clots despite aggressive anti-coagulation agents.
- Avoid medications that increase the risk for thrombosis, such as oral birth control pills.

PNH is often associated with bone marrow failure. Occasionally patients will respond to antithymocyte globulin, but frequently they will continue to require red cell and/or platelet transfusions. Allogeneic bone marrow transplantation has been the mainstay of curative therapy for PNH. Recently, the drug eculizumab (brand name Soliris) was approved by the FDA to treat symptoms of the disease.

Glucose-6-Phosphate Dehydrogenase Deficiency
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a hereditary deficiency of an enzyme for producing the reducing capacity necessary for neutralizing oxidant stress to the red cell resulting in acute hemolysis.

Various forms of oxidant stress result in sudden hemolysis. The most common type of oxidant stress is actually from infections, not drugs. The most commonly implicated drugs are sulfa drugs, primaquine, dapsone, quinidine, and nitrofurantoin.

Note
Decay accelerating factor (DAF) is also known as CD55 and CD59. DAFs are the main proteins that protect RBCs from complement destruction.
Clinical Presentation. Patients are normal until exposed to the stress. A sudden, severe, intravascular hemolysis can occur including jaundice, dark urine, weakness, and tachycardia. The history of recent drug ingestion is the main clue to the diagnosis.

Diagnosis. The usual findings of an intravascular hemolysis include high LDH, bilirubin, and reticulocyte count with a normal MCV, low haptoglobin, and hemoglobinuria. Heinz bodies are precipitated hemoglobin inclusions seen in red cells. Bite cells are seen on smear indicating the removal of the Heinz bodies. The definitive test is the G6PD level, which can be falsely normal immediately after an episode of hemolysis. Hence, the level is best tested about 1 week after the event.

Treatment. There is no specific therapy beyond hydration and transfusion if the hemolysis is severe. The main therapy is to avoid oxidant stress in the future.

Clinical Recall
Which of the following clinical scenarios is an indication for an exchange transfusion in a patient with sickle cell anemia?

A. Acute chest syndrome with a low hematocrit
B. Priapism with a normal hematocrit
C. Pneumococcal sepsis with an elevated hematocrit
D. Focal neurological deficits with an elevated hematocrit STEMI with a normal hematocrit

Answer: D

APLASTIC ANEMIA
Aplastic anemia is failure of all 3 cell lines produced in the bone marrow, resulting in anemia, leukopenia, and thrombocytopenia (pancytopenia). The marrow is essentially empty with the absence of precursor cells. Many things can cause bone marrow failure, but the most common cause of true aplastic anemia is not often determined. Radiation, toxins such as benzene, drugs such as NSAIDs, chloramphenicol, alcohol, and chemotherapeutic alkylating agents can all cause aplastic anemia. Infiltration of the marrow with infections such as tuberculosis or cancer such as lymphoma can cause pancytopenia, but that is not truly aplastic anemia. Aplastic anemia can also be caused by infections such as hepatitis, HIV, CMV, Epstein-Barr virus, or Parvovirus B19 in immunocompromised patients.

Clinical Presentation. Patients typically present with bleeding from the thrombocytopenia, and possibly with a combination of the findings associated with deficiencies in all 3 cell lines. Fatigue from anemia and infections from neutropenia may also occur. The clinical presentation may give a clue to the presence of pancytopenia but is not sufficient to determine a true aplastic anemia by clinical manifestations alone. The absence of a classical association such as benzene, radiation, or chloramphenicol would most certainly not exclude a diagnosis of aplastic anemia. The most common single etiology is idiopathic.

Diagnosis. Pancytopenia on a CBC is the first test. A bone marrow biopsy confirms the diagnosis when alternative etiologies for a pancytopenia are not present. In other words, the marrow is
empty of almost all precursor cells as well as evidence of primary or metastatic cancer, infection, or fibrosis. The marrow is hypoplastic and fat filled with no abnormal cells seen.

Treatment. Treatment includes bone marrow transplant when the patient is young and healthy enough to withstand the procedure and there is a donor available (cure rate is 80–90% of patients age <50).

When bone marrow transplant is not possible, try immunosuppressive agents: a combination of antithymocyte globulin, cyclosporine, and prednisone (can lead to remission in 60–70% of patients). It is believed that T lymphocytes are primarily causal in the bone marrow failure, so drugs are used to decrease the T-cell response.

ACUTE LEUKEMIA

Acute leukemia is the rapid onset of bone marrow failure from the derangement of the pluripotent stem cell, causing the relentless destruction of the normal production of the entire bone marrow. Blood cells lose their ability to mature and function normally. Most cases of acute leukemia arise with no apparent cause, but there are several well known associations: radiation exposure, benzene, chemotherapeutic agents such as melphalan and etoposide, and some retroviruses. Genetic disorders such as Down syndrome and Klinefelter can cause an increased incidence of leukemia. Myelodysplasia and sideroblastic anemia can also develop into acute leukemia.

Clinical Presentation. Patients typically present with the effects of the leukemic blast cells crowding out the normal marrow cells, leading to symptoms of bone marrow failure (even if total WBC count is elevated or normal). Fatigue from anemia is the most common presenting complaint. Bleeding from thrombocytopenia occurs. Infection from the underproduction or abnormal function of WBCs also occurs.

Acute lymphocytic leukemia (ALL) is more common in children and acute myelogenous leukemia (AML) is more common in adults, but they are indistinguishable clinically. ALL is more often associated with infiltration of other organs, but AML can do it as well. Enlargement of the liver, spleen, and lymph nodes and bone pain are common at presentation. Disseminated intravascular coagulation (DIC) is associated with M3 promyelocytic leukemia. CNS involvement resembling meningitis is present at the time of initial diagnosis in about 5% of patients. CNS involvement is most characteristic of M4 and M5 monocytic leukemia. Rarely, a syndrome of “leukostasis” can occur when the white cell count is extremely elevated. This results from sludging of the leukemic cell in the vasculature, resulting in headache, dyspnea, confusion, and brain hemorrhage.

Diagnosis. The CBC is the first clue to the diagnosis. Most commonly, WBC is elevated, along with thrombocytopenia and anemia. In about 10% of acute leukemias, depression of all 3 cell lines is evident (aleukemic leukemia). Many other disorders can present as pancytopenia similar to leukemia such as aplastic anemia, infections involving the marrow, metastatic cancer involving the marrow, vitamin B12 deficiency, SLE, hypersplenism, and myelofibrosis. None of these will have leukemic blasts circulating in the peripheral blood, however. A bone marrow biopsy showing >20% blasts confirms the diagnosis of acute leukemia. The presence of blasts tells you the patient has acute leukemia, but blast analysis cannot be relied upon to always tell which type is present. AML is characterized by the presence of Auer rods, myeloperoxidase, and esterase. ALL is characterized by the presence of the common ALL antigen (CALLA) and terminal deoxynucleotidyl transferase (TdT). Auer rods are most specific for M3. Ultimately, the diagnosis rests upon the use of monoclonal antibodies, which recognize specific types of leukemia as well as the expression of specific CD antigens on the surfaces of the cells. Nonspecific findings that are also present are hyperuricemia and an increased level of LDH.
Chemotherapy is used initially in all patients to induce a remission. Inducing a remission means a removal of over 99.9% of the leukemic cells in the body and the elimination of peripheral blasts in circulation. This is followed by further rounds of chemotherapy to "consolidate" the leukemia further. After chemotherapy, adults with AML or ALL should be referred for allogeneic bone marrow transplantation. The initial chemotherapy for AML is cytosine arabinoside (AraC) and either daunorubicin or idarubicin. The initial chemotherapy for ALL is daunorubicin, vincristine, and prednisone. Promyelocytic leukemia is managed with the addition of the vitamin A derivative all-trans-retinoic acid (ATRA). Leukostasis events are managed with leukapheresis in addition to the chemotherapy.

ALL patients must also undergo prophylaxis of the central nervous system to prevent relapse there. The best agent for this is intrathecal methotrexate.

CHRONIC LEUKEMIA

Chronic Myelogenous Leukemia

Chronic myelogenous leukemia (CML) is a chronic myeloproliferative disorder characterized by the massive overproduction of myeloid cells. The cells retain most of their function until later in the course of the disease. Although the Philadelphia chromosome is characteristic of the disease, the cause of the production of this chromosome is unknown. It is a clonal disorder of myelocytes. The Philadelphia chromosome is a translocation between chromosomes 9 and 22, resulting in a gene producing an enzyme with tyrosine kinase activity.

Five percent of cases are Philadelphia-chromosome-negative.

Clinical Presentation. A markedly elevated white blood cell count can be found on routine blood count. The most common symptoms are fatigue, night sweats, and low-grade fever. Abdominal pain from massive enlargement of the spleen is common. Bone pain from infiltration with white cells can occur. Enlarged lymph nodes are rare. Infection and bleeding are uncommon because these white cells retain the majority of their function. Rarely, a leukostasis reaction can occur from extremely elevated amounts of white cells being produced in the range of 200,000–500,000/mm3.

The white cells then clog up the vasculature, resulting in dyspnea, blurry vision, priapism, thrombosis, and stroke.

Diagnosis. The main feature of the disease is an elevated white blood cell count consisting predominantly of neutrophils with a left shift. Blasts are either absent or present in very small amounts (<5%). The leukocyte alkaline phosphatase score (LAP) is diminished. Basophilia is characteristic of CML and all myeloproliferative disorders such as polycythemia vera. Although the B12 level is often elevated, this would not be enough to establish the diagnosis. The Philadelphia chromosome is a far more specific test for CML and should be done in a patient with a markedly elevated white cell count. A low LAP score is not as important as the PCR for Bcr/Abl. The platelet count can also be markedly elevated.

Treatment. The best initial therapy for CML is imatinib, which is also known by the manufacturer’s name, Gleevec®. Imatinib is a direct inhibitor of the tyrosine kinase produced by the Philadelphia chromosome. There is nearly a 90% hematologic response to imatinib, and as many as 60 to 70% of patients may lose the Philadelphia chromosome. The milder the disease, the greater the degree of hematologic response. Bone marrow transplantation is no longer the
clear first choice as therapy for CML. This is because of the extraordinary response to imatinib, as well as the high mortality associated with the bone marrow transplantation itself. If imatinib fails, then the therapy is bone marrow transplantation.

Chronic Lymphocytic Leukemia (CLL)

Chronic lymphocytic leukemia (CLL) is a massive overproduction of mature—but still leukemic—lymphocytes, usually from the monoclonal production of B lymphocytes. Etiology is unknown.

Clinical Presentation. CLL can often present as an asymptomatic elevation of white cells found on routine evaluation of patients or during investigations for other problems. Patients are exclusively older with 90% being age >50. When patients do have symptoms, they are often nonspecific—fatigue, lethargy, and uncomfortable enlargement of lymph nodes. Infiltration of other parts of the reticuloendothelial system such as the spleen, liver, and bone marrow also occurs. Infection and bleeding are unusual presentations of the disease. Staging for CLL is as follows:

- **Stage 0:** lymphocytosis alone
- **Stage 1:** lymphadenopathy
- **Stage 2:** splenomegaly
- **Stage 3:** anemia
- **Stage 4:** thrombocytopenia

Staging is important because the survival of untreated stage 0 and stage 1 disease is 10–12 years even without treatment. The survival of stage 3 and stage 4 disease is 1–2 years. CLL can be associated with various autoimmune phenomena such as thrombocytopenia and autoimmune hemolytic anemia.

Diagnosis. CLL is strongly suspected when an older patient has a marked elevation in the white cell count with a marked lymphocytic predominance in the range of 80–98% lymphocytes. The marrow is often infiltrated with the leukemic lymphocytes. CD19 is an antigen strongly associated with CLL. The cell count is usually elevated in the range of 30,000–50,000, but may go as high as 150,000. “Smudge cells” seen on a smear are characteristic of CLL.

Treatment. Early stage CLL with only an elevated white cell count or enlargement of lymph nodes is not treated. However, patients with symptomatic disease always need to be treated. Those with more advanced-stage disease should receive initial therapy with fludarabine. Fludarabine has greater efficacy than chlorambucil and should be considered the drug of choice. Autoimmune hemolysis and thrombocytopenia are treated with prednisone. Rituximab is used in those patients who express CD20, especially with autoimmune ITP or hemolytic anemias.

Hairy cell leukemia (HCL), a subtype of CLL, makes up 2% of all leukemias. It is characterized by an accumulation of abnormal B lymphocytes. The malignant B lymphocytes (“hairy cells”) accumulate in the bone marrow, interfering with the production of normal cells commonly causing pancytopenia. Patients develop infections, anemia and fatigue, or easy bleeding. Early satiety may occur from massive splenomegaly.

- HCL is commonly considered in the differential diagnosis after routine blood count shows unexpectedly low numbers of cell lines or after unexplained bruising or recurrent infections in an otherwise apparently healthy patient.
- Bone marrow biopsy is necessary for final diagnosis: the biopsy is used to confirm both the presence of HCL and the absence of any additional diseases.
• Diagnosis can be confirmed by viewing the cells with a special stain known as TRAP (tartrate resistant acid phosphatase).

• Pancytopenia in HCL is caused primarily by marrow failure and splenomegaly. Bone marrow failure is caused by the accumulation of hairy cells and reticulin fibrosis in the bone marrow, as well as by the unfavorable effects of dysregulated cytokine production.

• For treatment, purine analogs cladribine (2CDA) and pentostatin are the most common first-line therapies. For cladribine-resistant disease, consider monoclonal antibodies (rituximab most common) which destroy the malignant B cells. Alpha interferon is helpful in 60% of patients to stabilize the disease or produce a slow, minor improvement. More than 95% of new patients are treated well or at least adequately by cladribine or pentostatin; most can expect a disease-free remission time span of 10 years or even longer after taking one of these drugs just once.

Myelodysplastic Syndrome (MDS)

MDS is an idiopathic disorder that is considered “pre-leukemic” in that a number of people go on to develop acute myelogenous leukemia (AML). MDS is probably from a genetic defect. The most common defect is 5q deletion or “5q−”. Patients are usually elderly and present with a pancytopenia, elevated MCV, fatigue, infections, and/or bleeding because of the low cell counts. There is a small number of blasts from 1–20% and, in fact, it is the percentage of blasts present that tells how “close” a person is to AML.

Most patients die of infection or bleeding before they develop AML. This is because the disorder is slowly progressive and older patients “wear out” so to speak from cytopenias, more often than not going into the “blast phase” that characterizes AML. By definition, you must exclude B12 and folate deficiency because the disorder is so similar.

CBC and bone marrow are indispensable. You may find a bi-lobed neutrophil called a Pelger-Huet cell which is characteristic. Genetic testing for the 5q− is essential.

Treatment is periodic transfusions and control of the infections as they arise. Disease-specific therapy consists of the TNF inhibitor lenalidomide or thalidomide. Azacitidine or decitabine is useful when the 5q− is present. Some patients who are young enough with a match can undergo bone marrow transplantation.

Polycythemia Vera

Polycythemia vera is a disorder of red cell production. Red cells are produced in excessive amounts in the absence of hypoxia or increased erythropoietin levels.

Clinical Presentation. Patients present with:

• Markedly elevated hematocrit
• Splenomegaly
• Sometimes elevation of the platelet and white cell counts
• Thrombosis
• “Plethora” or redness and fullness of the face
• Pruritis (approximately 40% of patients), particularly after exposure to warm water such as in a shower or bath; possibly caused by abnormal histamine or prostaglandin production
Diagnosis. Diagnose with a high hematocrit in the absence of hypoxia, carbon monoxide poisoning, or elevated erythropoietin level. The most specific test is the Janus Kinase or JAK-2.

Treatment: Phlebotomy is the primary treatment; hydroxyurea may be used in addition to or as an alternative. Aspirin is used to reduce the risk of thrombotic events.

Essential Thrombocythemia

Essential thrombocythemia is a type of platelet cancer. Platelet count may be over a million. There is either thrombosis or bleeding. The most specific test is JAK-2. Treat with hydroxyurea and sometimes anagrelide.

Clinical Recall

Which of the following treatment options could be used in the management of a patient with stage 1 CLL?

A. Observation
B. Fludarabine
C. Prednisone
D. Rituximab
E. Fludarabine plus chlorambucil

Answer: A

PLASMA CELL DISORDERS

Multiple Myeloma

Multiple myeloma is a clonal abnormality of plasma cells resulting in their overproduction replacing the bone marrow as well as the production of large quantities of functionless immunoglobulins. The disease is characterized by various systemic manifestations such as bone, kidney, and infectious complications. Etiology is unknown.

Clinical Presentation. Bone pain is the most common clinical manifestation, usually in the back and the ribs, secondary to pathologic fractures. Radiculopathy from the compression of spinal nerve roots is also common. Infection particularly with encapsulated organisms such as *Pneumococcus* and *Haemophilus* is common. Renal failure and anemia are common. The symptoms of hypercalcemia such as polyuria, polydipsia, and altered mental status may occur. Weakness, fatigue, and pallor are common. Rarely, symptoms of a hyperviscosity syndrome such as blurry vision, confusion, and mucosal bleeding may occur.

Diagnosis. Although a normochromic, normocytic anemia is the most common laboratory finding, this is not specific for myeloma. A protein electrophoresis with a markedly elevated monoclonal immunoglobulin spike is present in almost all cases. This is most commonly IgG but may be IgA, IgD, or rarely a combination of two of these. In about 80% of individuals, routine x-ray will reveal the punched-out lytic lesion caused by the overproduction of osteoclast.
activating factor from the plasma cells and/or pathologic fractures at the time of diagnosis. Most commonly involved are the vertebrae, ribs, pelvic bones, and bones of the thigh and upper arm. If multiple myeloma is suspected with normal x-ray, consider MRI, CT, or PET. Serum B_2 microglobulin is elevated in 75% of patients. Hypercalcemia from the destruction of bone is common, as is an elevation in the BUN and creatinine from the damage to the kidney from the immunoglobulins, Bence-Jones protein, calcium, and hyperuricemia. A bone marrow biopsy with >10% plasma cells confirms a diagnosis of multiple myeloma. Bence-Jones protein is often not detected by a standard protein test on a urinalysis, which mainly is meant to detect albumin. A specific test for Bence-Jones protein involving acidification of the urine is required. Increased gamma globulin levels will increase the total protein and decrease the albumin level.

Treatment. Younger patients (age <70) should be treated with **autologous bone marrow transplantation** in an attempt to cure the disease. Older patients should receive a combination of melphalan and prednisone. Patients who are candidates for transplants should receive thalidomide (or lenalidomide) and dexamethasone. Patients who are not candidates for transplants should receive melphalan, prednisone, and thalidomide. Hypercalcemia is treated initially with hydration and loop diuretics and then with bisphosphonates such as pamidronate.

Bortezomib is a proteasome inhibitor useful for relapsed myeloma or in combination with the other medications. It can be combined with steroids, melphalan, or lenalidomide (thalidomide).

Monoclonal Gammopathy of Uncertain Significance (MGUS)

Definition. The overproduction of a particular immunoglobulin by plasma cells without the systemic manifestations of myeloma such as bone lesions, renal failure, anemia, and hypercalcemia.

Etiology. The cause of MGUS is unknown. MGUS is a very common abnormality present in 1% of all patients age >50 and in 3% of those age >70. Some patients with MGUS may progress to multiple myeloma.

Clinical Presentation. Patients with MGUS have no symptoms. It is found on routine blood testing for other reasons.

Diagnosis. An elevated monoclonal immunoglobulin spike of serum protein electrophoresis (SPEP) in amounts lower than found in myeloma. The creatinine, calcium, and hemoglobin levels are normal. An elevated total serum protein is the clue to the diagnosis. There are no lytic bone lesions, and the bone marrow has <5% plasma cells. The beta-2 microglobulin level will be normal in most patients.

Treatment. Treatment is neither effective nor necessary.

LYMPHOMA

A 32-year-old woman comes to the office with a neck mass for the last several weeks. She also has fever, weight loss, and sweats.

Hodgkin Disease

Definition. A neoplastic transformation of lymphocytes particularly in the lymph node. It is characterized by the presence of Reed-Sternberg cells on histology which spreads in an orderly, centripetal fashion to contiguous areas of lymph nodes.
Etiology. Although there is a clear increase in Hodgkin disease among relatives of those with the disease, there are no clear environmental or infectious etiologies for the disorder.

Hodgkin disease has bimodal age distribution—one peak in the 20s and 60s.

Clinical Presentation. Enlarged, painless, rubbery, nonerythematous, nontender lymph nodes are the hallmark of the disease. Patients may also develop what are labeled “B” symptoms, which are drenching night sweats, 10% weight loss, and fevers. Although pruritus is common in the disease, it is not one of the “B” symptoms. Cervical, supraclavicular, and axillary lymphadenopathy are the most common initial signs of disease. Lymphadenopathy may develop anywhere in the body, however. Extralymphatic sites such as splenic involvement, skin, gastric, lung, CNS, or any other organ may possibly be involved. Extralymphatic involvement is more common with non-Hodgkin lymphoma.

Staging is as follows:

- **Stage 1:** 1 lymphatic group or single extra lymphatic site
- **Stage 2:** 2 lymphatic groups or extra lymphatic sites on same side of the diaphragm
- **Stage 3:** Involvement of lymphatic groups on both sides of the diaphragm or involvement of any extralymphatic organ contiguous to the primary nodal site
- **Stage 4:** Widespread disease with involvement of diffuse extralymphatic sites such as bone marrow or liver

The staging is the same for both Hodgkin as well as non-Hodgkin lymphoma. In Hodgkin lymphoma, staging is the single most important predictor of outcomes.

Diagnosis. An excisional lymph node biopsy is the essential first step in determining the diagnosis. After the initial diagnosis is determined by the biopsy, the most important step is to determine the extent of disease because the stage will determine the nature of the therapy, i.e., radiation versus chemotherapy. Chest x-ray or chest CT, abdominal CT, or MRI is used to determine if the disease is localized to the supraclavicular area. Lymphangiography and laparotomy are no longer routinely used for staging. CT scan is sensitive enough to detect any involved lymph nodes. A bone marrow biopsy is used to definitively determine if the disease is truly localized.

Note

- **Adverse Prognostic Factors**
 - Large mediastinal lymphadenopathy
 - Age >40
 - “B” symptoms
 - ↑ ESR
Size alone is insufficient to determine the content of some enlarged nodes. PET scan can also be used for that purpose.

Other labs tests that are often abnormal, but don’t directly alter the stage of the disease, include a CBC looking for anemia as well as increased white cell or platelet count. Eosinophilia is common. An elevated LDH level indicates an adverse prognosis. The ESR is useful prognostically. Elevated liver function tests help determine the need for liver biopsy.

Treatment. Therapy is entirely based on the stage of the disease. Localized disease such as stage IA and IIA is managed predominantly with radiation. In the early stages (IA, IIA), adjunct chemotherapy may be used with radiation. All patients with evidence of “B” symptoms as well as stage III or stage IV disease are managed with chemotherapy. The most effective combination chemotherapeutic regimen for Hodgkin disease is ABVD (adriamycin [doxorubicin], bleomycin, vinblastine, and dacarbazine). ABVD is superior to MOPP (mechlorethamine, [vincristine], prednisone, and procarbazine) because ABVD has fewer adverse effects such as permanent sterility, secondary cancer formation, leukemia, aplastic anemia, and peripheral neuropathy.

Hodgkin disease has several histologic subtypes. Lymphocyte-predominant has the best prognosis, and lymphocyte-depleted has the worst prognosis. The histologic subtype does not alter anything described. The lab tests, staging, and treatments are the same.

Non-Hodgkin Lymphoma (NHL)

Definition. The neoplastic transformation of both the B and T cell lineages of lymphatic cells. NHL causes the accumulation of neoplastic cells in both the lymph nodes as well as more often diffusely in extralymphatic organs and the bloodstream. The Reed-Sternberg cell is absent.

Etiology. There are a number of infectious and autoimmune disorders associated with the development of NHL. Their absence, however, by no means excludes the presence of NHL. Infections such as HIV, hepatitis C, Epstein-Barr, HTLV-I, and Helicobacter pylori predispose to the development of NHL. HIV and Epstein-Barr are both more often associated with Burkitt lymphoma. HIV can also be associated with immunoblastic lymphoma. The main point of knowing this is that they are both high-grade lymphomas with an aggressive progression of disease.

Clinical Presentation. Enlarged, painless, rubbery, nonerythematous, nontender lymph nodes are the hallmark of the disease. Patients may also develop what are labeled “B” symptoms, which are drenching night sweats, 10% weight loss, and fevers. Although pruritus is common in the disease, it is not one of the “B” symptoms. In this sense, NHL is the same as Hodgkin disease. The difference is that Hodgkin disease is localized to cervical and supraclavicular nodes 80–90% of the time, whereas NHL is localized only 10–20% of the time. NHL is far more likely to involve extralymphatic sites as well as to have blood involvement similar to chronic lymphocytic leukemia. CNS involvement is also more common with NHL. HIV-positive patients often have CNS involvement.

The staging system for NHL is the same as that for Hodgkin disease as described.

Diagnosis. The diagnosis of NHL rests initially on an excisional lymph node biopsy. After this, the most important step is to determine the stage of the disease to determine therapy. Although this is quite similar to that described for Hodgkin disease, there are several significant differences because NHL is far more likely to be widespread at initial presentation. Lymphangiography is never necessary, and staging laparotomy is rarely needed. The bone marrow biopsy is more central as an initial staging tool. Because the presence of marrow involvement means the patient has Stage IV disease and therefore needs combination chemotherapy, further invasive testing such as the laparotomy is not necessary. As with Hodgkin disease anemia, leukopenia, eosinophilia, high LDH, and high ESR often accompany the disease. PET scanning is highly sensitive and specific for nodal and extranodal sites but not for bone marrow disease.
Treatment. As with Hodgkin disease, local disease such as stage IA and stage IIA are treated predominantly with radiation, and all those with “B” symptoms as well as stages III and IV receive combination chemotherapy. Given the frequency of more widespread disease with NHL, however, this means few NHL patients are treated with radiation alone. The initial chemotherapeutic regimen for NHL is still CHOP (cyclophosphamide, hydroxy-adriamycin, vincristine, prednisone). More elaborate chemotherapeutic regimens for NHL, of which there are many, are beyond the scope of what is necessary to know for the Step 2 exam.

CNS lymphoma is often treated with radiation, possibly in addition to CHOP. Relapses of NHL can be controlled with autologous bone marrow transplantation. Some patients with NHL express CD20 antigen in greater amounts. When this occurs, monoclonal antibody rituximab should be used. Rituximab is an anti-CD20 antibody that has limited toxicity and adds survival benefit to the use of CHOP. Thus, R-CHOP would then become first-line therapy. Prior to using R-CHOP, always test completely for hepatitis B and C, as rituximab can cause fulminant liver injury in those with active hepatitis B or C disease.

Tumor lysis syndrome

Tumor lysis syndrome (TLS) is an oncologic emergency caused by massive tumor cell lysis, with the release of large amounts of potassium, phosphate, and uric acid into the systemic circulation. Uric acid excretion can result in the precipitation of uric acid in the renal tubules; it can also induce renal vasoconstriction, reduced renal blood flow, and inflammation, resulting in acute kidney injury. Hyperphosphatemia with calcium phosphate deposition in the renal tubules can also cause acute kidney injury.

TLS most often occurs after the initiation of cytotoxic therapy in patients with high-grade lymphoma (particularly Burkitt’s and acute lymphoblastic leukemia), though it can occur spontaneously and with other tumor types having a high proliferative rate or large tumor burden.

Patients about to receive chemotherapy for a cancer with a high cell turnover rate—especially lymphomas and leukemias—should receive prophylactic oral or IV allopurinol plus adequate IV hydration to maintain high urine output (>2.5 L/day). Rasburicase may be used as an alternative to allopurinol and is reserved for those at high-risk for developing TLS. Alkalization of the urine as a treatment of TLS is controversial.

Clinical Recall

A 25-year-old man comes to the clinic complaining of enlarged, rubbery, non-erythematous, painless, non-tender cervical lymphadenopathy. He also admits to having weight loss, fever, and night sweats. What is the best initial diagnostic step in the management of this patient?

A. Complete blood count with erythrocyte sedimentation rate
B. PPD or IFN-gamma release assay with CXR
C. Upper endoscopy with gastrointestinal biopsy
D. Excisional lymph node biopsy
E. Abdominal CT

Note

Knowing each of the histologic subtypes of NHL is not necessary for the exam.

Answer: D
PLATELET DISORDERS

Immune Thrombocytopenic Purpura (ITP)

Definition. Thrombocytopenia of unknown etiology.

Etiology. The idiopathic production of an antibody to the platelet, leading to removal of platelets from the peripheral circulation by phagocytosis by macrophages. The platelets are bound by the macrophage and brought to the spleen, leading to low platelet counts. ITP is often associated with lymphoma, CLL, HIV, and connective tissue diseases.

Clinical Presentation. Like all platelet disorders, the patient presents initially with signs of bleeding from superficial areas of the body such as the skin, nasal and oral mucosa, GI tract, urine, and vagina. The patient is generally young, more often female, and complains of epistaxis, bruising, hematuria, dysfunctional uterine bleeding, and sometimes GI bleeding. Petechiae, purpura, and ecchymoses are often found on exam. The patient is generally otherwise healthy. Splenomegaly should be absent.

Diagnosis. Thrombocytopenia is the major finding. A normal spleen on exam and on imaging studies such as an U/S is characteristic. Antiplatelet antibodies have a high sensitivity but poor specificity. The bone marrow should be filled with megakaryocytes indicating that there is a problem with platelet destruction and not platelet production. The bone marrow will also exclude other causes of thrombocytopenia such as primary or metastatic cancer, infiltration by infections such as tuberculosis or fungi, or decreased production problems such as drug, radiation, or chemotherapy effect on the bone marrow. The peripheral smear and creatinine should be normal, excluding other platelet destruction problems such as hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, and disseminated intravascular coagulation.

Treatment. Prednisone is the initial therapy in almost all patients. Splenectomy is used in patients in whom very low platelet counts <10,000–20,000/mm³ continue to recur despite repeated courses of steroids. IVIG or RhoGAM™ may be used in patients with profoundly low platelet counts (<10,000 µL) or in patients at risk for life-threatening bleeding. Note that RhoGAM may only be used in Rh-positive patients. In those who recur after splenectomy, we use thrombopoietin agents romiplostim or eltrombopag. Rituximab has also been used.

Von Willebrand Disease (vWD)

A 22-year-old woman comes to the emergency department with epistaxis and heavy periods. She has a PT of 11 seconds (normal), a PTT of 40 seconds (prolonged), and 217,000/mm³ platelets.

Definition. An increased predisposition to platelet-type bleeding from decreased amounts of von Willebrand factor.

Etiology. An autosomal dominant disorder resulting in a decreased amount of von Willebrand factor. This is the most common congenital disorder of hemostasis. vWD results in a decreased ability of platelets to adhere to the endothelial lining of blood vessels. This is different from platelets aggregating with each other, which is mediated by fibrinogen. In vWD, aggregation is normal, whereas adherence is abnormal. It is not necessary to know the difference between the different subtypes of vWD for the Step 2 exam.
Clinical Presentation. Patients with vWD manifest platelet-type bleeding such as that described for ITP. This is mucosal and skin bleeding such as epistaxis, petechiae, bruising, and menstrual abnormalities. Both platelet problems as well as clotting factor abnormalities can result in GI and urinary tract bleeding. There is often a marked increase in bleeding after the use of aspirin.

Diagnosis. The platelet count and appearance are normal. The bleeding time is increased particularly after the use of aspirin. The level of von Willebrand factor, also known as factor VIII antigen, is low. The ristocetin platelet aggregation test, which examines the ability of platelets to bind to an artificial endothelial surface (ristocetin), is abnormal. The PTT may be elevated in some patients because of a concomitant decrease in levels of factor VIII coagulant portion.

Treatment. Desmopressin acetate (DDAVP) is used for mild bleeding or when the patient must undergo minor surgical procedures. It releases subendothelial stores of von Willebrand factor. Factor VIII replacement is used if desmopressin is not effective and the bleeding continues. Factor VIII replacement contains von Willebrand factor. This replaces the use of cryoprecipitate, which is now seldom necessary. Patients should not use aspirin. FFP is not useful.

Figure 6-7. Evaluation of Patients with Bleeding
COAGULOPATHY

Hemophilia A and B

Definition. The deficiency of factor VIII in hemophilia A and factor IX in hemophilia B resulting in an increased risk of bleeding.

Etiology. Both hemophilia A and B are X-linked recessive disorders resulting in disease in males. Females are carriers of the disease. Females do not express the disease because they would have to be homozygous, which is a condition resulting in intrauterine death of the fetus. Hemophilia A is far more common than B.

Clinical Presentation. Mild deficiencies (25% or greater activity) result in either the absence of symptoms or with symptoms only during surgical procedures or with trauma. More severe deficiency (<5–10% activity) can result in spontaneous bleeding. Factor-type bleeding is generally deeper than that produced with platelet disorders. Examples of the type of bleeding found with factor deficiencies are hemarthrosis, hematoma, GI bleeding, or urinary bleeding. Bruising and central nervous system bleeding can also occur. Severe hemophilia is obvious in most patients by the age of 2. The disorder becomes apparent often at the time of circumcision.

Diagnosis. A prolonged PTT with a normal PT is expected. A factor deficiency is strongly suspected when a 50:50 mixture of the patient’s blood is created with a normal control and the PTT drops to normal. This is known as a “mixing study.” If the PTT does not correct with mixing, then an antibody inhibitor of the factor is suspected. The mixing study will only tell you that a deficiency is present; it will not tell you which specific factor is deficient. Specific factor VIII or IX levels are necessary to determine a precise diagnosis. This is true of both hemophilia A and B.

Treatment. Mild hemophilia can be treated with desmopressin (DDAVP). Desmopressin can also be used prior to surgical procedures in mild hemophiliacs. Desmopressin works by releasing subendothelial stores of factor VIII. More severe deficiencies are treated with replacement of the specific factor. Desmopressin does not work for hemophilia B.

Table 6-3. Causes of Prolonged PT or PTT

<table>
<thead>
<tr>
<th>Inherited causes</th>
<th>Prolonged PT</th>
<th>Prolonged PTT</th>
<th>Prolonged PT and PTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor VII deficiency</td>
<td>vWF and factors VIII, IX, XI, or XII deficiencies</td>
<td>Prothrombin, fibrinogen, factor V, factor X, or combined factor deficiencies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquired causes</th>
<th>Prolonged PT</th>
<th>Prolonged PTT</th>
<th>Prolonged PT and PTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin K deficiency</td>
<td>Heparin</td>
<td>Vitamin K deficiency</td>
<td></td>
</tr>
<tr>
<td>Liver disease</td>
<td>Antiphospholipid antibody</td>
<td>Liver disease</td>
<td></td>
</tr>
<tr>
<td>Warfarin use</td>
<td></td>
<td>Disseminated intravascular coagulation</td>
<td></td>
</tr>
<tr>
<td>Factor VII inhibitor</td>
<td></td>
<td>Supratherapeutic heparin or warfarin</td>
<td></td>
</tr>
</tbody>
</table>

PT, prothrombin time; PTT, partial thromboplastin time; vWF, von Willebrand factor.
Vitamin K Deficiency

Definition. The deficiency of vitamin K resulting in decreased production of factors II, VII, IX, and X.

Etiology. Vitamin K deficiency can be produced by dietary deficiency, malabsorption, and the use of antibiotics that kill the bacteria in the colon that produce vitamin K. The antibiotics most commonly associated are broad-spectrum drugs such as fluoroquinolones, cephalosporins, and other penicillin derivatives.

Clinical Presentation. Bleeding may mimic that of hemophilia and may occur at any site. Look for oozing at venipuncture sites.

Diagnosis. Both the PT and PTT are elevated. The PT usually elevates first and more severely. A correction of the PT and PTT in response to giving vitamin K is the most common method of confirming the diagnosis.

Treatment. Severe bleeding is treated with infusions of fresh frozen plasma. Vitamin K is given at the same time to correct the underlying production defect.

Liver Disease

Definition. Coagulopathy from the decreased production of clotting factors by the liver.

Etiology. Any severe liver disease or cirrhosis leads to a decreased production of the majority of clotting factors that are generally all made in the liver, except for factor VIII and von Willebrand factor. Factor VII is first factor to be depleted.

Clinical Presentation. Bleeding may occur at any site, but the GI tract is the most common site.

Diagnosis. Patients have an elevation of both the PT and PTT, but the PT elevates first and is often more severely affected. The disorder is clinically indistinguishable from vitamin K deficiency except that there is no improvement when vitamin K is given. A clear history of liver disease is often present, suggesting the diagnosis. Low platelet counts are often present from the hypersplenism that accompanies the liver disease.

Treatment. Fresh frozen plasma is used acutely to correct severe bleeding such as melena. Long-term management is based on the nature of the liver disease.

Disseminated Intravascular Coagulation (DIC)

Definition. Consumptive coagulopathy from major underlying illness resulting in consumption of both platelet and clotting factor type and occasionally thrombosis. The bleeding is associated with a marked production of fibrin degradation products such as d-dimers.

Etiology. Although essentially an idiopathic disorder, there is almost always a major underlying disease in the case history. Look for evidence of sepsis most commonly. Almost any disorder that results in cellular destruction and the release of tissue factor can initiate the cascade of consumption of platelets as well as clotting factors. These problems include rhabdomyolysis, adenocarcinomas, heatstroke, hemolysis from transfusion reactions, burns, head trauma, obstetrical disasters such as abruptio placenta and amniotic fluid embolism, as well as trauma, pancreatitis, and snakebites. Promyelocytic leukemia (M3) is a classic association.
Gram-negative sepsis causes DIC by releasing endotoxin. In acute promyelocytic leukemia (M3), the destruction of leukemic granulocyte precursors results in the release of large amounts of proteolytic enzymes from their storage granules, causing microvascular damage. Other malignancies may also cause DIC by augmenting the expression of various oncogenes that result in the release of tissue factor. DIC exists in acute and chronic forms.

- **Acute DIC** develops when sudden exposure of blood to procoagulants (tissue factor, tissue thromboplastin) generates intravascular coagulation. The compensatory hemostatic mechanisms are quickly overwhelmed, and, as a consequence, a severe consumptive coagulopathy leading to hemorrhage develops.

- In contrast, **chronic DIC** reflects a compensated state that develops when blood is continuously or intermittently exposed to small amounts of tissue factor. Compensatory mechanisms are not overwhelmed. Chronic DIC is more frequently observed in patients with solid tumors and in those with large aortic aneurysms.

Clinical Presentation. Bleeding from any site in the body is possible because of a decrease in both the platelet as well as clotting factor levels. Thrombosis is less common. Hemolysis is often present and may lead to acute renal failure, jaundice, and confusion.

Diagnosis. DIC is suspected when a patient has a serious underlying disorder as described with bleeding and there is elevation in both the PT and PTT with a decrease in the platelet count. The fibrinogen level is often low because it has been consumed. D-dimers and fibrin-split products are present in increased amounts, suggesting the consumption of all available elements of the coagulation system. The peripheral blood smear often shows the schistocytes as fragmented cells consistent with intravascular hemolysis.

Treatment. Because most patients present with severe bleeding, fresh frozen plasma (FFP) and sometimes platelet transfusions are necessary to correct the bleeding. Heparin is controversial and is rarely used except in those patients presenting predominantly with thrombosis. Don't forget to correct the underlying disorder.

Thrombotic Thrombocytopenic Purpura/Hemolytic Uremic Syndrome

Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are two varieties of the same disease process with considerable overlap. There is no specific diagnostic test, so the diagnosis is based on the clinical triad (HUS) or pentad (TTP).

- Most cases of TTP are idiopathic and arise from inhibition of the enzyme ADAMTS13, which is responsible for cleaving large multimers of von Willebrand factor into smaller units. The increase in circulating multimers of vWF increase platelet adhesion to areas of endothelial injury, particularly the arteriole-capillary junctions.

- Some cases of TTP are associated with specific diseases (cancer, HIV) and drugs (ticlopidine, clopidogrel, cyclosporine, and interferon) and are referred to as secondary TTP. ADAMTS13 activity is generally not as depressed in secondary TTP.

HUS predominantly affects children. Most cases are caused by a shiga-like toxin produced by *E. coli* O157:H7 although *Campylobacter, Shigella*, and some viruses have also been implicated. It is one of the most common causes of acute renal failure in childhood and carries up to 10% mortality.

HUS consists of a triad of hemolytic anemia, uremia, and thrombocytopenia. TTP has the same 3 findings, and is also associated with fever and neurologic problems. You do not have to have all 5 findings simultaneously to be considered to have TTP. The anemia in both will be intravascular in nature and will have an abnormal blood smear showing schistocytes, helmet cells, and fragmented red cells. LDH and reticulocyte count will be elevated and haptoglobin decreased.
Treatment for TTP is plasmapheresis. Plasmapheresis is used to treat severe cases of HUS but is not established in the treatment of mild disease. Mild disease resolves spontaneously. Dipyridamole may help treat TTP by preventing platelet aggregation.

Do not give antibiotics to those with possible HUS; if antibiotics are given, organism may release more toxins as it dies and may worsen the disease.

Do not transfuse platelets. Even if the platelet count is low, administering platelets can actually worsen the CNS and renal abnormalities by giving more platelets as a substrate to precipitate. Small platelet plugs are actually the cause of the problem.

Heparin-Induced Thrombocytopenia

Heparin-induced thrombocytopenia (HIT), a complication of heparin therapy, can occur with any form of heparin. It is more common with IV unfractionated heparin than with low molecular weight (LMW) heparin.

Type 1 HIT presents within first 2 days after exposure to heparin.
- Non-immune-mediated disorder that results from the direct effect of heparin on platelet activation
- This form of thrombocytopenia is benign, self-limited, and not associated with bleeding or increased risk of thrombosis

Type 2 HIT (generally referenced as HIT) occurs 4-10 days after exposure to heparin.
- Immune-mediated disorder
- Has life- and limb-threatening thrombotic complications (low platelet count causes embolism, paradoxically)

Suspect HIT when a patient who is receiving heparin has a decreased platelet count, particularly if the drop is >50% of the baseline count, even if the platelet count nadir remains >150,000. Clinically, HIT is not often marked by bleeding; the most common complication is venous thromboembolism (deep venous thrombosis, pulmonary embolism), and less often, arterial thrombosis (stroke, myocardial infarction). For that reason, the disorder is sometimes called **heparin-induced thrombocytopenia and thrombosis** (HITT). Thrombosis develops in approximately 20% of patients with HIT, with mortality as high as 30%.

Diagnosis of HIT is based on the combined clinical findings, thrombocytopenia characteristics, and lab studies of HIT antibodies (positive in ~85% of patients with type 2 HIT). Treatment begins with discontinuation of all heparin products (including heparin flushes of intravenous catheters), and later the administration of an alternative anticoagulant such as argatroban or lepirudin. Patients diagnosed with HIT should avoid all forms of heparin for life.

Warfarin

Warfarin (Coumadin) is the most widely prescribed anticoagulant for the prevention and treatment of thromboembolic disease. It was initially introduced as a pesticide against rodents, and long-acting forms of warfarin are still used for this purpose.

Warfarin anticoagulates by inhibiting an enzyme that recycles oxidized vitamin K to its reduced form. Warfarin does not antagonize the action of vitamin K, but rather antagonizes vitamin K recycling. Once vitamin K is reduced, the vitamin K dependent factors (factors 2, 7, 9, 10) are eventually reduced (3-5 days).
Despite its efficacy, treatment with warfarin has several limitations.

- Many commonly used medications interact with warfarin, as do some foods—particularly green vegetables—since they typically contain large amounts of vitamin K.
- Warfarin activity has to be monitored by the PT and international normalized ratio (INR) to ensure an adequate yet safe dose (typically INR 2–3 is considered adequate and safe anticoagulation). The pharmacologic action of warfarin may always be reversed by fresh vitamin K.

Table 6-4. Recommended Management of a Supratherapeutic INR

<table>
<thead>
<tr>
<th>INR</th>
<th>Bleeding Present</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>< Ther to 5.0</td>
<td>No</td>
<td>- Lower warfarin dose, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Omit a dose and resume warfarin at a lower dose when INR is in therapeutic range, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- No dose reduction needed if INR is minimally prolonged</td>
</tr>
<tr>
<td>>5.0 to 9.0</td>
<td>No</td>
<td>- Omit the next 1–2 doses of warfarin, monitor INR more frequently, and resume treatment at a lower dose when INR is in therapeutic range, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Omit a dose and administer 1–2.5 mg oral vitamin K*</td>
</tr>
<tr>
<td>>9.0</td>
<td>No</td>
<td>- Hold warfarin and administer 5–10 oral vitamin K. Monitor INR more frequently and administer more vitamin K as needed. Resume warfarin at a lower dose when INR is in therapeutic range.</td>
</tr>
<tr>
<td>>20</td>
<td>—</td>
<td>- Hold warfarin and administer 10 mg vitamin K by slow IV infusion; supplement with fresh frozen plasma, or recombinant human factor VIIa, depending on clinical urgency. Monitor and repeat as needed.</td>
</tr>
<tr>
<td>Any</td>
<td>Life-threatening</td>
<td>As per “INR >20” above</td>
</tr>
</tbody>
</table>

INR: International Normalized Ratio; Ther: therapeutic INR range for the patient in question.

*Preferred in patients at increased risk for bleeding (e.g., history of bleeding, stroke, anemia).

Clinical Recall

What is the most appropriate step in the management of a patient with heparin-induced thrombocytopenia and thrombosis?

A. Continue heparin and administer warfarin
B. Discontinue heparin and administer argatroban
C. Discontinue the heparin substitute with warfarin
D. Continue heparin and add lepirudin
E. Continue heparin and monitor closely

Answer: B
Learning Objectives

- Provide an overview of common antibiotics and their uses
- Describe the unique conditions and considerations for infections which occur in the CNS, head, neck, lung, pericardium, endocardium, GI tract, urinary tract, bones, and joints
- Present the treatment of acute herpes viral hepatic infections
- Describe the presentation and management of Lyme disease and Rocky Mountain spotted fever
- Describe the epidemiology, presentation, and treatment of genital and sexually transmitted diseases
- Describe the epidemiology, presentation and management of AIDS and related opportunistic infections

ANTIBIOTICS

Antibiotics can be grouped by their chemical class or by the type of organism they are effective against. The organisms that cause specific diseases do not change much over time. For example, MRSA, *Staphylococcus aureus* is still the most common cause of osteomyelitis, and *Escherichia coli* is still the most common cause of pyelonephritis.

What does change over time is the antibiotic that is effective against each organism and the sensitivity pattern of each organism.

Gram-Positive Cocci

Semisynthetic penicillinase-resistant penicillins

Staphylococcal and streptococcal organisms are effectively treated by medications such as the semisynthetic penicillins, including oxacillin, cloxacillin, dicloxacillin, and nafcillin. These agents are exclusively effective against gram-positive cocci, in particular staphylococci.

Note

Do not use vancomycin if the organism is oxacillin-sensitive.
Methicillin belongs to this group of antibiotics as well, and was one of the original drugs developed in this class. It is not used clinically, however, because it may cause interstitial nephritis. Thus, the term “methicillin-sensitive” or “methicillin-resistant Staphylococcus aureus (MRSA)” is somewhat of a misnomer because methicillin is not actually used. When this term is used, think of the drugs oxacillin, cloxacillin, dicloxacillin, and nafcillin.

When Staphylococcus is sensitive to the semisynthetic penicillins, and concurrent gram-negative infection is not suspected, these are the ideal agents. They are more effective than vancomycin when the organism is sensitive. These drugs are also sometimes referred to as “beta-lactamase-resistant penicillins” or “antistaphylococcal penicillins.” Nevertheless, the latter term is somewhat misleading because they are also effective against a number of streptococci, such as S. pneumoniae, the Viridans group, and groups A, B, C, and G Strep.

Penicillin G, penicillin VK, ampicillin, and amoxicillin

These agents are effective against streptococci, such as *S. pyogenes*, viridans group streptococci, and *S. pneumonia*, but not against staphylococci.

- All of the agents can be useful against gram-negative bacteria such as *Neisseria*.
- Ampicillin and amoxicillin are effective against staph only when **ampicillin is combined with the beta-lactamase inhibitor sulbactam** or when **amoxicillin is combined with clavulanate**.
- Ampicillin has some activity against *E. coli*.
- Both ampicillin and amoxicillin are effective against enterococci and Listeria.

Cephalosporins

The first- and second-generation cephalosporins all cover the same range of organisms that the semisynthetic penicillins cover, i.e., staphylococci and streptococci, plus some gram-negative organisms.

- **First-generation agents (cefazolin, cefadroxil, cephalixin)** only reliably cover *Moraxella* and *E. coli*.
- **Second-generation agents (cefoxitin, cefotetan, cefuroxime, cefprozil, loracarbef)** will cover everything a first-generation cephalosporin covers, as well as a few more gram-negative bacilli such as *Providencia*, *Haemophilus*, *Klebsiella*, *Citrobacter*, *Morganella*, and *Proteus*.
- **Third-generation agents**, particularly ceftazidime, are not reliable in their staphylococcal coverage.
- **Fourth-generation cephalosporins** such as ceftazidime will cover staph and strep, although this should never be the answer when the infection is exclusively gram-positive.

For those with allergy to penicillin, there is only a <1% risk of cross-reaction with cephalosporins. When this reaction occurs it is seldom an anaphylactic reaction.

- **When the allergic reaction is described as a rash, a cephalosporin can safely be used.**
- **When the allergic reaction is severe, e.g. anaphylaxis, a cephalosporin should not be used.**
- **For minor infections, use a macrolide (clarithromycin or azithromycin), or one of the new fluoroquinolones (levofloxacin, gemifloxacin, or moxifloxacin).**
- **For serious infections in those with a life-threatening penicillin allergy, use vancomycin, linezolid, or daptomycin.**

Note

On the exam, your answers should correspond most specifically to the organism you are treating. If you are treating a sensitive *Staph aureus* or *Strep*, answer with a specific gram-positive drug. Do not give an answer which provides more coverage than needed, unless there is evidence to support the presence of other organisms. If you are treating a gram-positive infection, answer with a first-generation agent.
Macrolides, fluoroquinolones, and clindamycin

For gram-positive infections, macrolides (erythromycin, clarithromycin, azithromycin), fluoroquinolones (levofloxacin, gemifloxacin, moxifloxacin), and clindamycin are alternatives to penicillins and cephalosporins. Macrolides should not be used for serious staph infection.

The new quinolones are very good for streptococcal infections, particularly *Strep pneumoniae* in the absence of outright penicillin-resistance. They are also sufficient against staph. Ciprofloxacin is a quinolone as well, but it does not cover *Strep pneumoniae*.

Vancomycin, linezolid, tigecycline, ceftaroline, telavancin

For gram-positive infections, vancomycin, linezolid, and tigecycline are effective. Alternatives include ceftaroline, telavancin, daptomycin, and quinupristin/dalfopristin.

When there is a life-threatening penicillin-allergy or MRSA, use the agents listed above. MRSA is primarily treated with vancomycin.

Quinupristin/dalfopristin are also effective against vancomycin-resistant enterococci. Ceftaroline is used like a third-generation cephalosporin, such as ceftriaxone, combined with a MRSA agent, such as vancomycin. Ceftaroline is the only cephalosporin to cover MRSA. These medications should not be used if the organism is sensitive to methicillin.

Gram-Negative Bacilli

Penicillins

Penicillins (piperacillin, ticarcillin, mezlocillin) are fully active against the full range of gram-negative bacilli, such as *Pseudomonas*, as well as the Enterobacteriaceae. Enterobacteriaceae include *E. coli*, Proteus, *Enterobacter*, *Citrobacter*, *Morganella*, *Serratia*, and *Klebsiella*. They are only active against staph when combined with a beta-lactamase inhibitor such as piperacillin/tazobactam or ticarcillin/clavulanate. Ampicillin/sulbactam and amoxicillin/clavulanate will also cover staph and gram-negative bacilli, but not *Pseudomonas*.

All penicillins will cover sensitive streptococci, but if the patient has only a sensitive strep, give a narrower agent, such as penicillin G or penicillin VK.

Cephalosporins

Third- and fourth-generation agents (ceftazidime; cefotaxime; ceftriaxone; cefotaxime, and cefepime) are fully active against the full range of gram-negative bacilli, such as the Enterobacteriaceae. Only ceftazidime and cefepime will cover *Pseudomonas*. Cefepime also covers staph.

Second-generation agents cover some of the Enterobacteriaceae, but not *Pseudomonas*. Although predominantly for use against gram-negative organisms, ceftriaxone and cefotaxime are the best answers for penicillin-insensitive pneumococci-causing meningitis or pneumonia.

Quinolones

Quinolones (ciprofloxacin, levofloxacin, gemifloxacin, moxifloxacin, ofloxacin) cover most of the Enterobacteriaceae, such as *E. coli*, *Proteus*, *Enterobacter*, *Haemophilus*, *Moraxella*, *Citrobacter*, *Morganella*, *Serratia*, and *Klebsiella*. Only ciprofloxacin will reliably cover *Pseudomonas*.

Note

Daptomycin, ceftaroline, and tigecycline are drugs also effective against MRSA.

Note

Cephalosporins are safe in penicillin allergy if it is only a rash.

Clinical Pearl

Ceftriaxone does not have adequate pseudomonal coverage.
The new fluoroquinolones (moxifloxacin, levofloxacin, and gemifloxacin) are also active against gram-positive cocci, in particular *Strep pneumoniae*. They are among the first-line therapies for empiric treatment of pneumonia because they will also cover Mycoplasma, Chlamydia, and Legionella.

Aminoglycosides and monobactams

Aminoglycosides (gentamicin, tobramycin, amikacin) and monobactams (aztreonam) have essentially the same gram-negative coverage as listed above for the other agents. Although aminoglycosides can be synergistic with a penicillin in the treatment of staph, they are essentially exclusively gram-negative agents. Aztreonam is exclusively a gram-negative agent, with no strep or staph coverage at all.

Carbapenems

Carbapenems (imipenem, meropenem, ertapenem, doripenem) are fully active against *Enterobacteriaceae* and *Pseudomonas*; they are similar in gram-negative coverage to the aminoglycosides and third-generation cephalosporins. In addition, they have excellent staph and anaerobic coverage. Although effective in polymicrobial infections, they are best used in gram-negative infections.

All carbapenems are equally effective against anaerobes, as compared to metronidazole. Ertapenem will not cover *Pseudomonas*.

Anaerobes

The agent most active against anaerobes is metronidazole. Metronidazole has some advantages against anaerobic gram-negative bacteria in the bowel, such as *Bacteroides fragilis*. Metronidazole is the first-line agent against *Clostridium difficile*. Clindamycin is less active against intra-abdominal anaerobes, but may have some advantages against the anaerobic streptococci found in the mouth.

The other agents with excellent anaerobic coverage virtually equal to metronidazole are the carbapenems and the beta-lactam/beta-lactamase combination medications such as piperacillin/tazobactam, ticarcillin/clavulanate, ampicillin/sulbactam, or amoxicillin/clavulanate. The second-generation cephalosporins cefoxitin and cefotetan have fair activity against anaerobes, but they are less effective.

Skin MRSA

TMP/SMZ, clindamycin, doxycycline, and linezolid are oral agents useful for MRSA. Use these oral agents for minor MRSA infections. TMP/SMZ, clindamycin, and doxycycline cannot be used for MRSA bacteremia.

CENTRAL NERVOUS SYSTEM INFECTIONS

Meningitis

A 45-year-old man is brought to the emergency department with 1–2 days of fever, headache, nausea, and vomiting. On physical examination he is found to have neck stiffness and photophobia.
Meningitis is an infection or inflammation of the meninges, which is the connective tissue covering the central nervous system (CNS). Most cases arise sporadically, and the precise method of spread of the microorganism into the CNS stem is not determined.

Overall, most meningitis cases are caused by viruses.

- *Streptococcus pneumoniae* is the most common cause of bacterial meningitis for all patients beyond the neonatal period.
- *Neisseria meningitidis*, spread by respiratory droplets, is the most common cause of meningitis in adolescents.
- *Listeria monocytogenes* is more common in those with immune system defects, particularly of the cellular (T-cell) immune system and sometimes neutrophil defects. These defects include HIV, steroid use, leukemia, lymphoma, and various chemotherapeutic agents. Since neonates and the elderly have decreased T-cell immune function, *Listeria* is more common in them.

Even with immune deficits, *Streptococcus pneumoniae* is still the most common etiology—it is just that *Listeria* is more common in these patients, as compared to fully immunocompetent patients. *Staphylococcus aureus* is more common in those who have had any form of neurosurgery because instrumentation and damage to the skin introduce the organism into the CNS. *Cryptococcus* is more common in those who are HIV positive and who have profound decreases in T-cell counts to levels <100 cells.

Rocky Mountain spotted fever (RMSF) is common in those who have been exposed to ticks in the appropriate geographic area. The areas with the highest RMSF infection are in the mid-Atlantic areas, such as the Carolinas, Kentucky, and Tennessee. Lyme disease can also cause meningitis and is more common in the Northeast, such as Massachusetts, Connecticut, New York, and New Jersey. Tuberculosis and syphilis are also associated with meningitis. Viruses are the most common cause of aseptic meningitis, a syndrome in which patients present in a manner similar to bacterial meningitis, but CSF analysis mostly reveals a lymphocytic pleocytosis and bacterial cultures are negative. Viruses causing aseptic meningitis include enteroviruses, arboviruses (St. Louis encephalitis virus, West Nile virus), HIV, herpes simplex, and lymphocytic choriomeningitis virus. In the past, most of these were not diagnosed, but with the availability of PCR-based testing, more cases of aseptic meningitis are being accurately classified. Group B *Streptococcus* (*Streptococcus agalactiae*) is the most common cause of meningitis in the neonatal period.

The spread of the organism into the CNS can be by sporadic (unknown) mechanisms or by means of contiguous local infection or by hematogenous spread. Local infections that can lead to meningitis include otitis media, sinusitis, mastoiditis, and dental infections. Hematogenous spread could possibly occur from any infection but is more common with endocarditis and pneumonia.

Clinical Presentation. Regardless of microbiologic etiology, all forms of meningitis present with fever, photophobia, headache, nuchal rigidity (neck stiffness, positive Kernig and Brudzinski signs), as well as nausea and vomiting. Altered mental status is possible, and can make a patient appear to have encephalitis. Any form of CNS infection can present with seizures. Focal neurologic deficits can also occur, the most common being visual field and cranial nerve deficits. The most common long-term neurologic deficit from bacterial meningitis is damage to the 8th cranial nerve.

Rash is associated with several types of meningitis.

- Petechial rash is suggestive of *Neisseria*
- Rash on the wrists and ankles with centripetal spread toward the body is suggestive of RMSF

Note

In the past, *Haemophilus influenzae* was the most common cause of meningitis in children, but this has markedly decreased with the *Haemophilus* type B vaccine.
Facial nerve palsy is suggestive of Lyme disease; the target-like erythema migrans rash of Lyme disease is seldom present by the time the meningitis develops.

Pulmonary symptoms or abnormal chest x-ray suggest tuberculosis.

Diagnosis. Lumbar puncture is essential for establishing the diagnosis. CT scan of the head is the best initial diagnostic test if the patient has papilledema, focal motor deficits, new onset seizures, severe abnormalities in mental status, or immunocompromised status (HIV, immunosuppressive medications, post-transplantation). If none of the above is present, a lumbar puncture can be safely done without doing a CT scan of the head first, which can significantly delay the diagnosis. If lumbar puncture is delayed >20–30 minutes for any reason, the best initial step is to give an empiric dose of antibiotics.

The most accurate test for bacterial meningitis on the lumbar puncture is the culture of the CSF. The results are always delayed for several days, however, and are rarely available at the time the initial therapy must be instituted. Protein levels are elevated most commonly with bacterial meningitis, but they can be elevated in any type of meningitis. Elevated protein level and/or decreased glucose level by themselves are relatively nonspecific findings. The opening pressure can be elevated with any cause of meningitis.

The Gram stain has a limited sensitivity and is positive in 50–70% of patients at most. When positive, however, the Gram stain has a high degree of specificity.

Initially, the most useful test is the cell count. Although elevated cell count by itself is nonspecific, the differential of the cells is useful. Only bacterial meningitis gives thousands of cells that are all neutrophils. A mild-to-moderate elevation in lymphocytes, with several dozen to several hundred cells, can occur with viral infection, *Rickettsia*, Lyme disease, tuberculosis, syphilis, or fungal (cryptococcal) etiology. Normal CSF cell count is <5 cells/mm³, which should be predominantly lymphocytes.

Specific diagnosis of nonbacterial meningitis is based on the nature of the organism. Lyme disease and RMSF are best detected with a specific immunologic response and serology. *Cryptococcus neoformans* is detected initially with an India ink test and then later with an elevation in the serum and CSF cryptococcal antigen titer. Syphilis is confirmed by the presence of a positive VDRL or FTA on CSF. TB is rarely detected by AFB smear. Culture for TB has a much higher yield, particularly on several repeated LPs. PCR can also aid in the diagnosis of TB.

Treatment. Empiric therapy of bacterial meningitis in adults is best achieved with vancomycin (because of the increasing prevalence worldwide of pneumococci with decreasing sensitivity to penicillins) plus a third-generation cephalosporin such as ceftriaxone. Ampicillin is added to those with immune defects to cover *Listeria* and for patients age >50 or ≤1 month. You will have to recognize the risks, such as HIV, steroid use, pregnancy, or hematologic malignancies in the case description. *Listeria* is resistant to all forms of cephalosporins. Vancomycin is used if you know you have definite or suspected pneumococcal resistance to penicillin or if there is a chance of staphylococcal infection after neurosurgery. Lyme disease is best treated with ceftriaxone. *Cryptococcus* is treated initially with amphotericin. This is followed by fluconazole therapy in HIV-positive patients for life or until the patient is on HAART (highly active antiretroviral therapy) and is asymptomatic with CD4 count >100/µL for at least 3–6 months. Neurosyphilis is treated with high-dose IV penicillin. TB meningitis is treated in the same fashion as you would use for pulmonary TB (though a longer duration of 9–12 months of therapy is given). Steroid use in adult meningitis is appropriate for TB meningitis and bacterial meningitis. There is no treatment currently proven useful for viral (or aseptic) meningitis.

Clinical Pearl

In patients presenting with symptoms and signs of meningitis, treat empirically for bacterial meningitis while awaiting test results from the lumbar puncture.
Dexamethasone (corticosteroid) therapy for patients with bacterial meningitis decreases mortality and rates of deafness. The rationale for this is the inflammatory response elicited in the subarachnoid space due to bacterial cell wall lysis after antibiotics are administered; this inflammatory reaction can worsen morbidity and mortality due to bacterial meningitis. Accordingly, dexamethasone given 15–20 minutes before or concurrently with antibiotics should produce improved outcomes (morbidity and mortality); the benefit is greatest for patients with pneumococcal meningitis. Dexamethasone should be continued for 4 days if bacterial meningitis is confirmed (positive Gram stain of CSF fluid or >1000 WBCs within the CSF can be taken as confirmation of bacterial meningitis) and discontinued if the etiology is nonbacterial (viral, fungal, etc.).

Clinical Recall

A 65-year-old man comes to the emergency department complaining of fever, stiff neck, and photophobia. Which of the following is the best empiric treatment for this patient?

A. Vancomycin, ceftriaxone, ampicillin, and dexamethasone
B. Nafcillin, ceftriaxone, and ampicillin
C. Vancomycin and ceftriaxone
D. Vancomycin, cefepime, and dexamethasone
E. Vancomycin, ceftriaxone, and ampicillin

Answer: A

Encephalitis

A young man is brought to the emergency department by his friends because of 1–2 days of confusion and strange behavior. He had been originally complaining of a headache and fever. On the day of admission he became markedly worse and is now delirious. He is generally healthy. On physical examination you find a lethargic, confused man with an elevated temperature. You are unable to determine if he has focal neurologic findings or to obtain an accurate neurologic exam because his confusion makes him unable to follow commands.

Encephalitis is an infection of the brain, whether in the meninges or the brain parenchyma. Although any bacterial, protozoal, or rickettsial infection can cause encephalitis, most cases are caused by *viruses*, with *herpes simplex* (usually type I [HSV-1]) the most common.

Varicella-zoster virus, CMV, enteroviruses, Eastern and Western equine encephalitis, St. Louis encephalitis, and West Nile encephalitis are significantly less common causes.

Patients present with fever and headache but these findings are nonspecific. **Altered mental status with fever and headache** is the primary clue to the diagnosis. Any level of neurologic deficit may occur, ranging from slight confusion to lethargy or coma. Focal deficits of any kind can occur. Neck stiffness similar to that found in meningitis can occur, making it difficult to distinguish encephalitis from meningitis. Seizures may also occur.

Clinical Pearl

Encephalitis usually presents with altered mental status, erratic behavior, etc (brain parenchyma involved).
Diagnosis. Although CT or MRI of the head should be performed, it cannot give a specific diagnosis. HSV has a predilection for involvement of the temporal lobes, which can sometimes be seen on CT. Lumbar puncture is the key to the diagnosis. Formerly, a brain biopsy was necessary, but PCR (polymerase chain reaction) amplification techniques have virtually eliminated that need. PCR for HSV has a 98% sensitivity and >95% specificity, making it at least equal to the biopsy.

Treatment. HSV encephalitis is best treated with IV acyclovir. Although famciclovir and valacyclovir have activity against HSV, they are not available intravenously. Ganciclovir or foscarinet are active against CMV. Acyclovir-resistant herpes is treated with foscarinet.

Brain Abscess

An HIV-negative man is brought to the hospital because of a seizure. When he becomes more alert, you find that he has aphasia and weakness of the right hand and leg. A CT scan of the head with contrast shows enhancement of the lesion with a "ring" around the lesion.

Brain abscess is a collection of infected material within the brain parenchyma. Bacteria can spread into the brain from contiguous infections such as otitis media, sinusitis, mastoiditis, or dental infection. Organisms may also spread through the bloodstream from endocarditis or pneumonia and seed the brain. Toxoplasmosis can reactivate in those with severe HIV disease when CD4 counts are very low (<50–100/μL). Brain abscesses most commonly have *Streptococcus* in 60–70%, *Bacteroides* in 20–40%, Enterobacteriaceae in 25–35% and *Staphylococcus* in 10%, and are often polymicrobial. Because of the diversity of the organisms potentially involved, it is difficult to have a single standard therapy.

Headache is the most common symptom. Fever can be present. Focal neurologic deficits are the initial complaint in about 60% of patients. Seizures may occur, as with any form of anatomic abnormality of the CNS. All CNS infections can cause seizures.

![Figure 7-1. CT Scan Demonstrating Large Cerebral Abscess](aic.cuhk.edu.hk/web8)
Diagnosis. The initial test is the CT scan. Contrast is used to help identify the lesion, although CNS malignancy enhances with contrast as well. MRI is more accurate than the CT scan, although no radiologic test alone can give the precise etiology. In the case of bacterial brain abscess, examination of the abscess fluid (obtained by stereotactic aspiration or surgical excision of the abscess) for Gram stain and culture is essential. In HIV-positive patients, 90% of brain lesions will be either toxoplasmosis or lymphoma. This is the only circumstance where empiric therapy is sufficient to establish a specific diagnosis. If the lesion responds to 10–14 days of therapy with pyrimethamine and sulfadiazine, continue to administer this therapy, as it accurately predicts cerebral toxoplasmosis.

Treatment. Almost always, successful treatment requires a combination of surgical and medical management. Stereotactic aspiration (preferred) and surgical excision of the abscess are the methods used; the latter is rarely used nowadays because of significant complications.

With the exception of HIV-positive patients who are best treated with pyrimethamine and sulfadiazine, therapy should be based on the specific etiology found. One example of a combination of therapy is penicillin, metronidazole, and a third-generation cephalosporin, such as ceftazidime. Penicillin would cover the streptococci, metronidazole the anaerobes, and ceftazidime the gram-negative bacilli.

HEAD AND NECK INFECTIONS

Otitis Media

Otitis media is an infection of the middle ear between the eustachian tube and the tympanic membrane. Viral upper respiratory infection can cause edema of the eustachian tube, which often leads to middle ear infection. The most common organisms are *Strep pneumoniae* (35–40%), *H. influenzae* (nontypeable; 25–30%), and *Moraxella catarrhalis* (15–20%). Viruses probably account for the rest of the cases. This is roughly the same breakdown of organism type and frequency that occurs in bronchitis and sinusitis.

Patients complain of ear pain, fever, and decreased hearing. On physical examination a red, bulging tympanic membrane is found, with loss of the light reflex. The most sensitive clinical finding is immobility of the membrane on insufflation of the ear with air. Perforation of the tympanic membrane with otorrhea occurs rarely.

Diagnosis is made through physical examination of the ear. Radiologic tests are not useful. A specific bacteriologic diagnosis can be obtained with tympanocentesis for culture, but that is rarely performed.

Treatment. Oral therapy with amoxicillin is still the best initial therapy. Amoxicillin-clavulanate is used if there has been recent amoxicillin use or if the patient does not respond to amoxicillin. Other alternatives to amoxicillin-clavulanate are second-generation cephalosporins, such as cefuroxime, loracarbef, or cefprozil, or third-generation agents, such as cefdinir or cefixime. Patients with severe penicillin allergy should receive a macrolide such as azithromycin or clarithromycin. New fluoroquinolones such as levofloxacin, moxifloxacin, or gatifloxacin are microbiologically acceptable but are broader coverage than necessary and should not be used in children (concern for arthropathy). TMP/SMZ is sometimes used but is poorly active against *Streptococcus pneumoniae*.
Sinusitis

A young woman comes to the office with several days of facial pain, a headache, cough, fever, and discolored nasal drainage. On physical examination tenderness over the maxillary sinuses and decreased transillumination of the maxillary sinuses is found.

Sinusitis is an infection of the sinuses. The most common site is the maxillary sinus, followed by ethmoid, frontal, and sphenoid sinuses.

Viruses are responsible for most cases of sinusitis. Bacterial organisms that cause sinusitis are the same ones causing otitis media.

Patients complain of facial pain, headache, postnasal drainage, and purulent nasal drainage. Headache is common and is worse when the patient leans forward. Fever occurs in about 50% of cases. Tooth pain also occurs because of the proximity of the sinuses to the teeth.

Diagnosis. Obvious cases of sinusitis do not always need radiologic confirmation prior to treatment. Sinus x-rays are of little value, and routine imaging as a rule is not recommended. If imaging is required because of concern for complications, uncertain diagnosis, or lack of response to treatment, CT scan of the sinuses is the test of choice since it provides greater detail. Occasionally, sinus puncture is necessary to confirm a specific bacteriologic etiology, particularly when the patient does not respond to therapy or if there are frequent recurrences.
Treatment. Mild or acute uncomplicated sinusitis can be managed with decongestants, such as oral pseudoephedrine or oxymetazoline sprays. More severe pain with discolored nasal discharge is treated with antibiotics. The drugs used are in the same order and type as those listed above for otitis media because the microbiology is almost identical.

Most cases of viral rhinosinusitis resolve in 7–10 days with symptomatic management (antihistamines, NSAIDs, and decongestants). If symptoms persist beyond that point or get worse, antibiotics should be considered.

Pharyngitis

Pharyngitis is irritation or inflammation of the back of the throat (or the pharynx). Although most pharyngeal infections are caused by viruses, the most important cause is group A beta-hemolytic streptococci (S. pyogenes). This is because of the possibility of the organism progressing on to rheumatic fever or glomerulonephritis. S. pyogenes only accounts for 15–20% of cases of pharyngitis.

Sore throat with cervical adenopathy and inflammation of the pharynx with an exudative covering is highly suggestive of S. pyogenes. Most viruses do not give an exudate, although the Epstein-Barr virus can. Mild S. pyogenes infections may not give an exudate, and this is one of the reasons diagnostic testing is useful. Hoarseness and cough are not suggestive of pharyngitis.

Diagnosis. The rapid streptococcal antigen test is 80% sensitive but >95% specific. A positive test can be considered the equivalent of a positive culture, whereas a negative test should be confirmed with a culture.

Treatment. Penicillin remains the mainstay of therapy. Macrolides and oral, second-generation cephalosporins are alternatives in the penicillin-allergic patient.
Influenza

Influenza is a systemic viral illness from influenza A or B, usually occurring in an epidemic pattern and transmitted by droplet nuclei. Influenza can lead to damage to the respiratory epithelium, leading to sinusitis, otitis media, bronchitis, and pneumonia.

Patients present with a systemic illness characterized by fever, myalgias, headache, and fatigue. Upper respiratory symptoms tend to predominate. These include runny nose (coryza), nonproductive cough, sore throat, and conjunctival injection.

Diagnosis is initially confirmed with rapid antigen detection methods of swabs or washings of nasopharyngeal secretions. Viral culture is the most accurate test but is usually not available rapidly enough to make it useful in acute patient management.

Treatment. Symptomatic therapy with acetaminophen and antitussives is useful. Specific antiviral medications for both influenza A and B are the neuraminidase inhibitors oseltamivir and zanamivir. They should be used within 48 hours of the onset of symptoms to limit the duration of symptoms. Amantadine and rimantadine should not be used in the empiric therapy of influenza. Influenza vaccine is recommended annually in the general public.

The most important candidates for vaccination are those with chronic lung and cardiac disease, pregnant women in any trimester, residents of chronic care facilities, health-care workers, immunosuppressed patients, and those with diabetes and renal dysfunction. Influenza vaccine contains egg protein, but because studies show that severe reaction in those with true egg protein allergy is rare, no precaution is needed in that population. As with all vaccine administration, patients should be monitored afterward for any possible allergic manifestations and be treated for anaphylactic reaction.

Clinical Recall

An elderly, HIV-positive man comes to the emergency department complaining of fever, headache, and muscle weakness. He is subsequently diagnosed with a brain abscess by imaging studies. Which of the following is the most appropriate next step in management?

A. Brain biopsy to confirm pathogen
B. Ceftriaxone, vancomycin, ampicillin and steroids
C. 10–14 days of therapy with pyrimethamine and sulfadiazine
D. HSV PCR followed by IV acyclovir
E. LP with culture of CSF fluid

Answer: C

Note

Flu vaccine is indicated annually for everyone age >6 months.
LUNG INFECTIONS

Bronchitis

A 63-year-old man comes to the office with a cough productive of yellowish sputum for the last several days. He has smoked 1 pack of cigarettes a day for the last 30 years. On physical examination the lungs are clear and temperature is 38.3°C (101°F). Chest x-ray is normal.

Bronchitis is an infection of the lung, limited to the bronchial tree with limited involvement of the lung parenchyma. Acute exacerbations of chronic bronchitis (COPD) are often difficult to distinguish from a pneumonia until chest x-ray is performed.

Acute bronchitis is an acute inflammation of the tracheobronchial tube. The vast majority of cases are caused by viruses. *S. pneumoniae* and *H. influenzae* have not been implicated. A small percentage of nonviral cases are due to *M. pneumoniae*, *C. pneumoniae*, and *B. pertussis*.

The most common organisms responsible for chronic bronchitis are similar to those causing sinusitis and otitis media (*Streptococcus pneumoniae*, nontypeable *Haemophilus influenzae*, and *Moraxella*). Viruses account for a significant percentage but are often not confirmed. Cigarette smoking is the most common causative factor; even 1 cigarette per day is enough to paralyze the cilia, which clear the bronchial tree of mucus and inhaled impurities, for 24 hours.

Patients present with a cough often accompanied by sputum production. A bacterial etiology is suggested by discolored sputum, but it is impossible to determine the specific bacterial etiology by sputum characteristics alone. Although the lung exam may reveal rales, patients most commonly have clear lungs. Signs of consolidation, such as increased fremitus, are absent. Low-grade fever may be present, but patients are most commonly afebrile.

Diagnosis. Signs of respiratory infection, such as cough and sputum, with a normal chest x-ray confirm the diagnosis.

Treatment. Mild acute cases often do not require therapy because they are often caused by viruses that resolve spontaneously. Acute exacerbations of chronic bronchitis can be treated with amoxicillin, doxycycline, or TMP/SMZ, if there has not been recent antibiotic use. Repeated infection or patients not responding to amoxicillin should be treated with any of the following: amoxicillin/clavulanate, clarithromycin, azithromycin, oral second- or third-generation cephalosporins, or the new fluoroquinolones, gemifloxacin, levofloxacin, levofloxacin, or moxifloxacin.

Lung Abscess

A 58-year-old alcoholic man was admitted last night for several weeks of cough, sputum, and fever. He has lost 15 pounds and is feeling weak. On initial examination he is febrile and appears thin. He has very poor dentition. The lung examination is normal. The patient also exhibits a foul odor on the oral examination.
Lung abscess is necrosis of the pulmonary parenchyma caused by microbial infection.

- 90% have at least some anaerobes involved
- The most commonly implicated anaerobes are Peptostreptococcus, Prevotella, and Fusobacterium species, which are oral anaerobes found in the gingival crevices
- 45% only anaerobic, 45% mixed with aerobes, 10% aerobes only
- Aerobic bacteria, most frequently involved are S. aureus, E. coli, Klebsiella, and Pseudomonas

85–90% of cases have a clear association with periodontal disease or some predisposition to aspiration (e.g., altered sensorium, seizures, dysphagia). Pulmonary infarction, cancer, and vasculitis (like Wegener granulomatosis) are examples of noninfectious causes of lung cavities.

Patients present with the usual symptoms of pulmonary infection, such as fever, cough, sputum production, and chest pain, plus the following:

- Putrid, foul-smelling sputum (60–70% of cases)
- A more chronic course
- Several weeks of weight loss, anemia, and fatigue often occur prior to diagnosis (likely due to the 1–2 week delay between the aspiration of oral contents and the development of necrosis and cavitation)

Diagnosis. Sputum for Gram stain and culture will not be able to show the causative anaerobic organism in a lung abscess. Chest x-ray in an abscess will often show a thick-walled cavitary lesion. Chest CT can help define the exact extent of the cavity. In the upright position the lower lobes are the most common sites of aspiration. In the supine position the posterior segment of the right upper lobe is the most common site. Aspiration of the abscess fluid is necessary for a specific bacteriologic diagnosis.

Treatment. In the absence of specific microbiologic diagnosis, clindamycin is good empiric coverage for the “above the diaphragm” anaerobes most often found. Penicillin is also acceptable.

In contrast to most abscesses where drainage is the rule, lung abscesses rarely require drainage in the antibiotic era. Most respond to antimicrobial therapy and drain spontaneously by communicating with larger bronchi. Therefore, the answer to the question, what is the best initial therapy for a lung abscess, is antibiotics such as clindamycin, not drainage.

Pneumonia

Pneumonia is an infection of the lung parenchyma. It is the 6th leading cause of death in the United States. It is not necessary to have a particular predisposing condition, although some conditions do predispose to having pneumonia: cigarette smoking, diabetes, alcoholism, malnutrition, obstruction of the bronchi from tumors, and immunosuppression in general. Neutropenia and steroid use predispose to Aspergillus infection.

The most common cause of community-acquired pneumonia in all groups is *S. pneumoniae* when an actual cause is identified (however, viruses are the most common cause in children age <5). Subsequent causes may vary, but *S. pneumoniae* is always number one. Hospital-acquired or ventilator-associated pneumonia shows a predominance of gram-negative bacilli such as *E. coli*, the other Enterobacteriaceae, or *Pseudomonas*, as well as MRSA.
Table 7-1. Frequency of Infectious Agents Causing Pneumonia

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Typical"</td>
<td>40–60%</td>
</tr>
<tr>
<td>Strep pneumoniae</td>
<td>15–35%</td>
</tr>
<tr>
<td>Haemophilus</td>
<td>2–10%</td>
</tr>
<tr>
<td>Moraxella</td>
<td><5%</td>
</tr>
<tr>
<td>"Atypical"</td>
<td>10–30%</td>
</tr>
<tr>
<td>Legionella</td>
<td>0–15%</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>10%</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>5–10%</td>
</tr>
<tr>
<td>Viral</td>
<td>2–20%</td>
</tr>
<tr>
<td>Unknown</td>
<td>30–60%</td>
</tr>
</tbody>
</table>

Specific predispositions are as follows:

- **Haemophilus influenzae**: smokers, COPD
- **Mycoplasma**: young, otherwise healthy patients
- **Legionella**: epidemic infection in older smokers, particularly when located near infected water sources, such as air-conditioning systems
- **Pneumocystis jiroveci** (formerly **carinii**) pneumonia: HIV-positive persons with <200 CD4 cells not on prophylaxis
- **Coxiella burnetii** (Q-fever): exposure to animals, particularly at the time they are giving birth
- **Klebsiella**: alcoholics
- **Staphylococcus aureus**: following viral syndromes or viral bronchitis, especially influenza
- **Coccidioidomycosis**: exposure to the deserts of the American Southwest, particularly Arizona
- **Chlamydia psittaci**: birds
- **Histoplasma capsulatum**: exposure to bat or bird droppings, spelunking (recreational cave exploration)
- **Bordetella pertussis**: cough with whoop and post-tussive vomiting
- **Francisella tularensis**: hunters, or exposure to rabbits
- **SARS, Avian influenza**: travel to Southeast Asia
- **Bacillus anthracis**, **Yersinia pestis**, and **Francisella tularensis**: bioterrorism
Patients with pneumonia present with cough, fever, and often sputum production. Severe pneumonia of any cause may present with dyspnea. The quality and degree of sputum produced might provide useful clues to the microbiologic etiology of pneumonia at the initial presentation. Bacterial infections such as S. pneumoniae, Haemophilus, and Klebsiella have significant purulent sputum production because they are infections of the alveolar air space.

- The sputum with S. pneumoniae is described as rusty. The “rust” is simply hemothysis. As the blood oxidizes, it becomes brownish-red color. Any form of persistent cough may be associated with hemothysis, however, and hemothysis by itself is nonspecific.
- The sputum with Klebsiella pneumoniae is described as currant jelly. This is simply hemothysis with mucoid characteristics from a combination of the necrotizing nature of Klebsiella with the organism’s thick mucopolysaccharide coating.
- Interstitial infections such as those caused by Pneumocystis pneumonia (PCP), viruses, Mycoplasma, and sometimes Legionella often give a nonproductive or “dry” cough.

Any cause of pneumonia may be associated with pleuritic chest pain. This is pain worsened by inspiration. Commonly, pleuritic pain is associated with lobar pneumonia, such as that caused by Pneumococcus. This is because of localized inflammation of the pleura by the infection. Lobar pneumonia is the type most commonly associated with signs of consolidation on examination.

On physical examination pneumonia presents with rales, rhonchi, or signs of lung consolidation, including dullness to percussion, bronchial breath sounds, increased vocal fremitus, and egophony (E to A changes).

The respiratory rate is essential in determining the severity of a pneumonia. The respiratory rate is often a close correlate of the level of oxygenation. Severe pneumonia leads to hypoxia, which leads to hyperventilation.

Organism-specific presentations are as follows:

- **Mycoplasma**—Dry cough and chest soreness. Dyspnea is rare. Bullous myringitis and anemia from hemolysis from cold agglutinin disease are occasionally present. Patients with Mycoplasma pneumoniae rarely need to be admitted to the hospital; therefore, any patient presented to you as an inpatient is less likely to have Mycoplasma.
- **Legionella**—CNS manifestations such as confusion, headache, and lethargy. GI manifestations include diarrhea and abdominal pain.
- **PCP**—Marked dyspnea, particularly on exertion, with chest soreness with cough in an HIV-positive person. Patients invariably have AIDS with a CD4 count of <200/μL.

Diagnosis. The most important initial test for any type of pneumonia is the chest x-ray. Besides being able to simply show the presence of disease, the chest x-ray gives the initial clue to determining the diagnosis. The most important initial clue to the diagnosis is whether the infiltrates are localized to a single lobe of the lung or whether they are bilateral and interstitial. S. pneumoniae (and other causes of “typical” pneumonia) usually appear as a lobar pneumonia with parapneumonic pleural effusion. Interstitial infiltrates are associated with PCP, viral, Mycoplasma, Chlamydia, Coxiella, and sometimes Legionella pneumoniae. Sputum should be obtained for both Gram stain as well as culture. Sputum culture is the most specific diagnostic test for lobar pneumonia, such as with S. pneumoniae, Staphylococcus, Klebsiella, and Haemophilus. The other organisms (viral, Mycoplasma, Chlamydia, Coxiella, etc.), the so-called “atypical” organisms, will not show up on a Gram stain or regular bacterial culture for various reasons. Occasionally, more invasive tests are necessary to confirm the diagnosis such as
bronchoscopy, thoracentesis, pleural biopsy, or culture of pleural fluid. Ultimately, the most specific diagnostic test for pneumonia is with an open lung biopsy.

Organism-specific diagnostic methods are as follows:

- **Mycoplasma**—Specific serologic antibody titers. Cold agglutinins have both limited specificity and sensitivity.
- **Legionella**—Specialized culture media with charcoal yeast extract, urine antigen tests, direct fluorescent antibodies, and antibody titers.
- **PCP**—Bronchoalveolar lavage, increased LDH
- **Chlamydia pneumoniae, Coxiella, Coccidioidomycoses, and Chlamydia psittaci**—All of these are diagnosed with specific antibody titers.

Treatment. Treatment depends on whether the patient has a mild disease that can be treated as an outpatient or a more severe illness that must be treated with IV antibiotics as a hospitalized inpatient. The major determinants of severity are the degree of hypoxia, such as a Po$_2$ < 60 mm Hg, oxygen saturation < 94% on room air, or a respiratory rate > 30/min; confusion or disorientation; uremia; and hypotension (systolic BP < 90 mm Hg and diastolic BP < 60 mm Hg). Other markers of severity are high fever, hypothermia, leukopenia (WBC < 4,000/mm3), rapid pulse (> 125/min), hyponatremia, or dehydration as determined by an elevated BUN. Patients with serious underlying diseases such as cancer, liver disease, renal disease, or chronic lung disease often do better in hospital with IV medications.

The specific organism causing pneumonia is rarely, if ever, known at the time that the initial therapeutic decision must be made. Empiric therapy for pneumonia managed as an outpatient is with a macrolide, such as azithromycin or clarithromycin. This is because of the high frequency of *Mycoplasma* and *Chlamydia pneumoniae* as the cause of less severe community-acquired pneumonia (CAP). New fluoroquinolones (levofloxacin, moxifloxacin, or gemifloxacin) are alternatives. Although oral second- and third-generation cephalosporins and amoxicillin/clavulanate are often used, they do not cover the atypical pathogens well.

Hospitalized patients with CAP should receive either levofloxacin, moxifloxacin, or gatifloxacin or a second- or third-generation cephalosporin such as cefotaxime or ceftriaxone combined with a macrolide antibiotic such as azithromycin or clarithromycin (or doxycycline).

Table 7-2. Empiric Therapy of Community-Acquired Pneumonia

<table>
<thead>
<tr>
<th>Outpatient (Nonhospitalized)</th>
<th>Inpatient (Hospitalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First choice: macrolides:</td>
<td>New fluoroquinolones (levofloxacin, moxifloxacin, or gemifloxacin)</td>
</tr>
<tr>
<td>Azithromycin, clarithromycin</td>
<td>or</td>
</tr>
<tr>
<td>Alternatives: new fluoroquinolones:</td>
<td>Second- or third-generation cephalosporins (cefuroxime or ceftriaxone) combined with a macrolide or doxycycline</td>
</tr>
<tr>
<td>Levofloxacin, moxifloxacin, gemifloxacin</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Beta-lactam/beta-lactamase combination drug (ampicillin/subbactam; ticarcillin/clavulanate; piperacillin/tazobactam) combined with doxycycline or a macrolide</td>
</tr>
</tbody>
</table>

Note

CURB-65 indicates need for hospitalization in pneumonia:
- Confusion
- Uremia
- Respiratory distress
- Blood pressure low
- Age > 65
Treatment of Hospital-Acquired Pneumonia. Those patients who develop pneumonia after 5–7 days in the hospital are at increased risk of infection from drug-resistant, gram-negative bacilli (Pseudomonas, Klebsiella, E. coli, etc.) or gram-positive bacilli such as methicillin-resistant Staphylococcus aureus (MRSA). Empiric therapy of hospital-acquired pneumonia is with third-generation cephalosporins with antipseudomonal activity (such as ceftazidime) or carbapenems (such as imipenem) or with beta-lactam/beta-lactamase inhibitor combinations (such as piperacillin/tazobactam) and coverage for MRSA with vancomycin or linezolid. Aminoglycosides (gentamicin, tobramycin, amikacin) are often added to empiric gram-negative coverage for synergy and to ensure that the patient might be getting at least one drug if the bacteria are multidrug resistant. Antibiotic therapy can then be adjusted when results of cultures (sputum, blood, bronchoalveolar lavage, and/or pleural) become available.

Treatment of specific organisms is as follows:

- **Haemophilus influenzae**—Second- or third-generation cephalosporins
- **Mycoplasma**—Macrolides, doxycycline, or a quinolone
- **Legionella**—Macrolides, doxycycline, or a quinolone
- **Pneumocystis** pneumonia—Trimethoprim/Sulfamethoxazole (TMP/SMZ). Steroids should be used if the infection is severe. Severe is defined as an arterial Po₂ < 70 mm Hg or an A-a gradient of >35 mm Hg. If the patient is allergic to TMP/SMZ, IV pentamidine or atovaquone should be used. Dapsone or atovaquone can be used prophylactically.
- **Coxiella burnetii** (Q-fever)—Doxycycline (or erythromycin as an alternative)
- **Klebsiella**—Third-generation cephalosporins and the other drugs for gram-negative bacilli
- **Staphylococcus aureus**—Semisynthetic penicillins (oxacillin, nafcillin, etc.) if methicillin-sensitive. In the nosocomial setting, isolates are invariably methicillin-resistant, and vancomycin or linezolid is administered.
- **Coccidioidomycosis**—Primary pulmonary disease does not need to be treated. Treatment is only used for disseminated disease or in those with pulmonary disease who are immunosuppressed. Life-threatening disease is treated with amphotericin. Mild disease is treated with fluconazole or itraconazole.

Pneumococcal vaccine

Those patients at increased risk for pneumonia should receive pneumococcal vaccine. Those who should receive the vaccine include all patients age >65, as well as those with any serious underlying lung, cardiac, liver, or renal disease. Immunocompromised patients, such as those on steroids, HIV-positive persons, splenectomized patients, diabetics, and those with leukemia or lymphoma, should be vaccinated at the earliest possible opportunity. The vaccine is 60–70% effective. Re-dosing in 5 years is only necessary for those with severe immunocompromise or in those who were originally vaccinated age <65. In generally healthy persons vaccinated age >65, a single dose of vaccine is enough to confer lifelong immunity.
Tuberculosis

A 37-year-old resident of a maximum-security correctional facility has been having a cough, voluminous sputum production, and fever for the last few weeks. He has had a 10-pound weight loss and feels very weak.

Tuberculosis (TB) is an infection with *Mycobacterium tuberculosis*. Worldwide, TB is one of the top 3 causes of all deaths.

TB is spread exclusively by person-to-person transmission by means of respiratory droplet infection. There is no animal reservoir of the disease. Bacillus Calmette-Guérin (BCG) vaccination is used in many parts of the world outside the United States to try to prevent infection. It is, at best, 50% effective and is never indicated for routine use in the United States.

Besides immigrants, TB occurs predominantly in persons with specific risk for exposure, such as alcoholics, healthcare workers, prisoners, homeless shelter residents, nursing home residents, and chronically debilitated patients whose weakened immune systems allow for more frequent re-activation of latent infection. Impairment of T-cell–mediated cellular immunity is the most significant defect associated with re-activation. This is why steroid use, organ transplantation, leukemia, lymphoma, and HIV are such important risk factors.

Patients present with cough, sputum, fever, and an abnormal lung exam. They may be impossible to distinguish clinically from those with pneumonia.

- Weight loss is common because of the chronicity of the infection. Even when untreated, TB usually takes up to 5 years to become fatal.
- Night sweats may occur.
- TB can occur outside the lungs (15–20% of cases).

Note

Nearly 25% of the world’s population has been exposed to TB and would be reactive to PPD testing. Until the middle of this century, TB was the most common cause of death in the United States, but it is now at an all-time low, with <15,000 cases per year (over half of those are recent immigrants).

Note

Lymph node involvement (adenitis) is the most frequently involved extrapulmonary site in TB.
• Presentation depends on site involved
 – Any part of the body can be involved
 – In extrapulmonary TB, the lymph node (adenitis), meningeal, GI, and GU are most commonly seen

Diagnosis. Chest x-ray is the best initial test, as it is with all forms of pulmonary infection. **Apical involvement with infiltrates and sometimes cavitation** is the most common finding. Adenopathy, effusion, and calcified nodules (Ghon complex) are associated findings.

 • Sputum examination with specific staining for acid-fast bacilli (AFB) allows specific diagnosis. AFB stain has limited sensitivity, and you need 3 negative smears to reach >90% sensitivity. AFB-positive sputum staining is usually the trigger to start therapy for TB.

 • If sputum AFB stain is unrevealing, consider other diagnostic tests: thoracentesis (to examine pleural fluid), gastric aspirate in children, biopsy or FNA of specific extrapulmonary organ involved, and lumbar puncture with meningitis.

 • Culture is the most specific test, but because it takes 4–6 weeks to grow it is not often available to guide initial therapy. The culture is also necessary in order to do sensitivity testing.

 • Pleural biopsy is the single most sensitive diagnostic test. A single pleural biopsy can have up to 75% sensitivity. TB will give caseating necrosis on biopsy of any tissue.

Do not use PPD testing to diagnose acute cases of TB. PPD is relatively insensitive and nonspecific particularly with acute illness.

Treatment. Initial therapy of TB before the results of sensitivity testing are known consists of 4-drug therapy with isoniazid (INH), rifampin (Rif), pyrazinamide (PZA), and ethambutol (ETB). All 4 drugs are continued for the first 2 months or until sensitivity testing is known. PZA and ETB are then discontinued, and therapy continues with INH and rifampin for another 4 months. This makes routine therapy last for a total of 6 months. The fourth drug, ETB, is given if the sensitivity is not known. The only forms of TB that definitely must be treated for longer than 6 months are TB meningitis (12 months), TB in pregnancy (9 months), and osteomyelitis. HIV-positive persons may be treated for 6–9 months, but there is no clear evidence that 9 months is necessary, i.e., even in HIV-positive persons, 6 months of therapy is effective. INH use should generally be combined with vitamin B6 (pyridoxine) to prevent peripheral neuropathy that can be a side effect of INH.

Pregnant patients should not receive PZA or streptomycin. Steroid use with TB medications is only your answer for TB meningitis and TB pericarditis.

All of the TB medications can cause liver toxicity, except streptomycin. INH also causes peripheral neuropathy because of pyridoxine deficiency. Rifampin is associated with causing a benign change in the color of all bodily fluids to orange/red. This color is dangerous only because it could stain contact lenses and white underwear. Ethambutol is associated with optic neuritis, which can cause color blindness and other visual disturbances. PZA can cause a benign hyperuricemia. Don’t treat the hyperuricemia unless there are symptoms of gout associated with it, which rarely occurs.
Diagnosis and Treatment of Latent TB Infection. The PPD test and interferon gamma release assay (IGRA) are used to screen asymptomatic populations at risk of TB to see if they have been exposed and are at increased risk of re-activating the disease. The AFB stain and culture of the affected tissues should be performed. PPD is considered positive based on the amount of induration of the skin 48–72 h after the intradermal (not subcutaneous) injection of the PPD. Erythema is irrelevant. A positive PPD or IGRA roughly indicates a 10% lifetime risk of developing TB in HIV-negative persons. Most of the active cases will develop within the first 2 years after converting to a positive test. HIV-positive persons have a roughly 7–10% risk per year of developing active disease. Previous BCG vaccination does not alter these recommendations. The cutoffs are as follows:

≥5 mm:
- Close contacts of active TB cases
- HIV-positive persons
- Abnormal chest x-ray consistent with old, healed TB
- Steroid use or organ transplantation recipients

≥10 mm: High-risk groups, such as healthcare workers, prisoners, and nursing home residents; recent immigrants (within 5 years) from areas with a high prevalence; homeless patients; persons with immunocompromise other than those described, such as those with leukemia, lymphoma, diabetics, dialysis patients, and injection drug users who are HIV-negative or whose HIV status is unknown; and children <4 years of age, or infants, children, and adolescents exposed to adults at high risk of TB.

≥15 mm: Low-risk populations, i.e., not the people described, i.e., people who should never have been tested in the first place.

Two-Stage Testing: Those in whom there has not been a recent PPD test and now show some reactivity that is <10 mm should have a second test within 2 weeks. This is to make sure the first test was not a false negative. A reaction of >10 mm on the second test is simply a positive test, not a recent converter. You cannot make a PPD-negative person become positive with repeated testings.

All patients who test positive on the PPD test or IGRA should have a chest x-ray to see if they have early asymptomatic evidence of TB on their film. Those with abnormal chest x-rays should have 3 sputum AFB stains done to see if they have active disease. Positive AFB smears indicate the need for the start of 4 TB drugs as described.

Patients with positive PPD tests or IGRA and no evidence of active disease should receive therapy with 9 months of INH and vitamin B6. A normal chest x-ray or an abnormal x-ray and 3 negative AFB stains of sputum are sufficient to exclude active disease. Although 6 months of INH/B6 is an acceptable alternative, the recommendation is that all patients, including those who are HIV positive, should receive the same 9-month course of therapy. Previously, this was referred to as “prophylaxis.” The proper designation is now “treatment of latent TB.”

The IGRA is not altered at all with previous BCG vaccine. The IGRA has the same meaning and treatment as a positive PPD skin test. Previous BCG vaccination does not alter these recommendations in any way. Previous BCG will not make the IGRA positive.
Clinical Recall
Which of the following is not an indication for hospitalization in patients with pneumonia?
A. PO_2 of 50 mm Hg
B. Creatinine of 2.5 mg/dL
C. Temperature of 104 °F
D. Leukocytosis of 11,000
E. Underlying COPD

Answer: D

GASTROINTESTINAL INFECTIONS

Infectious Diarrhea/Food Poisoning

A 27-year-old medical student leaves the Step 2 class at 12:30 to go to lunch. At 3 P.M. she starts having repeated episodes of diarrhea. The diarrhea contains blood and mucus. She is also febrile and has abdominal pain.

Most infectious diarrhea is caused by contaminated food and water, so the overlap between infectious diarrhea and food poisoning is considerable. There are several types of food poisoning, such as Bacillus cereus and Staphylococcus aureus, which present predominantly with vomiting, so the two terms are not entirely synonymous.

A wide variety of agents can cause food poisoning.
- Campylobacter (most common)
- Salmonella (most commonly associated agent with contaminated poultry and eggs)
- E. coli (most common cause of travelers’ diarrhea; produces a wide spectrum of disease depending on whether it makes toxin or is invasive)
 - E. coli 0157:H7 is associated with undercooked hamburger meat.
 - Bacillus cereus is associated with fried rice; the rice becomes contaminated with bacillus spores, and as it is prepared for serving it is warmed only at a moderate temperature not hot enough to kill the spore.
 - Giardia lamblia and cryptosporidiosis are acquired from contaminated water sources that have not been appropriately filtered, such as fresh water on a camping trip. Cryptosporidiosis is also associated with HIV, particularly when there is profound immunosuppression and CD4 <50 cells.
- There are several types of Vibrio causing human disease.
 - V. cholera (very rare in the United States)
 - V. parahaemolyticus (associated with ingestion of contaminated shellfish such as clams and mussels)
- *V. vulnificus* (associated with ingestion of raw shellfish); causes severe disease in those with underlying liver disease; also associated with iron overload and the development of bullous skin lesions

- Viral infections such as rotavirus or Norwalk agents are most commonly associated with outbreaks in children.

- Clostridia associations are as follows:
 - *C. difficile* with previous antibiotic use
 - *C. botulinum* with ingestion of infected canned foods
 - *C. perfringens* with ingestion of meat contaminated with spores due to unrefrigeration

Although it is important to be familiar with these associations, remember that virtually any food can be contaminated by almost any organism. The most important thing is not what food you eat but whose dirty hands touched your food and what were they contaminated with.

Clinical Presentation. The most important feature of any person presenting with possible food poisoning is the presence or absence of blood in the stool. Blood is most commonly associated with invasive enteric pathogens, such as *Salmonella*, *Shigella*, *Yersinia*, invasive *E. coli*, and *Campylobacter*. The time between the development of the diarrhea from the ingestion of the food is not as important as the presence of blood. Incubation times are helpful only if you have a group outbreak and you can pinpoint a common source of contamination. In other words, the last thing you eat is not necessarily the thing that was contaminated. The invasive enteric pathogen may be causing infection in the absence of blood, however, and the absence of blood does not exclude them. *Campylobacter* is rarely associated with Guillain-Barré syndrome.

Ingestion of ciguatera toxin causes symptoms within 2–6 hours, which includes paresthesias, numbness, nausea, vomiting, and abdominal cramps. In severe cases symptoms can be neurologic (weakness, reversal of hot-cold sensations), and cardiovascular (hypotension). Neurologic symptoms can be severe, progressive, and debilitating.

There is no specific therapy to reverse ciguatera poisoning. The most commonly implicated fish are barracuda, red snapper, and grouper.

- *E. coli* 0157:H7 and *Shigella* are associated with hemolytic uremic syndrome (HUS).
- *Bacillus cereus* and *Staphylococcus* predominantly present with vomiting within 1–6 hours of their ingestion because they contain a preformed toxin. They can cause diarrhea later.
- *Giardia, Cryptosporidium, Cyclospora*, and most other protozoans do not cause bloody diarrhea. The major protozoan associated with blood in the stool is *Entamoeba histolytica*.
- Viruses can give voluminous watery diarrhea but do not cause bloody diarrhea.

Scombroid is a type of poisoning that occurs after ingestion of scombroid fish (tuna, mackerel, mahi mahi), which may contain a lot of histamine. When ingested, scombroid can give symptoms within a few minutes: rash, diarrhea, vomiting, and wheezing, along with a burning sensation in the mouth, dizziness, and paresthesias.

Diagnosis. When there is no blood present in the stool, determine the etiology of the diarrhea via a stool test for the presence of WBCs with methylene blue testing. WBCs will indicate that there is an invasive pathogen, but only a culture will identify the specific type.
Giardia and Cryptosporidia are detected by direct examination of the stool for the parasites, as well as for their eggs. A special modified AFB stain is necessary to detect Cryptosporidia. Stool ELISA is also used for Giardia.

Treatment. Therapy is determined by the severity of disease. Mild infections with the invasive pathogens and viruses usually require only oral fluid and electrolyte replacement. More severe infections, such as those producing high fever, abdominal pain, tachycardia, and hypotension, require IV fluids and oral antibiotics.

You rarely, if ever, have the luxury of knowing the specific etiology when the initial therapeutic decision must be made. The **best initial empiric antibiotic therapy of an invasive pathogen is a fluoroquinolone**, e.g., ciprofloxacin.

Organism-specific therapy is as follows:
- *Campylobacter*: erythromycin
- *Giardia*: metronidazole
- *Cryptosporidium*: control of underlying HIV disease with antiretrovirals, nitazoxanide
- Nitazoxanide is the first truly useful therapy for cryptosporidiosis.
- Scombroid: antihistamines such as diphenhydramine

ACUTE VIRAL HEPATIC INFECTIONS

An 18-year-old woman comes to the emergency department because of several days of nausea, vomiting, and fever. She uses no medications. She reports unprotected sex. Her stool is light in color. On physical examination she is jaundiced.

Viral hepatitis is an infection of the liver caused by hepatitis A, B, C, D, or E.
- **Hepatitis A and E** are transmitted by contaminated food and water. They are orally ingested and have an asymptomatic incubation period of several weeks, with an average of 2–6 weeks. They cause symptomatic disease for several days to weeks, have no chronic form, and do not lead to either cirrhosis or hepatocellular carcinoma.
- **Hepatitis B, C, and D** are transmitted by the parenteral route. They can be acquired perinatally or through sexual contact, blood transfusion, needlestick, and needle sharing.
- **Hepatitis G** has been identified in a small number of patients through screening of the blood supply but has not yet been associated with clinical disease.
- **Hepatitis B and C** can lead to a chronic form, which can cause cirrhosis and hepatocellular carcinoma. Four million people in the United States are infected with hepatitis C. Hepatitis C is the most common disease leading to the need for liver transplantation in the United States.

All forms can occasionally present with fulminant hepatic necrosis and acute liver failure.

The most common presentation of acute hepatitis of any cause is jaundice, dark urine, light-colored stool, fatigue, malaise, weight loss, and a tender liver. On physical examination the liver may be enlarged.
You cannot distinguish the precise viral etiology of the hepatitis by initial presentation alone. In fact, drug-induced hepatitis, i.e., that from isoniazid or massive alcohol use, may present with the same symptoms. Hepatitis B and C can also produce symptoms similar to serum sickness, such as joint pain, rash, vasculitis, and glomerulonephritis. They also lead to cryoglobulinemia. Hepatitis B has been associated with the development of polyarteritis nodosa (PAN). Hepatitis E has been associated with a more severe presentation in pregnant women.

Table 7-3. Comparative Features: Hepatitis A, B, C, E, and Delta

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hepatitis A</th>
<th>Hepatitis B</th>
<th>Hepatitis C</th>
<th>Delta</th>
<th>Hepatitis E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation period (wk)</td>
<td>2–6 (avg. 4)</td>
<td>4–26 (avg. 13)</td>
<td>2–20</td>
<td>4–8</td>
<td>—</td>
</tr>
<tr>
<td>Transmission</td>
<td>Fecal-oral</td>
<td>Sexual > parenteral</td>
<td>Parenteral > sexual</td>
<td>Parenteral, sexual</td>
<td>Fecal-oral</td>
</tr>
<tr>
<td>Severity</td>
<td>Mild</td>
<td>Occasionally severe</td>
<td>Usually subclinical</td>
<td>Co-infection with B</td>
<td>Mild, except in pregnant women</td>
</tr>
<tr>
<td>Fulminant hepatitis</td>
<td>Rare</td>
<td>Very rare (1% of icteric patients)</td>
<td>Extremely rare</td>
<td>Co-infection occasional</td>
<td>Rare</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Fever, malaise, headache, anorexia, vomiting, dark urine, jaundice</td>
<td>As with A, but 10–20% with serum sickness-like (joint pain, rash)</td>
<td>Only 20% acutely symptomatic</td>
<td>As with A</td>
<td>As with A</td>
</tr>
<tr>
<td>Carrier state</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Chronicity (%)</td>
<td>0</td>
<td>5–10</td>
<td>80</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Associated with blood transfusion (%)</td>
<td>Very rare</td>
<td>5–10</td>
<td>Almost negligible 2% to routine screening</td>
<td>Occurs, but frequency unknown</td>
<td>Rare</td>
</tr>
<tr>
<td>Serology</td>
<td>Anti-HAV IgM fraction IgG fraction</td>
<td>HBsAg, HBsAb HBeAg Anti-HBs Anti-HBc Anti-HBe</td>
<td>Antibody to hepatitis C PCR-RNA</td>
<td>Anti-delta IgM fraction IgG fraction</td>
<td>Anti-Hep E IgM IgG</td>
</tr>
<tr>
<td>Postexposure prophylaxis</td>
<td>Immunoglobin Hep A vaccine</td>
<td>HB Ig/Hep B vaccine</td>
<td>None effective</td>
<td>None</td>
<td>Unknown</td>
</tr>
<tr>
<td>Association with cirrhosis</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Association with primary hepatocellular carcinoma</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Diagnosis. All forms of viral and drug-induced hepatitis will produce elevated total and direct bilirubin levels.

- Viral hepatitis will produce both elevated ALT and AST, but ALT is usually greater than the AST.
- With drug- and alcohol-induced hepatitis, AST is usually more elevated than the ALT.
- Alkaline phosphatase and GGTP are less often elevated because these enzymes usually indicate damage to the bile canalicular system or obstruction of the biliary system.
- If there is very severe damage to the liver, prothrombin time and albumin levels will be abnormal.

Hepatitis A, C, D, and E are diagnosed as acute by the presence of the IgM antibody to each of these specific viruses. IgG antibody to hepatitis A, C, D, and E indicates old, resolved disease.

- Hepatitis C activity can be followed with PCR-RNA viral load level. However, do not use PCR to establish the initial diagnosis.
- Hepatitis B is diagnosed as acute with the presence of the hepatitis B surface antigen, which is the first viral marker to elevate. The hepatitis B e antigen and IgM core antibody also help establish acute infection.
 - The e antigen indicates high levels of viral replication and is a marker for greatly increased infectivity.
 - Resolution of the infection is definitively indicated by the loss of surface antigen activity and the development of hepatitis B surface antibody.
 - Hepatitis B core antibody of the IgG type and hepatitis e antibody also indicate that the acute infection is about to resolve and may be the only marker present in the period of 2–6 weeks between the loss of surface antigen activity and development of the surface antibody.

Treatment. There is no effective therapy for acute hepatitis B. Chronic hepatitis B can be treated with interferon, entecavir, adefovir, or lamivudine.

With the approval of the newest hepatitis C drugs, the goal of HCV treatment is to cure the virus, which can be done with a combination of drugs. The specific medications used and the duration of treatment depend on a number of factors:

- HCV genotype
- Viral load
- Past treatment experience
- Degree of liver damage
- Ability to tolerate the prescribed treatment
- Whether patient is waiting for a liver transplant or is transplant recipient

There are a number of approved therapies to treat HCV, such as sofosbuvir/ledipasvir, simeprevir, sofosbuvir, and Viekira Pak (ombitasvir, paritaprevir and ritonavir tablets co-packaged with dasabuvir tablets that may be prescribed with or without ribavirin). Simeprevir and sofosbuvir can be prescribed together with or without ribavirin, or each may be separately combined with ribavirin and in some cases peginterferon as well.
Sofosbuvir/ledipasvir, the current preferred HCV treatment, is 2 drugs formulated into one daily pill. For genotype 1 success rates of sofosbuvir/ledipasvir are around 94–99%, while treatment duration is 8–12 weeks. Both are direct-acting antivirals (DAAs) which means they directly interfere with hepatitis C virus replication. Sofosbuvir is a polymerase inhibitor while ledipasvir, an NS5A inhibitor. Patients who have never been treated for HCV—whether they have cirrhosis or not—take sofosbuvir/ledipasvir for 12 weeks. Treatment-naïve patients without cirrhosis whose pre-treatment viral load (HCV RNA) is <6 million IU/mL may be considered for 8 weeks of treatment.

When hepatitis C treatment is working, the virus will become undetectable within 4–12 weeks and will remain that way throughout treatment. Patients are considered cured when they have achieved what is known as a sustained virologic response (SVR), or continuation of this undetectable status, 12–24 weeks after completing therapy.

After a needlestick from a hepatitis B surface-antigen—positive patient, the person stuck should receive hepatitis B immunoglobulin (HBIg) and hepatitis B vaccine. If the person stuck already has protective levels of surface antibody to hepatitis B present in the blood, then no further therapy is indicated. There is no effective postexposure prophylaxis to hepatitis C, and there is no vaccine. All healthcare workers, IV drug users, and others at risk should be vaccinated for hepatitis B. All newborn children are vaccinated against hepatitis B and A. Hepatitis A vaccine should be given to those traveling to countries that may have contaminated food and water, those with chronic liver disease, and those with high risk sexual behavior.

Clinical Recall

Which of the following Hepatitis B markers indicates a high level of infectivity?

A. HBsAg
B. HBeAg
C. HBcAg
D. HBcAg IgM
E. HBcAg IgG

Answer: B

GENITAL AND SEXUALLY TRANSMITTED INFECTIONS

Urethritis

A 31-year-old man is in your clinic today with several days of urinary frequency, urgency, and burning.

Urethritis is inflammation of the urethra.

• Gonococcal urethritis caused by Neisseria gonorrhoeae
• Nongonococcal urethritis caused by either Chlamydia trachomatis (50%), Ureaplasma urealyticum (20%), Mycoplasma hominis (5%), Trichomonas (1%), herpes simplex
Patients present with purulent urethral discharge; dysuria, urgency, and frequency in urination.

Smear can show the gram-negative, coffee bean–shaped diplococci intracellularly. Serology (fluorescent antibodies) for chlamydia by swabbing the urethra, or by ligase chain reaction test of voided urine. Culture for gonorrhea is the most specific test for gonorrhea.

Treatment. Single-dose ceftriaxone intramuscularly and single-dose azithromycin orally is now the treatment of choice. An alternative regimen with doxycycline for 7 days can also be used. Gonorrhea can also be treated with single-dose cefixime. This is the same treatment as that for cervicitis. Ciprofloxacin should not be used as first-line therapy for gonorrhea.

Pelvic Inflammatory Disease

Pelvic inflammatory disease (PID) describes a group of infections involving the fallopian tubes, uterus, ovaries, or ligaments of the uterus. The etiology is *N. gonorrhoeae, Chlamydia, Mycoplasma*, anaerobic bacteria, or gram-negative bacteria. Intrauterine devices predispose to PID.

Clinical findings include lower abdominal and pelvic pain on palpation of the cervix, uterus, or adnexa; fever, leukocytosis, and discharge are common. Cervical motion tenderness is key. Discharge from the cervix may be present.

To diagnose, do culture on Thayer-Martin for gonococcus and Gram stain of discharge, increased ESR.

- **Laparoscopy** is the only definitive test.
- If there is fluid in the retrouterine cul-de-sac, a culdocentesis is performed (rare).
- Do a pregnancy test.
- Ultrasonography of the pelvis may help to exclude other pathology, such as an ovarian cyst or tubo-ovarian abscess.
- **Clinical presentation is the main method** (CMT/adnexal tenderness).

Treatment. Doxycycline and cefoxitin (or cefotetan) for inpatient therapy. Outpatient therapy is with single-dose ceftriaxone intramuscularly and doxycycline orally for 2 weeks. The main reason to treat in hospital is a high WBC or high fever. Outpatient therapy can also be with 2 weeks of oral ofloxacin and metronidazole as a second-line agent.

Complications of PID include infertility and ectopic pregnancy.

Syphilis

A 43-year-old man comes to the clinic with several days of an ulcerated genital lesion. He also has some surrounding adenopathy.

Syphilis is a systemic contagious disease caused by a spirochete; characterized by periods of active manifestations and by periods of symptomless latency. It is **caused by* Treponema pallidum.**

Syphilis can be classified as being congenital or acquired.
Congenital

- **Early**: symptomatic; seen in infants up to age 2
- **Late**: symptomatic, Hutchinson teeth, scars of interstitial keratitis, bony abnormalities (saber shins)

Acquired

- Early infectious syphilis
 - **Primary stage**: chancre appears by week 3 and disappears in 10–90 days; also, regional lymphadenopathy is painless, rubbery, discrete, and nontender to palpation (primary chancres are found on penis, anus, rectum [men], and vulva/cervix/perineum [women] but may appear on lips, tongue, etc.)
 - **Secondary stage**: cutaneous rashes appear 6–12 weeks after infection, usually found symmetrically and more marked on flexor and volar body surfaces (pinkish in white persons; pigmented spots/copper-colored macules in blacks); lymphadenopathy, papules which form at mucocutaneous junctions and moist areas, are called condylomata lata (extremely infectious), and alopecia can be seen.
- **Latent stage**: asymptomatic; may persist for life; 35% of patients develop late or tertiary syphilis
- **Late or tertiary syphilis**: most commonly neurologic

Patients are symptomatic but not contagious.

- Benign tertiary syphilis develops 3–20 years after the initial infection; typical lesion is the gumma (a chronic granulomatous reaction) found in any tissue or organ, which will heal spontaneously and leave a scar
- Cardiovascular syphilis and neurosyphilis are the other manifestations of tertiary syphilis. The Argyll Robertson pupil (usually only with neurosyphilis) is a small irregular pupil that reacts normally to accommodation but not to light. Tabes dorsalis (locomotor ataxia) results in pain, ataxia, sensory changes, and loss of tendon reflexes. Neurosyphilis

Figure 7-5. Syphilis, Primary Chancre

Note

Use the FTA to exclude neurosyphilis in CSF.
is rare and is essentially the only significant manifestation of tertiary syphilis likely to be seen. The FTA on CSF is far more sensitive for neurosyphilis than a VDRL.

Diagnosis

Screening tests are the VDRL and RPR; specific tests are the FTA-ABS, MHA-TP, and Darkfield exam of chancre. There can be false-positives VDRL with EBV, collagen vascular disease, TB, and subacute bacterial endocarditis.

Treatment

Penicillin is the drug of choice for all stages of syphilis. A reaction called Jarisch-Herxheimer can occur in >50% of patients (general malaise, fever, headache, sweating rigors, and temporary exacerbations of the syphilitic lesions 6–12 hours after initial treatment).

- Primary, secondary, and latent syphilis are treated with 2.4 million units of intramuscular benzathine penicillin given once a week. Primary and secondary syphilis receive 1 week of therapy. Late latent syphilis is treated with 3 weeks of therapy and diagnosed when the VDRL or RPR titers are elevated >1:8 without symptoms.
- Tertiary syphilis is treated with penicillin 10–20 million units/day IV for 10 days.
- Penicillin-allergic patients receive doxycycline for primary and secondary syphilis, but must be desensitized in tertiary syphilis. Pregnant patients must also undergo desensitization.

Chancroid

Chancroid is an acute, localized, contagious disease characterized by painful genital ulcers and suppuration of the inguinal lymph nodes. It is caused by *Haemophilus ducreyi* (gram-negative bacillus).
Patients present with small, soft, painful papules that become shallow ulcers with ragged edges. They vary in size and coalesce. Inguinal lymph nodes become very tender and enlarged.

Diagnosis is made on clinical findings; do a Gram stain initially with culture to confirm. PCR testing is useful. Treatment is azithromycin single dose or ceftriaxone intramuscularly (single dose). Alternatives include erythromycin for 7 days or ciprofloxacin for 3 days.

Lymphogranuloma Venereum

Lymphogranuloma venereum is a contagious, sexually transmitted disease having a transitory primary lesion followed by suppurative lymphangitis. It is caused by *Chlamydia trachomatis*.

Clinical findings include the following:
- Small, transient, nonindurated lesion that ulcerates and heals quickly
- Unilateral enlargement of inguinal lymph nodes (tender)
- Multiple draining sinuses (buboes) that develop (purulent or bloodstained)
- Scar formation, persistent sinuses; fever, malaise, joint pains, and headaches (all common)

Diagnosis is made by clinical examination, history, and a high or rising titer of complement fixing antibodies. Isolate chlamydia from pus in buboes. Treat with doxycycline or erythromycin.
Granuloma Inguinale

Granuloma inguinale is a chronic granulomatous condition, probably spread by sexual contact. It is caused by Donovania granulomatis *Calymmatobacterium granulomatis*.

A painless, red nodule will develop into an elevated granulomatous mass. In men, it is seen on the penis, scrotum, groin, and thighs. (In homosexual men, the anus and buttocks are common areas.) In women it is found on the vulva, vagina, and perineum.

Healing is slow, and there is scar formation. It looks like condyloma lata or carcinoma.

Diagnosis is made clinically and by performing a Giemsa or Wright stain (Donovan bodies) or smear of lesion. Also do punch biopsy. Treat with doxycycline, ceftriaxone, or TMP/SMZ. Erythromycin is an alternative.
Genital Herpes

Genital herpes is generally the herpes virus type II, although type I may be seen. Vesicles develop on the skin or mucous membranes; they become eroded and painful and present with circular ulcers with a red areola. Itching and soreness usually precede them. Lesions are commonly seen on the penis (men) and on the labia, clitoris, perineum, vagina, and cervix (women).

The ulcers are scarring and there can be inguinal lymphadenopathy.

- Diagnosis is made with the direct fluorescent antibody test or HSV PCR. Tzanck test and culture are no longer used.
- Serology is not useful for diagnosing herpes infections.
- Treat with oral acyclovir, famciclovir, or valacyclovir. Make sure to educate the patient about the relapsing nature of the disease. Those with frequent recurrence should be given chronic suppressive therapy.
- Foscarnet is used for resistant herpes.

Genital Warts

Genital warts are also known as condylomata acuminata or venereal warts. They are caused by the papilloma virus.

Genital warts are commonly found on warm, moist surfaces in the genital areas. They appear as soft, moist, minute, pink, or red swellings which grow rapidly and become pedunculated. Their cauliflower appearance makes them unique in appearance.

Diagnosis is made by clinical appearance. Differentiation must be made between flat warts and condylomata lata of secondary syphilis. Treatment includes the following:

- Destruction (curettage, sclerotherapy, trichloroacetic acid)
- Cryotherapy
- Podophyllin
- Imiquimod (an immune stimulant)
- Laser removal

Clinical Correlate

Transmission of genital herpes commonly occurs during an asymptomatic phase, when a person who is shedding the virus inoculates virus onto a mucosal surface of the sexual partner.

Clinical Recall

Which of the following is the treatment of choice for tertiary syphilis?

A. IM penicillin G x 1 dose
B. PO doxycycline x 14 days
C. IV penicillin G x 10 days
D. Doxycycline x 28 days
E. IV ceftriaxone x 1 day

Answer: C
Cystitis

A 32-year-old woman is in your office because of dysuria. For the last several days, she has burning on urination with increased frequency and urgency to urinate.

Cystitis is infection of the urinary bladder. It is very common, mostly in women. In the United States, it causes 6 million office visits each year.

Etiology.

- Roughly the same as for pyelonephritis
- Any cause of urinary stasis or any foreign body predisposes
- Tumors/stones/strictures/prostatic hypertrophy/urogenital bladder
- Sexual intercourse in women (“honeymoon cystitis”)
- Catheters are a major cause, and the risk is directly related to the length of catheterization (3–5% per day).
- Microbiology: *E. coli* in >80%; second are other coliforms (gram-negative bacilli) such as *Proteus*, *Klebsiella*, *Enterobacter*, etc.; enterococci occasionally, and *Staph. saprophyticus* in young women.

Common presenting symptoms include dysuria, frequency, urgency, and suprapubic pain. Less common symptoms include hematuria, low-grade fever; foul-smelling and cloudy urine. On exam, there is suprapubic tenderness but no flank tenderness.

Diagnosis

- Best initial test is the urinalysis looking for WBCs, RBCs, protein, and bacteria; WBCs are the most important.
- Nitrites are indicative of gram-negative infection.
- A count of <5 WBCs is normal.
- Urine culture with >100,000 colonies of bacteria per mL of urine confirmatory but not always necessary with characteristic symptoms and a positive urinalysis.

Treatment

- For uncomplicated cystitis, 3 days of TMP/SMZ, 5 days of nitrofurantoin, or 1 dose of fosfomycin
- Do not use quinolones

Acute Bacterial Pyelonephritis

Acute bacterial pyelonephritis is an acute patchy, most often unilateral, pyogenic infection of the kidney. Infection usually occurs by ascension after entering the urethral meatus.

- Predisposing factors include obstruction due to strictures, tumors, calculi, prostatic hypertrophy, or neurogenic bladder, vesicoureteral reflux
- Women > men
Infectious Diseases

- More common in childhood, during pregnancy, or after urethral catheterization or instrumentation
- *E. coli* is most common pathogen; others include *Klebsiella*, *Proteus*, and *Enterococcus*
- Patients who are immunosuppressed and subjected to indwelling catheters are more prone to *Candida.*

Pathology shows polymorphonuclear neutrophils and leukocytes (in interstitial tissue and lumina of tubules). Clinical findings include chills, fever, flank pain, nausea, vomiting, costovertebral angle tenderness, increased frequency in urination, and dysuria.

Diagnose with dysuria and flank pain. Confirm with clean-catch urine for urinalysis, culture, and sensitivity. In the majority of cases, >100,000 bacteria/mL of urine.

Routine imaging is not required, but if there is no improvement in 48–72 hours or complications are suspected (obstruction, renal, or perinephric abscess), consider U/S or CT.

Treatment. Antibiotics for 10–14 days (fluoroquinolone), or ampicillin and gentamicin, or a third-generation cephalosporin are all acceptable. Essentially, any of the antibiotics for gram-negative bacilli are effective.

- Do not use nitrofurantoin, as its effectiveness has been proven only in the lower urinary tract.
- Do not use TMP/SMZ for empiric therapy until culture results and antibiotic sensitivity results are available, because of its increasing resistance throughout the United States.

Most patients can be treated as outpatients, though pregnant women who appear very ill and those unable to tolerate oral medication due to nausea or vomiting should initially be hospitalized.

Perinephric Abscess

Perinephric abscess is a collection of infected material surrounding the kidney and generally contained within the surrounding Gerota fascia. It is very uncommon. Although any factor predisposing to pyelonephritis is contributory, stones are the most important and are present in 20–60%. Other structural abnormalities, recent surgery, trauma, and diabetes are also important.

Pathophysiology

- Arises from contiguous pyelonephritis that has formed a renal abscess
- Rupture occurs through the cortex into the perinephric space
- Microbiology: 1) The same coliforms as in cystitis and pyelonephritis; 2) *E. coli* most common, then *Klebsiella, Proteus*; 3) *Staph. aureus* sometimes accounts for hematogenous cases

Signs and Symptoms

- Often insidious; 2–3 weeks of symptoms prior to first physician visit
- Fever is the most common symptom
- Flank pain/palpable abdominal mass/abdominal pain
- Persistence of pyelonephritis-like symptoms despite treatment for pyelonephritis
The best initial tests are urinalysis (normal 30%) and urine culture (normal 40%). Fever and pyuria with negative urine culture or polymicrobial urine culture are suggestive.

Imaging is essential; U/S is the best initial scan but CT or MRI scan offers better imaging. Aspiration of the abscess is needed for definitive bacteriologic diagnosis.

Treatment.

- Antibiotics for gram-negative rods
- Third-generation cephalosporins, antipseudomonal penicillin, or ticarcillin/clavulanate, often in combination with an aminoglycoside, for example
- Antibiotics alone are unlikely to be successful. Drainage (usually percutaneous) is necessary.

BONE AND JOINT INFECTIONS

Osteomyelitis

A 59-year-old man was admitted last night because of a painful leg for 2 weeks. Over the last 4 days, he developed an ulcer over the proximal portion of his tibia just below the knee. He has a history of peripheral vascular disease and diabetes. He is afebrile. He has a sinus tract in the center of the red, inflamed ulcer that is draining purulent material.

Osteomyelitis is an infection of any portion of the bone including marrow, cortex, and periosteum. There are 3 types:

- **Acute hematogenous** occurs mostly in children in the long bones of the lower extremities and is secondary to a single organism 95% of the time. The most common organism is *Staphylococcus aureus*. The most commonly involved bones are the tibia and femur, and the location is usually metaphyseal due to the anatomy of the blood vessels and endothelial lining at the metaphysis. In adults, hematogenous osteomyelitis accounts for about 20% of all cases and the most common site is the vertebral bodies (lumbar vertebrae are most frequently involved). The infection can extend posteriorly to form an epidural abscess. A patient with this diagnosis would present with fever and back tenderness.

- **Secondary to contiguous infection** can occur in anyone with recent trauma to an area or placement of a prosthetic joint. Although this is secondary to a single organism most of the time, a higher percentage is polymicrobial in origin. *S. aureus* is the most common organism.

- **Vascular insufficiency** is mostly seen age >50, with diabetes or peripheral vascular disease, resulting in repeated minor trauma that is not noticed because of neuropathy and decreased sensation. It is most common in small bones of the lower extremities. The majority is polymicrobial, but the single most common organism is still *S. aureus*.

Note

Injection drug use is a significant risk factor for vertebral osteomyelitis in adults.
Presentation. Pain, erythema, swelling, and tenderness over the infected bone. With vascular insufficiency, there is often an obvious overlying or nearby ulceration or wound. Occasionally, a draining sinus tract is present.

Diagnosis. The earliest tests to detect osteomyelitis are the technetium bone scan and the MRI. Both have equal sensitivity for early pick-up, but the MRI can allow better differentiation between the overlying soft-tissue infection and bone. The MRI can be less readily available, however.

- **Plain x-ray:** Usually the initial test because it is more easily obtained, easily read, and inexpensive. Periosteal elevation is the first abnormality visible. The disadvantage is that 50–75% of bone calcification must be lost before the bone itself appears abnormal, which usually takes at least 2 weeks to develop.
- **Erythrocyte sedimentation rate (ESR):** Nonspecific. It is useful to follow during treatment. A normal value strongly points away from osteomyelitis.
- **Bone biopsy and culture:** This is the best diagnostic test but also the most invasive.
- **CT scan, indium, and gallium:** All 3 can be abnormal in osteomyelitis, but none are as specific or sensitive as the tests listed above.

Treatment. Acute hematogenous osteomyelitis in children can usually be treated with antibiotics alone; however, osteomyelitis in adults requires a combination of surgical (wound drainage and debridement, removal of infected hardware) and antibiotic therapy. Antibiotic therapy depends on the specific isolate obtained, which must be as precise as possible because empiric treatment for 6–12 weeks would be undesirable. A semisynthetic penicillin (oxacillin, nafcillin) or vancomycin (if MRSA is suspected) plus an aminoglycoside or a third-generation cephalosporin would be adequate until a specific diagnosis is obtained. Chronic osteomyelitis must be treated for as long as 12 weeks of antibiotic therapy, and in some cases, even longer periods of antibiotics may be required. The other MRSA drugs are daptomycin, linezolid, ceftaroline, and tigecycline.

Septic Arthritis

A 73-year-old woman was admitted to your service today with a swollen right knee for the last several days. The knee has an obvious effusion and decreased mobility. There is also redness and tenderness of the knee.

Septic arthritis is an infection of a joint due to virtually any agent. The most common etiology is bacterial; specifically, *Neisseria gonorrhoeae*, staphylococci or streptococci, but *Rickettsia*, viruses, spirochetes, etc., may also cause it. Generally, bacterial arthritis is divided into gonococcal and nongonococcal types.

Pathogenesis. Sexual activity is the only significant risk factor for gonococcal septic arthritis. A total of 1–5% of people with gonorrhea will develop disseminated disease, and 25% will have a history of recent symptomatic gonorrhea. Nongonococcal bacterial arthritis is usually spread by the hematogenous route. Additional routes may include bites (animal or human), direct inoculation of bacteria into the joint through surgery or trauma, or spread of infection from surrounding structures such as bone. Even though both normal or damaged joints can get infected, any previous damage to a joint, such as from rheumatoid arthritis or osteoarthritis, previous surgery, prosthesis placement, gout, sickle cell disease, or the presence of certain risk factors such as IV drug abuse, diabetes mellitus, or HIV infection can predispose a joint to infection. Any cause of bacteremia can seed the joint because the synovium does not have a basement membrane.
Microbiology. Nongonococcal:
- Gram-positive (>85); (S. aureus [60%], Streptococcus [15%], Pneumococcus [5%])
- Gram-negative (10–15%)
- Polymicrobial (5%)

Presentation includes the following:
- Nongonococcal: monoarticular in >85%, with a swollen, tender, erythematous joint with a decreased range of motion (knee most common); skin manifestations rare
- Gonococcal: polyarticular in 50%; a tenosynovitis is much more common (effusions less common; migratory polyarthralgia common; skin manifestations with petechiae or purpura common)

Diagnosis
- Nongonococcal. Culture of joint aspirate fluid is positive in 90–95% and Gram stain is positive in 40–70%. Cell count of synovial fluid is high (>50,000) and is predominantly PMNs with a low glucose. Blood culture is positive in 50%.
- Gonococcal. Much harder to culture. Only 50% of joint aspirates have positive synovial fluid culture; <10% of blood cultures are positive. Other sites such as cervix, pharynx, rectum, and urethra may also be positive. In the aggregate, culture of the other sites has a greater yield than culturing the joint itself.

Treatment. Bacterial arthritis is usually treated by a combination of joint aspiration and antimicrobial therapy.
- Nongonococcal. In the absence of a specific organism seen on a stain or obtained from culture, good empiric coverage is nafcillin or oxacillin (or vancomycin) combined with an aminoglycoside or a third-generation cephalosporin. Combine an antistaphylococcal/antistreptococcal drug with a gram-negative drug.
- Gonococcal. Ceftriaxone is the drug of choice.

Gas Gangrene (Clostridial Myonecrosis)
Gas gangrene is the necrotizing destruction of muscle by gas-producing organisms, associated with signs of sepsis. It is largely caused by the spread of infection from wounds contaminated by Clostridium perfringens (the toxins produced by clostridia play a significant role in tissue damage). It is strongly associated with traumatic injury (50%), shrapnel in war, and motor vehicles in peacetime. The trauma may be as minor as an intramuscular injection; however, the wound must be deep, necrotic, and without exit to the surface. Postoperative (30%), nontraumatic (20%).

Symptoms usually begin <1–4 days of incubation after the wound; they include pain, swelling, and edema at the site of the wound. Later hypotension, tachycardia, and fever can occur. Crepitation over the site and renal failure are late developments, usually prior to death.

Diagnosis. A Gram stain of the wound shows gram-positive rods, but no white cells. A culture may be positive for C. perfringens as early as 1 day; however, this is not necessarily diagnostic because up to 30% of wounds can be colonized by Clostridia. Gas bubbles on x-ray are suggestive but may be caused by streptococci as well. Direct visualization (usually at surgery) of pale, dead muscle with a brownish, sweet-smelling discharge is ultimately diagnostic.

Treatment. High-dose penicillin (24 million/day) or clindamycin (if penicillin allergic) is necessary, but surgical debridement or amputation is the absolute center of treatment. Hyperbaric oxygen may be of benefit, but this is still controversial.
Clinical Recall

What is the most appropriate treatment strategy in the management of gas gangrene?

A. High-dose penicillin
B. Clindamycin
C. High-dose penicillin and hyperbaric oxygen
D. IV doxycycline and surgical debridement
E. High-dose penicillin and surgical debridement

Answer: E

CARDITIS

Infective Endocarditis

A 40-year-old man is brought to the hospital because of fever. He has a history of IV drug use. On physical examination, there is a systolic murmur at the lower left sternal border.

Infective endocarditis is colonization of heart valves with microbial organisms causing friable infected vegetations and valve injury. Bacterial endocarditis produces large vegetations and may affect any valve in the heart, although left-sided lesions of the aortic and mitral valves are more common.

There are several important invasive and other predisposing factors to bacterial endocarditis:

- Dental procedures that cause bleeding
- Oral and upper respiratory tract surgery
- Genitourinary surgery
- Prosthetic heart valves
- Catheters in the right heart
- Pressure-monitoring catheters
- IV drug use
Table 7-4. Relative Risk of Predisposing Conditions for Infective Endocarditis

<table>
<thead>
<tr>
<th>High Risk</th>
<th>Intermediate Risk</th>
<th>Low/Negligible Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosthetic valves*</td>
<td>Mitral valve prolapse with regurgitation</td>
<td>Mitral prolapse without regurgitation</td>
</tr>
<tr>
<td>Aortic valve disease</td>
<td>Mitral stenosis</td>
<td>Atrial septal defect</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>Tricuspid valve disease</td>
<td>Luetic aortitis</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td>Hypertrophic obstructive cardiomyopathy</td>
<td>Transvenous pacemakers</td>
</tr>
<tr>
<td>Arteriovenous fistula</td>
<td>Calcific aortic sclerosis</td>
<td>Surgically corrected congenital lesions (no prosthesis) >6 mo after surgery</td>
</tr>
<tr>
<td>Coarctation of the aorta</td>
<td>Indwelling right heart and pulmonary artery catheters</td>
<td>Aortocoronary bypass surgery Cardiac pacemakers</td>
</tr>
<tr>
<td>Indwelling right heart catheters (hyperalimentation)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Previous infective endocarditis</td>
<td>Nonvalvular intracardiac prosthesis</td>
<td>—</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Indication for endocarditis prophylaxis.
Table 7-5. Microorganisms Responsible for Infective Endocarditis

<table>
<thead>
<tr>
<th>Organism</th>
<th>Incidence, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native valves</td>
<td></td>
</tr>
<tr>
<td>Streptococcus viridans</td>
<td>50–60</td>
</tr>
<tr>
<td>Enterococci</td>
<td>5–15</td>
</tr>
<tr>
<td>Other streptococci:</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>15–20</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>20–30</td>
</tr>
<tr>
<td>Gram-negative bacilli</td>
<td><5</td>
</tr>
<tr>
<td>Fungi (Candida, Aspergillus, Histoplasma)</td>
<td><3</td>
</tr>
<tr>
<td>Culture negative</td>
<td><5</td>
</tr>
<tr>
<td>In narcotic addicts</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>60–95</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>5–10</td>
</tr>
<tr>
<td>Streptococci</td>
<td>10–20</td>
</tr>
<tr>
<td>Enterococci</td>
<td>8–10</td>
</tr>
<tr>
<td>Gram-negative bacilli</td>
<td>4–8</td>
</tr>
<tr>
<td>Fungi</td>
<td>4–5</td>
</tr>
<tr>
<td>Diphtheroids</td>
<td>1–2</td>
</tr>
<tr>
<td>Prosthetic valves</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>Acutely: first 2 months after surgery</td>
</tr>
<tr>
<td>Streptococcus viridans</td>
<td>40–50 acutely; 10–20 later</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5–20 acutely; 40–60 later</td>
</tr>
<tr>
<td>Enterococci</td>
<td>15–20 acutely; 20–30 later</td>
</tr>
<tr>
<td>Other streptococci</td>
<td>5–10</td>
</tr>
<tr>
<td>Culture negative</td>
<td>1–5</td>
</tr>
</tbody>
</table>

Acute infective endocarditis is caused by bacteremia.
- *S. aureus* is the most common cause of acute endocarditis
- Seed previously normal valves, producing necrotizing, ulcerative, invasive infection
- Produces large, bulky vegetations (2 mm to 2 cm) on the atrial side
- IV drug use a major risk factor
- Rapid onset with fever and sometimes sepsis
- Splenomegaly
- Associated with invasion of myocardium (abscess cavities) and rapid valve destruction
- Embolic complications, particularly to the lungs with right-sided lesions
With **subacute infective endocarditis**, viridans group streptococci is the most common organism. It is associated with low virulence.

- Seed previously abnormal valves
- Produce smaller vegetations composed of fibrin, platelets, debris, and bacteria
- Risk factors include ventricular septal defect with shunt; stenosis of any valve; prosthetic valve; indwelling catheter; bicuspid aortic valve; mitral valve prolapse; and Marfan syndrome
- Clinical course has slow onset with vague symptoms, leading to malaise, low-grade fever, weight loss, and flu-like symptoms. Destruction of valves is also present.
- Less fatal than acute endocarditis: 5-year survival 80–90% with treatment

Clinical manifestations

Table 7-6. Incidence of Clinical Findings in Infective Endocarditis

<table>
<thead>
<tr>
<th>Symptoms, %</th>
<th>Signs, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chills, 41</td>
<td>Heart murmur or changing murmur, 80–90</td>
</tr>
<tr>
<td>Weakness, 38</td>
<td>Fever, 90</td>
</tr>
<tr>
<td>Dyspnea, 36</td>
<td>Embolic events, 50</td>
</tr>
<tr>
<td>Sweats, 24</td>
<td>Skin manifestations, 50</td>
</tr>
<tr>
<td>Anorexia, weight loss, 24</td>
<td>Splenomegaly, 28</td>
</tr>
<tr>
<td>Malaise, 24</td>
<td>Septic complications, 19</td>
</tr>
<tr>
<td>Cough, 24</td>
<td>Mycotic aneurysms, 18</td>
</tr>
<tr>
<td>Skin lesions, 21</td>
<td>Glomerulonephritis, 10</td>
</tr>
<tr>
<td>Stroke, 18</td>
<td>Digital clubbing, 12</td>
</tr>
<tr>
<td>Nausea, vomiting, 17</td>
<td>Retinal lesions, 5</td>
</tr>
<tr>
<td>Chest pain, 16</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-7. Peripheral Manifestations of Infective Endocarditis

<table>
<thead>
<tr>
<th>Physical Findings (Frequency)</th>
<th>Pathogenesis</th>
<th>Most Common Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petechiae (20–30%): red, nonblanching lesions in crops on conjunctivae, buccal mucosa, palate, extremities</td>
<td>Vasculitis or emboli</td>
<td>Streptococcus, Staphylococcus</td>
</tr>
<tr>
<td>Splinter hemorrhages (15%): linear, red-brown streaks most suggestive of IE when proximal in nailbeds</td>
<td>Vasculitis or emboli</td>
<td>Staphylococcus, Streptococcus</td>
</tr>
<tr>
<td>Osler’s nodes (5–10%): 2–5 mm painful nodules on pads of fingers or toes</td>
<td>Vasculitis</td>
<td>Streptococcus</td>
</tr>
<tr>
<td>Janeway lesions (10–15%): macular, red, or hemorrhagic, painless patches on palms or soles</td>
<td>Emboli</td>
<td>Staphylococcus</td>
</tr>
<tr>
<td>Roth’s spots (<5%): oval, pale, retinal lesions surrounded by hemorrhage</td>
<td>Vasculitis</td>
<td>Streptococcus</td>
</tr>
</tbody>
</table>

Complications of infective endocarditis are as follows:
- CHF (most common cause of death)
- Septic embolization (related to infarctions and metastatic infections): brain (“mycotic” aneurysm); spleen (greater with subacute); kidneys; coronary arteries
- Glomerulonephritis with nephrotic syndrome or renal failure (immune complex)

Diagnosis. To diagnose endocarditis, 2 major criteria are required: positive blood cultures and abnormal echocardiogram.
- The sensitivity of transthoracic echo is <60%, but its specificity is excellent.
- Transesophageal echo is >90% sensitive and >95% specific.

If 1 of the major criteria is absent, 1 major plus 3 minor criteria will constitute a diagnosis. The minor criteria are:
- Fever
- Predisposing cardiac lesion
- IV drug use
- Vascular phenomena (arterial embolic, septic pulmonary infarcts, Janeway lesions), immunologic phenomena (such as Osler nodes, Roth spots, glomerulonephritis, or a positive rheumatoid factor)
- Microbiologic evidence (positive blood cultures not meeting major criteria or evidence of active infection with an organism consistent with infective endocarditis)

Treatment. Treatment decisions for infective endocarditis should be based on the identification of the organism found in blood culture and its specific antimicrobial sensitivities. Prior to the results of blood cultures, therapy can be started if the patient is very ill or there is very clear evidence of endocarditis such as fever, a clearly new or changing murmur, and embolic phenomena. Acceptable empiric therapy would be a combination of an antistaphylococcal drug such as nafcillin (or oxacillin), a streptococcal drug such as penicillin (or ampicillin), and gentamicin. You must alter therapy as soon as a specific microbiologic agent is known. Vancomycin and gentamicin are the standard empiric treatment for infective endocarditis.
Table 7-8. Therapy of Specific Microorganisms Causing Endocarditis

<table>
<thead>
<tr>
<th>Organism</th>
<th>Medication</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strep. viridans</td>
<td>Penicillin</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>Penicillin-allergic: ceftriaxone or vancomycin</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td>Penicillin or ceftriaxone + 2 weeks of gentamicin</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Staph. aureus, native valve (Methicillin-sensitive)</td>
<td>Nafcillin (+ 5 days of gentamicin)</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td>(Methicillin-resistant)</td>
<td>Penicillin-allergic: cefazolin or vancomycin + gentamicin for first 5 days</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td></td>
<td>Vancomycin</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td>Enterococcal</td>
<td>Penicillin (or ampicillin) and gentamicin</td>
<td>4-6 weeks</td>
</tr>
<tr>
<td></td>
<td>(vancomycin if penicillin-allergic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillin-allergic or resistant: vancomycin and gentamicin</td>
<td>4-6 weeks</td>
</tr>
</tbody>
</table>

Note the criteria for surgery in infective endocarditis.

Major criteria

- CHF, progressive or unresponsive to “simple” measures
- Recurrent systemic emboli
- Persistent bacteremia despite adequate antibiotic therapy
- Fungal etiology
- Extravalvular infection (atrioventricular block, purulent pericarditis)
- Prosthetic valve dehiscence or obstruction
- Recurrence of infection despite adequate therapy

Minor criteria

- CHF, resolved with medical therapy
- Single systemic embolic event
- Large aortic or mitral vegetations on echocardiography
- Premature mitral valve closure in acute aortic insufficiency
- Prosthetic valve infection due to organisms other than highly penicillin-sensitive streptococci
- Tricuspid endocarditis due to gram-negative bacilli
- Persistent fever without other identifiable cause
- New regurgitation in an aortic prosthesis
Prevention of bacterial endocarditis

The number of cardiac lesions which are an indication for endocarditis prophylaxis has markedly diminished over the years. AS, MS, AR, and MR no longer need prophylaxis, even for dental procedures. Prophylactics are indicated when there is both a serious underlying cardiac defect and a procedure causing bacteremia.

- **Dental procedures**: amoxicillin; for penicillin-allergic patients, use clindamycin, azithromycin, clarithromycin, or cephalexin
- **Urinary or GI procedures**: no longer require prophylaxis

Cardiac Conditions Which Do Require Prophylactic Therapy

- Prosthetic cardiac valves, including bioprosthetic and homograft valves
- Previous bacterial endocarditis, even in the absence of heart disease
- Most congenital cardiac malformations, especially cyanotic lesions (negligible risk with isolated ASD) if not repaired
Conditions Which Do Not Require Prophylactic Therapy

• Surgically corrected systemic pulmonary shunts and conduits
• Rheumatic and other acquired valvular dysfunction, even after valvular surgery
• Hypertrophic cardiomyopathy
• Mitral valve prolapse with valvular regurgitation
• Surgically repaired intracardiac defects

Dental or Surgical Procedures Which Predispose to Endocarditis

• Dental procedures known to induce gingival or mucosal bleeding, including professional cleaning
• Tonsillectomy and/or adenoidectomy

Procedures in Which Indication for Prophylaxis Is Unclear

• Surgical operations that involve intestinal or respiratory mucosa

Anatomic Defects or Conditions Which Require Prophylaxis

• Prosthetic valves
• Unrepaired cyanotic heart disease
• Previous endocarditis
• Transplant status

LYME DISEASE

A couple comes to your office after a recent camping trip. The woman has sustained a tick bite but did not develop any symptoms. The man has developed a red skin lesion that resolved and was followed by the onset of facial palsy. He does not recall having sustained a tick bite.

Lyme disease is spread by the bite of the *Ixodes scapularis* (dammini) tick. On the basis of animal studies we know that the tick needs at least 24 hours of attachment to transmit the *Borrelia burgdorferi* organism. The tick is small, and the bite is often not remembered.

Symptoms begin 3–30 days after the bite of the tick.

• Erythema migrans rash at the site of the bite (80% of patients)
 – An erythematous patch, which may enlarge in the first few days, may have partial central clearing, giving it a “bull’s-eye” appearance, although this is not commonly seen.
 – The rash will resolve in several weeks, even without treatment.
• Flulike illness with fever, chills, and myalgias (50% of patients)
• Neurologic symptoms several weeks later (10–20% of patients)
Most common symptom is paralysis of the seventh cranial nerve (facial paralysis), possibly be bilateral
- Meningitis, encephalitis, headache, and memory disturbance may develop as well

- Cardiac symptoms (<10% of patients)
 - Most common symptom is AV heart block
 - Myocarditis, pericarditis, and various forms of arrhythmias may develop as well

- Joint involvement months to years later (up to 60% of patients)
 - Most commonly a migratory polyarthritis, although chronic monoarticular arthritis (most commonly affecting the knee) is sometimes seen

Diagnostic criteria for (definite) Lyme are the development of the erythema migrans rash plus at least one late manifestation, as well as lab confirmation of the presence of the organism. Most patients are treated on the basis of the presence of the rash alone.

Serologic testing is the most commonly used test. An ELISA test combined with a Western blot is the standard method of establishing the diagnosis. The problem with serologic testing is that it often does not distinguish between current and previous infection. Also, in early disease when patients have the rash, testing is often negative because patients have not had sufficient time to mount an immune response. In such circumstances, treatment should be given based on strong clinical suspicion, and serologic testing should not be done. Serology will almost always be positive later in the course of the disease.

Treatment. Treat minor symptoms with doxycycline or amoxicillin. Treat the rash, facial palsy, and joint pain with oral doxycycline. Treat more serious manifestations such as heart block, meningitis, myocarditis, or encephalitis with IV ceftriaxone. In other words, all cardiac and serious neurologic manifestations should be treated with IV ceftriaxone.
Clinical Recall

Which of the following is an indication for prophylactic therapy in the management of infective endocarditis?

A. Congenital cyanotic heart lesions
B. Surgically corrected systemic pulmonary shunts
C. Hypertrophic cardiomyopathy
D. Mitral valve prolapse with valvular regurgitation
E. GI surgery

Answer: A

ROCKY MOUNTAIN SPOTTED FEVER

Rocky Mountain spotted fever (RMSF) is a bacterial infection caused by the organism *R. rickettsii*.

R. rickettsii is transmitted by the wood tick. The most common areas are the mid-Atlantic coast, upper South, and Midwest of the United States.

Clinical Findings.

- More common in spring and summer
- Triad: abrupt onset of fever, headache, and rash (erythematous maculopapules). This disease starts at wrist and ankles and spreads centripetally (can involve palms and soles).
- Differential diagnosis with syphilis

Symptoms include confusion, lethargy, dizziness, irritability, stiff neck, and GI symptoms. Rash starts by day 6.

Diagnosis is made with specific serology and a skin lesion biopsy. Treat with doxycycline.

Figure 7-13. Rash of Rocky Mountain Spotted Fever on an Infant
ACQUIRED IMMUNE DEFICIENCY SYNDROME

Acquired immune deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV). The primary mechanism of HIV is infection of a particular subset of T lymphocytes called CD4 cells (often called just T cells). Over time, HIV decreases the number of CD4 cells. As a person’s CD4 count drops, he becomes at increasing risk of developing opportunistic infections and certain malignancies.

The mode of HIV acquisition varies around the world.

- In the United States, the earlier part of the epidemic was fueled by men who had sex with men (MSM) and injection drug use. Today, the most common risk factors are MSM and heterosexual intercourse. In women, the most common mode is heterosexual transmission.
- In most developing countries, including Africa, Asia, and Latin America, heterosexual transmission is the primary mode.
- There is often a 10-year lag between contracting HIV infection and developing the first symptoms. That is because CD4 cells drop at a rate of 50–100/μL/year without therapy. It would take 5–10 years to drop from a normal CD4 count of 700/mm\(^3\) to a count of 200/mm\(^3\).

Opportunistic Infections in AIDS

Pneumocystis jiroveci (formerly carinii) (CD4 count <200/µL)

Principal Manifestations. Pneumonia; dyspnea on exertion; dry cough; fever; chest pain; usually subacute onset and progression.

Principal Diagnostic Test. Bronchoscopy with bronchoalveolar lavage for direct identification of the organism. Chest x-ray reveals bilateral, interstitial infiltrates. Pneumothorax may be present and it is possible to have PCP pneumonia with a normal chest x-ray. Serum LDH is usually moderately elevated.

Treatment and Side Effects

- Trimethoprim-sulfamethoxazole (TMP-SMZ) is the first-line therapy for mild-severe disease and may cause a rash. Alternative therapy for mild-moderate disease is a combination of dapsone and trimethoprim or primaquine and clindamycin or atovaquone or trimetrexate (with leucovorin).
- Pentamidine—pancreatitis, hyperglycemia, hypoglycemia
- Steroids are used as adjunctive therapy for any patient with severe pneumonia. Severe is defined with a \(\text{Pao}_2\) of <70 mm Hg or an A-a gradient of >35 mm Hg.
- TMP/SMZ can lead to hyperkalemia and should not be given with ACE-I, ARB, or spironolactone.
- TMP/SMZ can also inhibit the secretion of creatinine, leading to mild increases in serum creatinine (.05 mg/dL). This is not a decrease in GFR, thus the medication should not be stopped.

Prophylaxis (in Order of Preference)

- TMP/SMZ orally (most effective).
- Dapsone
- Atovaquone
• Aerosolized pentamidine (fails the most)
• Prophylaxis of PCP may be discontinued if antiretrovirals raise CD4 count >200/μL for >6 months.

Cytomegalovirus (CD4 <50/μL)
Principal Manifestations
• Retinitis: blurry vision, double vision, or any visual disturbance in a patient with a very low CD4 count
• Colitis: diarrhea (<20% of patients)
• Esophagitis: odynophagia, fever, retrosternal chest pain (endoscopy reveals multiple shallow ulcers in the distal esophagus)
• Encephalitis: altered mental status, cranial nerve deficits

Principal Diagnostic Tests
• Funduscropy for retinitis
• Colonoscopy with biopsy for diarrhea or upper GI endoscopy with biopsy of ulcers

Treatment and Side Effects
• Valganciclovir—an oral prodrug of ganciclovir, achieves levels in the serum comparable to IV ganciclovir. This drug can be used to treat CMV retinitis (along with intravitreal ganciclovir) and GI manifestations of CMV disease. IV ganciclovir is reserved for serious CNS infections and for patients that cannot tolerate oral medications. Foscarnet and cidofovir are used when ganciclovir resistance or failure occurs.
• Ganciclovir—neutropenia or foscarnet-renal toxicity
• Cidofovir—renal toxicity

Prophylaxis. Valganciclovir is used for maintenance therapy. Primary prophylaxis is not indicated.

Mycobacterium avium complex (CD4 <50/μL)
Principal Manifestations. A ubiquitous atypical mycobacteria found in the environment; mode of infection is inhalation or ingestion. Fevers, night sweats, bacteremia, wasting, anemia, diarrhea.

Principal Diagnostic Tests
• Blood culture
• Culture of bone marrow, liver, or other body tissue or fluid

Treatment. Clarithromycin and ethambutol ± rifabutin.

Prophylaxis
• Azithromycin orally once a week or clarithromycin twice a day if CD4 count <50/μL
• Prophylaxis may be discontinued if antiretrovirals raise the CD4 count >50/μL for several months.

Toxoplasmosis (CD4 <100/μL)
Principal Manifestation. Brain mass lesion: headache, confusion, seizures, and focal neurologic deficits
Principal Diagnostic Tests

- CT or MRI scan of the head showing several “ring” (contrast) enhancing lesions with edema and mass effect, usually in the basal ganglia. (CNS lymphoma is usually one lesion whereas toxoplasmosis is multiple lesions.) A trial of specific therapy is given for 2 weeks, and the scan is repeated. Shrinkage of the lesions is considered diagnostic.
- Brain biopsy is occasionally necessary if there is no shrinkage of the lesions with treatment for toxoplasmosis.

Treatment. Pyrimethamine and sulfadiazine. Clindamycin can be substituted for sulfadiazine in the sulfa-allergic patient. Leucovorin is given to prevent bone marrow suppression.

Prophylaxis

- TMP/SMZ
- Dapsone, pyrimethamine, and leucovorin
- Atovaquone +/- pyrimethamine

Cryptococcosis (CD4 <100/µL)

Principal Manifestation. Meningitis; patients mostly present with fever, headache, and malaise.

Principal Diagnostic Tests

- Lumbar puncture with initial evaluation by India ink and then specific cryptococcal antigen testing. A lower CSF cell count implies worse disease.
- Serum cryptococcal antigen testing. A high antigen titer, high opening pressure, and low CSF cell count all imply a worse prognosis.

Treatment. Amphotericin intravenously for 10–14 days at least (with flucytosine), followed by fluconazole orally for maintenance and suppressive therapy. Once CD4 >100/µL for 3 months, stop fluconazole.

Prophylaxis. Oral fluconazole is not recommended for general use as a prophylaxis. This is because the incidence of cryptococcal meningitis is too low to demonstrate a mortality benefit with its use.

Vaccinations

All HIV-positive persons should receive vaccinations for pneumococcus. They should receive the (covalent) PCV13 first, and then 8 weeks later, the (polysaccharide) PPSV23, influenza, and hepatitis B. If CD4 >200/µL, even varicella vaccine can be given.

Monitoring the Immune System

CD4 count monitoring and viral load testing can be compared to the staging of cancer in terms of assessing prognosis. They are indispensable for determining appropriate treatment.
CD4 cell count

The CD4 count is the most accurate method for determining what infections or other diseases the patient is at risk for. At the present time the CD4 count provides an assessment of the extent of immunologic damage at the time of diagnosis and is usually the most important factor when deciding the timing of therapy. It is also the strongest predictor of disease progression and survival. Without treatment, CD4 count drops 50–100 cells per year.

The following is an approximate breakdown of when the risk of certain diseases begins to increase.

<table>
<thead>
<tr>
<th>CD4 Count</th>
<th>Disease Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>700–1,500/µL</td>
<td>Normal</td>
</tr>
<tr>
<td>200–500/µL</td>
<td>Oral thrush, Kaposi sarcoma, tuberculosis, Zoster</td>
</tr>
<tr>
<td>100–200/µL</td>
<td>Pneumocystis carinii pneumonia, disseminated histoplasmosis and coccidioidomycosis</td>
</tr>
<tr>
<td><100/µL</td>
<td>Toxoplasmosis, Cryptococcus, cryptosporidiosis, disseminated herpes simplex</td>
</tr>
<tr>
<td><50/µL</td>
<td>Cytomegalovirus, Mycobacterium avium complex, Progressive, multifocal leukoencephalopathy (PML), CNS lymphoma</td>
</tr>
</tbody>
</table>

In addition to determining the risk of opportunistic infections, the other uses of the CD4 count are to determine:

- When to start prophylactic medications
- Adequacy of response to antiretroviral medications (though the best test to monitor response to therapy is the HIV-RNA viral load)

Viral load monitoring

Tests now exist to give a numerical value to the quantity of HIV in the blood. Viral load can be compared to glucose level for patients with diabetes. Monitoring of viral load is the best method to monitor adequate response to therapy when the patient is on antiretroviral medications and the goal is undetectable viremia. High viral loads indicate a greater risk of complications of the disease and a worse prognosis. **A high viral load generally indicates that the level of CD4 cells is going to drop more rapidly.**

Other uses of viral load testing are to determine:

- Adequacy of response to antiretroviral medications; usually with current assays, the goal is complete suppression of viremia with <50 to 70 copies of HIV-RNA/mL

Viral sensitivity/resistance monitoring

Viral sensitivity testing is done prior to initiating antiviral medications in all patients. Sensitivity testing should also be done if a patient is failing a combination of medications and a change in therapy is necessary. It should also be done in any pregnant woman who has not been fully suppressed on the initial combination of medications.

Treatment failure first manifests with a rising PCR-RNA viral load.

Note

Tuberculosis can be seen at any CD4 count.
Antiretroviral Therapy

First-line antiretroviral therapy is now 2 nucleoside reverse transcriptase inhibitors and an integrase inhibitor, due to greater long-term viral suppression, low resistance, and few side effects.

- **Nucleoside reverse transcriptase inhibitors**
 - Zidovudine (ZDV or AZT): leukopenia, anemia, GI
 - Didanosine (DDI): pancreatitis, peripheral neuropathy
 - Stavudine (D4T): peripheral neuropathy
 - Lamivudine (3TC): nothing additional to placebo
 - Emtricitabine: structurally related to lamivudine; few side effects as for lamivudine
 - Tenofovir: a nucleotide analog as compared to the others that are nucleoside analogs
 - Abacavir (hypersensitivity reaction) may be seen in first 6 wks with rash, fever, nausea/vomiting, muscle aches, or shortness of breath; if that occurs, stop drug immediately and do not restart; recurrence of hyperactivity symptoms can be rapid and life-threatening
 - Zalcitabine (DDC): pancreatitis, peripheral neuropathy, lactic acidosis
 - Tenofovir and emtricitabine are very commonly used
 - Abacavir and lamivudine are also very commonly used

- **Integrase inhibitors**
 - Dolutegravir
 - Elvitegravir: give with cobicistat as a boost effect because it inhibits the P450 system (can lead to elevated serum creatinine because it inhibits creatinine secretion)
 - Raltegravir

Second-line agents include:

- **Protease inhibitors**: hyperlipidemia, hyperglycemia, and elevated liver enzymes for all in the group; abnormal fat loss (lipoatrophy) from the face and extremities with redistribution of fat in the back of the neck and abdominal viscera can be seen.
 - Nelfinavir: GI
 - Indinavir: nephrolithiasis (4%), hyperbilirubinemia (10%)
 - Ritonavir: severe GI disturbance
 - Saquinavir: GI
 - Amprenavir
 - Lopinavir/ritonavir combination: diarrhea
 - Atazanavir: diarrhea, asymptomatic hyperbilirubinemia

- **Non-nucleoside reverse transcriptase inhibitors** (noncompetitive inhibitors of reverse transcriptase)
 - Efavirenz: neurologic; somnolence, confusion
 - Nevirapine: rash, hepatotoxicity
 - Delavirdine: rash
 - Rilpivirine

The most common regimen for therapy is emtricitabine-tenofovir or abacavir-lamivudine + an integrase inhibitor.

Note

Before giving abacavir, HLA B5701 must be checked. People carrying this allele are at risk for Steven-Johnsons syndrome.
Guidelines for starting therapy are to start therapy once HIV is diagnosed, regardless of CD4 count. Viral sensitivity testing should be done in all patients prior to starting treatment.

- 2 nucleosides combined with an integrase inhibitor (most common)
- 2 nucleosides combined with a protease inhibitor or with efavirenz (second-line)

Emtricitabine, efavirenz, and tenofovir are available as a single pill once a day.

- Tenofovir can rarely cause Fanconi syndrome. Patients present with hypokalemia, hypophosphatemia, metabolic acidosis, and glycosuria. It can also cause demineralization.
- Tenofovir has 2 formulations: alafenamide (preferred, with fewer side effects) and disoproxil.

Giving “boosted protease inhibitors” is the practice of giving most protease inhibitors in combination with a low dose of ritonavir (also a PI). Ritonavir given alone as a PI has modest efficacy and significant drug interactions, but when given in a low dose with other PIs, it decreases their metabolism and enables higher drugs levels of the “boosted” PI over a prolonged period of time. This increases chances of success and also decreases pill burden.

Any regimen that increases the CD4 count and drops the viral load to undetectable amounts or close to undetectable amounts is considered adequate therapy. When starting medication, a drop of at least 50% of viral load in the first month is expected to indicate adequate therapy.

Pregnant HIV-Positive Patients

Without treatment, approximately 25–30% of children born to HIV-positive mothers will truly be HIV positive. All children at birth will carry the maternal antibody to the virus and will be positive by ELISA testing, but only 25–30% will remain truly infected.

- Pregnant women should get triple antiretroviral therapy (as do nonpregnant people).
- C-section is should be used only when CD4 count and viral load are not controlled with medications (viral load >1000 copies/mL of HIV-RNA at time of delivery).
- Start therapy as soon as you know the patient is pregnant.
- Intrapartum IV azidothymidine is given.
- The baby should receive zidovudine for 6 weeks afterward.
- The only known teratogen is efavirenz in animal studies.

Breast Feeding

Breast feeding is associated with transmission of the virus to the infant. If a pregnant woman is already on antiretrovirals, she should continue on them. She should start immediately regardless of gestational age. If the woman has high CD4 cells and does not need treatment for herself, combination therapy can end after delivery. The majority of women can deliver with a normal vaginal delivery.

Postexposure Prophylaxis (e.g., Needlestick Injury)

All persons with serious exposure to blood containing body fluids of HIV-positive patients should receive emtricitabine-tenofovir and raltegravir.

Note

HIV: HAART
The only statins safe with PIs are rosuvastatin, pravastatin, and low-dose atorvastatin. Never give lovastatin or simvastatin with PIs.

Note

Efavirenz is the only antiretroviral medication that is contraindicated in pregnancy.

Note

HIV: HAART

The only statins safe with PIs are rosuvastatin, pravastatin, and low-dose atorvastatin. Never give lovastatin or simvastatin with PIs.
Pre-Exposure Prophylaxis (PrEP)
People who are HIV-negative but have high risk behavior should be offered PrEP. On the exam, the question will make it clear that the HIV-negative person is high risk (unprotected sex with multiple partners, shares needles, or has an HIV-positive partner). The preferred agent is emtricitabine-tenofovir, which will prevent transmission of HIV.

Patients should continue to take PrEP as long as they exhibit high risk behavior. This is more effective than using condoms (and on the exam, would be the correct answer over using condoms).

Acute HIV
Two weeks after being infected, the patient will present with fever, lymphadenopathy, sore throat, rash, myalgia/arthralgia, and headache (2–4 weeks after exposure).
- Rash: upper thorax, collar region, and face, scalp and extremities, including palms and soles
- Macules or maculopapules: small (5–10 mm), well-circumscribed, oval or round, pink to deeply red-colored
- Diagnosis is made with RT-PCR based viral load test or p24 antigen-testing

Immune Reconstitution Inflammatory Syndrome (IRIS)
IRIS may be seen 3 days to months after starting ART in a patient with a low CD4 count. It can be seen with TB, Mycobacterium avium complex, Kaposi sarcoma, CMV, Pneumocystis jiroveci pneumonia (PJP), zoster, or Cryptococcus neoformans.
- Activation of an opportunistic infection (OI) as CD4 count increases
- Patient will have symptoms (e.g., shortness of breath and fever with PJP)
- Treat OI; use steroids for severe symptoms
- Do not stop ART

TOXIC SHOCK SYNDROME
Toxic shock syndrome is seen with the use of tampons, sponges, and surgical wounds.
- Staph aureus (toxin TSST-1)
- Hypotension, fever, mucosal changes, desquamative rash on hands and feet.
- GI, renal, hepatic symptoms
- Treat with vancomycin and clindamycin
LEPTOSPIROSIS
Leptospirosis is contracted by contact with rodent urine.

- Renal and liver failure
- Myositis
- **Conjunctival** suffusion is pathognomonic
- Serology with ELISA
- Treat with penicillin, ceftriaxone, or doxycycline

TROPICAL DISEASES

- **Malaria**
 - For prophylaxis, use mefloquine or atovaquone/proguanil (avoid mefloquine with history of neuropsychiatric illness).
 - Treat with mefloquine or atovaquone/proguanil (for Plasmodium falciparum)
 - Treat with chloroquine or primaquine (vivax and ovale only) (for non-falciparum)
 - If severe, treat with artemisinin, not quinine
- **Dengue**: transmitted by mosquitoes
 - Clinical presentation includes bone pain (back) and retro-orbital headache.
 - Also includes severe thrombocytopenia, leukopenia, and transaminitis.
- **Chikungunya**: transmitted by mosquitoes
 - Clinical presentation includes severe joint pain

TETANUS
Tetanus is a severe infectious complication of wounds caused by the toxin of Clostridium tetani (neurotoxin); takes 1–7 days to develop; spore forming, gram-positive rod.

Clinical Findings. Tonic spasms of voluntary muscles; respiratory arrest; difficulty in swallowing (dysphagia); restlessness; irritability; stiff neck, arms, and legs; headache; lockjaw; flexion of the arms and extension of the lower extremities; and high mortality rate. Diagnosis is clinical.

Treatment is prophylactic:

- Tetanus toxoid (Tdap) boosters every 10 years
- Immediate surgical care, débride wound
- Antitoxin, tetanus immunoglobulin
- Penicillin 10–14 days
Wound Management

<table>
<thead>
<tr>
<th>Patient</th>
<th>Not Tetanus Prone</th>
<th>Tetanus Prone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not completed primary or vaccination history unknown</td>
<td>Vaccine</td>
<td>Vaccine and TIG*</td>
</tr>
<tr>
<td>Completed primary series</td>
<td>Vaccine if >10 years since last booster</td>
<td>Vaccine if >5 years since last booster</td>
</tr>
</tbody>
</table>

*TIG = tetanus immunoglobulin (human)

ASPERGILLOSIS

Aspergillosis is a fungus that is widespread in the environment; it primarily causes pulmonary disease in the immunocompromised.

Etiology
- 90% species known, with *A. fumigatus* the most common
- Ubiquitous in natural decaying organic matter, ceiling tile, and ventilation systems
- Spores can be isolated from air anywhere on earth

Signs and Symptoms
- Various degrees of respiratory tract invasion
- Rarely it can disseminate to any organ but starts in the lung
- Allergic bronchopulmonary-like asthma with cough/fever/wheezing
- Mycetoma—literally a “fungal ball”: 1) Sets up residence in a pre-existing cavity, with hemoptysis as chief complaint; and 2) it is not invasive.
- Invasive pulmonary
- 90% have 2 of these 3 risks: 1) neutropenia <500, 2) steroid use, and 3) cytotoxic drugs (e.g., azathioprine, cyclophosphamide).

Diagnosis
- Depends on the type of disease being caused; however, all can have an abnormal chest x-ray and *Aspergillus* in sputum.
 - Allergic bronchopulmonary elevation of markers of allergy/asthma, such as eosinophil/IgE levels
 - Positive skin testing
 - Mycetoma: abnormal sputum culture/serum precipitins/x-ray
• Invasive: Sputum culture not sufficient; biopsy to show invasion necessary. CT scan (or sometimes chest x-ray) will show a “halo” sign, a zone of low attenuation around a nodular lesion; this is often an early finding in invasive pulmonary aspergillosis.

Treatment. Depends on syndrome (really, they are separate diseases).

• Allergic: steroid taper and asthma medications, not antifungals
• Mycetoma: surgical removal
• Invasive: Voriconazole is superior to amphotericin; there are fewer failures seen with it (and caspofungin) as compared with amphotericin. Itraconazole for very mild disease or after initial treatment with amphotericin. Caspofungin is active against *Aspergillus* and may be superior to amphotericin. Caspofungin is an echinocandin. The other echinocandins are micafungin and anidulafungin. Echinocandins have virtually no toxicity.

Clinical Recall

Which of the following statements regarding HIV in pregnant women is correct?

A. A CD4 <200 is an indication for single treatment with AZT
B. Emtricitabine is contraindicated in pregnant women
C. C-sections are done when the viral load is >1000 copies/mL of HIV-RNA at the time of delivery
D. Treatment with HAART triple therapy is done only in women who are at high risk of transmitting the disease
E. Only give HAART triple therapy to pregnant patients with opportunistic infections

Answer: C
Learning Objectives

- Describe the most commonly ordered renal diagnostic tests and their use
- Outline the approach to investigating kidney problems, fluid and electrolyte disorders, and acid-base disturbances
- Describe the presentation, diagnosis, and management of acute renal failure, renal tubular acidosis, glomerulonephritis, nephrolithiasis, hereditary cystic disease, and ESRD
- List the indication and complications of dialysis and criteria to qualify for renal transplantation
- Describe the causes of primary and secondary hypertension and their management

DIAGNOSTIC TESTING IN RENAL DISEASE

Renal diseases may be classified as glomerular, tubulointerstitial, or vascular. The kidney may also be affected by abnormalities in blood supply (CHF, renal artery stenosis) or drainage (ureteral stones, prostatic obstruction). When a patient develops renal disease, it usually presents as one of the following:

- Proteinuria, reflecting a damaged glomerular basement membrane
- Hematuria, reflecting inflammation
- Declining glomerular filtration rate (GFR)

Therefore, renal disease is best detected initially by urinalysis and serum creatinine.

Urinalysis

For the general population, there is no recommendation for routine urinalysis. For those with DM, however, secondary prevention of diabetic nephropathy is recommended; microalbumin/creatinine ratio on a spot urine specimen should be used and not urinalysis.
• **Protein.** The urine protein dipstick detects negatively charged proteins (e.g. albumin) but not other proteins such as immunoglobulin light chains. Proteinuria may be caused by glomerular or tubular disease, although glomerular disease leads to greater amounts. The lower limit of detection for protein on the UA is 300 mg/24 hours, too high to sensitively screen for early diabetic nephropathy. Detected proteinuria may reflect renal disease, but it may also be caused by fever, CHF, or severe exercise. Any positive urine dipstick for protein should be followed up by a quantitative study.

• **Heme and red blood cells** (RBC). The heme dipstick is positive when RBCs are present, but also when there is free hemoglobin (transfusion reactions) or myoglobin (rhabdomyolysis) in the urine. Red cells can be found in the urine from any cause of disease in the urologic system. Etiologies are stones, cancer, bleeding disorders, trauma to urinary system, and treatment such as cyclophosphamide (which causes hemorrhagic cystitis or glomerular disease). Hematuria is also from infections such as cystitis or prostatitis. The red cells change shape (dysmorphic) in some glomerular disease; other clues to glomerular disease are concurrent proteinuria and RBC casts, which are pathognomonic for glomerulonephritis.

• **Nitrites.** Gram-negative bacteria reduce nitrate to nitrite, which is a marker of urinary infection.

• **Glucose:** Glucosuria most often reflects hyperglycemia, but may also be caused by defective proximal tubular reabsorption, seen in Fanconi syndrome.

• **Bacteriuria.** By itself, the isolated finding of bacteria in the urine is of very limited significance. The most important exception is in pregnant women, whom you should screen for bacteria and treat. About 30% of pregnant women with bacteriuria progress to pyelonephritis.

• **White blood cells** (WBC) may be due to pyelonephritis, cystitis, or intrarenal inflammation (e.g. eosinophils in eosinophilic granulomatosis). If eosinophils are suspected, they should be stained for with Hansel or Wright staining. If due to bacterial infection, the WBC should be accompanied by visible bacteria, but this may not be the case with all microorganisms (e.g. tuberculosis).

• **Renal tubular epithelial cells** appear in the urine during acute tubular necrosis, as dying tubular cells slough into the urine.

• **Casts** are collections of precipitated protein in the renal tubule, often capturing cells which are present there. The most significant casts are RBC casts (seen only in glomerulonephritis) and muddy brown granular casts (seen in acute tubular necrosis).

<table>
<thead>
<tr>
<th>Casts</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaline</td>
<td>Dehydration. These casts develop as an accumulation of the normal amount of tubular protein; they do not necessarily mean disease.</td>
</tr>
<tr>
<td>Red cell</td>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>Broad, waxy</td>
<td>Chronic renal failure</td>
</tr>
<tr>
<td>Granular</td>
<td>Also called “dirty” or “muddy”; are associated with acute tubular necrosis and represent accumulated epithelial cells</td>
</tr>
<tr>
<td>White cell</td>
<td>Pyelonephritis, interstitial nephritis</td>
</tr>
</tbody>
</table>
Urine Protein and Creatinine Concentration

Since the UA is an imperfect screen for small amounts of proteinuria, the best test for this is the spot urine collection for albumin and creatinine, which has largely replaced the 24-hour collections done in the past. The ratio of albumin to creatinine is a good estimate of the albumin that would have been collected in a 24-hour collection, and is much easier to do. A 30–300 mcg albumin/mg creatinine suggests incipient diabetic nephropathy in at-risk patients, and would prompt starting an angiotensin-converting enzyme (ACE) inhibitor.

Serum Creatinine, BUN, and Estimated GFR

The glomerular filtration rate (GFR) falls early in many renal diseases, without symptoms. Sensitive testing is thus needed to detect early chronic and acute renal injury. Creatinine, a metabolic product of skeletal muscle, is the main measure of GFR.

An isolated serum creatinine (SCr) test may be deceiving, since it may be low (0.5 mg/dL) just because of decreased muscle mass or high (1.6 mg/dL) due to large muscle bulk. More muscle means more creatinine. Therefore, serum creatinine values should always be compared to a given patient's baseline. A doubling of the SCr means a 50% reduction in their GFR.

- Creatinine needs some time to rise. Even if the patient becomes anuric, creatinine will rise only at a rate of 0.5–1.0 point per day. This rise will be faster if the body muscle mass is greater.
- Hence, if the creatinine goes from 1 to 3 over a period of 2 days in a patient with renal injury, this is consistent with nonfunctioning kidneys.

Given the limitations of the isolated serum creatinine, options for better estimation of the GFR include the creatinine clearance, which requires a 24-hour urine collection, and the estimated GFR (eGFR), which requires no urine and may be calculated from the patient's SCr, age, race, height, weight, and sex. This builds an estimate of muscle mass to correct the final number. The eGFR is now the most commonly used way to determine a patient's renal function. It is not useful if the patient's SCr is not at baseline (decreasing or increasing) and should only be used at steady state. The same limitation applies to the creatinine clearance.

Serum BUN is less useful than the creatinine for determining renal function. While it does increase in acute or chronic kidney injury, it may also be falsely elevated even when renal function is normal, in response to increased protein load in the diet or GI bleed. The BUN is derived from protein waste products; blood in the gut acts like a big protein meal and is catabolized to urea. The BUN can be falsely low when there is liver disease, malnutrition, or SIADH.

The BUN is most useful when compared to the serum creatinine, since a ratio >20:1 may suggest prerenal azotemia.

Renal Sonography (Ultrasound)

Renal sonography is the most common test used in renal visualization. It has several uses:

- Detects hydronephrosis in renal obstruction, allowing prompt decompression
- Shows small or scarred kidneys in advanced chronic kidney disease, allowing differentiation from the normal appearing kidneys seen in acute kidney injury
- Shows renal cysts and tumors
- Detects kidney stones in the renal pelvises
ACUTE KIDNEY INJURY

Acute kidney injury (AKI), previously called acute renal failure, is a rapid decline in the glomerular filtration rate (seen as a rise in blood urea nitrogen (BUN) and creatinine) over several hours to days. There is no precise duration to define it as acute. For example, in rhabdomyolysis or contrast-induced renal failure, it may develop over several hours, while in aminoglycoside toxicity it may take 1–2 weeks.

AKI must be distinguished from chronic kidney disease (CKD), which is the slow decline in GFR over years (seen in many glomerular diseases such as diabetic nephropathy). The distinction cannot be made by a single serum creatinine test, but requires serial determinations. The renal sonogram (U/S) can also help in the distinction, as CKD often shows small or scarred kidneys, while AKI usually shows normal kidneys sonographically, despite the declining function.

There are several other terms used in the discussion of renal failure:

- **Renal insufficiency** or azotemia is AKI, but not to the point of needing dialysis. The term azotemia literally means the buildup of azole groups or nitrogen in the blood.
- **Uremia** describes very severe AKI or CKD in which dialysis or transplantation is needed to save life. The term ESRD can be used interchangeably.

Progressive kidney disease may life-threatening. Clinical presentation includes:

- Hyperkalemia, severe acidosis, and fluid overload/pulmonary edema
- Anemia, bone disease, and pericarditis
- Bleeding diathesis due to platelet dysfunction
- Altered mental status

AKI is classified as prerenal, postrenal, or intrarenal based on the site and mechanism of injury.

- **Prerenal AKI** means decreased perfusion of the kidney (e.g., CHF, renal artery stenosis, volume depletion). The kidney itself is healthy.
- **Postrenal AKI** indicates renal obstruction, causing decreased drainage from the kidney and decreased forward flow of urine (e.g., stones, prostatism, pelvic malignancy). The kidney itself is healthy.
- **Intrarenal AKI** means a reduction in GFR due to a renal tubular, interstitial or glomerular disease (e.g. glomerulonephritis, acute tubular necrosis, acute interstitial nephritis). The kidney is defective.

Initially most AKI is asymptomatic, since uremic symptoms do not typically occur until >75% of GFR has been lost. It frequently is a hospital diagnosis, as AKI often accompanies severe illness. Clinical hints of early AKI might include decreased urine output, hypotension or orthostasis (prerenal), hypertension (intrarenal), or edema (intrarenal).

Lab evaluation: Serial measurement of the serum creatinine concentration (SCr) should show rising levels each day. Once a stable value of the SCr is reached, the estimated GFR eGFR can be calculated using standard formula. The urinalysis and fractional excretion of sodium are important to evaluate causes of intrarenal AKI. Renal U/S helps rule out postrenal AKI. Other important labs to follow in monitoring AKI include serum Na, K, and HCO3, plus hematocrit/hemoglobin. Because they are more easily reversed, prerenal and postrenal AKI should always be excluded before launching a workup of renal disease when a declining GFR is detected.

Note

Uremia does not necessarily imply chronic kidney disease. Although most patients develop uremia after years of CKD, it is possible to become uremic in as little as 1–2 weeks with a severe illness causing AKI (e.g., rhabdomyolysis).
Prerenal Acute Kidney Injury

Prerenal azotemia is a form of AKI caused by diminished perfusion of the kidney. The kidney itself is normal. If the kidney could receive adequate perfusion, the BUN and creatinine would normalize. The causes of prerenal azotemia include:

- Hypovolemia: dehydration, burns, poor oral intake, diuretic, vomiting, diarrhea, sweating, hemorrhage, hypocortisolism, hypoaldosteronism
- Hypotension: septic shock, cardiogenic shock, anaphylactic shock, hepatorenal syndrome
- Third spacing of fluids: peritonitis, osmotic diuresis, low oncotic pressure (hypalbuminemia of cirrhosis, nephrotic syndrome)
- Decreased renal blood flow: CHF, constrictive pericarditis, renal artery stenosis, aortic coarctation
- Renal arteriolar vasoconstriction/vasodilation: hypercalcemia, cyclosporine, tacrolimus, NSAIDs, ACE inhibitors

The diagnosis is usually made by clinical exam. Volume-depleted patients present with signs of orthostatic or frank hypotension and tachycardia. Skin turgor may be reduced, reflecting low extracellular volume.

In contrast, the prerenal AKI seen in severe CHF, constrictive pericarditis, or coarctation may show edema and fluid overload, yet the kidney is receiving no/low perfusion, thus the rising BUN and creatinine. This demonstrates a reduction of effective arterial volume, a physiologic term for perfusion of organs, determined by intravascular volume, blood pressure, and cardiac output.

Lab evaluation: Regardless of the cause of prerenal AKI, patients may show:

- Elevated serum creatinine concentration
- Normal urinalysis
- Serum BUN:creatinine ratio >20:1 (normally 10:1 in other types of AKI); the BUN elevates because urea undergoes increased proximal tubule reabsorption in states of high sodium absorption (e.g., volume depletion)
- Low urine sodium concentration (<10 mEq/L)
- Low fractional excretion of sodium (FeNa <1%) because the kidney perceives the body as being volume-depleted, leading to a vigorous sodium and water reabsorption by the kidney
- High urine osmolality (>500 mosm/kg) and specific gravity (>1.010)

The urine tests reflect the high renal sodium and water reabsorption driven by the low renal perfusion.

Renal artery stenosis, especially if bilateral, may result in prerenal AKI with a rising creatinine. The kidneys themselves are normal. Similar to the case of renal obstruction, bilateral disease is required for detectable AKI, since loss of a single kidney may be compensated by recruitment of reserve nephrons in the remaining kidney, maintaining the GFR near normal.

In renal artery stenosis, although systemic BP may be markedly elevated (due to high renin/AT/aldosterone levels), the low renal blood flow still leads to AKI. Here, the elevated systemic BP does not matter; all that matters is how much blood is getting to the kidney. This effect is amplified with the use of ACE inhibitors, which will additionally diminish renal perfusion in this setting. Treatment is angioplasty/stenting.
Hepatorenal syndrome is AKI based entirely on the presence of hepatic failure. The kidneys are themselves normal. The rise in BUN and creatinine is believed to be due to an intense vasoconstriction of the afferent arteriole in response to systemic vasodilation caused by the hepatic failure. The local renal vasoconstriction causes decreased renal perfusion and AKI. The syndrome does not respond to volume expansion, unlike AKI in hepatic failure due to simple ECV volume depletion. Lab evaluation is similar to other causes of prerenal AKI. Intrinsic renal disease should be excluded to make a diagnosis (e.g., patients should have a normal urinalysis). A key diagnostic step is lack of improvement of the SCr after a bolus infusion of colloid fluid (e.g., albumin). Treatment is correction of the underlying liver disease (e.g., liver transplantation). Since the underlying physiology is systemic vasodilation, treatment with vasoconstrictors may be useful. Midodrine, an alpha agonist, and octreotide may be beneficial.

ACE inhibitors may cause prerenal AKI, especially in patients with volume depletion, bilateral renal artery stenosis, or other causes of prerenal AKI. The renal failure is caused by vasodilation of the efferent arteriole. Angiotensin-II constricts the efferent arteriole, a mechanism used to maintain glomerular perfusion pressure in the face of low blood flow. ACE inhibitors block this adaptation, causing a transient decrease in GFR. Despite this ability of ACE inhibitors to worsen GFR, their overall effect on the kidney is to diminish proteinuria and the rate of progression to uremia and renal failure. This beneficial effect is most likely secondary to the decrease in intra-glomerular hypertension. ACE inhibitors decrease proteinuria by 35–45%. This is particularly true in patients with diabetic nephropathy.

NSAIDs may also cause prerenal AKI, especially in patients with volume depletion, bilateral renal artery stenosis, or other causes of prerenal AKI. The renal failure is caused by vasoconstriction of the afferent arteriole. NSAIDs inhibit the action of the vasodilatory prostaglandins that maintain dilation of the afferent arteriole, which is important in maintaining GFR in the face of volume depletion. A similar effect is seen in the calcineurin inhibiting transplant drugs cyclosporine and tacrolimus, which both vasoconstrict the renal arterioles, causing reversible prerenal AKI. NSAIDs may also affect the kidney by causing intrarenal AKI, specifically acute interstitial nephritis, papillary necrosis, or secondary forms of membranous glomerulopathy and minimal change disease.

Postrenal Acute Kidney Injury

Postrenal azotemia is caused by any decrease in the outflow of urine. This may come by obstruction of any part of the renal collection system (renal pelvises to urethra). In order to cause AKI the obstruction must be bilateral, since obstruction of a single kidney can be compensated for by the remaining kidney’s recruitment of reserve nephrons, maintaining a normal GFR. (This is also why donating a single kidney for transplantation does not change your serum creatinine.) Common causes of postrenal AKI include:

- Renal pelvises: bilateral stones
- Ureters: bilateral stones, bilateral ureteral disease e.g., retroperitoneal fibrosis, strictures
- Bladder: Stones, clots, cancer obstructing bilateral ureteral outflow.
- Prostate: hyperplasia and cancer
- Neurologic disease: Neurogenic bladder: patients have a history of obstructive symptoms followed by sudden onset of oliguria or anuria. This may be due to multiple sclerosis, spinal cord lesions, or peripheral neuropathy.
Clinical Presentation: Patients may experience a distended bladder in prostatism or neurologic disorders. Urine output may diminish or cease, proceeded by incomplete voiding in prostate or bladder diseases. Patients may have pain over the bladder (prostatism) or flanks (stones).

Diagnosis: The serum creatinine elevates unless the disease is unilateral.
- BUN and creatinine will initially elevate in a ratio 20:1 as it does with prerenal azotemia.
- Later the BUN:creatinine ratio will lower to 10:1.

The urinalysis is variable, from normal (neurogenic bladder) to hematuria (stones, bladder cancer, clots).

Diagnosis is confirmed by seeing bilateral hydronephrosis on renal sonogram or non-contrast CT scan. This should be done early in all patients with AKI, since prompt relief of obstruction is essential.

Prostate or bladder outflow disease may be detected by finding large volumes of urine in the bladder after passing a Foley urinary catheter (a large post-void residual volume). After urinating (voiding), there should be no more than 50 mL of urine left in the bladder. If this post-void residual is markedly elevated, it implies an obstruction to the flow of urine out of the bladder.

Treatment is based on quickly relieving the cause of the obstruction: For bladder/prostate disease, do Foley catheter insertion. For ureteral/pelvic obstruction, do nephrostomy tube insertion (percutaneous or transurethral).

Clinical Recall
Which of the following lab values is most likely in patients with prerenal azotemia?

A. BUN:Cr >20:1, Urine Na <20, FENa <1%, Urine Osmolality >500
B. BUN:Cr 10:1, Urine Na >40, FENa >1%, Urine Osmolality <350
C. BUN:Cr >20:1, Urine Na >40, FENa >4%, Urine Osmolality <350
D. BUN:Cr <10:1, Urine Na >40, FENa >1%, Urine Osmolality <500
E. BUN:Cr >20:1, Urine Na <20, FENa >4%, Urine Osmolality <350

Answer: A

Intrarenal Acute Kidney Injury
AKI due to intrarenal disease may come from:
- Tubular disorders: acute tubular necrosis, crystal-formations with intrarenal obstruction
- Interstitial disorders: acute and allergic interstitial nephritis
- Acute microvascular disorders: cholesterol embolization and papillary necrosis

Glomerular disease more often causes chronic kidney disease, except for rapidly progressive glomerulonephritis, where renal failure may be more abrupt (see Glomerular Disease section).
Tubular disorders

Acute tubular necrosis (ATN) is acute renal failure on the basis of tubular damage and necrosis, leading to reduced solute clearance, AKI, and diminished electrolyte and water regulation. Causes include ischemia and hypoperfusion of the kidney (shock, sepsis, heart failure) and tubular toxins (aminoglycosides, contrast dyes, amphotericin, myoglobin [rhabdomyolysis], cisplatin).

Ischemic and toxic effects may be additive, increasing the risk of ATN. The degree, and especially the duration of ischemia or toxic exposure are important to the prognosis and recovery from ATN. The longer the duration of hypotension/hypoperfusion, the greater the chance of ATN.

With ATN there is often an initial phase that appears similar to prerenal AKI, as the kidney is hypo-perfused. Next comes a reduction/cessation of urine flow (oligo- or anuria) as the tubules necrose and the glomerular ultrafiltrate back-leaks into the blood instead of forming urine. Finally, the tubules regenerate and a polyuric phase may occur. Not all patients go through each stage; for instance, some AKI is non-oliguric (e.g., aminoglycosides).

Diagnosis. With ischemic ATN, the BUN and creatinine will initially rise in a 20:1 ratio similar to prerenal AKI. This reduces to 10:1 as ATN tubular injury becomes established.

With severe or prolonged injury, the tubular cells will necrose and slough off into the urine and become visible as renal tubular epithelial cells or granular/muddy brown/pigmented casts. The rising serum creatinine (over days) is accompanied by reduced urine output or anuria. If available, urine findings can help to distinguish ATN from prerenal AKI.

Table 8-2. Confirming Prerenal versus ATN Based on Lab Values

<table>
<thead>
<tr>
<th></th>
<th>Prerenal AKI</th>
<th>ATN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine osmolarity</td>
<td>>500</td>
<td><350</td>
</tr>
<tr>
<td>Urine Na+</td>
<td><20</td>
<td>>40</td>
</tr>
<tr>
<td>FeNa+</td>
<td><1%</td>
<td>>1%</td>
</tr>
<tr>
<td>Urine sediment</td>
<td>Scant</td>
<td>Full (brownish pigmented granular casts, epithelial casts may be seen)</td>
</tr>
</tbody>
</table>

Infusion of normal saline is also used to distinguish ATN from prerenal AKI, as only the latter will respond with a decreased SCr.

Management. Volume status and serum electrolytes should be followed carefully. Treatment focuses on correcting the underlying cause (no therapy can reverse the renal failure). Volume repletion with normal saline is often given to make sure there is no prerenal component and may reduce contrast-induced renal failure, but it does not reverse it once it occurs. Diuretics should be used only with critical pulmonary edema, and do not “convert” oliguric ATN to the non-oliguric type. Dialysis may be needed if uremic symptoms occur, and is stopped once the tubules recover.
ATN may be caused by filtered pigment injury to the tubules from myoglobin (in rhabdomyolysis) or hemoglobin (in hemolytic anemia). **Rhabdomyolysis** can be caused either by (a) sudden/severe crush injury, seizures, or severe exertion, or (b) hypokalemia, hypophosphatemia, or medications (e.g., statins). Large amounts of released myoglobin are filtered into the nephron and cause tubular toxicity and ATN. Similarly, in massive hemoglobinuria from ABO incompatibility filtered hemoglobin causes tubular toxicity. The toxicity is because the pigment is directly toxic to the tubular cells as well as from precipitation of the pigment in the tubules. The degree of toxicity is related to the duration of contact of the tubular cells with the hemoglobin or myoglobin, so is compounded by dehydration.

Diagnosis: Rhabdomyolysis with myoglobinuria is confirmed with the following:

- **Markedly elevated serum CPK** level (a biochemical marker of skeletal muscle neurosis); for nephrotoxicity to occur, level must be in 10,000–100,000 range (normal ≤500)
- **Urinalysis dipstick positive for blood but with no red cells visible.** This is because myoglobin can react with the heme reagent on the dipstick. Free hemoglobin will do the same thing.
- Rapidly rising serum creatinine level due to ATN
- Hyperkalemia: check the ECG for peaked T waves
- Metabolic acidosis with decreased serum bicarbonate
- Hyperphosphatemia secondary to muscle breakdown
- Hypocalcemia secondary to the deposition of calcium in damaged muscles and complexing with high phosphate.
- Hyperuricemia due to release of purines from damaged muscles

Treatment is normal saline to increase urine output and decrease toxin contact time. If there is little response, add mannitol, an osmotic diuretic. Alkalinizing the urine with bicarbonate may or may not be useful.

ATN Due to Drugs. The most common toxins that cause ATN are aminoglycosides, IV contrast agents, amphotericin, and cisplatin. For patients on multiple drugs, differentiation of ATN from acute interstitial nephritis is often difficult, but includes:

- Allergic interstitial nephritis occurs with the first dose, and is associated with fever, rash, joint pain, and eosinophils in both blood and urine. ATN lacks these.
- Drugs causing ATN often take days to weeks to produce enough cumulative toxicity to cause renal failure. Symptoms are those of acute kidney injury.

The clinical and lab evaluation is as described in the ATN section above. There is no test which can confirm a specific toxin as the etiology of the renal failure. Other causes of renal failure must first be excluded, and the toxin must be identified and promptly withdrawn. There is no specific therapy that can reverse the renal insufficiency of any direct-acting toxin.

- **Aminoglycosides.** Aminoglycoside-related nephrotoxicity (10–20% of all drug-induced nephrotoxicity) is usually reversible. Unlike contrast dyes, aminoglycoside toxicity **generally takes 5–10 days of administration** to result in toxicity. The likelihood of toxicity is associated with high trough levels. Tobramycin is less nephrotoxic than gentamicin or amikacin. Renal failure due to aminoglycosides is frequently non-oliguric (so K⁺ levels are usually not elevated). Hypokalemia and hypomagnesemia predispose the patient to aminoglycoside toxicity.

Prevention is from limiting duration of use and by **reducing trough levels** by giving the antibiotic once a day. Once-a-day dosing allows high bactericidal levels with the same efficacy and very low trough levels.
• Amphotericin B. This antifungal agent is associated with renal insufficiency as well as distal renal tubular acidosis (non-anion gap metabolic acidosis with hypokalemia and high urine pH). Like aminoglycosides, it occurs only after several days or weeks of amphotericin use, and is usually reversible with prompt discontinuation of the drug.

• Contrast Agents. Unlike the antibiotics, radiocontrast used in radiology can result in renal failure in as little as 12–24 hours after the use of the agent. The rise in creatinine peaks at 3–5 days after the injury. Initial vasoconstriction may be reflected in a “prerenal” lab picture, i.e. BUN: Cr of >20:1 and low urine Na. Underlying renal disease, DM, and advanced age increase the risk for ATN.

 Prevention is with normal saline infusion before the agent is administered. N-acetylcysteine and sodium bicarbonate are often added but are of uncertain value.

• Other Drugs. Cisplatin accumulates in tubular cells and causes ATN in 20–30% of patients. Pentamidine, used for pneumonia in AIDS patients, is associated with ATN in 20–30% of patients.

Precipitation of crystals within the tubules can reduce urine flow and GFR, and may occur via endogenous or exogenous (ingested) substances and drugs.

• Uric acid toxicity occurs via intratubular crystallization, and usually occurs in the setting of tumor lysis syndrome after treatment of leukemias and lymphomas. Patients show AKI, oliguria, severe hyperuricemia, hyperkalemia, and metabolic acidosis. Prevention is with vigorous hydration, sodium bicarbonate, and allopurinol prior to receiving chemotherapy. Allopurinol reduces the production of uric acid by inhibiting conversion of xanthine to hypoxanthine to uric acid. Uric acid stones precipitate in an acidic urine, unlike oxalate crystals, which precipitate in alkaline urine. Separately, gout may cause chronic kidney disease through a slower and milder version of intrarenal urate deposition.

• Oxalate crystals cause AKI following ethylene glycol overdose after ingestion of antifreeze. Patients display intoxication, an anion gap metabolic acidosis and AKI. Diagnosis is confirmed with oxalate crystals seen on urinalysis (oxalate crystals are shaped like envelopes). Treatment is normal saline, sodium bicarbonate, and fomepizole to prevent the conversion of ethylene glycol to toxic oxalic acid. Separately, chronic hyperoxaluria and oxalate kidney stones can be caused by Crohn’s disease because of fat and calcium malabsorption.

• Immunoglobulins and light chains cause AKI in multiple myeloma, where renal filtration of light chains may lead to their precipitation in the tubules and to direct tubular toxicity. Both lead to AKI. The urinalysis may be normal, since the dipstick does not detect the positively charged light chains. Diagnosis is with urine protein electrophoresis. Separately, the light chains may cause proximal tubular dysfunction (Fanconi syndrome with glucosuria, aminoaciduria, phosphaturia, proximal RTA) or AA amyloidosis with glomerular damage.

• Drugs may precipitate in the tubule to cause AKI. Indinavir is a protease inhibitor that results in AKI due to the drug precipitating in the tubules. Indinavir stones may be seen on a spiral CT scan.
Interstitial disorders

Acute interstitial nephritis (AIN) accounts for 10–15% of intrinsic AKI. Histopathology shows a robust interstitial inflammation with eosinophils. The etiology is usually an adverse immunologic effect to medications that commonly cause allergies (70% of cases). These include penicillin, cephalosporins, sulfa drugs, allopurinol, rifampin, and quinolones. This allergic reaction can take the form of a rash, Stevens-Johnson syndrome, hemolysis, and/or AIN. NSAIDs also cause a form of AIN lacking the eosinophilia, severe allergic signs and symptoms.

AIN is less commonly caused by infections themselves. The most common infections to result in AIN are leptospirosis, legionella, CMV, rickettsia, and streptococci.

The least common causes of AIN are several autoimmune disorders such as systemic lupus erythematosus (SLE), Sjögren syndrome, sarcoidosis, and cryoglobulinemia. These are more likely to harm the kidney via glomerulonephritis.

Fever is present in 80% of those with typical AIN. It can be very difficult to determine if the fever is from the underlying illness or from the AIN. Rash is present in 25–50% of patients. Joint pain is common because AIN acts somewhat like serum sickness.

AIN due to NSAIDs presents with a less “allergic” reaction, usually lacking rash, fever or joint pain, and presents with a usually-asymptomatic rise in serum creatinine.

Lab studies: The best initial test for AIN is a urinalysis (UA) looking for white cells, then staining for urine eosinophils is Hansel or Wright stain of the urine. While the kidney biopsy is most accurate, it is rarely done, since patients resolve following discontinuation of the antibiotic. Biopsy is used only in uncertain cases. NSAID-induced AIN typically lacks eosinophiluria and eosinophilia.

Other abnormalities may include eosinophilia; hematuria/mild proteinuria; and increased serum IgE levels.

Treatment. AIN should resolve spontaneously after stopping the offending agent; there is no specific therapy. If renal failure persists or worsens, consider a short course of steroids.

Acute microvascular disorders

Atheroembolic disease (cholesterol emboli syndrome). AKI may develop in some patients with severe atherosclerosis following an invasive arterial procedure (e.g. an arteriogram). Cholesterol emboli scatter throughout the body, including to the kidney. Look for a patient who undergoes a vascular catheter procedure such as angioplasty who develops bluish discoloration of the fingers and toes, livedo reticularis, and AKI several days later. Labs show AKI with eosinophilia, low complement levels. Although the most accurate test is a skin biopsy to see cholesterol crystals in the skin, this is rarely done. There is no therapy for atheroembolic disease.

Acute papillary necrosis is AKI associated with occlusion of small renal capillaries, leading to the ischemia and sloughing of renal papillae, the medullary segments involved in urine concentration and the least oxygenated area of the kidney. It is the nephron segment most
vulnerable to hypoxia or sluggish blood flow. Papillary necrosis is seen in patients with a history of sickle cell disease, diabetes, urinary obstruction, chronic pyelonephritis or chronic analgesic use, esp. NSAIDs. Volume depletion concentrates the blood and increases the risk.
Look for the sudden onset of flank pain, hematuria, pyuria, and fever in an at-risk patient, esp. those in sickle crisis. This can be very similar to acute pyelonephritis. Like pyelonephritis, the urinalysis will show white and red cells. Unlike pyelonephritis there will be no bacteria, and no organisms grow on culture. The patient may sometimes note red “chunks” in the urine that may cause confusion with kidney stones, but the referred ureteral pain of stones is absent.
The most accurate diagnostic test for papillary necrosis is CT scan, which will show “bumpy” contours in the renal pelvis where the papillae have sloughed off. There is no specific therapy for papillary necrosis.

GLOMERULAR DISEASES
Glomerular diseases are the most common cause of chronic kidney disease and dialysis-requiring renal failure. The most common of these in the developed world is diabetic nephropathy.

Most glomerular diseases are also called glomerulonephritis (GN) or inflammation of the glomerulus, often as the result of an autoimmune event, circulating antibodies, or vasculitis. A few are non-inflammatory and caused by other mechanisms, such as hypertensive nephrosclerosis (prolonged high BP), Alport syndrome (defective Type IV collagen in the glomerular basement membrane), and hemolytic-uremic syndrome (microthrombi in renal small vessels).

GN may be classified as follows:

- Primary disease without systemic illness (e.g., membranous GN, IgA nephropathy)
- Secondary disease due to systemic illness (e.g., post-infectious GN, diabetic nephropathy, lupus nephritis)

Based on presentation, it may be further classified as follows:

- Nephritic (sometimes called “acute GN”) with hematuria, RBC casts, edema, hypertension, and renal failure (e.g., post-infectious GN, Goodpasture syndrome)
- Nephrotic with heavy proteinuria, hyperlipidemia, edema, and hypertension (e.g., minimal change disease, diabetic nephropathy)
- Rapidly progressive GN: hematuria, usually nephritic, accompanied by sub-acute renal failure (over 1–2 weeks), often with crescents seen on biopsy

Many glomerular diseases can be diagnosed using clinical evaluation and specific serologies, but the definitive diagnosis is usually made by renal biopsy, especially when there is heavy proteinuria or renal insufficiency. In these cases biopsy is usually needed, since treatment varies depending on histology.
Table 8-3. Common Glomerular Diseases

<table>
<thead>
<tr>
<th>Nephritic Diseases</th>
<th>Nephrotic Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>IgA nephropathy</td>
<td>Membranous GN</td>
</tr>
<tr>
<td>Idiopathic rapidly progressive GN</td>
<td>Focal segmental glomerulosclerosis (FSGS)</td>
</tr>
<tr>
<td></td>
<td>Membranoproliferative GN (also nephritic)</td>
</tr>
<tr>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Postinfectious GN</td>
<td>Minimal change disease</td>
</tr>
<tr>
<td>Goodpasture syndrome</td>
<td></td>
</tr>
<tr>
<td>Granulomatosis with polyangiitis</td>
<td>Diabetic nephropathy</td>
</tr>
<tr>
<td>Eosinophilic granulomatosis with polyangiitis</td>
<td>Amyloidosis</td>
</tr>
<tr>
<td>IgA nephropathy (Berger disease)</td>
<td>Lupus nephritis (also nephritic)</td>
</tr>
<tr>
<td>Lupus nephritis (also nephrotic)</td>
<td></td>
</tr>
<tr>
<td>Cryoglobulinemia</td>
<td></td>
</tr>
<tr>
<td>Membranoproliferative GN (due to hepatitis C)</td>
<td></td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td></td>
</tr>
<tr>
<td>Other Glomerular Diseases (usually neither nephritic nor nephrotic)</td>
<td></td>
</tr>
<tr>
<td>Hemolytic-uremic syndrome/TTP</td>
<td>Alport Syndrome</td>
</tr>
<tr>
<td>Hypertensive nephrosclerosis</td>
<td></td>
</tr>
</tbody>
</table>

Nephritic Diseases

Nephritic GN is characterized by hematuria, edema, red cell casts, and hypertension. The red cells often develop an abnormal shape (called “dysmorphic”) which distinguishes them from non-glomerular hematuria due to stones, bladder cancer, or infection. Small or moderate proteinuria is also common.

- The edema of glomerular disease may be anywhere in the body, but is usually first seen in dependent areas (ankles). It is caused by avid renal sodium retention, so labs show a low urine sodium, with fractional excretion of sodium <1%.
- With the salt and water retention, hypertension also develops.
- Nephritic diseases show modest amounts of protein in the urine, with a daily total <2 grams per 24 hrs. In contrast, nephrotic syndrome does not begin until >3.5 grams per 24 hrs.
- The most important distinction between nephritic and nephrotic syndrome is the hematuria (in nephritic) and degree of proteinuria (>3.5 gm/24 hrs in nephrotic).
A good physical exam is crucial, since half are associated with other systemic vasculitides.

In nephritic diseases the single most important test for diagnosing GN is usually the renal biopsy. Exceptions are post-infectious GN, where no biopsy is usually done, and systemic vasculitis, where skin or lung biopsy is easier and less risky. Biopsy is always done if the patient is developing subacute renal failure (rapidly progressive GN).

Table 8-4. Causes of Nephritic Syndrome

<table>
<thead>
<tr>
<th>Vascular (Systemic) Disease</th>
<th>Glomerular Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulomatosis with polyangiitis</td>
<td>Postinfectious GN</td>
</tr>
<tr>
<td>Eosinophilic granulomatosis with polyangiitis</td>
<td>Goodpasture syndrome</td>
</tr>
<tr>
<td>Henoch-Schönlein purpura (renal lesion = IgAN)</td>
<td>IgA nephropathy (IgAN)</td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td>Lupus nephritis (SLE) (can also be nephrotic)</td>
</tr>
<tr>
<td>Cryoglobulinemia</td>
<td>Idiopathic rapidly progressive GN</td>
</tr>
<tr>
<td></td>
<td>Membranoproliferative GN (can also be nephrotic)</td>
</tr>
</tbody>
</table>

Nephritic vascular diseases

The following disorders show a nephritic clinical presentation but also involve diffuse vascular injury.

Granulomatosis with polyangiitis (Wegener granulomatosis) is characterized by systemic vasculitis that most often involves the kidney, lung, and upper respiratory tract such as the sinuses or middle ear. It can also involve the skin (50%), eyes (50%), joints, and GI tract. Neuropathy may be a symptom. If a patient with chronic upper and lower respiratory illness does not respond to antibiotics and then develops renal failure or hematuria, consider this disorder.

The best initial test is the cytoplasmic antineutrophil cytoplasmic antibody [C–ANCA] or antiproteinase-3 antibody. The most accurate test is a biopsy of the kidney, nasal septum, or lung, looking for granulomas. Sinus biopsy, specifically the nasal septum, is less sensitive and has more false-negative results.

- Other lab abnormalities include elevated ESR, rheumatoid factor (50%), anemia, and leukocytosis. These findings are nonspecific
- The P-ANCA (or anti-myeloperoxidase antibody) is found at much lower frequency.
- Complement levels are normal

Treatment is cyclophosphamide and glucocorticoids.

Eosinophilic granulomatosis with polyangiitis (Churg-Strauss) is a vasculitis similar to granulomatosis with polyangiitis, characterized by chronic lung involvement, neuropathy, skin lesions, GI, cardiac, and renal involvement. All forms of vasculitis are characterized by fever, weight loss, and a generalized malaise. Diagnostic keys include a history of asthma, eosinophilia,
or another atopic disease. Diagnosis requires elevated eosinophils; the P-ANCA is often positive but is nonspecific. The most accurate test is a lung biopsy showing the granulomas and eosinophils. Treatment is cyclophosphamide and glucocorticoids.

Polyarteritis nodosa (PAN) is a systemic vasculitis of small- and medium-sized arteries that affects virtually every organ in the body except the lung. Renal involvement is common and manifests as hypertension, renal insufficiency, and hemorrhage due to microaneurysms. Like all vasculitis, PAN is associated with fever, weight loss, and malaise. Other organs involved include the skin, eyes, muscles, GI tract, heart, kidneys, and neurologic system. Abdominal pain and joint pain may be prominent. The abdominal pain may mimic mesenteric ischemia, and the pain will occur with eating. Anemia and an elevated sedimentation rate are present but are too nonspecific to be useful.

A diagnostic key for PAN is **multiorgan vasculitis, sparing the lungs**. The most accurate diagnostic test is biopsy of an affected area, with sural nerve biopsy being particularly high yield especially if there are neurologic symptoms. If there is abdominal pain, an angiogram of the involved vessels in the GI tract may eliminate the need for a biopsy.

- Hepatitis B is seen in 10–30% of patients (especially injection drug users).
- P-ANCA is seen in only a minority of patients.

Treatment is glucocorticoids and cyclophosphamide.

Renal disease from **cryoglobulinemia** shows the lesion of membranoproliferative GN (type 1) and is associated with chronic hepatitis C, and less commonly hepatitis B. The presentation may be **nephritic and/or nephrotic**. Besides the renal disease, cryoglobulinemia is associated with joint pain, neuropathy, and purpuric skin lesions. There is no GI involvement. There is elevated ESR and low levels of complement. Keys to diagnosis are hepatitis C and positive serum cryoglobulins. Treatment is for the underlying chronic hepatitis. For severe disease (renal failure, heavy proteinuria), pulse doses of steroids and plasmapheresis may help.

Nephritic glomerular diseases

The following disorders show a nephritic clinical presentation, but the disease process is limited to the glomerulus.

Postinfectious GN is the classic nephritic disease, with dark urine, hypertension, and edema developing suddenly 1–2 weeks after strep pharyngitis. If not caused by group A beta hemolytic streptococci (*Streptococcus pyogenes*), it may be caused by throat or skin infection with *Streptococcus pyogenes* (although rheumatic fever occurs only with the strains that cause pharyngitis). Poststreptococcal GN occurs in 10–15% of patients with pharyngitis infected with a nephritogenic strain.

Virtually any infectious agent can cause postinfectious GN, including hepatitis B and C, CMV, and chronic staphylococcal infections such as endocarditis. In the pre-antibiotic era, GN was the most common cause of death from endocarditis. The disease is usually self-limited, so it is unusual among the GNs in not requiring a biopsy if there is a characteristic history and positive serology.

The key to diagnosis is an association with infection. The best initial test is the **antistreptolysin (ASO)** or **antihyaluronic acid (AHT)**.

- Complement levels, particularly C3, are low.
- Renal biopsy is rarely needed, but if done would show epithelial “humps” on electron microscopy. IgG and C3 will be deposited in the mesangium.
Treatment is supportive (management of fluid overload and hypertension with diuretics). Most cases resolve spontaneously. Antibiotics will eradicate the organism from the pharynx. Glucocorticoids are sometimes used for unusual persistence of proteinuria or renal failure in adults.

Goodpasture syndrome (GPS) is an idiopathic renal and lung disease characterized by a unique anti-glomerular basement membrane antibody. Presentation includes hematuria and hemoptysis. Aside from the lungs and kidneys, GPS does not affect other sites in the body, thus an absence of skin or eye findings is a clue to the diagnosis. When there is lung involvement (65%), patients present with hemoptysis, cough, and/or shortness of breath.

The key to diagnosis is nephritic-pulmonary syndrome. The best initial test is the level of antibasement membrane antibodies to type IV collagen. The single most accurate test is lung or kidney biopsy, which will show linear deposits on immunofluorescence. Do lung biopsy, not renal, if there is pulmonary involvement.

Treatment is plasmapheresis and glucocorticoids. Cyclophosphamide may also help.

IgA nephropathy and **Henoch-Schönlein purpura** (HSP) have a common pathophysiology and renal presentation, but differ in that HSP also shows signs of systemic vasculitis.

IgA nephropathy (IgAN) is most commonly seen in Asian or native Americans age <35. It has 2 possible presentations:

- Mild or gross hematuria appearing 1–2 days after a upper respiratory infection (most common on board exams); resolves spontaneously in 30% of patients. (Compare this to poststreptococcal GN, where renal involvement occurs 1–2 weeks later or longer after a sore throat.)
- Hematuria and non-nephrotic proteinuria without infectious precedent which gradually progresses to end-stage renal disease (ESRD) (more insidious form)

Hypertension is common, as in most GN. About 40–50% of IgAN patients progress to ESRD. Renal biopsy shows proliferation with IgA deposits.

HSP has a similar presentation and biopsy, but also shows a skin rash or other vasculitic symptoms. Keys to diagnosis include hematuria, 1–2 day association with URI (for IgAN), and vasculitic rash, hematuria (for HSP).

Management. Renal biopsy is required if renal failure or proteinuria present. In HSP, skin biopsy is best Treatment: no proven treatment. In the presence of proteinuria, give ACE inhibitors/ARB. If nephrotic, try glucocorticoids.

Lupus nephritis is a constellation of glomerular diseases associated with SLE. There may be asymptomatic proteinuria or hematuria, nephrotic syndrome (secondary membranous GN) or there may be severe nephritic syndrome with progressive renal failure eventually requiring dialysis. There are almost always other SLE signs or symptoms present, although a few patients present with renal signs only. Biopsy is key to planning therapy and prognosis.

Key to diagnosis: nephritic or nephrotic syndrome with SLE diagnostic criteria; best test is double-stranded DNA levels and low complement levels during disease flares. The most accurate test is a biopsy.

Treatment: Glucocorticoids with mycophenolate for severe proliferative disease (nephritic). Mycophenolate is superior to cyclophosphamide and has fewer side effects.

Note

IgA nephropathy is the most common primary GN worldwide.
Idiopathic rapidly progressive glomerulonephritis (RPGN) presents with nephritic syndrome (occasionally nephrotic as well) and relentless subacute renal failure, with the serum creatinine rising over 1–2 weeks. An early renal biopsy is critical to diagnosis, and shows epithelial cell crescents (“crescentic GN”).

The key to diagnosis is rising rising creatinine; the best test is renal biopsy.

Treatment is glucocorticoids (start early to protect GFR) and cyclophosphamide (start after biopsy).

Clinical Recall

Which of the following is the most accurate diagnostic test for granulomatosis with polyangiitis

A. Lung biopsy showing granulomas and eosinophils
B. Kidney biopsy showing linear deposits on immunofluorescence
C. Lung and nasal septum biopsy showing granulomas
D. Kidney biopsy revealing IgA deposits
E. Renal biopsy showing “humps” on electron microscopy

Answer: C

Nephrotic Diseases

Nephrotic diseases are characterized by heavy proteinuria and may be primary or secondary to other systemic disease. They are often accompanied by a cluster of metabolic abnormalities (termed the nephrotic syndrome).

The nephrotic syndrome

The nephrotic syndrome is defined as the presence of GN sufficient to produce a level of proteinuria >3.5 grams per 24 hrs, hyperlipidemia, edema, and low serum albumin. Over 50% of nephrotic syndrome is associated with a systemic disease, esp. DM.

Proteinuria arises because the damaged glomerular basement membrane loses its negative charges; negatively charged albumin and key serum proteins then spill into the urine. This may lead to hypoalbuminemia and low serum oncotic pressure. Complications of the nephrotic syndrome include:

• Edema due to increased salt and water retention by the kidney, as well as low oncotic pressure in the serum.
• Hyperlipidemia and increased atherosclerosis, most likely from the urinary loss of the lipoprotein markers or signals on the surface of chylomicrons and LDL that lead to the clearance of these lipids from the bloodstream.
• Hypercoagulable states or thrombophilia, due to the urinary loss of natural anticoagulant proteins such as antithrombin, protein C, and protein S.
• Spontaneous arterial or venous thrombosis due to hypercoagulability.
• Iron, copper, and zinc deficiency may be present as a result of the urinary loss of their transport proteins such as transferrin and ceruloplasmin.
Diagnosis of nephrotic syndrome is based on the presence of >3.5 gm per 24 hrs protein in the urine (measured on 24-hour urine collection or a spot urine protein/creatinine ratio), low serum albumin, edema, and hyperlipidemia. The urinalysis will commonly only show 4+ protein, although some mild hematuria may be seen in several of the nephrotic glomerular diseases.

The key to specific diagnosis is renal biopsy. This may be deferred in diabetic nephropathy with a typical history.

Treatment. Control of the underlying disease, usually with glucocorticoids in the primary disorders. If steroids do not work, add cyclophosphamide or mycophenolate. Azathioprine may be useful. An ACE inhibitor or angiotensin receptor blocker (ARB) is used for all patients with proteinuria, but they do not reverse the underlying disease. The following may also be helpful:

- Diuretics for edema
- ACE inhibitors/ARBs (equal efficacy) for control of proteinuria and hypertension
- Statins for hyperlipidemia
- Anticoagulation if DVT or PE ensues
- Good protein-calorie nutrition. Protein restriction is NOT indicated.

Primary nephrotic diseases

Focal-Segmental Glomerulosclerosis (FSGS). The most common cause of nephrotic syndrome in adults in the USA. Secondary forms are seen with HIV (HIV nephropathy), the use of heroin as well as morbid obesity (possibly due to hyperfiltration).

Treatment: glucocorticoids (20–40% response); may progress to ESRD over 5–10 years

Membranous Glomerulopathy. Most are idiopathic (primary). Secondary forms associated with SLE, cancers such as lymphoma or breast cancer, infections such as endocarditis or chronic hepatitis B or C, and drugs such as NSAIDs, penicillamine, gold salts, and NSAIDs.

Treatment: glucocorticoids (30-50% response)

Minimal Change Disease. The most common nephrotic disease in children (90-95%); may account for 15% of adult disease. Usually primary, but NSAIDs and Hodgkin lymphoma have been associated with secondary disease. Light microscopy is normal and electron microscopy is needed to see fusion of foot processes.

Treatment: High glucocorticoid response, esp. in children. The disease is often treated in kids without biopsy, with biopsy reserved for non-responders. Adults are biopsied because of wider differential diagnosis.

Membranoproliferative GN (also see cryoglobulinemia in Nephritic Diseases). Now largely type 1, associated with chronic hepatitis C and B; with or without cryoglobulinemia and vasculitis. Renal presentation is nephritic and/or nephrotic. Shows low serum complement levels.
Secondary nephrotic diseases

Diabetic nephropathy is by far most common glomerular disease in developed countries. The incidence of nephropathy is directly proportional to the duration of the diabetes, and it normally appears as **microalbuminuria after at least 10 years of type 1 or type 2 DM**.

Microalbuminuria (50–300 mg/24 hours) is detected using the **spot urine albumin/creatinine ratio**, NOT the routine urinalysis, which is insensitive to low degrees of proteinuria. **Screen all diabetic patients annually for microalbuminuria**. Following the appearance of microalbumin, the proteinuria worsens, eventually becomes nephrotic (>3.5 grams), followed by worsening renal function with rising serum creatinine. Over 5-10 years the patient progresses to dialysis-requirement or transplantation. The leading cause of death is cardiac disease due to accelerated atherosclerosis. Other complications include hyperkalemia and type IV renal tubular acidosis.

Keys to diagnosis include DM for at least 10 years; microalbuminuria or (later) nephrotic syndrome or decreased GFR. Although a renal biopsy is the most accurate test for renal involvement in diabetes, it is not routinely performed unless there is the possibility of another disease causing the renal failure.

Treatment includes tight control of diabetes and BP (<130/80 mm Hg); ACE inhibitor/ARB and statins for hyperlipidemia.

Renal amyloidosis occurs when amyloid proteins deposit in the glomerulus, causing damage to the GBM, leading to decline in GFR, albuminuria, and the nephrotic syndrome. There are 2 types of amyloidosis:

- **Amyloid light-chain (AL):** plasma cell dyscrasia causing deposition of protein derived from immunoglobulin light chains; may be associated with multiple myeloma
- **Amyloid A (AA):** amyloid is produced in association with a chronic infection, or rheumatoid diseases such as rheumatoid arthritis or IBD

Most patients will also have extrarenal manifestations:

- GI tract: diarrhea, malabsorption
- Heart: restrictive cardiomyopathy, rhythm disorders, and heart block
- ENT: large tongue (macroglossia)
- Neuro: carpal tunnel syndrome, peripheral neuropathy
- Muscles: weakness

The key to diagnosis is **biopsy of an involved organ** such as the fat pad, rectum, nerves, or kidney. Congo red testing shows green birefringence. Patients with AL amyloid will also have elevated urine and serum light chains typical of myeloma, and possible hypercalcemia.

Treatment is for the underlying malignancy or inflammation/infection. This is often very difficult. With AL amyloid, melphalan and prednisone can control protein production.
Other Glomerular Diseases

Several glomerular diseases cannot be categorized under the nephritic and nephrotic syndromes.

Hypertensive nephrosclerosis is the progressive chronic kidney disease associated with long-standing, poorly controlled hypertension. While previously a common cause of ESRD in the United States, it is now less so, due to more extensive treatment of hypertension. Patients' CKD is often attributed to “hypertension” when in fact the hypertension is secondary to a (potentially treatable) glomerular disease.

The renal pathology is characterized by non-immune, non-inflammatory glomerular sclerosis. If the hypertension is untreated, proteinuria and renal insufficiency progress gradually (over decades) to dialysis requirement. ACE inhibitors are the preferred antihypertensive due to their renal protective effect in CKD.

Alport syndrome is a glomerular disease due to genetic defect in type IV collagen, which structurally underlies the glomerular basement membrane. It is most commonly X-linked. Patients present with the combination of mild hematuria and proteinuria, along with ear (sensorineural hearing loss) and eye abnormalities. Men are more susceptible to disease, as they single mutated X chromosome. It may progress to dialysis-requirement. There is no treatment.

Hemolytic-uremic syndrome/idiopathic thrombocytopenic purpura (HUS/TTP) are thrombotic microangiopathies that may present with small platelet clots in the renal microvessels, causing secondary glomerular inflammation and renal failure. There is typically acute renal failure, mild hematuria, and low-grade proteinuria (non-nephrotic). Treatment is for the underlying disorder.
Table 8-5. Summary of Glomerular Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Nephritic/Nephrotic</th>
<th>Clinical</th>
<th>Serology Clue</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic nephropathy</td>
<td>Nephrotic</td>
<td></td>
<td>Hgb A1c</td>
<td>DM</td>
</tr>
<tr>
<td>Membranous GN</td>
<td>Nephrotic</td>
<td></td>
<td></td>
<td>Cancer, Hep B/C, SLE, NSAIDs</td>
</tr>
<tr>
<td>Focal segmental glomerulosclerosis (FSGS)</td>
<td>Nephrotic</td>
<td></td>
<td></td>
<td>HIV</td>
</tr>
<tr>
<td>Minimal change disease</td>
<td>Nephrotic</td>
<td></td>
<td></td>
<td>NSAIDs</td>
</tr>
<tr>
<td>AA amyloidosis</td>
<td>Nephrotic</td>
<td></td>
<td>CHF, fractures</td>
<td>Chronic infections</td>
</tr>
<tr>
<td>AL amyloidosis</td>
<td>Nephrotic</td>
<td></td>
<td>CHF, fractures</td>
<td>Myeloma</td>
</tr>
<tr>
<td>Idiopathic RPGN</td>
<td>Nephritic</td>
<td></td>
<td>Rapid rise in creatinine</td>
<td>Hep C/B</td>
</tr>
<tr>
<td>Post infectious GN</td>
<td>Nephritic</td>
<td></td>
<td>1–2 weeks after infection</td>
<td>ASO, anti-hyaluronidase</td>
</tr>
<tr>
<td>Membranoproliferative GN</td>
<td>Nephritic/Nephrotic</td>
<td></td>
<td>Hep C/B tests</td>
<td>Hep C/B</td>
</tr>
<tr>
<td>Cryoglobulinemia</td>
<td>Nephritic/Nephrotic</td>
<td>Purpura, neuro, joints</td>
<td>Serum cryos</td>
<td>Hep C/B</td>
</tr>
<tr>
<td>IgA nephropathy</td>
<td>Nephritic → Nephrotic</td>
<td>1–2 days after URI</td>
<td>IgA</td>
<td>Viral URI</td>
</tr>
<tr>
<td>Henoch-Schonlein Purpura</td>
<td>Nephritic</td>
<td>Purpura, GI, joints, abd pain</td>
<td>IgA</td>
<td></td>
</tr>
<tr>
<td>Granulomatosis with polyangiitis (Wegener)</td>
<td>Nephritic</td>
<td>Lung, eye, UR, skin</td>
<td>c-ANCA</td>
<td></td>
</tr>
<tr>
<td>Lupus nephritis</td>
<td>Nephritic</td>
<td>Skin, joints, heme</td>
<td>ANA, anti dsDNA</td>
<td></td>
</tr>
<tr>
<td>Goodpasture</td>
<td>Nephritic</td>
<td>Hemoptysis</td>
<td>anti-GBM</td>
<td></td>
</tr>
<tr>
<td>Eosinophilic granulomatosis with polyangiitis (Churg-Strauss)</td>
<td>Nephritic</td>
<td>Fever, lung, GI, cardiac, neuro, eye, skin</td>
<td>p-ANCA, eosinophilia</td>
<td></td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td>Nephritic</td>
<td>Fever, eye, neuro, muscle, joints, GI</td>
<td>ESR</td>
<td>Hep B, IVDA</td>
</tr>
<tr>
<td>HUS (kids)</td>
<td></td>
<td>Hemolytic anemia, plats ↓</td>
<td></td>
<td>E. coli</td>
</tr>
<tr>
<td>TTP</td>
<td></td>
<td>Hemolytic anemia, plats ↓, + fever, neuro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive nephrosclerosis</td>
<td></td>
<td>Long hypertension</td>
<td></td>
<td>Long, severe HTN</td>
</tr>
<tr>
<td>Alport syndrome</td>
<td></td>
<td>Eye, ear defects</td>
<td></td>
<td>Genetic</td>
</tr>
</tbody>
</table>
END-STAGE RENAL DISEASE
Many chronic kidney diseases, if untreated or resistant to treatment, eventually lead to end-stage renal disease (ESRD). ESRD is characterized by severe reductions in the GFR and uremic symptoms requiring renal replacement therapy (dialysis or transplantation). In the United States the most common cause of ESRD requiring dialysis is diabetic nephropathy. (In some parts of Asia, IgA nephropathy is an equally common cause.)

Complications
Most complications of ESRD do not occur until GFR <20–30% of normal (25 mL/minute). A few complications (altered mental state, acidosis, hyperkalemia) are only seen when GFR <10%.

- **Metabolic acidosis** due to retained acids not filtered from the blood by the failing kidney. The anion gap is elevated. Treatment is dialysis.
- **Hyperkalemia** due to retained potassium not filtered by the failing kidney. This is a common cause of death in dialysis patients. Treatment is a low K diet and dialysis. Loop diuretics and GI binding agents (e.g. kayexalate) may be used prior to dialysis.
- **Hypermagnesemia**. Magnesium accumulates because the falling GFR decreases renal excretion. Treatment is restriction of magnesium intake, e.g. avoidance of milk of magnesia.
- **Hypocalcemia** due to the loss of 1,25-dihydroxy vitamin D production and from hyperphosphatemia (inability of the kidney to excrete phosphate). High phosphate levels contribute to low calcium levels by precipitating out in tissues in combination with the calcium. Treatment is reduction of phosphate and increase of calcium.
 - Hyperphosphatemia is treated with phosphate binders, such as calcium carbonate or calcium acetate. Aluminum-containing phosphate binders should not be used, as aluminum is associated with CNS accumulation, dementia, and bone abnormalities. Sevelamer and lanthanum are phosphate binders that do not contain aluminum or calcium. Use when calcium is abnormally high due to vitamin D replacement.
 - Hypocalcemia is treated with 1,25 dihydroxy-vitamin D replacement.
 - Cinacalcet is a substance which simulates the effect of calcium on the parathyroid; it will tell the parathyroid to shut off parathyroid hormone production, thus helping to decrease phosphate. Use in severe, refractory cases.
- **Renal osteodystrophy** (osteitis fibrosa cystica). Bone abnormalities occur because chronic hypocalcemia leads to secondary hyperparathyroidism, which removes calcium from the bones. In addition, bones buffer the chronic acidosis ESRD by removing calcium from bone. Patients present with bone pain and fractures. Renal osteodystrophy is controlled with improving calcium and phosphorous levels and with cinacalcet. Parathyroidectomy may be needed for severe hyperparathyroidism that does not respond to medications.
- **Mental state changes**: a variety of cognitive and mood changes occur with uremia, normally only with severe CKD (GFR <10). The only treatment is dialysis.
- **Anemia** from the loss of production of erythropoietin from the kidney. The anemia is normochromic and normocytic. The anemia is treated with erythropoietin replacement, and iron replacement is often necessary when starting erythropoietin due to chronic losses from blood draws, dialysis, and malnutrition.
• **Bleeding.** The coagulopathy in ESRD arises from uremia-induced platelet dysfunction, which prolongs the bleeding time. Treatment is desmopressin, which releases subendothelial stores of von Willebrand factor and factor VIII, which increase platelet aggregation and adherence. A secondary cause in patients still making urine is nephrotic-syndrome-associated loss of clotting factors in the urine.

• **Hypertension and accelerated atherosclerosis.** CKD leads to rapidly progressive coronary artery disease, which is the most common cause of death for those on dialysis. The reason for this is not clear. Treatment is good BP control (usually multiple medications and thorough dialysis) and statins for hyperlipidemia.

• **Pericarditis:** caused by unknown uremic toxins; may or may not be an associated effusion. Requires urgent hemodialysis.

• **Infection.** ESRD patients are at increased risk of infection because neutrophils and other white cells do not work normally in a uremic environment. This is the second most common cause of death in dialysis patients. Vascular access infections (hemodialysis) and peritonitis (peritoneal dialysis) are common. The most common organism is Staphylococcus due to the frequent skin punctures required in dialysis.

Treatment

CKD is initially treated conservatively to minimize symptoms. However, when conservative management fails, renal replacement therapy is required. This can either be **dialysis** or **renal transplantation**.

Medical management of CKD includes restriction of fluids, potassium, sodium, protein, magnesium, and phosphate in the diet. Protein restriction is of **no value** and may be harmful. Common medications include erythropoietin, 1,25 dihydroxyvitamin D, phosphate binders, multiple anti-hypertensives, and furosemide (if patient still makes urine). Taking so many medications is very difficult for patients who often lack energy or who are confused.

Dialysis is used in patients with GFR <20%. (It is covered under Medicaid for all patients in the United States.) Dialysis options are hemodialysis and peritoneal dialysis.

Acute indications for dialysis are life-threatening abnormalities that require hospitalization:

- Pulmonary edema refractory to diuretics
- Hyperkalemia resistant to therapy
- Metabolic acidosis
- Pericarditis
- Altered mental state

Chronic indications for dialysis (usually initiated from the outpatient setting) include:

- Severe neuropathy such as myoclonus, wrist/foot drop
- Persistent nausea and vomiting
- Weight loss/malnutrition
- Bleeding diathesis
- Severe itching
- Fatigue not correctable with anemia correction
Overall, chronic hemodialysis is used in 85% of patients and peritoneal dialysis in 15%. Each can be done at home in properly trained patients.

The most common complications of dialysis are:
- Fluid overload
- Hypertension
- Post-dialysis orthostatic hypotension
- Dialysis access infections (peritonitis or AV access infection)
- Peritonitis. (peritoneal dialysis)

Renal transplantation is the preferred treatment for ESRD patients requiring renal replacement therapy. All ESRD patients should be referred for transplant evaluation, ideally so they can be transplanted before dialysis is needed, but not all will qualify. The 5-year survival rate is by far superior with transplantation when compared with dialysis:
- Dialysis alone: 30–40%
- Diabetics on dialysis: 20%
- Live related donor: 72% at 5 years
- Cadaveric donor: 58% at 5 years

The average wait to obtain a kidney for transplantation is 2–4 years and becoming longer because of an insufficient donor supply.

Complications of transplantation include acute and chronic rejection, and infections due to immunosuppressive medications. Renal graft rejection is prevented by using cyclosporine, tacrolimus, corticosteroids, and mycophenolate. These are all medications which inhibit T-cell function.

Clinical Recall

Which of the following is not an indication for dialysis in ESRD?

A. Fluid overload refractory to diuretics
B. Severe metabolic acidosis
C. Uremic pericarditis
D. Severe hyperkalemia
E. Anemia

Answer: E
Nephrolithiasis (1–5% of the population) is a common cause of emergency room visits and is often severely painful. All stones form more readily in concentrated urine, so volume depletion may precipitate them. There are genetic predispositions to stone formation, sometimes linked to lack of stone-inhibiting proteins in the urine (e.g., nephropontin). Types of stones include:

- Calcium oxalate (70%) and calcium phosphate (10%)
- Struvite/infection (Mg/aluminum/phosphate) (5–10%)
- Uric acid (5%)
- Cystine (1%)
- Indinavir

Calcium Stones
Calcium stones (80% of all stones) have several risk factors:

- Hypercalciuria
 - Idiopathic renal hypercalciuria (normal serum calcium)
 - Resorptive from bone: hyperparathyroidism (10–30% of patients present with stones); multiple myeloma, metastatic disease to bone, hypercalcemia of malignancy (serum calcium high)
 - Increased GI calcium absorption: vitamin D intoxication; increased vitamin D with sarcoid and other granulomatous disease; familial (serum calcium high)
- Hyperoxaluria
 - Primary familial oxaluria
 - Enteric: with fat malabsorption as in Crohn’s disease, the fat binds to calcium, leaving unbound oxalate to be reabsorbed in increased amounts, then excreted into the urine.
- Hypocitraturia
 - Urine citrate is a stone inhibitor, binding with calcium. Patients with low urinary citrate have a higher risk for calcium stones. Patients with type I (distal) renal tubular acidosis often have hypocitraturia.

Struvite/Infection Stones
Chronic urinary infections with urease-producing organisms such as Proteus, Pseudomonas, and Klebsiella give a highly alkaline urine that leads to struvite (Mg/aluminum/phosphate) stones. These often produce large “staghorn” calculi filling the renal pelvis. The urinalysis may show characteristic “coffin lid” crystals.

Uric Acid Stones
Uric acid stones form in an acid environment and are associated with diseases that increase serum uric acid levels, such as gout, hematologic malignancies, and Crohn’s disease. Unlike other stones, they are radiolucent on x-ray but can be seen on renal ultrasound.
Cystine Stones

Cystine stones (least common) are associated with the genetic disorder cystinuria. The urinalysis shows characteristic hexagonal crystals.

For all stones, patients present with constant flank or abdominal pain (not colicky) often radiating to the groin, and gross or microscopic hematuria. There is often associated nausea and vomiting, mimicking an acute abdomen or pelvic inflammatory disease. Gross hematuria is common. The patient may recall stone fragments in the urine.

Diagnosis: best test is a radiologic test; both spiral helical CT scan (no contrast) and renal U/S are equally good. Urine testing may show:

- UA: blood, crystals; WBC, bacteria (infection stones)
- Electrolytes: high calcium, high oxalate, and/or low citrate (calcium stones); high uric acid (urate stones)
- pH: >8 in infection (struvite) stones, otherwise lower

Patients should strain their urine to catch a passing stone, which is then sent for analysis (best test for stone type). Serum studies include:

- Calcium (sometimes high in calcium stones); if elevated, check the parathyroid hormone level
- Uric acid (high in most urate stones)

The serum creatinine will only be elevated if there is bilateral obstruction (hydronephrosis) which would be seen on U/S or CT.

Treatment: Analgesia, hydration, and bed rest are the mainstays of treatment. Definitive treatment depends on stone size as determined by radiologic study:

- <5 mm: stones pass spontaneously
- 5–10 mm: try ureteral dilating agents like tamsulosin
- 1–2 cm: lithotripsy (extracorporeal or transurethral)
- >2 cm surgical excision (percutaneous or transureteral)

Recurrent stones should be treated with increased hydration, especially in warm climates, and may also be treated with medications appropriate to type:

- Calcium stones: thiazide diuretics (increases urine Ca reabsorption) or citrate if low urine citrate
- Urate stones: allopurinol or febuxostat (lowers serum uric acid levels)
CYSTIC KIDNEY DISEASE
Cystic disease of the kidney may be primary or acquired. The most common primary disease is autosomal dominant polycystic kidney disease (ADPKD), which often leads to ESRD and transplantation or dialysis. Acquired disease is most often seen in dialysis patients as an adventitious finding on CT scanning, and requires no further management.

Autosomal Dominant Polycystic Kidney Disease
Autosomal dominant polycystic kidney disease (ADPKD) is the most common cystic disease (prevalence 1:200 to 1:1,000). Presentation ranges from asymptomatic to painful to progressive CKD requiring eventual dialysis. Patients are commonly detected in early adulthood during evaluation for a urinary tract infection or flank pain, initially confused with stones.

Clinical presentation includes:
- Flank pain (one or both sides)
- Hematuria (microscopic or gross)
- Progressive loss of GFR
- Recurrent urine infections
- Hypertension
- Extra-renal manifestations: hepatic cysts (40–60%); intracranial aneurysm (10–20%); mitral valve prolapse (25%), colonic diverticula

Diagnosis. The best test is renal ultrasound or CT scanning. Many patients are concerned about the risk of rupture of undetected intracranial aneurysms. Without symptoms there is no recommendation to screen ADPKD patients with cranial CT scanning, but this may be individualized for patient preference. Even if detected, there is no indication for neurosurgical intervention without evidence of a bleed.

Treatment is management of the complications (UTI, calculi, and hypertension) and prepare the patient for dialysis if renal function declines. There is no specific treatment. Some patients require nephrectomy for intractable pain.

Simple Cysts
Simply renal cysts are very common and usually of no significance. If they are smooth-walled with no debris inside the cyst, they can be managed without further treatment or diagnostic tests. If they have irregular walls or debris inside, follow closely with repeat scans to exclude malignancy.
HYPERTENSION

An estimated 50 million Americans have high BP. Hypertension may be primary (essential) or secondary to known diseases. Severe hypertension with end-organ damage is termed emergent hypertension.

Complications of uncontrolled hypertension include:

- **Cardiac**: increased risk of myocardial ischemia and infarction, left ventricular hypertrophy with eventual CHF, aortic aneurysm, and dissection
- **Cerebrovascular**: transient ischemic attack (TIA) or stroke
- **Renal**: nephrosclerosis with microscopic hematuria, mild proteinuria, progressive elevation of BUN/creatinine, and eventual dialysis. Hypertension worsens the prognosis of most renal diseases.
- **Retinopathy**: hemorrhages, exudates, arteriolar narrowing, and papilledema; these result in blurred vision, scotomata, and sometimes blindness

Essential Hypertension

Essential hypertension (>95% of all cases of hypertension) is best thought of as a syndrome with many causes, not a single disease. Causes in each patient vary: arterial stiffening, increased sodium sensitivity, or increased renin/angiotensin/aldosterone axis activity. This variability means that each patient will respond differently to a given intervention or medication.

Epidemiologically, essential hypertension is:

- More common with increasing age (found in 50% of those age >60)
- More common in obese patients
- Men > women until after menopause
- More common in black population at all ages, as is incidence of end-organ damage
- Onset usually age 25–55

Clinical Presentation. The most common presentation of essential hypertension is an **asymptomatic patient** in whom an elevated BP is found during a routine examination or evaluation for other medical problems. Much less commonly when symptoms are associated with hypertension, think of them as follows:

- Acute symptoms associated with a hypertensive emergency OR
- Complications from end-organ damage

With a hypertensive emergency, signs and symptoms may include evidence of stroke (neurologic findings, headache, blurred vision, dizziness) or cardiac symptoms (chest pain, dyspnea)

Diagnosis. Hypertension is diagnosed when **systolic BP 140 mm Hg or diastolic BP ≥90 mm Hg** (or both) on repeated examination. Systolic BP is particularly important, and is the basis for diagnosis in most patients. These numbers apply to all adults age >18 (although for those age ≥80, systolic BP up to 150 mm Hg is now regarded as acceptable).

New 2017 ACC guidelines have recommended diagnostic values and therapy targets of **<130/80 mm Hg** for patients with DM, elevated calculated cardiac risk (>10%), or chronic kidney disease. These more rigid guidelines are controversial, since "tight" treatment increases medication use and increases the risk of falls, especially in elderly patients.
Table 8-6. ACC/AHA Guidelines (New as of 2017)

<table>
<thead>
<tr>
<th>Category</th>
<th>BP Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal BP</td>
<td><120/80 mm Hg</td>
</tr>
<tr>
<td>Elevated</td>
<td>SBP 120-129 with DBP <80 mm Hg</td>
</tr>
<tr>
<td>Hypertension Stage 1</td>
<td>SBP 130-139 or DBP 80-89 mm Hg</td>
</tr>
<tr>
<td>Hypertension Stage 2</td>
<td>SBP >140 or DBP ≥90 mm Hg</td>
</tr>
</tbody>
</table>

As much as 20–25% of mild office hypertension is artifactual, i.e., these initial elevated readings merely represent a manifestation of anxiety on the part of the patient to the doctor/medical environment (known as “white coat hypertension”). These patients rarely have evidence of end-organ damage. Home BP monitoring is the best way around this difficulty, and all hypertensive patients should learn how to take and record their BP. Never label a patient as hypertensive after only a single reading: repeat the reading 3–6 times over several months before confirming the diagnosis and initiating therapy.

The physical exam includes evaluation of the heart for murmurs and LVH, auscultation for abdominal bruits seen in renal artery stenosis, and identifying edema seen in chronic kidney disease. A dilated eye exam looking for retinopathy is needed.

Lab testing is done to exclude chronic hypertensive complications and causes of secondary hypertension. Most routine lab testing will be normal. Once done on initial evaluation, repeat testing is unnecessary if the BP is well controlled, except to monitor drug side effects (e.g., hypokalemia with diuretics). Initial basic studies include:

- Urinalysis for protein, RBCs (screen for hypertensive nephrosclerosis and other renal diseases as secondary cause)
- Serum potassium (to exclude hyperaldosteronism as a secondary cause)
- Serum creatinine and BUN (screen for hypertensive nephrosclerosis and other renal diseases as secondary causes)
- Electrocardiogram to evaluate for left ventricular hypertrophy
- Serum glucose and plasma lipid analysis as an indicator of atherosclerotic risk

Treatment is aimed toward reducing BP to levels that will prevent acute and chronic complications. These targets vary depending on other patient risk factors.

- For patients without DM, cardiovascular disease, CV risk >10%, or chronic kidney disease, use the following guidelines:
 - Treat confirmed mild and moderate hypertension (DBP 90-100) with nonpharmacologic modifications in lifestyle: weight loss for the obese, dietary sodium restriction, aerobic exercise, reduced alcohol intake, and low-fat diet with increased dietary fiber (DASH “Dietary Approaches to Stop Hypertension” diet includes increased fruits/vegetables, low-fat dairy). For every kilogram of weight lost, there is generally a 0.5–1.0 mm Hg drop in systolic and diastolic BP. Relaxation methods have inconsistent effects.
 - Patients who continue to have diastolic BP >90 mm Hg after 3–6 months of nonpharmacologic therapy should then be started on an antihypertensive drug.

Note
First-line drugs for essential hypertension in patients without other diseases include thiazides, ACE inhibitors/ARB, and calcium channel blockers (CCBs). Beta blockers should not be given.
- Treat severe hypertension (diastolic >100 mm Hg) immediately with drug therapy
- Use 2 medications as initial therapy for those with BP >160/100 mm Hg, since a single drug will not control this level of hypertension.

- For patients with DM, cardiovascular disease, elevated CV risk (<10%), or chronic kidney disease, treat more aggressively, with ≥1 medications, to achieve BP both SBP <130 mm Hg and DBP <80 mm Hg.

Medications: There are almost 50 medications approved for the initial treatment of hypertension, not including combination medications. Choice of drug is determined both by guidelines for the general population and by knowledge of drugs to use or avoid in specific patients based on their other medical problems.

Diuretics are still first choice in the absence of a specific indication or contraindication; their mortality benefit is unsurpassed, and chlorthalidone is best of all. If diuretics do not control the BP, add a second medication (an ACE inhibitor/ARB or CCB).

For BP >160/100 mm Hg, use a 2-drug combination: diuretic plus either ACE inhibitor/ARB or CCB.

Consider the following when treating specific hypertensive groups:
- Treat those who have post-myocardial infarction (ischemic heart disease) or systolic CHF with beta blockers.
- Treat those with systolic CHF or chronic kidney disease with ACE/ARB
- Pregnancy: treat HTN with alpha-methyldopa, labetalol, hydralazine, or CCBs. **ACE inhibitors and ARBs are absolutely contraindicated.** Diuretics are relatively contraindicated.
- African-American patients receive the least BP lowering benefit from ACE inhibitors.

Clinical Recall

A 48-year-old man comes to the clinic with blood pressure 150/95 mm Hg. What is the best initial therapy?

A. Hydrochlorothiazide
B. Lifestyle modification and chlorthalidone
C. Lisinopril
D. Atenolol
E. Amlodipine

Answer: B
Secondary Hypertension

Secondary hypertension (5% of all HTN cases) is hypertension due to an identifiable underlying cause. Renal artery stenosis is the most common cause. The following groups should be screened for secondary hypertension:

- Those who become hypertensive age <25 or >55
- Those with a key feature of history, physical examination, or lab abnormality consistent with a particular form as described below
- Those with “essential hypertension” who remain hypertensive despite increasing dosages and numbers of antihypertensive medications, i.e., those refractory to what should normally be effective therapy

With secondary hypertension, the presentation depends upon the cause.

- Renovascular disease causes an abdominal bruit
- Chronic kidney disease shows edema
- Cushing disease causes weight gain, moon-like facies, striae, and ecchymoses
- Primary hyperaldosteronism causes muscular weakness and polyuria/polydipsia from hypokalemia
- Pheochromocytoma (very rare) causes episodic hypertension associated with headache, palpitations, and sweating

The recommended lab workup for essential hypertension will screen for the most common forms of secondary hypertension. A more intensive workup can be done if there is a high clinical suspicion.

There are several types of secondary hypertension.

- **Renal artery stenosis** may be unilateral or bilateral, and is caused by atherosclerotic disease in patients with high CV risk or fibromuscular dysplasia in young women. Physical exam may show an *upper abdominal bruit* radiating laterally (50–70% of patients). Radiologic confirmation tests include:
 - Renal artery duplex U/S (best screening test)
 - Captopril renogram measures the uptake of a radioisotope before and after the administration of captopril; a positive test is when there is decreased uptake of the isotope (i.e., decreased GFR) after giving the captopril (accuracy is diminished with renal insufficiency)
 - Magnetic resonance angiography (equal to sonography in diagnostic ability but more expensive)
 - Renal arteriography (more invasive and used prior to surgical revascularization to confirm the extent of stenosis)
- **Treatment.** For **bilateral disease,** the best initial treatment is *percutaneous transluminal angioplasty* with stenting. If stenosis recurs, repeat the procedure. If angioplasty fails, attempt surgical revascularization. ACE inhibitors are effective for BP control; however, since they carry the risk of acute kidney injury in bilateral disease, use with caution.
- **For unilateral disease,** it is not clear whether angioplasty is superior to ACE inhibitors.
• Chronic kidney disease (CKD) is typically associated with hypertension (often severe). Treatment emphasizes the use of ACE inhibitors (or ARB) for their effect in slowing progression of disease and reducing proteinuria. Once on dialysis, effective fluid removal will improve the resistant hypertension seen in these patients.

• Primary hyperaldosteronism is caused by a unilateral or bilateral adrenal adenoma (most common) or by bilateral adrenal hyperplasia. Cancer is rarely the cause. The key features are hypertension in association with hypokalemia. Diagnose with elevated aldosterone level and aldosterone/plasma renin activity in urine and blood. Treatment is surgical resection (for those with an adenoma) or potassium sparing diuretics such as spironolactone for those with adrenal hyperplasia. If an adenoma is suspected but not seen on radiologic studies, bilateral renal vein sampling for differential aldosterone levels may assist in locating the lesion.

• Cushing disease is hypercortisolism, most often due to ACTH hypersecretion by a pituitary adenoma. The key feature is hypertension in association with characteristic cushingoid manifestations such as truncal obesity, buffalo hump, menstrual abnormalities, striae and impaired healing, etc. Dexamethasone suppression testing, 24-hour urine cortisol, or salivary cortisol are the best initial tests. Treatment is surgical resection of the adenoma.

• Pheochromocytoma (rare) is most often a benign tumor of the adrenal gland. The key feature is episodic hypertension in association with headaches, sweating, palpitations, tachycardia, or flushing (but only 50% have these acute features). The best initial tests are urinary vanillylmandelic acid (VMA), metanephrines, and free urinary catecholamines. Plasma catecholamine evaluation is helpful as well. CT and MRI will often localize the site of the tumor. Treatment is alpha-adrenergic blockade followed by surgical removal.

• Coarctation of the aorta: the key diagnostic feature is severe hypertension markedly greater in the upper extremities compared with the lower extremities.

• Other endocrine causes: oral contraceptives, acromegaly, and congenital adrenal enzyme deficiencies

Hypertensive Emergency

A hypertensive emergency (replaces the term malignant hypertension) is the acute onset of severe hypertension in association with severe and rapidly worsening symptoms of end-organ damage (~1% of hypertensive patients).

Clinical Presentation: Diastolic BP will usually be >120–130 mm Hg.

- **Neurologic:** encephalopathy, headache, confusion, seizures, subarachnoid or intracerebral hemorrhage
- **Cardiac:** chest pain, myocardial infarction, palpitations, dyspnea, pulmonary edema, jugular venous distension, gallops
- **Nephropathy:** acutely progressive hematuria, proteinuria, renal dysfunction
- **Retinopathy:** papilledema, hemorrhage, blurred vision

Lab evaluation is the same as for initial evaluation of essential hypertension, except that a head CT scan may be necessary to exclude hemorrhage. EKG is important as an initial test to exclude infarction.
Chapter 8 ● Nephrology

Treatment. The initial goal is to reduce BP by no more than 25% within the first 1–2 hours.

- IV therapy is indicated: labetalol and nitroprusside are the best agents (nitroprusside carries a greater risk of thiocyanate toxicity when used >24 hrs)
- For those with myocardial ischemia or chest pain, nitroglycerin is indicated; other options are enalaprilat (an IV ACE inhibitor), esmolol, or nicardipine

The most important point in management is not to lower the pressure too far (e.g., not <95–100 mm Hg diastolic) so as not to compromise myocardial or cerebral perfusion.

Antihypertensive Medications

First-line agents

- **Thiazide diuretics:** chlorthalidone (preferred in guidelines), hydrochlorothiazide, metolazone, and indapamide are least expensive. Specific indications include CHF, edematous states, calcium kidney stones, nephrogenic diabetes insipidus. Side effects include decreased potassium and magnesium; increased glucose, calcium, uric acid, LDL; and gynecomastia. Relative contraindications include pre-diabetes and diabetes (worsens glucose tolerance), gout, hyponatremia, and hyperlipidemia.

- **ACE inhibitors:** benazepril, enalapril, captopril, enalapril, lisinopril, quinapril, and ramipril

- **Angiotensin-receptor blockers** (ARBs): losartan, candesartan, valsartan, telmisartan, and irbesartan. Use only when intolerant of ACEi (more expensive).

Specific indications for ACEi/ARB include chronic kidney disease, diabetics with microalbuminuria (to prevent nephropathy), CHF (afterload reduction), postmyocardial infarction with low EF. Side effects include cough (ACEi only), angioneurotic edema (ACEi >> ARB), neutropenia, hyperkalemia, taste disturbances, anaphylactoid reactions. Relative contraindications include hyperkalemia >5.0, bilateral renal artery stenosis (effective, but may cause AKI); absolute contraindications include pregnancy. Note: ARBs are less effective in African-American patients.

Calcium channel blockers

- Dihydropyridines: amlodipine, felodipine, isradipine, nicardipine, nifedipine. Non-dihydropyridines: diltiazem and verapamil. Specific indications include angina pectoris (verapamil and diltiazem only), supraventricular arrhythmia, migraine, Raynaud phenomenon, esophageal spasm. Side effects include peripheral edema, constipation, heart block, reflex tachycardia (dihydropyridines). Relative contraindications include atrioventricular conduction defects, CHF from systolic dysfunction, angina pectoris or CAD (dihydropyridines only).

Second- and third-line agents

- **Beta blockers** include bisoprolol (good in CHF, asthmatics), metoprolol (good in CHF, inexpensive) > acutetolol, atenolol, nadolol, pindolol, and timolol. Labetalol (combined beta and alpha) good for emergent hypertension. Specific indications include myocardial infarction or ischemic heart disease (first line); diastolic and systolic CHF (first line), supraventricular arrhythmias including a fibrillation; migraine headache, glaucoma, anxiety (resting tachycardia). Side effects include bronchospasm, heart
block, bradycardia, Raynaud phenomenon, depression, impotence, fatigue, decreased HDL, increased triglycerides, hyperglycemia. Relative contraindications include asthma, COPD, atrioventricular conduction defects, CHF from systolic dysfunction, diabetes because of masking signs of hypoglycemia; absolute contraindications include cardiogenic shock, acute asthma attack.

- **Potassium-sparing diuretics**: spironolactone, amiloride, and triamterene. Specific indications include edema, potassium wasting states (all), CHF (spironolactone), cirrhosis (spironolactone). Side effects include hyperkalemia, gynecomastia (spironolactone). Relative contraindications include hyperkalemia >5 mmol/L. These agents are often paired with thiazide diuretics, neutralizing the thiazides’ hypokalemic effect.

- **Loop diuretics** include furosemide, bumetanide, and ethacrynic acid. They are used for severe edema, especially pulmonary edema. Side effects include hypokalemia, hypocalcemia, and tinnitus.

- **Central-acting sympatholytics** include clonidine, guanfacine, guanabenz, and methyldopa. Clonidine can be useful in opiate detoxification. Side effects include depression, fatigue, dry mouth, impotence, bradycardia, heart block, and memory loss. Methyldopa gives hepatitis and Coombs-positive hemolytic anemia. Relative contraindications include elderly or depressed patients (orthostasis, falls, confusion).

- **Direct vasodilators** include hydralazine and minoxidil. Hydralazine is used in eclampsia and with nitrates for some patients with systolic CHF. Minoxidil is used topically to treat baldness. Side effects include a lupus-like syndrome (hydralazine) and marked fluid retention, pericardial effusion, and hirsutism (minoxidil). Relative contraindications include angina pectoris (reflex tachycardia).

- **Alpha-adrenergic blockers** include doxazosin, prazosin, and terazosin. They are used for those with lipid disorders (to reduce LDL and increase HDL), prostatic hyperplasia (to reduce obstructive symptoms), nephrolithiasis (ureteral dilation). Side effects include syncope after the first dose, dizziness, headache.

FLUID AND ELECTROLYTE DISORDERS

The fluid and electrolyte disorders such as hyponatremia, hypernatremia, hypokalemia, and hyperkalemia are among the most common disorders seen in acute and hospital medicine.

Hyponatremia

Hyponatremia, a potentially lethal condition, is common in hospitalized patients. It is defined as a low serum sodium concentration <135 mEq. It is almost always caused by an excess of free water (some call it “hyper-aquemia”), usually by excessive renal water absorption.

The physiologic effects of hyponatremia do not stem from the sodium per se, but rather from the low serum osmolality, which causes cerebral edema. Sodium is the main determinant of the serum osmolality, as about 85–90% of sodium is extracellular. As seen in the below formula for calculated osmolality, about 280 mosm/kg of the total serum osmolality of 290 mosm/kg comes from sodium.

\[
\text{Serum osmolality} = (2 \times \text{sodium}) + \frac{\text{BUN}}{2.8} + \frac{\text{glucose}}{18}
\]

\[
290 = 280 + 5 + 5
\]

Therefore, **hyponatremia usually = hypo-osmolality.**
While hyponatremia suggests a disorder of sodium, water is in fact the culprit, and total body sodium may be low, high, or normal. Hyponatremia can be classified by the patient’s extracellular volume status (which equals the total body sodium):

- **Hypovolemic hyponatremia**: low extracellular volume (ECV), low total body sodium (dehydration, GI loss)
- **Euvolemic hyponatremia**: clinically normal ECV, normal total body Na (SIADH, thiazides, SSRIs)
- **Hypervolemic hyponatremia**: high ECV, high total body Na (cirrhosis, CHF)

While total body Na may be low, normal, or high, in all cases the ratio of total body sodium to total body water is low, therefore causing the hyponatremia.

Clinical Presentation and Diagnosis. Symptoms of hyponatremia are predominantly neurologic, ranging from mild confusion and forgetfulness to disorientation and obtundation to seizure (or even coma). Symptoms do not correspond to a specific sodium level because they largely depend on how fast the level dropped (but symptoms are rare >125 mEq/L). An acute 15–20 point drop in sodium can cause a seizure or coma.

The history should focus on symptoms of malignancy, psychiatric, heart, renal, and liver disease. The drug history should ask about SSRI antidepressants, thiazides, and antipsychotics. The physical exam should determine the patient’s extracellular volume status (especially orthostasis), hypotension, tachycardia, and edema.

Labs: In addition to the serum sodium concentration, the patient may benefit from checking serum osmolarity (usually low; if normal-high consider pseudohyponatremia); urine sodium (low (<10 mEq/L) in hypo- and hypervolemic types, high (>40) in euvolemic; and urine osmolarity (inappropriately high in face of low serum osmolarity, i.e. >200 mosm/kg, often >500 in SIADH).

Pseudohyponatremia

In pseudohyponatremia, serum sodium is low but serum osmolarity is normal or high. The patient appears euvoletic and is asymptomatic. No specific hyponatremia therapy is needed.

The common causes of pseudohyponatremia should be excluded before further work-up is done. These causes include hyperglycemia (where increased serum osmolarity pulls water out of cells, diluting the serum sodium) and hyperlipidemia (a lab artifact in which the high lipid fraction “dilutes” the measured sodium concentration despite a normal true serum value).

Hypovolemic hyponatremia

In hypovolemic hyponatremia, hyponatremia develops because of the loss of sodium and water through body fluids but sodium losses exceed water losses. It may be worsened if pure water is used as fluid replacement, rather than balanced electrolyte solutions. For example, when you sweat during exercise (loss of hypotonic sodium and water) and replace only with free water, serum sodium may drop over time. Causes include GI loss (vomiting, diarrhea, gastric suction), skin loss (burns, sweating, cystic fibrosis), diuretics, and renal sodium loss (salt wasting in Addison disease, cerebral salt wasting after neurosurgical procedures).
Patients show signs of ECV depletion (orthostasis, hypotension, tachycardia, decreased skin turgor). Serum Na is usually >125 mEq/L, so hyponatremic symptoms are uncommon. Urine sodium concentration will be low (<10 mEq/L) reflecting avid renal Na reabsorption due to low ECV.

Treatment is normal saline (*the only time* this is used in hyponatremia).

Hypervolemic hyponatremia
In hypervolemic hyponatremia, hyponatremia is caused by high ADH levels, stimulated by a drop in “effective circulating volume”, i.e. organ perfusion, such as in vasodilated states or CHF where cardiac output drops. The kidney reabsorbs sodium and water in response to the low perfusion, but more water is retained than sodium, leading to hyponatremia. Note that while Na and water reabsorption are usually linked in normal physiology, Na is controlled by aldosterone, water by ADH, so the linkage may not be precise in some patients with low effective circulating volume. This subset develops hyponatremia. Causes include CHF; nephrotic syndrome and low albumin states; and cirrhosis.

Patients will show signs of ECV expansion: edema, ascites, pulmonary crackles, and specific signs of heart, liver, or renal disease. The serum Na is usually >125 mEq/L, so hyponatremic symptoms are uncommon. Urine sodium concentration will be low (<10 mEq/L) reflecting avid renal Na reabsorption due to reduced renal perfusion.

Treatment is of the underlying disorder. Furosemide may help with urinary dilution, so enhance water excretion.

Euvolemic (normal ECV) hyponatremia
Patients with euvolemic hyponatremia are hyponatremic—often severely so—yet appear neither volume-depleted nor expanded. ADH levels are often very high. These cases often require specific hyponatremia treatment to avoid neurologic consequences. Causes include:

- High ADH levels released by the posterior pituitary
 - Psychiatric drugs and diseases (especially SSRI antidepressants, *most common* cause in United States)
 - Surgery, stress, endurance exercise (“marathon hyponatremia”)
 - Hypocortisolism
 - Hypothyroidism
- ADH released by other body cells: syndrome of inappropriate antidiuretic hormone secretion (SIADH)
- Excess water intake: psychogenic polydipsia: patients must drink at least 15–20 liters a day of fluid to overwhelm the diluting capacity of the kidney
- Decreased renal water excretion (non-ADH mediated)
 - Thiazide diuretics: inhibit distal tubule Na reabsorption and generation of free water, limiting ability of kidney to excrete very dilute urine
 - Often occurs in patients doing extreme hiking or exercise; patients on thiazides need to eat and/or drink solute solutions during such exercise

Note
End-stage kidney disease also may show hypervolemic hyponatremia, but from a different mechanism. Here, the failing kidney stops filtering water, yet the patient continues to drink it, leading to hyponatremia. This is often seen in patients prior to dialysis.
Diagnosis: Patients will show normal clinical volume status. While there is total body water expansion, water is an ineffective clinical volume expander, so no edema results. Serum Na varies, but may be very low (<110), so hypotremic symptoms are common. Urine sodium concentration will be >40 mEq/L reflecting the kidney’s sensing of mild volume expansion from water retention, resulting in sodium diuresis, thus worsening the problem (water retention, sodium excretion). This explains the increased severity of hyponatremia in some patients. Urine osmolarity is often >500 mosm/kg, so administered fluids need to be more concentrated than that (i.e. avoid normal saline whose osmolarity is 300). Other lab workup includes:

- Serum uric acid (low in euvolemic hyponatremia due to increased urine loss of UA)
- Serum ADH level: this is the single most accurate test, but is rarely done due to time and expense. Levels are high.
- Thyroid function (TSH) to rule out hypothyroidism
- Serum cortisol and/or ACTH stimulation test (rule out hypocortisolism)

Treatment. In general, patients should limit water intake since water will worsen any other cause. Conversely, solute intake should be increased. Marathon runners and endurance athletes should drink electrolyte beverages (not pure water) and eat regularly. Normal saline should be avoided since patients with this condition will absorb the water and dump the sodium, often worsening the hyponatremia. Medications suspected as causative should be stopped.

- For symptomatic hyponatremia (usually serum Na <120 mEq/L), administer hypertonic (3%) saline infusion (high sodium content, osmolality of 1000, much greater than what is exiting in the urine) and consider furosemide (helps dilute urine in euvolemic hyponatremia). Stop acute treatment when the patient becomes asymptomatic (usually when Na >120 mEq/L). Monitor the rate of rise of sodium so as not to cause central demyelinating syndrome, which occurs if sodium is corrected too rapidly or is overcorrected. Generally, the rate of rise should not exceed 0.5–1 mEq per hour; this means no more than a 12-point rise in 12–24-hours.
- For moderate asymptomatic hyponatremia (usually serum Na >120), increase serum Na slowly. Educate the patient about limiting water intake. Also consider ADH antagonists (tolvaptan, conivaptan); demeclocycline (mild ADH antagonist); urea or salt tablets (increase solute without water); or fludrocortisone (used for cerebral salt-wasting after neurosurgery).

Hypernatremia

Hypernatremia is the “flip side” of hyponatremia, and is caused by free water deficiency. This may be due to non-renal losses (GI, sweating) or to diabetes insipidus, in which lack of ADH (or resistance to it) causes persistent polyuria and loss of free water.

A crucial element in developing hypernatremia is the lack of water intake, usually due to trauma, environmental causes (lost in the desert), or mental status changes. Another common cause is patients with diabetes insipidus who are placed NPO in the hospital for surgery and cannot drink their usual liters of water per day.

Non-renal water loss is the most common class of hypernatremia, and increases in summer months when temperatures rise. Patients have low urine output and concentrated urine. Causes include:

- Insensible losses: sweating, burns, fever, exercise, or respiratory infections
- GI loss: osmotic diarrhea (e.g., lactulose, malabsorption), some infectious diarrhea

Note

Hyponatremia can be corrected as rapidly as 2 mEq per hour if the patient is seizing.
- Transcellular shift: rhabdomyolysis or seizures causing muscles to avidly take up water from the ECV

Renal water loss may be caused by renal ADH resistance (nephrogenic DI), inadequate ADH release from the posterior pituitary (central DI), or drug-induced loss of excess free water. Patients have high urine output and dilute urine.

- Nephrogenic diabetes insipidus (DI): **lithium, chronic interstitial renal disease**, hypercalcemia, hypokalemia, sickle cell disease
- Central DI: Idiopathic (most common); **brain surgery**, trauma, infection, tumor, granulomatous, or hypoxia
- Osmotic diuresis with renal water loss: diabetic ketoacidosis (DKA), nonketotic hyperosmolar coma, mannitol, loop diuretics (water lost > sodium)

Clinical Presentation and Diagnosis. Symptoms are primarily neurologic. With severe hypernatremia of any cause, lethargy, weakness, irritability, seizures, and coma are present. There should be a history of limited water access (e.g. loss of consciousness, confusion, falls, lack of water access), since patients with the above diseases will normally drink enough water to keep their serum sodium normal.

The physical exam usually demonstrates signs of volume depletion (orthostasis, tachycardia), since water and salt are both lost. Urine output is <1 liter per day in insensible water loss, while 3–20 liters per day in diabetes insipidus.

Lab evaluation will show high serum Na, low urine Na (<10 mEq/L)

- In diabetes insipidus, the urine osmolality will often be <100 mosm/kg, reflecting the dilute urine
- To **differentiate central from nephrogenic DI**, administer ADH (nasal, IV). The urine osmolality will increase in central DI, but not in nephrogenic DI.

Treatment. Stop or reduce the lithium or other implicated medication. If patients are alert, they can drink water. If patients are hypovolemic (tachycardia, orthostasis), first administer normal saline and then switch to hypotonic saline (0.45% saline or 5% dextrose in water). Once they become alert, switch to oral fluids.

- Correction of sodium should be **<1 mEq/L every 2 hours or 12 mEq/L per day.** Complications of overly rapid correction include cerebral edema and seizures, possibly causing permanent neurologic damage. A rate of correction as fast as 2 mEq per hour is acceptable only if the patient is seizing.
- In **central DI also use vasopressin** (ADH) subcutaneously, intravenously, intramuscularly, or by nasal spray. Central DI is usually transient, esp. post operatively
- In **nephrogenic DI**, reduce or stop the causative drug. For chronic DI, thiazides may be useful (recall that they **cause** hyponatremia but **treat** hypernatremia). NSAIDs may also help, as they inhibit prostaglandins which impair concentrating ability; NSAIDs will increase the action of ADH at the kidney.

Hypokalemia

Hypokalemia (serum potassium [<3.5 mEq/L) is relatively common, especially in patients taking diuretics or with poor PO intake. Dietary potassium is high in fruits and meats. Excretion is by renal (controlled by aldosterone) and GI routes.
Unlike most electrolytes, potassium is mainly intracellular, so serum levels may not accurately reflect total body levels. Shifting of K in and out of cells is a major determinant of the serum concentration, in addition to total body K.

Hypokalemia may be caused by the following:

- **K shifting into cells**: beta agonists, insulin, metabolic alkalosis
- **Low K intake**: alcoholism, starvation
- **GI losses**: diarrhea
- **Renal losses**: from diuretics; low magnesium; increased aldosterone states (e.g., hyperaldosteronism, Bartter syndrome, or Cushing disease); vomiting (urine loss of K stimulated by high aldosterone and urine loss of bicarbonate)

Clinical Presentation. Symptoms and signs of hypokalemia predominantly affect the muscles and the heart.

- Muscle weakness, paralysis (when it is severe), and rhabdomyolysis
- Cardiac arrhythmias (which can be fatal)
- Nephrogenic diabetes insipidus: potassium is necessary for ADH effect on the kidney

In emergency cases, the most important diagnostic test is the EKG; abnormalities will include T-wave flattening and U-waves.

Treatment. Correct the underlying cause. Replete potassium as follows:

- Oral: the gut regulates absorption, i.e., there is no maximum rate of oral potassium replacement.
- IV: maximum 10–20 mEq/hour; do not use dextrose containing fluids as they increase insulin release and lower the serum potassium. Too-rapid IV repletion may cause a fatal arrhythmia.

Very large amounts of potassium may be necessary to raise the body potassium level by even 1 or 2 points. The best estimate is to give 4–5 mEq per kg per deficit point.

Hyperkalemia

Hyperkalemia (serum potassium >5.5 mEq/L) is common in patients with DM and chronic kidney disease. It is potentially lethal, and requires prompt treatment and good prevention. Patients at risk should avoid bananas, citrus, and other high-K foods. Causes include:

- Increased intake (orally or by IV): usually in the presence of impaired excretion
- Shift of K out of cells into ECF:
 - Pseudohyperkalemia (a lab artifact): secondary hemolysis due to mechanical RBC trauma during venipuncture (look for “hemolyzed” specimen)
 - Excessive thrombocytopenia >1,000,000, leukemia (WBCs >100,000)
 - Damaged cells: rhabdomyolysis, seizures, extreme exercise,
 - Metabolic acidosis: H+ moves into cells, K+ moves out; for every 0.1-point decrease in the pH, potassium level will increase by 0.7
- Insulin deficiency (type 1 diabetes, DKA)
- Periodic paralysis: mild, brief episodes of muscle weakness with mild increase in K+; diagnosis with recurrent attacks and family history
 - Decreased urinary K excretion
 - Chronic kidney disease with GFR <10% normal
 - Potassium-sparing diuretics: amiloride, triamterene, spironolactone
 - ACE inhibitors and ARBs
 - Type IV RTA
 - Hypoaldosteronism: DM (hyporeninemic), Addison disease, adrenalectomy, adrenalitis, adrenal enzyme deficiency; heparin (inhibits production of aldosterone)
 - NSAIDs

Clinical Presentation. Patients are often asymptomatic despite dangerous hyperkalemia. Muscular weakness is seen with serum K+ level >6.5. The most important initial test is the ECG. Abnormal cardiac conduction is the most common cause of death. With worsening hyperkalemia, the ECG shows:
 - Peaked T waves
 - Flattening of P waves
 - Widened QRS and short QT
 - Flattening of QRS complexes
 - Ventricular fibrillation or tachycardia

Treatment. For asymptomatic patients with normal ECG: Low K diet; diuretics and/or GI binding agents (Kayexalate, patiromer). Patiromer is a newer GI binding agent with fewer GI side effects (including bowel necrosis) than Kayexalate.

For patients with ECG changes, urgent treatment is required. The serum K may be lowered rapidly, but hypokalemia should be avoided. A step-wise approach should be taken. In practice, the steps are often done simultaneously, as some drugs take time to work.

1. First, stabilize the cardiac membrane: calcium gluconate: membrane stabilization (most emergent treatment in presence of EKG abnormalities); effect is immediate and short-lived
2. Next, shift the K intracellularly
 - Glucose and insulin: drives K+ intracellular, takes 30–60 min to work
 - Beta agonists (e.g. albuterol)
3. Then remove K from the body
 - Loop diuretics (ineffective in some patients with CKD, low GFR)
 - GI cation exchange resin (Kayexalate or patiromer)
 - Patiromer has lower incidence of bowel necrosis
 - Resin absorbs 1 mEq K+ per g and releases 1 mEq Na+
– Give with sorbitol to prevent constipation
– Kayexalate available as retention enema for those who cannot take orally
• Dialysis if above fail or if an ESRD patient

Clinical Recall
Which of the following treatments for hyperkalemia removes potassium from the body?
A. Calcium chloride
B. Sodium bicarbonate
C. Potassium exchange resin
D. Beta agonists
E. Insulin

Answer: C

ACID/BASE DISTURBANCES
Acid/base disorders are common, and are often seen in hospitalized patients as a consequence of serious illness and medications. They have consequences and sequelae based on changes to the body pH, but also are very useful diagnostically as clues to other diseases.

• Acidemia and alkalemia are reduced and increased blood pH, due to ≥1 causes
• Acidosis and alkalosis are specific pathologic processes (≥1) that cause the net change.
• A mixed acid-base disorder means having ≥2 acidoses/alkaloses, e.g., an anion gap metabolic acidosis with a respiratory alkalosis (as in aspirin toxicity).
• A compensation is not a disorder; it is the body’s normal response to a change in pH caused by an alkalosis or acidosis. For example, during a metabolic acidosis (e.g., DKA), the acidemic pH is sensed by the CNS, which induces pulmonary hyperventilation (the respiratory compensation), lowering the pCO2 and raising the pH back toward normal. Each acid base disorder has an expected compensation.

Metabolic Acidosis
Metabolic acidosis is a decrease in blood pH [<7.35] caused by either endogenous or exogenous acids accumulating in the blood. It often accompanies serious illness (e.g. lactic acidosis in sepsis).

The pattern seen on the arterial blood gas is:

<table>
<thead>
<tr>
<th>pH</th>
<th>pCO2</th>
<th>HCO3−</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
The low bicarbonate reflects the increased serum protons, which lowers the pH. The pCO$_2$ then falls as a respiratory compensation, as the CNS senses the acidosis and stimulates hyperventilation, which raises the pH back toward normal. Note that this reduction in pCO$_2$ is not a “respiratory alkalosis” (which would suggest an actual respiratory disorder, not a compensation as seen here).

The expected compensation for a given level of HCO$_3^-$ in metabolic acidosis can be predicted from Winters Formula:

\[
\text{Expected PaCO}_2 = (1.5 \times \text{serum HCO}_3^-) + 8 \text{ mm Hg} \ (\pm 2)
\]

If the observed pCO$_2$ is too high or too low compared to this calculated value, a second acid-base disturbance is present (see Mixed Acid Base Disorders).

Formulas such as these become less accurate at extremes of pH. For these, use an acid base nomogram.

The anion gap should be calculated once the diagnosis of metabolic acidosis is established so that we can categorize metabolic acidoses into high anion gap or normal anion gap types. The anion gap is an estimate of the unmeasured anions present in the bloodstream. The blood is electrically neutral, with a mix of anions and cations which include minerals (Na$^+$, H$^+$, Ca$^{++}$, HCO$_3^-$) and proteins (albumin (negative charge), immunoglobulins (positive charge). Rather than measure them all, the anion gap is used to estimate the net charge due to abnormal anions or cations that may be present in the blood.

\[
\text{Anion gap} = (\text{Na}^+) - (\text{HCO}_3^- + \text{Cl}^-) \hspace{1cm} \text{(normal 8–12)}
\]

The normal anion gap of 8–12 means that in normal subjects, all the anions, cations, and proteins that are not Na$^+$, HCO$_3^-$, or Cl$^-$, add up to a net negative 8–12 mEq/L. When this number increases (becomes more negative), it indicates an “anion gap,” caused by excess anions that are not normally present in the blood. These may be exogenous (e.g. oxalic from antifreeze) or endogenous (lactic from sepsis).

Therefore, when there is an elevated anion gap, assume that a high anion gap acidosis is present. If instead the patient has a metabolic acidosis with a normal anion gap, a normal anion gap metabolic acidosis is present.

Clinical Presentation and Treatment. Patients with metabolic acidosis will have symptoms related to the underlying cause. Acidemia per se does not cause symptoms until very severe (<7.1), when it may cause arrhythmias and decreased cardiac output. Treatment varies by cause, and usually includes some combination of removing the excess acid and administration of bicarbonate.

High anion gap metabolic acidosis

This is a metabolic acidosis caused by excess acid present in the blood, which may be endogenous or exogenous (ingested). The main causes are summarized below (note that many of these cause lactic acidosis, which can be measured in routine lab testing).

Use the mnemonic MUDPILES:

- Methanol, metformin (cause formic acidosis and lactic acidosis, respectively)
- Uremia (GFR <10% of normal)
• Diabetic ketoacidosis (DKA): beta hydroxybutyric acid and acetoacetate
• Propylene glycol (causes lactic acidosis)
• INH (cause lactic acidosis)
• Ethylene glycol, ethanol (cause oxalic acidosis and ketoacidosis, respectively)
• Lactic acid: sepsis, shock, ischemia, drugs, etc.
• Salicylates: aspirin overdose (causes lactic acidosis with combined respiratory alkalosis)

Clinical Presentation varies depending on the cause:
• Methanol: altered mental state, blindness, renal failure
• Uremia: edema, elevated serum creatinine
• Diabetic ketoacidosis (DKA): elevated serum and urine ketones, hyperglycemia, hyperkalemia
• Ethylene glycol: altered mental state, vomiting, hypocalcemia, oxalate crystals in urine, elevated serum osmolality
• Ethanol: vomiting, withdrawal, urine and serum ketones
• Lactic acid: hypotension, fever, causative drugs (metformin, INH, propylene glycol, aspirin); high serum lactic acid level
• Salicylates: tinnitus, nausea, respiratory alkalosis (mixed disorder); high serum lactic acid level

Treatment. Remove the offending acid or prevent its formation. Specific treatments include:
• Dialysis: uremia, methanol, ethylene glycol, propylene glycol, severe aspirin
• Saline and insulin: diabetic ketoacidosis
• Sodium bicarbonate: aspirin, methanol, ethylene glycol, propylene glycol
• Fomepizole: ethylene glycol, methanol (prevents conversion of substrate to toxic acid)

Normal anion gap metabolic acidosis
Metabolic acidosis with a normal anion gap results from either loss of bicarbonate (renal, GI) or deficient renal excretion of acid (renal tubular acidosis).

The kidney normally excretes metabolic acids by secreting protons in the cortical collecting duct (controlled by aldosterone), which are then buffered and excreted by either
• Filtered buffers (phosphate) called titratable acid: reduced when GFR drops (chronic kidney disease)
• Ammonia, secreted in the proximal tubule (regulated by serum pH): increased by acidosis and reduced by hyperkalemia

The main causes of normal anion gap metabolic acidosis are:
• GI loss of Bicarbonate: Diarrhea and any post-surgical state that causes increased fecal transit may cause non-gap metabolic acidosis, due to loss of bicarbonate. Hypokalemia is usually present due to simultaneous GI potassium loss. The kidney functions normally, excreting acid and lowering pH to <5.5.
Proximal (Type I) Renal Tubular Acidosis: This is an inability of the principal cells in the cortical collecting duct to secrete protons, a step needed for net acid excretion. It may be due to a transporter malfunction or to a back-leak of secreted protons back through damaged luminal cell membranes (as in amphotericin toxicity). Causes include chronic renal interstitial disease; Sjogren syndrome, SLE (and other autoimmune diseases), lithium, and amphotericin B.

Diagnosis: Serum HCO\textsubscript{3} drops modestly, usually to 18-20 mEq/L. Serum K is low. Urine pH is appropriately low (<5.3) for any acidosis, unless the patient has just ingested bicarbonate, in which case the transient bicarbonate diuresis will raise the urine pH.

To confirm diagnosis, show that bicarbonaturia develops with bicarbonate administration, even when the patient is acidotic. Normal subjects do not excrete bicarbonate in the urine until their serum bicarbonate >24.

Treatment is bicarbonate (large amounts), potassium, and thiazide diuretics.

Distal (type 2) renal tubular acidosis

This may be an isolated inability of the proximal tubule to reclaim bicarbonate, or accompanied by global proximal tubule dysfunction (Fanconi syndrome)—the latter would also show glucosuria, phosphaturia, uric acid, and aminoaciduria. The loss of bicarbonate leads to the non-anion gap metabolic acidosis. Patients may develop osteomalacia. Causes include multiple myeloma, amyloidosis, and genetic disorders such as cystinosis and galactosemia.

Diagnosis. Serum HCO\textsubscript{3} may drop to low levels (<15). Serum K is usually low but can vary. Urine pH is inappropriately high (>5.5) for acidosis, due to the lack of free protons secreted into the tubule. There may be associated nephrocalcinosis or renal stones. Associated hypochloremia may lead to calcium renal stones.

Treatment is bicarbonate and citrate.

Hyperkalemic (type 4) renal tubular acidosis

Hyperkalemic (type 4) RTA (most common RTA) is especially common in diabetics. Its name is a clue to the pathophysiology:

- The initial problem is chronic hyperkalemia, often due to hyporeninemic hypoaldosteronism (a common consequence of DM, where patients lack sympathetic regulation of renin).
- The hyperkalemia inhibits the proximal tubule’s secretion of ammonia.
- The lack of ammonia limits net acid excretion and causes the acidosis.

Causes (and factors that worsen it) are largely those of hyperkalemia:

- DM (with hyporeninemic hypoaldosteronism) (50%)
- Adrenal insufficiency with mineralocorticoid deficiency
- ACE inhibitors/ARB: reduce aldosterone
- K sparing diuretics: raise serum K
- Sickle cell disease

Note

Urine anion gap (urine Na + K – Cl) estimates the ammonium secreted in the urine, so it can help detect RTAs. A negative gap indicates ammonium is present, and a positive gap indicates ammonium is not present. Ammonium is the normal renal response to acidosis, so it should be present unless there is an RTA.

- Diarrhea: UAG negative (ammonia present)
- Distal RTA: UAG positive (ammonia absent)
- Type IV RTA: UAG positive (ammonia absent)
Diagnosis
Serum HCO$_3^-$ only drops to a moderate level (18–22). The hyperkalemia is uniform. Urine pH is appropriate (<5.3) for acidosis, since distal proton secretion is normal.

Treatment
Lower serum potassium (diet, change medications, diuretics). Add bicarbonate and fludrocortisone (if aldosterone deficient) but use caution because it causes edema.

Table 8.7. Renal Tubular Acidosis

<table>
<thead>
<tr>
<th>Type</th>
<th>Associations</th>
<th>Serum HCO$_3^-$ (mEq/L)</th>
<th>Serum K</th>
<th>Urine pH</th>
<th>Bones and calcium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal (Type 2)</td>
<td>Myeloma, acetazolamide, Fanconi syndrome</td>
<td>18–22</td>
<td>low</td>
<td><5.3</td>
<td>Osteomalacia</td>
</tr>
<tr>
<td>Distal (Type 1)</td>
<td>Lithium, amphotericin, rheumatoid disease</td>
<td>12–20</td>
<td>low</td>
<td>>5.5</td>
<td>Calcium stones, nephrocalcinosis, low urine citrate</td>
</tr>
<tr>
<td>Type 4</td>
<td>DM</td>
<td>18–22</td>
<td>high</td>
<td><5.3</td>
<td>None</td>
</tr>
</tbody>
</table>

Metabolic Alkalosis

Metabolic alkalosis is an increase in blood pH (>7.45) caused by loss of body acids (vomiting) or gain of bicarbonate. Because excess bicarbonate is normally excreted rapidly by the kidney, maintenance of metabolic alkalosis usually requires concurrent volume depletion, which stimulates Na and HCO$_3^-$ reabsorption.

The pattern seen on the arterial blood gas is:

<table>
<thead>
<tr>
<th>pH</th>
<th>pCO$_2$</th>
<th>HCO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

The respiratory compensation is respiratory—a central hypoventilation, raising pCO$_2$ and returning the pH toward normal. Hypokalemia is seen in most cases, and K depletion compounds the alkalosis, and needs to be corrected to cure the acid base disorder.

Metabolic alkalosis is often classified by responsiveness to saline infusion, which is predicted by measuring the urine chloride concentration. Those with low urine chloride (e.g. vomiting, volume depletion after diuretics) will correct with saline. Those with a high or normal urine chloride (e.g. hyperaldosteronism) will not. The saline-responsive group is by far the most common.

- Saline-responsive metabolic alkalosis (low urine Cl$^-$)
 - GI loss (vomiting, nasogastric suction)
 - Diuretics

Note
Type IV RTA (most common RTA) always shows concurrent hyperkalemia and should be looked for in diabetic patients.
Note

In **diuretic use**, patients are saline responsive but urine chloride is variable.

- It may be high if the patient is still taking the diuretic.
- It may be low if the patient has stopped the diuretic but is still volume-depleted.

Note

Severe metabolic alkalosis will enhance calcium binding to albumin, reducing the free (ionized) calcium level, potentially causing hypocalcemic symptoms even with a normal total calcium concentration.

• Saline-resistant metabolic alkalosis (high-normal urine Cl\(^-\))
 - Hyperaldosteronism (including Cushing Syndrome)
 - Exogenous steroids
 - Tubular diseases causing K loss (Liddle, Gitelman, Bartter syndromes)
 - Excess bicarbonate administration

Clinical presentation. Hypokalemia is seen in all the conditions. More specific findings include:

- Saline responsive: volume depletion (orthostasis, tachycardia)
- Saline-resistant: hypertension (in hyperaldosteronism, Cushing’s, and Liddle syndromes)

Treatment. Potassium repletion for all forms. Saline-responsive alkalosis should receive oral or IV saline to expand the ECV. The endocrine-related saline-resistant causes require treatment of the underlying disorder. Those with high aldosterone may respond to spironolactone.

Respiratory Acidosis

Respiratory acidosis is a decrease in blood pH (<7.35) caused hypoventilation with CO\(_2\) retention. This can be acute or chronic, and due to problems with nervous control of breathing, muscle strength, or intrinsic pulmonary disease. The pattern seen on the arterial blood gas is:

<table>
<thead>
<tr>
<th>pH</th>
<th>pCO(_2)</th>
<th>HCO(_3^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

The metabolic compensation is initially the intracellular buffering of protons, then enhanced renal bicarbonate reabsorption, both causing serum HCO\(_3^-\) to rise, thus returning the pH toward normal. Causes include hypoventilation of any cause:

- **CNS/Neurological:** opiates; barbiturates/other sedatives; Pickwickian syndrome; sleep apnea; morbid obesity; neuropathy
- **Lung parenchymal disease or pleural disease:** COPD; severe asthma; pleural effusion; aspiration
- **Respiratory muscle weakness:** myopathies; myasthenia gravis; kyphoscoliosis

Clinical Presentation and Diagnosis. Evaluation should initially be directed to an immediate reversible cause, especially opioid overdose. Naloxone should be given unless a clear alternative explanation is present. Other labs include urine or serum toxicology and chest x-ray.

Treatment. Naloxone in uncertain cases; endotracheal intubation if the hypoventilation worsens; draining of pleural effusions.
Respiratory Alkalosis

Respiratory alkalosis is an increase in blood pH (>7.45) caused by hyperventilation, which lowers the pCO$_2$. This can be acute or chronic, and due to psychiatric, pain syndromes, or pulmonary disease.

<table>
<thead>
<tr>
<th>pH</th>
<th>pCO$_2$</th>
<th>HCO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

The metabolic compensation is initially due to intracellular buffering, then enhanced renal bicarbonate excretion, both causing the HCO$_3^-$ to fall, thus returning the pH toward normal.

Since hyperventilation is a normal response to hypoxemia, first check the arterial O$_2$ saturation by pulse oximetry to guide further evaluation.

- **Hypoxic causes** (low pulse oximetry O$_2$): asthma; pneumonia; pulmonary embolus (not always hypoxic); sarcoidosis; high altitude
- **Nonhypoxic causes**: anemia (although total O$_2$ capacity is reduced); anxiety; pain; aspirin toxicity (mixed disorder, precedes the metabolic alkalosis); pregnancy; cirrhosis

Clinical Presentation and Diagnosis. Initial evaluation should include pulse oximetry; oxygen should be supplied if patient is hypoxic. Pulmonary embolus should be ruled out in uncertain cases. Other labs include CBC (anemia evaluation) and chest x-ray.

Treatment. Oxygen and support for the specific disorder; acetazolamide (carbonic anhydrase inhibitor, stimulates renal bicarbonate excretion) for headaches and nausea caused by high altitude respiratory alkalosis

Mixed Acid-Base Disorders

Acid-base disorders may not come alone as a single disorder; in other words, patients may develop 2 or more, and the net blood pH reflects the combination of all of them. An example is aspirin toxicity, where there is a combined respiratory alkalosis and high anion gap metabolic acidosis. The net pH may be normal in the face of abnormal pCO$_2$ and bicarbonate, as shown by these values: blood: pH 7.41, pCO$_2$ 25 mm Hg, HCO$_3^-$ 16 mEq/L.

Diagnosis. There are several clues to help identify a mixed acid-based disorder:

- **Clue 1**: If there are large changes in pCO$_2$ and HCO$_3^-$ but a near-normal pH, there is a mixed disorder (as shown in the aspirin toxicity example above).
- **Clue 2**: In all single disorders, the pCO$_2$ and HCO$_3^-$ “move together,” both either go up or down. If they go in different directions or if one is normal, suspect a mixed disorder.
 - Suppose the values from a patient after cardiac arrest are blood pH 7.15, pCO$_2$ 60 mm Hg, and HCO$_3^-$ 20 mEq/L. The pCO$_2$ is elevated while the bicarbonate is depressed, which violates the “move together” rule.
 - Therefore, the patient has a combined metabolic and respiratory acidosis, typical of those who have had a cardiac arrest. The severely acidic net pH further supports this.
Table 8-8. Simple Acid Base Disorders

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>pCO₂</th>
<th>HCO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic acidosis</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Respiratory acidosis</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

- **Clue 3:** A more refined way to diagnose mixed disorders is to use compensation formulae. In simple disorders, the calculated expected value should align with the measured value. The Winter’s Formula (for metabolic acidosis compensation) is an example:

 \[
 \text{Expected } \mathrm{PaCO}_2 = (1.5 \times \text{serum } \mathrm{HCO}_3^-) + 8 \text{ mm Hg (± 2)}
 \]

Suppose the values from a septic patient are blood pH 7.10, pCO₂ 35 mm Hg, and HCO₃⁻ 10 mEq/L. Using clues 1 and 2 would still support a single disorder (metabolic acidosis).

However, when the Winter’s Formula is applied, we see that the predicted pCO₂ in a compensated simple metabolic acidosis should be \((1.5 \times 10) + 8 = 23\) mm Hg, which diverges from the measured value of 35. This patient has a higher than expected pCO₂ and thus a combined metabolic and respiratory acidosis. This double disorder results in a very acidemic pH.

Each of the single acid base disorders has a compensation formula similar to Winter’s for metabolic acidosis. Using them in routine acid base analysis (or referring to a nomogram) allows better diagnosis of mixed acid-base disorders.
Learning Objectives

- Interpret results of pulmonary function testing and chest radiography
- Diagnose disturbances of gas exchange
- Describe the presentation and management of obstructive lung disease, atelectasis, interstitial lung disease, and acute respiratory distress syndrome
- Outline the presentation, diagnosis, and management of sleep apnea
- List the types of lung cancer and their epidemiologic associations and prognosis
- Present risk factors, diagnosis, and treatment plan for pulmonary thromboembolism

Diagnostic Tests

Pulmonary Function Tests

Pulmonary function tests (PFTs) are non-invasive tests used mainly to do the following:

- Categorize types of lung process (restrictive versus obstructive)
- Assess disease severity (in overall prognosis and preoperative evaluation)
- Evaluate post-treatment lung function

Spirometry allows the determination of most lung volumes and capacities, as well as expiratory flows and bronchodilator response; it can be done in the office setting. Complete PFTs are done in the pulmonary lab and allow the measurement of TLC, DLCO, and methacholine challenge testing.

PFTs consist of different tests:

- **Static lung compartments** are measured by lung volumes, such as total lung capacity (TLC), residual volume (RV) and vital capacity (VC).

Clinical Pearl

Perform PFTs in all patients before they undergo lung resection surgery.
• **Airflow or air movement** is measured by the expiratory flow rate (ratio of forced expiratory volume in 1 second to forced vital capacity [FEV1/FVC] and forced expiratory flow 25–75% of expiration [FEF25–75, also called midmaximal flow rate MMFR]).

• **Alveolar membrane permeability** is measured by the diffusing capacity of a gas (DLCO).

• The **methacholine challenge test** is an adjunct test used for evaluating bronchial hyperactivity in asthma patients who have normal PFTs.

Generally, <80% of predicted in any lung volume or flow rate is considered abnormal, while >120% of predicted is consistent with air trapping.

Table 9-1. Pulmonary Function Tests

<table>
<thead>
<tr>
<th>PFT</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>80–120% predicted</td>
</tr>
<tr>
<td>RV</td>
<td>75–120%</td>
</tr>
<tr>
<td>FEV₁/FVC Ratio</td>
<td>80%</td>
</tr>
<tr>
<td>DLCO</td>
<td>75–120%</td>
</tr>
<tr>
<td>FEV₁</td>
<td>80–120%</td>
</tr>
</tbody>
</table>

Lung volumes

Ventilatory function is measured under static conditions when determining lung volume, thus allowing for the diagnosis of restrictive lung disease.

![Figure 9-1. Determination of Lung Volumes](image-url)
Table 9-2. Pulmonary Indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lung capacity (TLC)</td>
<td>Volume of gas in the lungs after maximal inspiration</td>
</tr>
<tr>
<td>Residual volume (RV)</td>
<td>Volume of gas remaining in the lungs after forced maximal expiration (unused space)</td>
</tr>
<tr>
<td>Vital capacity (VC)</td>
<td>Volume of gas exhaled with maximal forced expiration</td>
</tr>
<tr>
<td></td>
<td>TLC = RV + VC or VC = TLC – RV</td>
</tr>
</tbody>
</table>

Forced expiratory volumes

Forced expiratory volumes (FEVs) measure air movement in and out of the lungs (airflow measurement under dynamic conditions). They can determine the degree of obstruction by comparing the forced volume expired at 1 second (FEV$_1$) with the forced vital capacity (FVC). An assessment is made by calculating the FEV$_1$/FVC ratio.

- In patients with no obstruction, the ratio is ≥0.80 (80% of predicted).
- In patients with chronic obstructive disease (emphysema and chronic bronchitis) and asthma, it is decreased.
- In patients with restrictive disease, FEVs are normal or elevated because there is no problem with airflow.
- In patients with asthma, FEV$_1$/FVC may be normal because they may have normal airflow (no bronchoconstriction) when asymptomatic. In other words, when they are not experiencing an acute asthma attack, values may be normal.

Forced expiratory flow (FEF$_{25–75}$) is another way to express airflow; it can be measured during the FEVs. Generally, consider the FEF$_{25–75}$ equivalent to the FEV$_1$/FVC, but the FEF$_{25–75}$ usually detects obstructive disease earlier.

FEVs can be determined during spirometry or full PFTs.

Figure 9-2. Forced Expiratory Volumes
Carbon monoxide diffusing capacity
Lung diffusion testing is used to determine how well oxygen passes from the alveolar space of the lungs into the blood. Whereas spirometry measures the mechanical properties of the lungs, the lung diffusing capacity test (DLCO) measures the ability of the lungs to perform gas exchange. The single-breath DLCO test requires the patient to inhale DLCO gas consisting of helium, carbon monoxide, and room air. Generally, diffusing capacity is reduced when alveolar walls are destroyed and pulmonary capillaries are obliterated by emphysema, or when the alveolar-capillary membrane is thickened by edema, consolidation, or fibrosis (as in interstitial lung disease).

PFTs with an obstructive pattern and decreased DLCO should prompt the consideration of emphysema. PFTs with a restrictive pattern and decreased DLCO are likely to be some type of interstitial lung disease (intraluminal restriction) or mild left heart failure.

Increased DLCO may be seen in pulmonary hemorrhage, e.g., Goodpasture syndrome.

Clinical Pearl
Patients with asthma may have normal PFTs. In these cases, methacholine challenge will provoke an asthmatic crisis and allow the diagnosis of asthma to be made by PFTs. Thus, perform methacholine challenge only for patients with normal PFTs and for whom you are considering a diagnosis of asthma.

Methacholine challenge test
Bronchoprovocation with methacholine is done to evaluate patients with cough or wheezing and who have a normal PFT, for possible asthma (bronchial reactivity).

During the test, the patient inhales an aerosol of methacholine. Results of PFTs (e.g., spirometry) performed before and after the inhalations are used to quantitate the response. A positive test is defined as a decrease from the baseline FEV\(_1\) of 20% or more.

Bronchodilator reversibility
Nonreversible obstructive lung disease and reversible obstructive lung disease can be distinguished by giving the patient an inhalation of a beta-agonist (albuterol). Consider asthma as the likely diagnosis when PFTs show evidence of an obstructive pattern, but then reverse by >12% and 7,200 mL after using the bronchodilator.
Flow Volume Loops

Flow volume loop diagrams also express airflow in different lung diseases and give the relationship between flow rates compared with lung volumes. On the y-axis is flow rate and on the x-axis is volume. Lung volumes increase to the left on the abscissa. The shape of the loop can characterize the type and distribution of airway obstruction.

- When comparing a normal flow volume loop with one of restrictive lung disease, the restrictive lung disease alters the size of the loop (a shift to the right of the x-axis), which is related to a reduction in lung volumes.
- On the other hand, obstructive lung disease alters the shape of the loop by causing a reduction of airflow (alterations on the y-axis).
- In the case of a fixed airway-obstruction (tracheal stenosis after prolonged intubation), the flow volume loop is flattened on the top and bottom.
- With dynamic extrathoracic airway obstruction (vocal cord paralysis), the obstruction occurs mostly with inspiration while expiration is mostly normal. This effect causes the flow volume loop to be flattened only on bottom.

Figure 9-4. Flow Volume Loops
DISTURBANCES IN GAS EXCHANGE

The most important factor in gas exchange is oxygen delivery \((D_{O_2}) \) to the vital organs. Remember, \(D_{O_2} \) is not \(P_{AO_2} \) (\(P_{AO_2} \) is calculated in the arterial blood gases). We can calculate \(D_{O_2} \) from the following equation:

\[
D_{O_2} = \text{Cardiac Output} \times (1.34 \times \text{Hb} \times \text{HbSat}) + 0.0031 + P_{AO_2}
\]

where \(D_{O_2} \) is oxygen delivery, \(\text{HbSat} \) is hemoglobin saturation, and \(P_{AO_2} \) is partial pressure of oxygen in the blood (oxygen dissolved in plasma).

Notice that the amount of oxygen delivered to the tissues accounted for by the \(P_{AO_2} \) (oxygen dissolved in blood) is minimal. The most important factors in the delivery of oxygen to the vital organs are the cardiac output and hemoglobin.

In a critically ill patient, it is most important (the next step) to keep the hemoglobin and cardiac output near normal. There will be minimal change in \(D_{O_2} \) if you increase the \(P_{AO_2} \) from 60 to 100 mm Hg by giving the patient 100% oxygen.

The \textbf{alveolar–arterial gradient} \((P_{A_{O_2}} - P_{AO_2} \) gradient) is useful in the assessment of oxygenation and is calculated by the following formula:

Clinical Pearl

FEO may occur in the setting of a tracheal tumor or foreign object aspiration or tracheal stenosis after prolonged intubation. Do not memorize this formula, just know the concept.
The formula above is valid only in patients who are breathing room air. This gradient is 5–15 mm Hg in normal young patients. It increases with all causes of hypoxemia except hypoventilation and high altitude. The gradient also increases with age.

In the clinical setting, a patient who has overdosed from opiates (and has decreased respiratory rate) would have severe hypoxemia but a normal gradient.

CHEST RADIOGRAPHY

Chest radiography is often the initial diagnostic study performed to evaluate patients with respiratory symptoms. It may also be the initial evidence of pulmonary disease in a patient without symptoms, e.g., the pulmonary nodule found on an incidental x-ray.

Figure 9-6. Bilateral Interstitial Infiltrates on Chest X-ray
Pulmonary Nodule

A 26-year-old man is found to have a 2.5-cm calcified nodule in the right middle lung on a routine chest x-ray before starting his residency. He has never smoked and otherwise feels well. The physical examination is unremarkable. What will you recommend for this patient?

The solitary pulmonary nodule that is found incidentally on an x-ray poses a specific problem for the clinician. Around 35% of all solitary nodules are malignant.

Calcification of the nodule points toward a benign diagnosis, e.g., popcorn calcifications usually are caused by hamartomas, whereas bull’s-eye calcifications are caused by granulomas.

The **first step** is to look for a **prior x-ray**. Finding the same pulmonary nodule on an x-ray done years ago may save you from doing any further workup. If no prior x-ray is available, then consider whether this patient is high or low risk for lung cancer.

- **In low-risk patients**, age <35 and nonsmokers with calcified nodules, follow the patient with chest x-ray or chest CT every 3 months for 2 years. Stop the follow-up if after 2 years there is no growth.

- **High-risk patients** age >50 with a smoking history and a nodule are likely to have bronchogenic cancer. The best diagnostic procedure is to biopsy (or possibly resect) the nodule. Bronchoscopy will **not** reach peripheral lesions and will mislabel 10% of central cancers by finding only nonspecific inflammatory changes. Bronchoscopy is performed blindly and the specimen obtained can be limited, hence the nonspecific findings (inflammation, etc.). If you suspect cancer in a patient and the bronchoscopy returns with a negative result, open lung biopsy and lung nodule resection must be considered. For peripheral nodules, consider CT-guided biopsy, VATS, or open lung biopsy and nodule removal. PET-CT has not so far been well studied in the evaluation of high-risk patients with lung nodules.

Pleural Effusion

A 67-year-old man presents with complaints of dyspnea and pleuritic chest pain that has worsened over the past month. He has also noticed weight loss of 20 pounds and low-grade fever over this time period. On physical examination his respiratory rate is 24/min, and you find decreased air entry in the right lower lobe with dullness to percussion. Chest x-ray shows a pleural effusion involving about one-third of the lung field. A decubitus x-ray shows layering of the fluid.

Pleural effusion is the accumulation of fluid in the pleural cavity. It is either transudative or exudative.

Transudative effusion is caused by systemic factors: either increased hydrostatic pressure (e.g., CHF) or decreased oncotic pressure (e.g., nephrotic syndrome or cirrhosis). Because these diseases are systemic, they usually cause bilateral and equal effusion.

A transudative effusion needs no further evaluation. It resolves by adequate treatment of the primary disease.
Exudative effusion is caused by local processes: pneumonia, cancer, and tuberculosis.

An exudative effusion will cause unilateral effusions. This type of effusion needs further investigation.

How do we make the distinction between these two?

Thoracentesis should be performed for new and unexplained pleural effusion when sufficient fluid is present to allow a safe procedure. It is reasonable to observe pleural effusion when there is overt CHF (especially if bilateral), viral pleurisy, or recent thoracic or abdominal surgery. However, it is important not to assume that new effusions in a patient with a history of CHF are solely due to the CHF. Have a low threshold for performing diagnostic thoracentesis in any new or unexplained effusions.

Table 9-3. Causes of Pleural Effusion

<table>
<thead>
<tr>
<th>Transudative</th>
<th>Exudative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart failure</td>
<td>Parapneumonic effusions (pneumonia)</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
<td>Malignancy (lung, breast, lymphoma)</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>Collagen vascular disease (rheumatoid arthritis, systemic lupus erythematosus)</td>
</tr>
<tr>
<td>Drug induced</td>
<td></td>
</tr>
<tr>
<td>Pancreatitis</td>
<td></td>
</tr>
</tbody>
</table>

Get 2 tests from the thoracocentesis fluid—lactate dehydrogenase (LDH) and protein—and get 2 tests from the serum—LDH and protein. Do the ratios of effusion to serum for these measurements, and you have a diagnosis.

Table 9-4. Light Criteria for Exudative Pleural Effusion

<table>
<thead>
<tr>
<th></th>
<th>Transudative</th>
<th>Exudative</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH effusion</td>
<td><200 IU/mL</td>
<td>>200 IU/mL</td>
</tr>
<tr>
<td>LDH effusion/serum ratio</td>
<td><0.6</td>
<td>>0.6</td>
</tr>
<tr>
<td>Protein effusion/serum ratio</td>
<td><0.5</td>
<td>>0.5</td>
</tr>
</tbody>
</table>

If at least 1 criterion is not met, then this is an exudative effusion; in that case, further evaluation has to be done.

One of the few conditions that can cause a transudate or exudate is pulmonary embolism (PE). The clinical significance of this is that if a patient has a transudative effusion but no apparent cause, consider PE.
Parapneumonic effusion is caused by bacterial pneumonia. A thoracentesis is mandatory also in this setting to rule out a complicated parapneumonic effusion (because of the possibility of progression to an empyema). An empyema (or complicated effusion) needs chest-tube drainage to resolve, while an uncomplicated parapneumonic effusion responds to antibiotics alone.

The most common causes of malignant pleural effusion are lung cancer, breast cancer, and lymphoma. When considering a malignant pleural effusion, make sure to send the thoracentesis fluid for cytologic examination.

Hemorrhagic pleural effusion may be seen in mesothelioma, metastatic lung or breast cancer, pulmonary thromboembolism (with infarction), and trauma.

In patients with lymphocytic predominant exudative pleural effusions, consider tuberculosis. The pleural effusion is thought to be due to a hypersensitivity reaction to the tuberculosis mycobacterium and its antigens. The adenosine deaminase is elevated, and the polymerase chain reaction (PCR) for tuberculous DNA is positive. The acid-fast stain and culture for tuberculosis are positive in <30% of the cases. A pleural biopsy confirms the diagnosis and is the most sensitive and specific test for pleural tuberculosis.

Always perform thoracentesis under the guidance of ultrasonography. If ultrasonography is not available, then perform a decubitus chest x-ray before the thoracentesis. If the decubitus chest x-ray detects 1 cm or more of free-flowing fluid, the thoracentesis can be performed with a minimal risk of complications. If the decubitus detects non-free fluid (loculated), it would be safer to perform an U/S-guided thoracentesis.

Evaluating patients with acute respiratory compromise and distress
Respiratory compromise may result from airway obstruction (asthma, COPD, foreign object), but it also accompanies parenchymal lung disease (bacterial or viral pneumonia, lung injury), heart failure, pulmonary embolism, neurogenic processes (respiratory depression from opiates), and neuromuscular disease (myasthenia gravis).
Respiratory distress is usually the presenting complaint or sign. Complaints of shortness of breath or signs of tachypnea or labored breathing are the most common. The patient may also develop neurologic symptoms: agitation, confusion, and a depressed level of consciousness. Stridor indicates upper airway obstruction.

The physician’s first task is to ensure that the patient’s airway is patent and that breathing is adequate. Supplemental oxygen should be provided immediately to ensure adequate oxygen saturation. The resources to perform endotracheal intubation and assisted ventilation should be made available.

The history should focus on the quickness of onset, as well as associated symptoms (cough, fever, etc.). Acute presentations accompanied by cough, fever, and sputum production suggest an infectious etiology. Sudden onset of dyspnea without systemic symptoms should raise the possibility of airway obstruction, cardiac disease, or thromboembolic disease. Chronic and progressive dyspnea (with or without recent exacerbation) is usually associated with a chronic pulmonary process, like interstitial lung disease or COPD.

The physical examination should focus on finding the cause, as well as assessing the degree of respiratory compromise. A respiratory rate >30/min in an adult suggests severe respiratory compromise. Wheezing on auscultation accompanies asthma and COPD. Localized wheezing usually suggests a foreign object or mass. Rales on examination may accompany pneumonia, interstitial lung disease, or heart failure. Consolidative changes may accompany pneumonia or atelectasis. Normal lung examination may be seen in thromboembolic disease, infections like Pneumocystis carinii, and disorders of the central respiratory drive.

An arterial blood-gas (ABG) measurement is the most important initial laboratory test in determining the presence and severity of respiratory compromise.

The hallmark of acute respiratory failure is a rise in PCO₂ accompanied by a drop in pH. The bicarbonate level will initially be normal, but will increase over 24–48 hours with the appropriate renal compensation. Hypercapnia may accompany hypoxemia or may be absent if ventilation is adequate. The presence of metabolic acidosis (lactic acidosis) in the presence of hypercapnia should prompt the consideration of mechanical ventilation.

In the setting of acute-on-chronic respiratory failure, the administration of supplemental oxygen is often associated with a rise in PaCO₂. Although attributed to a decreased respiratory drive, the pathophysiology of this is more complex. For the clinician, fear of a rising PaCO₂ should never preclude the administration of enough supplemental oxygen to ensure adequate oxygen delivery. The target range of 88–92% oxygen saturation usually allows for adequate oxygen delivery while minimizing the potential increase in PaCO₂.

Other diagnostic tests

- **B-type natriuretic peptide (BNP)** appears useful as an adjunct to clinical assessment in determining the cause of acute dyspnea in patients presenting emergently. An elevated BNP is seen in almost all patients with left heart failure. It is important to remember that cor pulmonale and acute right ventricular failure (thromboembolism) may also cause a rise in the BNP. Thus, although the BNP is a very sensitive test for heart failure, it is not specific.

- **The chest x-ray** is particularly helpful in determining the cause of respiratory failure. A chest x-ray without parenchymal infiltrates accompanies respiratory failure due to thromboembolism, central respiratory depression, neuromuscular disease, and upper airway obstruction. Airway obstruction that accompanies asthma and COPD is usually
associated with evidence of hyperinflation (large lung volumes and hyperlucency). The chest x-ray is diagnostic in cases of respiratory compromise caused by large pleural effusions or tension pneumothorax. Focal infiltrates suggest bacterial, viral, or fungal pneumonia; aspiration; or pulmonary hemorrhage. Unusual causes of localized infiltrates may be Churg-Strauss or Wegener granulomatosis. Heart failure and ARDS present with a diffuse edema pattern.

Treatment. New, persistent hypoxemia is generally an indication for admission to the hospital. The need for mechanical ventilation and close monitoring of a patient with respiratory compromise is an indication for admission to the ICU. Also, ICU admission should be considered for all patients with increasing oxygen demands, as well as those requiring continuous nursing.

The presence of respiratory acidosis and hypercapnia in a patient presenting with asthma exacerbation is an ominous sign and should prompt consideration for intubation and mechanical ventilation. Indications for intubation (with or without ventilation) also include upper-airway injury (burns, laryngeal edema, trauma) and airway compromise, often in the setting of neurologic depression with loss of protective reflexes, including gag and cough.

Acute respiratory failure which presents **during hospitalization** deserves a specific mention. The immobility which accompanies the hospitalized patient puts him at significant risk for pulmonary thromboembolic disease, so that should be considered in any patient who develops dyspnea, tachypnea, and/or hypoxemia. Inpatients are also at risk for developing aspiration, which may precipitate respiratory failure directly or through the development of pneumonia or acute respiratory distress syndrome (ARDS). The risk factors for aspiration include impaired consciousness and upper airway instrumentation (nasogastric tubes). Iatrogenic causes must also be considered, especially respiratory depression from opiates causing respiratory arrest.

ARDS is a frequent cause of respiratory failure in patients suffering from other serious illnesses. ARDS represents a diffuse inflammatory response of the lung and develops within 24–72 hours of the onset of illness or injury. The clinical presentation is increasing respiratory distress with tachypnea and hypoxemia. The chest x-ray reveals diffuse pulmonary infiltrates, consistent with pulmonary edema (noncardiogenic pulmonary edema).

Clinical Recall

Which of the following does not present with an exudative pleural effusion?

A. Lung cancer
B. Liver disease
C. Pancreatitis
D. Pneumonia
E. Tuberculosis

Answer: B
VENTILATION

Noninvasive Ventilation

Noninvasive ventilation (NIV) is a modality that supports breathing without the need for intubation. NIV avoids the adverse effects of invasive ventilation and has become an important mechanism of ventilator support both inside and outside the ICU.

Forms of NIV include bilevel positive airway pressure (BiPAP) and continuous positive airway pressure (CPAP).

• **Bi-level positive airway pressure** (BiPAP or BPAP) applies 2 different levels of PAP, i.e., it delivers positive pressure at alternating levels—higher for inspiration and lower for expiration—optimizing lung efficiency and at the same time diminishing the work of breathing. BPAP has been shown to be an effective management tool for COPD and acute (pneumonia, status asthmaticus, etc.) and chronic respiratory failure.

• **Continuous positive airway pressure** (CPAP) applies air pressure on a continuous basis, allowing the airways to continuously be open (splinted). It is typically used in the treatment of obstructive sleep apnea, preterm infants with underdeveloped lungs, CHF with pulmonary edema, near drowning, and other severe causes of respiratory distress. Portable CPAP machines used at home deliver a constant flow of pressure and are thus effective at preventing the airway from collapsing.

Invasive Ventilation

Invasive ventilation, or mechanical ventilation, follows endotracheal intubation, and is used to improve oxygen exchange during acute hypoxemic or hypercapnic respiratory failure with respiratory acidosis. While hypoxemia and respiratory failure is one of the common reasons for endotracheal intubation, it is also introduced in order to protect the airways.

• **Positive end-expiratory pressure** (PEEP) is the alveolar pressure above atmospheric pressure that exists at the end of expiration.

• **Applied (extrinsic) PEEP** is one of the first ventilator settings chosen when mechanical ventilation is initiated, and it is set directly on the ventilator.

• A small amount of applied PEEP (4–5 cm H\(_2\)O) is used in most mechanically ventilated patients to mitigate end-expiratory alveolar collapse. A higher level (>5 cm H\(_2\)O) is sometimes used to improve hypoxemia or reduce ventilator-associated lung injury in patients with acute respiratory distress syndrome or another type of hypoxemic respiratory failure.

• Complications of PEEP include decrease in systemic venous return, pulmonary barotrauma, renal dysfunction, and electrolyte imbalance.
Both PEEP and CPAP stent the alveoli open and thus recruit more of the lung's surface area for ventilation. But while PEEP imposes positive pressure only at the end of the exhalation, CPAP devices apply continuous positive airway pressure throughout the breathing cycle. Thus, no additional pressure above the level of CPAP is provided, and patients must initiate all of their breaths.

OBSTRUCTIVE DISEASES

Asthma

A 26-year-old woman with a history of asthma presents to the emergency room with 3 days of progressive wheezing and shortness of breath after an upper respiratory tract infection. She is taking inhaled albuterol and an over-the-counter medication for her cold symptoms. Her respiratory rate is 28/min and pulse 110/min; she is afebrile. Her right nasal turbinate is edematous and erythematous. There is evidence of wheezing throughout both lungs, but no crackles are noted. Supplemental oxygen by nasal cannula is administered. What should be the next appropriate treatment?

Asthma is a disease characterized by inflammatory hyperreactivity of the respiratory tree to various stimuli, resulting in reversible airway obstruction. A combination of mucosal inflammation, bronchial musculature constriction, and excessive secretion of viscous mucus-causing mucous plugs will produce bronchial obstruction. The bronchial hyperreactivity occurs in an episodic pattern with interspersed normal airway tone.

Asthma can occur at any age but is usually seen in young persons, 50% of whom “outgrow” their asthma by adulthood.
There are 2 types of asthma. Many patients have features of both types.

- **Intrinsic or idiosyncratic asthma** (50% of asthmatics who are nonatopic [nonallergic]). A bronchial reaction occurs secondary to nonimmunologic stimuli, such as infection, irritating inhalant, cold air, exercise, and emotional upset. The asthma attacks are severe, and prognosis is less favorable.

- **Extrinsic (allergic, atopic) asthma** (20% of asthmatics) results from sensitization. Specific immunoglobulins (IgE class [type 1]) are produced, and total serum IgE concentration is elevated. There is a positive family history of allergic disease. Extrinsic asthma is precipitated by allergens. Other symptoms include allergic rhinitis, urticaria, and eczema. Prognosis is good.

Respiratory infections are the most common stimuli to cause asthma exacerbation; studies have documented that viruses (respiratory syncytial virus in young children, rhinoviruses in adults) are the major causes.

Pharmacologic stimuli are very important in some cases; the most common etiologic agents associated with asthma exacerbation are aspirin, coloring agents such as tartrazine, and β-adrenergic antagonists.

- The typical aspirin sensitivity (10% prevalence) nasal polyposis syndrome, affecting adults, starts with perennial vasmotor rhinitis; later, asthma occurs with minimal ingestion of aspirin.
- There is significant cross-reactivity between aspirin and other NSAIDs. Patients can be desensitized by daily administration of aspirin; cross-tolerance also develops to other NSAIDs.
- The mechanism by which aspirin and similar drugs cause asthma appears to be chronic over-excretion of leukotrienes, which activate the mast cells. This is the reason why leukotriene inhibitors are considered to be so effective.

Pathophysiology. There is a narrowing of large and small airways caused by hypertrophy and spasm of bronchial smooth muscle, edema and inflammation of the bronchial mucosa, and production of viscous mucus. The mediators released by the lung during an acute asthmatic attack are histamine, bradykinin, leukotrienes (LTs) C, D, and E, and prostaglandins (PGs) E₂, F₂α, and D₂, which cause an intense inflammatory process leading to bronchoconstriction and vascular congestion. The cells thought to play an important role in the inflammatory response are the mast cells, lymphocytes, and eosinophils.

Signs and Symptoms. In a mild attack, slight tachypnea, tachycardia (increased respiratory rate), prolonged expirations, and mild, diffuse wheezing are seen. In a severe attack, use of accessory muscles of respiration, diminished breath sounds, loud wheezing, hyper-resonance (increased vocal fremitus), and intercostal retraction are noted.

Poor prognostic factors include fatigue, diaphoresis, pulsus paradoxus (>20 mm Hg), inaudible breath sounds, decreased wheezing, cyanosis, and bradycardia.

Variants of asthma include asthma presenting primarily with **nocturnal cough and exercise-induced asthma** (both presentations of asthma are commonly tested).

In the acute phase, **arterial blood gas (ABG) abnormalities** will be consistent with a decrease in arterial carbon dioxide tension (PaCO₂), increase in pH, and normal or low Pao₂. In severe asthma or status asthmaticus there will be a decreased Pao₂, increased PaCO₂, and decreased pH (bicarbonate level usually will not be elevated in an acute setting, but it becomes elevated
in chronic obstructive pulmonary disease). A normal PaCO₂ may indicate respiratory muscle fatigue in an acute asthmatic patient.

Chest x-ray findings are nonspecific in an asthmatic attack. The chest x-ray may be helpful in ruling out acute infection as the cause of an acute attack.

Diagnosis. PFTs show an obstructive pattern that typically reverses with bronchodilation (FEV₁ must show 12% and 200 mL reversibility at 5 and 20 min with the use of a β₂-adrenergic agonist). Sometimes the PFTs may be entirely normal because asthma is reversible and episodic; in this case a provocative challenge may be performed with methacholine or cold air, which typically shows a decrease in FEV₁/FVC or FEF₂₅–₇₅ of 20%.

Treatment. β-adrenergic agonist inhalers like albuterol (salbutamol) and terbutaline are the mainstay of treatment in acute and chronic asthma. Inhaled (metered-dose inhalers [MDIs]) β-adrenergic agonists are the preferred route of administration because they allow maximal bronchodilation with minimal side effects. Their most common side effect is tremor. β-adrenergic agonists alone terminate approximately 70% of asthmatic attacks.

Salmeterol is a long-lasting (12 h) type of albuterol that is effective in nocturnal cough variant and exercise-induced asthma. Salmeterol has no benefit in acute episodes.

β-adrenergic agonists must be used with caution in patients who have coexisting cardiovascular disorders, hypothyroidism, diabetes mellitus, hypertension, and coronary insufficiency.

Other adrenergic stimulant drugs like the catecholamines (isoproterenol, epinephrine, and isoetharine) are given orally or intravenously and are not routinely used.

Aminophylline (ethylenediamine salt of theophylline) and theophylline are only modest bronchodilators. They are sometimes of benefit in chronic management, especially in patients with nocturnal cough. Their mechanism of action is by improving contractility of the diaphragm as well as other respiratory muscles. Generally, aminophylline and theophylline are not routinely used in asthma because they appear to add no benefit to optimal inhaled beta-agonist therapy.

Anticholinergic drugs (ipratropium bromide and tiotropium) have particular benefit in patients with heart disease, in whom the use of β-adrenergic agonists and theophylline may be dangerous. Their major disadvantages are that they take significant time to achieve maximal bronchodilation (~90 min) and they are only of medium potency.

Supplemental oxygen, by nasal cannula or mask, should be given immediately when a patient presents with acute asthma exacerbation. Always maintain an oxygen saturation above 90%.

The use of “routine” antibiotic treatment in asthma exacerbation has not been established. Two recent prospective trials have not showed a benefit. Antibiotic treatment should be considered in patients with symptoms (purulent sputum) and chest x-ray findings (infiltrates) consistent with bacterial pneumonia.

Treatment of asthma in the **outpatient setting (chronic management)** consists of looking for and removing environmental irritants and allergens. The goal is to remove or minimize contact with precipitating factors of asthma (such as pets).

Inhaled corticosteroids are the cornerstone of chronic asthma therapy in adults. They work by reducing airway inflammation. Inhaled corticosteroids have been shown in studies to reduce asthma exacerbations and hospitalizations. Side effects of inhaled corticosteroids include oral candidiasis, glaucoma, cataracts, diabetes, muscle weakness, and osteoporosis. Appropriate
technique in use of inhalers should be reviewed with the patient, as well as the use of spacers and/or mouth-rinsing to avoid oral candidiasis.

Systemic steroids are used only in acute exacerbations (for 10–14 days) and in the treatment of chronic severe asthma. Systemic corticosteroids should not be used before inhaled corticosteroids.

Inhaled short-acting beta 2 agonists such as albuterol are the mainstays of treatment of chronic asthma and are usually used in conjunction with inhaled corticosteroids. Use of short-acting beta-2 agonists for 3 days/week indicates poor control of symptoms, and treatment should be intensified.

Inhaled long-acting beta 2 agonists like salmeterol and formoterol have a sustained effect on bronchial smooth muscle relaxation. They are indicated for the treatment of moderate to severe persistent asthma (after initial therapy with short-acting beta 2 agonist plus inhaled corticosteroids), especially with a significant nocturnal component. A few things to note:

• Not for use during acute exacerbation of asthma
• Not for use alone; always use in conjunction with inhaled corticosteroids (studies show increased mortality when long-acting beta 2 agonists are used as a single agent)

The leukotriene modifiers inhibit 5-lipoxygenase, the enzyme involved in leukotriene production (LTC4, LTD4, LTE4), or competitive antagonist the principal moiety (LTD4). They are approved for severe asthma resistant to maximum doses of inhaled corticosteroids and as a last resort before using chronic systemic corticosteroids. Zileuton is a typical leukotriene inhibitor that is available. The receptor antagonists are zafirlukast and montelukast.

MAST cell stabilizers (cromolyn and nedocromil) have been used in the treatment of chronic asthma. In terms of preventing asthma exacerbations and reducing inflammation in adults, they are not as effective as inhaled corticosteroids. They may be used also in exercise-induced asthma and allergic asthma. Cromolyn and Nedocromil are used extensively in the chronic treatment of pediatric asthma.

Clinical guidelines have classified asthma in 4 categories, based on frequency, severity of symptoms, and requirements for medication. This classification provides general guidelines for therapy:

• Mild intermittent
• Mild persistent
• Moderate
• Severe

Treatment of asthma in the inpatient setting (acute exacerbation) requires a different approach. Referring to the case presented earlier, the patient is likely having an acute exacerbation of asthma.

• The treatment of choice is bronchodilator (albuterol); systemic corticosteroids (usually start IV), and oxygen. (Long-acting bronchodilators are contraindicated in the acute setting.)
• Bad prognostic indicators in this patient would be cyanosis, silent lung, increased CO₂. An ABG of 7.32/45/60 (with CO₂ of 45) would be considered ominous.

Note
Neither short-acting nor long-acting beta 2 agonists address the inflammatory component of asthma.

Note
Theophylline is generally not preferred for the treatment of asthma.

• For chronic asthma, use only as a possible adjunct to inhaled corticosteroids for difficult-to-control asthma.
• For an acute exacerbation of asthma, a long-acting beta agonist plus inhaled corticosteroids is more effective.
If, 3 days after hospitalization the patient is improving and you decide to send her home, her drug regimen would likely be oral prednisone taper, albuterol inhaler, steroid inhaler.

Suppose the patient returns 3 months later for follow-up. She needs documentation of asthma for her work. You would do a PFT to document the asthma, and confirm that her basic asthma regimen should be inhaled steroids daily and albuterol inhaler as needed.

For testing purposes, the guidelines are simplified into the following classifications.

• **Mild Intermittent Asthma**
 - Symptoms of cough, wheeze, chest tightness, or difficulty breathing <2x/week
 - Flare-ups-brief, but intensity may vary
 - Nighttime symptoms <2x/month
 - No symptoms between flare-ups
 - Lung function test FEV1 that is ≥80 percent of normal values
 - Treatment: inhaled short-acting bronchodilators as needed

• **Mild Persistent Asthma**
 - Symptoms of cough, wheeze, chest tightness or difficulty breathing 3−6x/week
 - Flare-ups-may affect activity level
 - Nighttime symptoms 3−4x/month
 - Lung function test FEV1 that is ≥80 percent of normal values
 - Treatment: start with inhaled corticosteroid and SABA; if not enough improvement, add leukotriene inhibitor and possible LABA

• **Moderate Persistent Asthma**
 - Symptoms of cough, wheeze, chest tightness, or difficulty breathing daily
 - Flare-ups-may affect activity level
 - Nighttime symptoms ≥5x/month
 - Lung function test FEV1 that is >60 percent but <80 percent of normal values
 - Treatment: start with inhaled corticosteroid and SABA; leukotriene inhibitor and LABA will likely be needed to improve nighttime symptoms

• **Severe Persistent Asthma**
 - Symptoms of cough, wheeze, chest tightness or difficulty breathing continually
 - Nighttime symptoms frequently
 - Lung function test FEV1 that is ≤60 percent of normal values
 - Treatment: inhaled corticosteroid, SABA (as needed), leukotriene inhibitor, and LABA will likely be needed, as well as oral steroids (prednisone) at lowest possible dose
 - Do not stop leukotriene inhibitors and LABA once oral corticosteroids have been started

Note

Respiratory acidosis or ‘normalization’ of pH in patients with acute asthma exacerbation may be an indication for intubation.
Allergic Bronchopulmonary Aspergillosis

Allergic bronchopulmonary aspergillosis (ABPA) is an allergic lung reaction to a fungus (most commonly *Aspergillus fumigatus*) seen in some patients with asthma or cystic fibrosis. Other fungi, including *Penicillium* and *Candida*, can cause an identical illness. In some people, the effects of the allergic reaction combine with the effects of the fungus to damage the airways and lungs further.

- The fungus does not actually invade the lung tissue and directly destroy it; rather, it colonizes the mucus in the airways of patients with asthma or cystic fibrosis (both of whom have increased amounts of mucus) and causes recurrent allergic inflammation in the lung.
- The alveoli become packed primarily with eosinophils.
- If the disease has caused extensive damage, bronchiectasis and scarring occur.

The first indications of allergic bronchopulmonary aspergillosis are usually progressive symptoms of asthma, such as wheezing and shortness of breath, and mild fever. The person usually does not feel well. Appetite may decrease. Brownish flecks or plugs may appear in coughed-up sputum. Repeated chest x-rays show areas that look like pneumonia, but they appear to persist or migrate to new areas of the lung (most often the upper parts). In people with long-standing disease, chest x-ray or CT may show bronchiectasis.

The fungus itself, along with excess eosinophils, may be seen when a sputum sample is examined under a microscope. Blood test reveals high levels of eosinophils and antibodies to *Aspergillus*. The level of immunoglobulin E in the blood is also elevated. Skin testing can determine if the person is allergic to *Aspergillus*, though it does not distinguish between allergic bronchopulmonary aspergillosis and a simple allergy to *Aspergillus*. Treatment is with corticosteroids.

Chronic Obstructive Pulmonary Disease

A 67-year-old woman with COPD is evaluated for dyspnea that occurred the prior day. She denies fever and chills but has noted productive cough. Her medications include ipratropium MDI. Her respiratory rate is 32/min and pulse 106/min; she is afebrile. She looks cachectic and is breathing fast. You note an increased anteroposterior diameter, distant heart sounds, and expiratory wheezing.

Chronic obstructive pulmonary disease (COPD) includes patients with emphysema and chronic bronchitis. Emphysema and bronchitis must be identified as separate entities, but most patients with COPD have characteristics of both conditions.

- Patients with chronic bronchitis have productive cough for most days of a 3-month period for at least 2 consecutive years.
- Patients with emphysema have abnormal permanent dilation of air spaces distal to the terminal bronchioles with destruction of air space walls.

Both of these processes are defined by nonreversible obstruction of the airways. This is the pathognomonic differentiating finding on PFTs when compared with asthma.
Cigarette smoking is a cause of COPD, with 10–15% of smokers developing COPD (80–90% of COPD patients are cigarette smokers). COPD symptoms usually begin after at least 20 pack-years of tobacco exposure. The number of pack-years of smoking correlates to the reduction of FEV$_1$. The fact that a small percentage (10–15%) of smokers develops COPD suggests that other factors may be involved in the pathogenesis. Air pollution, airway infections, and allergies can lead to bronchitis.

α$_1$-antitrypsin deficiency is a rare hereditary autosomal recessive disease that can cause emphysema and liver abnormalities.

Pathogenesis. After long-term exposure to cigarette smoke, inflammatory cells are recruited in the lung. These inflammatory cells in turn secrete proteinases, which may lead to air space destruction and permanent enlargement. Eventually, decreased elastic recoil (mainly in emphysema) and increased airway resistance (mainly with chronic bronchitis) occur.

Physical Examination. In emphysema, distant breath sounds will be heard on auscultation. In chronic bronchitis, there may be evidence of rhonchi and wheezes to auscultation. Signs and symptoms of right heart failure (cor pulmonale) can be seen. Rarely, clubbing can be seen, which may signify another co-existing condition.

![Figure 9-9. Clubbing of the Fingers Seen with Chronic Hypoxemia](wikipedia.com)

In chronic bronchitis, increased pulmonary markings can be seen on chest x-ray; in emphysema, hyperinflation of bilateral lung fields with diaphragm flattening, small heart size, and increase in retrosternal space can be seen.

Cor pulmonale in COPD is associated with chronic pulmonary hypertension.

Diagnosis. PFTs are the diagnostic test of choice. On PFT, a reduction in FEV$_1$/FVC ratio and FEF$_{25–75}$ occurs. RV and TLC are usually increased in COPD. Emphysema will have a decreased DLCO, whereas chronic bronchitis will generally have a normal DLCO.

After a bronchodilator is given, you would expect the FEV$_1$/FVC to remain the same or improve minimally.

Complications. Hypoxemia with nocturnal desaturation is sometimes seen. Secondary erythrocytosis can result from chronically low Po$_2$. Pulmonary hypertension is a complication that can lead to cor pulmonale and subsequent right heart failure. Chronic ventilatory failure and CO$_2$ retention are seen in chronic bronchitis early and at the end stages of emphysema.
Management of Stable Phase COPD. The goal in treatment is to treat airway inflammation and bronchospasm, reduce airway resistance and work of breathing, and improve gas exchange and ventilation-perfusion (V/Q) mismatching.

Anticholinergic agents (ipratropium bromide and tiotropium) are the first-line drugs in COPD. These agents are given via MDI and control airway caliber and tone. Anticholinergic agents can be used synergistically with \(\beta_2\)-adrenergic agonists in patients with COPD.

\(\beta_2\)-adrenergic agonists (albuterol) are used after anticholinergic agents. The inhaled route is the preferred administration.

Beta agonists are not first-line agents in the management of COPD because many of the patients have underlying heart disease and the tachycardia commonly associated with these agents may precipitate heart failure.

Chronic **inhaled corticosteroids** are reserved for severe cases of COPD.

Theophylline, a xanthine derivative, may be added to the regimen if beta-2 agonists and anticholinergics are not effective in managing the symptoms of chronic obstructive lung disease. Remember that theophylline has significant toxicity. Symptoms include nausea and vomiting, palpitations, and tremulousness. Death can occur from theophylline toxicity from cardiac arrhythmias.

The list of drug interactions with theophylline is significant. Theophylline levels increase with fluoroquinolones, clarithromycin, H2-blockers (cimetidine, ranitidine), certain beta blockers and calcium channel blockers. Theophylline levels decrease (due to increased clearance) with rifampin, phenytoin, phenobarbital, and smoking.

Despite the above treatments, the only interventions which have been shown to decrease mortality in patients with COPD are **home oxygen** and **smoking cessation**.

Home oxygen therapy is given to patients with hypoxemia (Pao\(_2\) <55 mm Hg or saturation <88%), and the goal is to try to keep the O\(_2\) saturation >90% as much as possible, especially at night when patients generally desaturate. Patients with cor pulmonale will benefit from home oxygen when Pao\(_2\) <59 mm Hg. A special category is the patient who desaturates with exercise; in that case, intermittent oxygen will be beneficial.

All patients with COPD must have the pneumococcal vaccine (Pneumovax\(^\text{®}\)) every 5 years and the influenza vaccine yearly. They should also receive the *H. influenzae* vaccine if they were not previously immunized.

Several trials have failed to find a beneficial effect for the regular chronic use of inhaled corticosteroids in patients with COPD.

Management and Treatment of COPD Exacerbation (Acute Setting Treatment). Acute exacerbation of COPD is considered acute worsening of the patient's respiratory symptoms (increased dyspnea, increased sputum volume, production of purulent sputum) that necessitates a change in medications.

The most common causes of COPD exacerbation are viral lung infections. Other precipitating causes that should be sought out are bacterial infections, heart failure, myocardial ischemia, pulmonary embolism, lung cancer, esophageal reflux disease, and medications (e.g., beta-blockers).
Initial Management

1. **Measure O₂ saturation** via pulse oximetry (on the spot) to determine oxygen saturation.

2. **ABG determination** is very useful to identify the level of hypercapnia and thus the severity of exacerbation.

3. **Chest x-ray** is expected in all patients with COPD exacerbation to identify pulmonary infiltrates consistent with pneumonia. It may also show evidence of pulmonary edema, indicating possible heart failure as the cause of the exacerbation.

4. Spirometry (and other PFT evaluation) is **not** helpful in COPD exacerbation because measurements (FEV₁, etc.) have not been shown to correlate well with the severity of the exacerbation.

5. In the acute setting, check levels in patients on chronic treatment with theophylline. Drugs like erythromycin, cimetidine, and ciprofloxacin may decrease theophylline clearance and cause **theophylline toxicity**.

6. Other tests as part of the initial evaluation of COPD exacerbation might include **CBC** (looking for elevated WBCs and polycythemia); **ECG** (looking for new arrhythmias, e.g., atrial fibrillation that may precipitate heart failure and exacerbate COPD).

7. Any significant changes of hypercapnia or hypoxemia from baseline should prompt consideration for admission to the hospital. Also, patients on home O₂ who have exacerbation, and those with severe symptoms, should be hospitalized.

8. Consider intubation and mechanical ventilation in patients with decreased levels of consciousness, cyanosis, or hemodynamic instability and in those with persistent hypoxemia despite adequate oxygen supplementation.

Specific Therapy

1. **Oxygen supplementation** should be titrated to ~90% saturation on the pulse oximeter. The main concern is to deliver adequate oxygenation. In COPD exacerbation, CO₂ retention is a secondary issue.

2. **Inhaled bronchodilators** are the **most effective** medications to improve airway diameter (the drugs of choice). In acute COPD exacerbations, use both beta-agonists (albuterol) and anticholinergics (ipratropium) simultaneously. Trials have shown that administration of these drugs by a nebulizer or metered dose inhaler (MDI) with a spacer is equally efficacious. Patients with severe exacerbations are unable to hold their breath for more than a few seconds and are thus initially treated with nebulizers and then switched to the MDIs.

3. **Systemic corticosteroids** have now been shown in multiple trials to shorten the recovery time of lung function and decrease the length of stay in patients with COPD exacerbation. Corticosteroids may be given intravenously or orally because the **efficacy is similar** in both modes of administration. The equivalent of 60 mg prednisone appears to be the sufficient starting dose and is usually continued for 2 weeks. It makes sense clinically to start patients who have a severe exacerbation with IV methylprednisolone (it is difficult for these patients
to take oral meds), then change to oral prednisone as they improve. Inhaled corticosteroids have not been shown to improve outcomes in patients with COPD exacerbation and cannot be substituted for systemic corticosteroids.

4. **Antibiotics** seem to be beneficial in COPD exacerbations despite “normal” chest radiograms. Patients with productive, purulent cough benefit the most because they are more likely to have an underlying bacterial infection. Antibiotics commonly used are second-generation macrolides (clarithromycin, azithromycin), extended-spectrum fluoroquinolones (levofloxacin, moxifloxacin), cephalosporins (second- and third-generation), and amoxicillin clavulanate.

5. There is no real benefit to using IV aminophylline. However, if the patient is using theophylline on a chronic basis (in outpatient setting), it should be continued during the exacerbation because abrupt discontinuation may worsen symptoms.

6. Always avoid opiates and sedatives because they may suppress the respiratory system.

7. Although specific chest physiotherapy (postural drainage, etc.) has not been shown to benefit patients with exacerbation, they should be encouraged to increase activities as tolerated to prevent deconditioning.

8. Counseling the patient on smoking cessation in the hospital setting is the single most important intervention.

9. Teaching the patient optimal use of MDIs has been shown to reduce readmission rates.

Prognosis. FEV$_1$ is the best predictor of survival (the higher the FEV$_1$, the better the survival and the less symptomatic the patients). The rate of FEV$_1$ decline may also predict survival because patients with a faster decline will have increased morbidity. Patients that have an FEV$_1$ \leq 25% will usually complain of dyspnea at rest.

Tobacco cessation is the only means of slowing progression of COPD and the decrease in FEV$_1$.

It is very important that patients with COPD have vaccinations against *Pneumococcus* with a booster at 5 years and yearly for influenza. Some experts consider the *H. influenzae* vaccine mandatory.

Going back to our patient, you would likely find decreased DLCO on her PFTs. Treatment of this patient in the acute exacerbation would be systemic steroids, antibiotics, and bronchodilators, with O$_2$ as needed. Treatment once she goes home would be ipratropium inhaler and home O$_2$.

To assess the severity of this patient’s disease, measure FEV$_1$.

Bronchiectasis

A 17-year-old girl is admitted to the hospital with a right lower lobe pneumonia. She gives you a history of recurrent pneumonias, some of which have kept her in the hospital for weeks, and of chronic productive cough that occurs every day. Her parents inform you that she has had “loose stools” since childhood. On the examination she is thin and in distress. There are diminished breath sounds on the right lower lobe with rhonchi.
Bronchiectasis is the permanent dilation of small- and medium-sized bronchi which results from destruction of bronchial elastic and muscular elements. Eventually the bronchi become fibrotic. Bronchiectasis can occur secondary to repeated pneumonic processes such as tuberculosis, fungal infections, lung abscess, and pneumonia (focal bronchiectasis) or when the defense mechanisms of the lung are compromised as in cystic fibrosis and immotile cilia syndrome (diffuse bronchiectasis).

About 50% of patients with primary ciliary dyskinesia will have situs inversus and sinusitis (Kartagener syndrome).

Bronchiectasis should be suspected in any patient with chronic cough, hemoptysis, foul-smelling sputum production, and recurrent pulmonary infections, sinusitis, and immune deficiencies.

- Patients will have persistent cough with purulent copious sputum production, wheezes, or crackles.
- There is a significant history of recurrent pneumonias that commonly involve gram-negative bacteria, especially *Pseudomonas* species.
- Hypoxemia may occur causing secondary polycythemia.

Early chest x-ray findings may be normal. In advanced cases chest x-ray may show 1- to 2-cm cysts and crowding of the bronchi (tram-tracking). High-resolution chest CT is the best noninvasive test to detect bronchiectasis.

Treatment. Bronchodilators, chest physical therapy, and postural drainage are used to control and improve drainage of bronchial secretions. Give an antibiotic such as trimethoprim sulfafoxazole, amoxicillin, or amoxicillin/clavulanic acid when sputum production increases or there are mild symptoms. ("Rotating antibiotics" describes choosing a different antibiotic each time to diminish resistance of microorganisms.) Chronic prophylaxis with antibiotics is not recommended.

If the patient exhibits significant symptoms or pneumonia, treat with IV antibiotics that cover gram-negative bacteria, e.g., quinolones, ceftazidime, or aminoglycosides. Consider surgical therapy for patients with localized bronchiectasis who have adequate pulmonary function or in massive hemoptysis.

All patients with bronchiectasis require yearly vaccination for influenza and vaccination for pneumococcal infection with a single booster at 5 years.

Specific considerations for the treatment of CF include:

- Aggressive percussion and lung exercises
- Pancreatic enzymes
- Supplemental vitamins
- Recombinant human DNase
- Inhaled hypertonic saline

Complications include massive hemoptysis, amyloidosis, cor pulmonale, and visceral abscesses.

Going back to our earlier patient, you would treat with antipseudomonal antibiotics (ciprofloxacine, ceftazidime). Based on her history, consider a chloride test to diagnose cystic fibrosis.
Clinical Recall

A 17-year-old boy presents with an acute asthma attack. Which of the following patterns will be seen on an arterial blood gas?

A. PaCO2 decreased, pH increased, PaO2 normal
B. PaCO2 decreased, pH decreased, PaO2 increased
C. PaCO2 increased, pH decreased, PaO2 decreased
D. PaCO2 increased, pH increased, PaO2 increased

Answer: A

INTERSTITIAL LUNG DISEASE

Interstitial lung disease (ILD) is a group of heterogeneous diseases and includes more than 100 disorders. ILD is characterized by chronic inflammation and fibrosis of the interstitium and lung parenchyma. The worst prognosis is with idiopathic pulmonary fibrosis and usual interstitial pneumonitis.

The interstitium of the lung (supporting structure) is the area in and around the small blood vessels and alveoli where the exchange of oxygen and carbon dioxide takes place. Inflammation and scarring of the interstitium (and eventually extension into the alveoli) will disrupt normal gas exchange. Although the progression of ILD may be variable from one disease to another, there are common clinical, radiographic, and spirometric findings.

All patients with ILD develop exertional dyspnea (the most common complaint that brings them to the physician) and nonproductive cough. Examination shows the typical coarse crackles, evidence of pulmonary hypertension (increased pulmonic sound, right heart failure), and clubbing (not always). Chest x-ray is consistent with reticular or reticulonodular pattern (“ground-glass” appearance). PFTs show evidence of intrapulmonary restrictive pattern.

Causes include:

• Idiopathic pulmonary fibrosis
• Sarcoidosis
• Pneumoconiosis and occupational lung disease
• Connective tissue or autoimmune disease–related pulmonary fibrosis
• Hypersensitivity pneumonitis
• Eosinophilic granuloma (a.k.a. Langerhans cell histiocytosis)
• Chronic eosinophilic pneumonia
• Wegener granulomatosis
• Idiopathic pulmonary hemosiderosis
• Bronchiolitis obliterans
• Lymphangioleiomyomatosis

Diagnostic evaluation should include high-resolution CT scan and, eventually, biopsy via bronchoscopy or open lung biopsy.
Idiopathic Pulmonary Fibrosis

A 55-year-old man comes for evaluation of exercise intolerance over the past 6 months. He has no significant past medical history. He informs you that over the past week he cannot walk across the room without getting “short of breath.” He takes no medications and has never smoked. The physical exam is significant for a respiratory rate of 24/min, jugular venous distention ~8 cm, coarse crackles on auscultation, clubbing, and trace pedal edema on both legs. The chest x-ray reveals diffuse reticular disease.

Idiopathic pulmonary fibrosis (IPF) is an inflammatory lung disease of unknown origin that causes lung fibrosis and restrictive lung disease. It characteristically involves only the lung and has no extrapulmonary manifestations except clubbing. Typically seen in decade 5 of life, it affects men and women equally.

Clinical Presentation. Progressive exercise intolerance and dyspnea are seen most commonly. There are coarse dry crackles on auscultation.

- Chest x-ray reveals reticular or reticulonodular disease. High-resolution CT may show ground-glass appearance. As IPF progresses, imaging will show extensive fibrosis with honeycomb pattern.
- A restrictive intrapulmonary process is evident on PFTs.
- Bronchoalveolar lavage will show nonspecific findings, specifically increased macrophages.
- Lung biopsy will exclude other causes with similar findings, e.g., vasculitis, infections, cancer.

Treatment. Pharmacologic treatment includes pirfenidone, a new small-molecule compound that has antifibrotic effects (shown to significantly reduce a decline in lung function and IPF disease progression). Non-pharmacologic treatment for eligible patients includes lung transplantation (shown to reduce the risk of death by 75% as compared with those who remain on the waiting list).

Sarcoidosis

A 27-year-old woman comes to your office with painful erythematous papules that occurred yesterday. She has no other complaints except joint swelling and pain that occurred 3 days ago. Physical examination discloses low-grade fever, symmetric swelling of the knees, PIP (proximal interphalangeal) and MCP (metacarpophalangeal) joints, and well demarcated, 3- to 4-cm papules over the anterior aspect of her legs. What is the next step in confirming the likely diagnosis?

Sarcoidosis is a systemic disease of unknown cause, characterized histologically by the presence of nonspecific noncaseating granulomas in the lung and other organs. There is an increased incidence among blacks and patients age 20–40.

Note

Drugs no longer used in the treatment of IPF include corticosteroids, anticoagulants, interferon, and bosentan.
Sarcoidosis can involve almost any organ system, but pulmonary involvement is most common. Ocular, cutaneous, myocardial, rheumatologic, GI, and neurologic manifestations can also occur. Dermatologic manifestations occur in 25% of patients with sarcoidosis; they include lupus pernio, erythema nodosum, non-scarring alopecia, and papules.

Commonly, sarcoidosis is discovered in a completely asymptomatic patient, usually in the form of hilar adenopathy on chest x-ray.

There are 2 distinct sarcoid syndromes with acute presentation:

- **Löfgren syndrome** includes erythema nodosum, arthritis, and hilar adenopathy.
- **Heerfordt-Waldenstrom syndrome** describes fever, parotid enlargement, uveitis, and facial palsy.

Lung involvement in sarcoidosis occurs in 90% of patients at some time in their course. Hilar and left paratracheal adenopathy is the most common presentation. Interstitial lung disease with or without hilar adenopathy can also be a presentation of sarcoidosis.

Chest x-ray findings can show 4 stages of disease (the stages are not progressive):

- Bilateral hilar adenopathy
- Hilar adenopathy with reticulonodular parenchyma
- Reticulonodular parenchyma alone
- Honeycombing of bilateral lung fields with fibrosis

Clinical presentation includes:

- Hypercalcemia or hypercalciuria due to increased circulation of vitamin D produced by macrophages
- Elevated angiotensin-converting enzyme (ACE) (60% of patients); ACE levels are nonspecific but can be used to follow the course of the disease

Clinical Pearl

Do not use serum ACE levels to diagnose sarcoidosis.
Abnormalities in LFTs (30% of patients with liver involvement, with 90% of patients being symptomatic)

Skin anergy

PFTs normal or showing a restrictive pattern

Uveitis and conjunctivitis (>25% of patients) (give all patients with suspected sarcoidosis an ophthalmologic examination)

The definitive diagnosis of sarcoidosis rests on biopsy of suspected tissues, which show noncaseating granulomas.

Eighty percent of patients with lung involvement from sarcoidosis remain stable, or the sarcoidosis spontaneously resolves. Twenty percent of patients develop progressive disease with evidence of end-organ compromise.

Treatment. There is no evidence that any therapy alters the course of disease. Generally in the setting of organ impairment, a trial of steroids may be used, giving a high dose for 2 months followed by tapering the dose over 3 months. There are certain scenarios in which steroids are mandatory: uveitis, sarcoidosis involving the CNS and heart, and patients who develop hypercalcemia.

Pneumoconiosis

The pneumoconioses are occupational lung diseases in which inhalation of certain fibers initiates an inflammatory process and eventually leads to fibrosis of the lung. Usually, pneumoconiosis appears 20–30 years after constant exposure to offending agents (metal mining of gold, silver, lead, copper), but it can develop in <10 years when dust exposure is extremely high.

History is of primary importance in assessing possible occupational lung diseases.

Pathology. Alveolar macrophages engulf offending agents, causing inflammation and fibrosis of the lung parenchyma in pneumoconiosis. Respiratory insufficiency is the ultimate consequence of the pneumoconioses.

Signs and symptoms include dyspnea, shortness of breath, cough, sputum production, cor pulmonale, and clubbing. PFTs show a restrictive pattern with a decreased DLCO. Hypoxemia is evident with an increased PAo2-Pao2 gradient. Chest x-ray findings include small irregular opacities, interstitial densities, ground glass appearance, and honeycombing.

Asbestosis

Asbestosis is an occupational lung disease caused by prolonged inhalation of asbestos dust. The result is lung parenchymal fibrosis which results in respiratory compromise.

Asbestos fiber exposure may be seen in mining, milling, foundry work, shipyards, or the application of asbestos products to pipes, brake linings, insulation, and boilers.

History of exposure to asbestos is needed to consider the diagnosis.
Signs and symptoms include exertional dyspnea and reduced exercise tolerance, cough and wheezing (especially among smokers), chest wall pain, and ultimately respiratory failure.

On chest x-ray, diffuse or local pleural thickening, pleural plaques, and calcifications at the level of the diaphragm are seen. Pleural effusions are commonly seen, and the interstitial lung process associated with asbestosis usually involves the lower lung fields.

The most common cancer associated with asbestosis is bronchogenic carcinoma (adenocarcinoma or squamous cell carcinoma).

Pleural or peritoneal mesotheliomas are also associated with asbestos exposure but are not as common as bronchogenic cancer.

For diagnosis, a lung biopsy is usually needed; the classic barbell-shaped asbestos fiber is found.

No specific treatment is offered. Patients with asbestos exposure should strongly be advised to stop smoking since their risk of lung cancer is 75 times higher than that of the normal population.

Silicosis
Silicosis is an occupational lung disease caused by inhalation of silica dust. It is seen in individuals who work in mining, quarrying, tunneling, glass and pottery making, and sandblasting.

Silicosis causes similar symptoms to asbestosis (or any other pneumoconiosis) except the acute form of silicosis, which is caused by massive exposure that causes lung failure in months.

Pathology. Silica causes inflammatory reactions with pathologic lesions being the hyaline nodule.

Chest X-Ray. In silicosis there are nodules (1–10 mm) seen throughout the lungs that are most prominent in the upper lobes. A characteristic finding is eggshell calcifications (rare). In progressive massive fibrosis, densities are 10 mm or more and coalesce in large masses.

Diagnosis is made with lung biopsy. There is no effective therapy for silicosis. Death occurs usually because of progressive respiratory insufficiency.

Clinical Correlate
Silicosis has an association with pulmonary TB. Patients with silicosis should have yearly PPD tuberculin testing; if positive reactive (>10 mm), give isoniazid (INH) prophylaxis for 9 months.

Coal miner’s lung/coal worker’s pneumoconiosis
The risk of development and progression of coal miner’s lung (CWP) is related to the amount of coal dust exposure, higher rank (hardness) of coals, and increased silica content of inhaled dust. Simple CWP is seen in 12% of all miners.

Patients clinically present as they would with any other occupational lung disease. On chest x-ray, small round densities are seen in the parenchyma, usually involving the upper half of the lungs. Complicated or progressive massive fibrosis is diagnosed by the presence of larger densities from 1 cm in diameter to the entire lobe. Increased levels of IgA, IgG, C3, antinuclear antibodies (ANA), and rheumatoid factor are also seen.

In Caplan syndrome there are rheumatoid nodules in the periphery of the lung in a patient with rheumatoid arthritis and coexisting pneumoconiosis (usually CWP).
A 65-year-old man complains of progressive difficulty breathing for the past 6 months. He has a 30-pack-year smoking history and is suspected of having COPD. Which of the following is the best initial management of this patient?

A. Antibiotics
B. Chest CT
C. Pulse oximetry
D. Pulmonary function testing

Answer: C

PULMONARY THROMBOEMBOLISM

A 32-year-old woman is brought to the emergency department with an acute onset of shortness of breath and pleuritic chest pain that occurred while she was shopping. She has never been sick and takes no medications other than oral contraceptives. Her respiratory rate is 26/min and pulse 107/min. Auscultation is clear, and the rest of the examination is normal. ABG shows evidence of mild hypoxemia (7.52/70/25/93%). Chest x-ray is normal.

Thromboembolic disease is a common cause of morbidity and mortality in the hospital and outpatient setting and poses a diagnostic challenge even for seasoned clinicians.

Clinically significant pulmonary emboli, for the most part, arise from proximal (above-the-knee) deep vein thrombi (DVT). In turn, most proximal DVTs are a consequence of propagation of distal (below-the-knee) DVT. Studies have shown that distal DVT, by themselves, do not pose a risk for the development of a pulmonary embolus. In one-third of the cases, they extend to the proximal veins and thus become a source of pulmonary emboli.

Pulmonary embolism can infrequently occur with upper extremity, subclavian, and internal jugular vein thrombosis. This type of thromboembolic disease occurs in patients when IV catheters are placed in the associated veins. Also, in the pregnant patient, thrombosis may occur initially in the pelvic veins rather than follow the usual course of starting in the distal and then extending to the proximal veins.

Pulmonary embolism and DVT are considered one disease.

- Be concerned about (and treat) proximal vein thrombosis because this may result in pulmonary embolism.
- In pregnant patients and those with IV catheters, look for the source of the thromboembolism in uncommon places (pelvic veins, upper extremity veins, etc.).
Natural Course. After a proximal DVT dislodges, it travels through the vena cava and into the right side of the heart. It usually breaks off into multiple thrombi as it goes into the pulmonary circulation, obstructing parts of the pulmonary artery. This results in increased alveolar dead space, vascular constriction, and increased resistance to blood flow. When ~50% of the lung vasculature is involved, significant pulmonary hypertension may occur. This is followed by an increase in right ventricular workload and may lead to right-sided heart failure. A massive pulmonary embolus occurs when >70% of one lung is involved.

About 10% of patients with pulmonary embolus will die within 1 hour of the event, most from a massive pulmonary embolus or significant comorbid conditions (e.g., preexisting CHF or COPD).

When to Consider Pulmonary Embolism and DVTs:

High-risk patients

- Recent surgery, especially orthopedic surgery (knee replacement surgery carries a 70% risk for DVT)
- Cancer history (prostate, pelvic, abdominal, and breast). Note: Studies following patients with unexplained DVT found that 15–20% of these patients developed cancer within the first 2 years after the diagnosis of a DVT.
- Immobile patients (especially those hospitalized); patients with significant heart failure; long travel
Acquired thrombophilia, especially lupus anticoagulant, nephrotic syndrome (loss of antithrombin III in the urine), and oral contraceptives (the risk increases further if the patient is a current smoker)

Inherited thrombophilia, of which the most common is factor V Leiden mutation (protein C resistance); others include protein C and S deficiency and antithrombin III deficiency

Pregnancy, for which increased risk for thromboembolism will continue until 2 months after the delivery

Consistent symptoms and signs:

- Sudden onset of dyspnea (shortness of breath) and tachypnea
- Thigh or calf swelling with or without dyspnea
- Pleuritic chest pain
- Hemoptysis (occurs only with infarction, which is rare because of the dual circulation [bronchial and pulmonary] that supports lung parenchyma)
- On exam, always increased respiratory rate with tachycardia; increased pulmonic sound (P_2)

The **Wells’ Criteria** risk stratifies patients for PE, and has been validated in both inpatient and emergency department settings. While there are other scoring systems for PE and DVT, the Wells criteria are the most widely used in the United States:

- Symptoms of DVT (3 points)
- No alternative illness that explains symptoms (3 points)
- Immobilization (≥3 days) or surgery in the previous 4 weeks (1.5 points)
- Prior history of DVT or PE (1.5 points)
- Presence of hemoptysis (1 point)
- Presence of malignancy (1 point)

Scoring is done as follows:

- **Score >6** = high probability of PE
- **Score ≥2 but <6** = mean moderate probability of PE
- **Score <2** = low probability of PE

Tests for the Diagnosis of Thromboembolic Disease

General tests are nonspecific, though they may provide important clues for the diagnosis. They are done routinely in the emergency department in the evaluation of patients with dyspnea.

Arterial blood gas (ABG) tests usually show evidence of hypoxemia with an elevated A-a gradient. In ~10% of patients with documented pulmonary thromboembolism, the A-a gradient may be normal and the hypoxemia mild.

Chest x-ray is very important in finding other causes that may account for the patient’s symptoms. The most common chest x-ray finding associated with pulmonary thromboembolism is a “normal” chest x-ray. Other nonspecific findings include atelectasis and pleural effusion (transudative and exudative).
• Westermark sign is the lack of vascular markings that occur distal to the pulmonary embolus.

• Hampton hump is a wedge-shaped infiltrate (just above the diaphragm) and is due to pulmonary infarction.

The ECG may show evidence of right heart strain (due to the development of acute pulmonary hypertension), which manifests as large S waves in lead I and deep Q waves in lead III with T-wave inversion in the same lead (mnemonic: S\textsubscript{1}, Q\textsubscript{3}, T\textsubscript{3}). The most common finding on the ECG is sinus tachycardia. The ECG is also an important tool in excluding other causes with similar symptoms, specifically acute pericarditis and myocardial ischemia.

Specific tests are more specific for the evaluation of thromboembolic disease (do them when considering the diagnosis).

![Wikipedia, James Heilman, MD](image)

Figure 9-12. Pulmonary Embolism CT

• Pulmonary embolism:
 - **CT pulmonary angiogram (CT-PA)** is the most frequently performed initial test for the diagnosis of pulmonary embolus. It allows direct visualization of the pulmonary embolus, and it also allows for the diagnosis of alternative diseases involving the lung parenchyma (pneumonia, pneumothorax, etc.). The older generation of CT-PAs may miss pulmonary emboli that involve the smaller (peripheral) pulmonary arteries.

 - **Ventilation-perfusion (V/Q) scan** is a pair of nuclear scan tests that use inhaled and injected material to measure breathing (ventilation) and circulation (perfusion) in all areas of the lung. A pulmonary embolus will typically cause perfusion defects with normal ventilation. The V/Q scan, depending on the number of defects, is classified as normal, low probability, intermediate probability, or high probability. Patients that have any preexisting lung disease (COPD) will have at least intermediate scans, which make this test less helpful. A normal V/Q scan rules out pulmonary embolus.

 - **Pulmonary angiogram** is the gold standard procedure for the diagnosis of pulmonary embolus. Its risk of complication (e.g., pulmonary artery rupture) is <1%.
With the new generation of CTs able to visualize the smallest peripheral vessels, the invasive pulmonary angiogram is becoming obsolete.

- **DVT**: compression on duplex U/S (US); venogram (rare); MRI
- **Both pulmonary embolism and DVT**:
 - *D-dimer* is the most sensitive test for thromboembolic disease. Elevated D-dimer indicates the presence of an abnormally high level of fibrin degradation products, possibly because of thrombus formation and breakdown. An elevated D-dimer may be due to a thromboembolism, but it may also be due to a recent surgery, infection, trauma, pregnancy, and DIC. Normal D-dimer tests mean that there is no thrombus formation or breakdown. For the above reasons, a D-dimer can only be used to *rule out* PE or DVT if the levels are normal. Trials have shown that the D-dimer is most useful when the test is done on patients considered to be low-risk and is recommended as an adjunct test (i.e., a negative D-dimer and a normal CT-PA scan rule out thromboembolism 98% of the time).
 - There are many types of D-dimer tests with different sensitivities. The ELISA assay is the best test overall, whereas the latex agglutination test is less sensitive.

General diagnostic concepts in patients suspected of pulmonary embolism:

- It makes sense to start with a CT-PA after a chest x-ray is completed.
- Normal CT scan and normal D-dimer test in low-risk patients exclude pulmonary embolism.
- Normal CT scan and normal Doppler U/S in low-risk patients exclude pulmonary embolism.
- Even if all tests are negative for pulmonary embolism but the patient is high risk, go for the angiogram.
- If a V/Q scan is completely normal (not near normal or low probability), the chance of pulmonary embolism is almost 0%.
- Know how to use Doppler U/S in the evaluation of pulmonary embolism. For example, if a V/Q scan is reported as low probability, still be concerned about pulmonary embolism. An angiogram is not preferred unless absolutely necessary because it is an invasive procedure. Therefore, do an U/S of both lower extremities to look for a DVT (remember that most pulmonary emboli are complications of DVTs arising in the proximal veins).
- All patients (especially high risk) should be on anticoagulation while completing diagnostic evaluations, so start heparin before sending that patient off to the radiology department for the CT or the V/Q scan.
Figure 9-13. Management of Diagnosed Pulmonary Embolism

Diagnosed Pulmonary Embolism

- **Hemodynamically stable**
 - Anticoagulation contraindicated
 - Inferior vena cava filter
 - IV or LMW heparin and oral anticoagulation (warfarin) 5–7 days
 - Oral anticoagulation (warfarin) for at least 6 months

- **Hemodynamically unstable**
 - Anticoagulation contraindicated
 - Thrombolytic therapy
 - Pulmonary embolectomy and interrupt inferior vena cava

Treatment. Give oxygen and start heparin immediately before the diagnosis is confirmed and while the diagnostic workup is being completed. Once the diagnosis is confirmed:

- **Heparin**—LMWH or unfractionated for 5–7 days (or until INR is therapeutic)
- In most institutions, LMWH has supplanted the use of unfractionated heparin as the primary heparinoid in the treatment of PE and DVT.
- **Warfarin (Coumadin®)**—should be started with heparin and continued for 6 months for both pulmonary emboli and DVT.

LMWH or fractionated heparin inactivates factor Xa but has no effect on thrombin (no need to follow PTT). Dosing is based on patient’s weight, and the effect is very predictable. The long half-life makes it ideal for a 1× or 2×/day dosing interval. Trials have shown that LMWH is as good as unfractionated heparin in the treatment of DVT and pulmonary emboli; also, LMWH is less likely to cause hemorrhage or heparin-induced thrombocytopenia (HIT).

HIT is a common complication of heparin treatment and occurs 5–7 days after starting treatment in about 5% of patients. Paradoxically, it is associated more with thrombotic events than bleeding diathesis. Always stop heparin when platelets decrease by a significant amount. Also, consider HIT in a patient with recurrent pulmonary embolism or DVT despite heparin treatment. HIT is treated with the new anticoagulants (argatroban, lepirudin).

Warfarin works by inhibiting the vitamin K–dependent factors (II, VII, IX, and X). Because factor VII has the shortest half-life of all the affected factors, prothrombin time (PT) is monitored to assess the warfarin anticoagulant effect. International normalized ratio (INR) is a way to report PT and is used to control for variability in PT between different laboratories. The warfarin dose should be titrated to an INR of 2–3 for effective anticoagulation.
Warfarin skin necrosis is a rare procoagulant effect that occurs in patients who have preexisting protein C deficiency and receive warfarin. Protein C is also a vitamin-dependent factor with a shorter half-life than factor VII. A “transient hypercoagulable state” occurs when warfarin is started in patients with subclinical protein C deficiency. This leads to diffuse thrombosis of the skin and other organs. By starting patients on heparin and warfarin at the same time, you minimize the risk for this complication.

Anticoagulation is contraindicated in patients with recent neurosurgery or eye surgery. Consider using an inferior vena cava filter (Greenfield filter) to prevent further embolism in these patients.

Warfarin is contraindicated in pregnant patients. LMWH for 6 months is the best alternative. The patient should have injections once or twice a day.

Thrombolytics (tPA, streptokinase) are not used routinely in pulmonary embolism and should be reserved for patients that become hemodynamically unstable (indicated by hypotension, right heart failure, etc.). In clinical practice, thrombolytics are sometimes also considered in patients with massive DVT to prevent the postphlebitic syndrome.

Although the available vitamin K antagonists are highly effective for the prevention and treatment of most thrombotic disease, significant patient variability in dose response, the narrow therapeutic index, and the numerous drug and dietary interactions associated with these agents have led clinicians to search for alternative agents. These new anti-thrombotic drugs have relatively discrete targets within the coagulation pathway. Two new classes of orally administered anticoagulants, inhibitors of factor X and thrombin inhibitors, have been approved for the management and prevention of venous thromboembolic disease. Rivaroxaban is a direct factor Xa inhibitor. Dabigatran is a direct thrombin inhibitor that has been approved for venous thromboembolism prophylaxis.

The postthrombotic syndrome (postphlebitic syndrome) is the most common complication of DVT, occurring in up to two-thirds of patients. It may result from some obstructions that remain in the vein or backflow of blood due to destruction of the valves or both. Signs and symptoms include pain, edema, hyperpigmentation, and skin ulceration. The use of compression stockings has been shown to prevent the postthrombotic syndrome.

Other Concepts in Treatment

- Noncomplicated proximal DVTs are usually treated for a total of 6 months.
- In patients with thrombophilias (hypercoagulable states), lifelong anticoagulation is considered with warfarin (usually reserved for at least 2 episodes of thrombosis).
- Do not check for protein C or protein S deficiency during acute thrombosis. Both warfarin (which the patient should be on) and acute clot formation lower protein C and S.
- In patients that develop recurrent thrombosis while on anticoagulants, consider HIT or cancer-related thrombosis (very resistant). Consider placing an inferior vena cava (IVC) filter or using some of the newer anticoagulant classes (e.g., hirudin derivatives). IVC filters are associated with clot formation around the filter site and may cause pulmonary thromboembolism.
- **Limited distal DVTs** (below-the-knee DVT) are not themselves a cause of pulmonary embolism, unless they extend to the proximal veins. Management of distal DVT includes 2 options: monitor for possible extension to the proximal veins by using serial U/S or treat with anticoagulation for 3 months.
Fat embolism is a rare type of embolism that occurs 3 days after long bone fracture (most commonly seen with femur fracture). It may occur, although rarely, after CPR. The clinician should consider this entity with presence of acute dyspnea, petechiae (neck and axilla), and confusion. Treatment is supportive (no anticoagulation).

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

A 32-year-old man is admitted to the intensive care unit with the presumed diagnosis of gram-negative sepsis. He is placed on double gram-negative antibiotic coverage and remains stable for 24 hours. The blood cultures grow pseudomonas sensitive to both ceftazidime and ciprofloxacin, which the patient has been started on. The patient seems to improve but suddenly during day 2 of hospitalization develops severe dyspnea. The examination reveals diffuse crackles; an ABG shows hypoxemia and hypercarbia. Diffuse alveolar densities are seen on chest x-ray (the admission chest x-ray was unremarkable).

ARDS is defined as an acute lung injury characterized by increased permeability of the alveolar-capillary membrane and pulmonary edema. It eventually leads to severe hypoxemia and decreased pulmonary compliance. Etiology includes sepsis, trauma, disseminated intravascular coagulation, drug overdose, inhalation of toxins, Goodpasture syndrome, systemic lupus erythematosus, drowning, and the period after bypass surgery.

ARDS usually occurs within 5 days of the initiating event, and >50% will develop it within the first 24 hours. A major component of ARDS seems to be accumulation of inflammatory cells and their mediators.

Signs and symptoms of ARDS are dyspnea, increased respiratory rate, and diffuse rales and rhonchi on auscultation.
- Chest x-ray shows diffuse interstitial or alveolar infiltrates; whiteout of both lung fields may be seen
- ABGs reveal decreased PaO\textsubscript{2} and increased or normal PaCO\textsubscript{2}
- Swan-Ganz catheter findings reveal normal cardiac output and normal capillary wedge pressure but increased pulmonary artery pressure

Treatment. Treat the underlying disorder. Mechanical support includes increased positive end-expiratory pressure and permissive hypercapnia. Studies have shown that conservative fluid replacement decreased ICU and ventilatory time but mortality remained unchanged. Steroid use is controversial. Mortality rates are approximately 50%.

SLEEP APNEA

Sleep apnea is the cessation of airflow (>10 s) that occurs at least 10–15x per hour during sleep. Oxygen saturation decreases during those apneic episodes, and pulmonary pressures increase.

Daytime somnolence is mandatory for the diagnosis of sleep apnea. Other manifestations include daytime headaches and fatigue. Systemic hypertension also occurs. When severe, sleep apnea will cause pulmonary hypertension and cor pulmonale.

Clinical Pearl

Chronic elevation of serum bicarbonate may be seen in patients with sleep apnea. This is a response to respiratory acidosis.
There are 2 main classes of sleep apnea:

- **Obstructive** sleep apnea (OSA) occurs because of floppy airways despite adequate ventilatory effort. Patients are usually obese and have abnormal airways. Treatment is weight loss and nasal continuous positive airway pressure (CPAP). When noninvasive measures are not effective, surgical procedures (uvuloplasty) may be considered.

- **Central** sleep apnea (<5%) is caused by inadequate ventilatory drive. Treatment includes conservative measures (weight loss; avoidance of alcohol, sedatives, and sleep deprivation), acetazolamide, progesterone, and supplemental oxygen.

The diagnosis of sleep apnea is based on evaluation of clinical symptoms (daytime sleepiness, fatigue, sleep diary findings, and the results of objective testing with polysomnography.

LUNG CANCER

Bronchogenic Carcinoma

A 65-year-old man is admitted because of headache and blurry vision the past few days. In the emergency room the physicians also notice that he has neck vein distension and darker coloration over his face and neck. He is confused. Chest x-ray reveals a right upper lobe lung mass, and blood tests indicate significant hypercalcemia.

Bronchogenic carcinoma is the leading cause of death because of malignancy in men and women. The overall 5-year survival rate for small cell cancer is 5% and non-small cell cancer is 8%. The far majority of cases are directly related to cigarette smoking; the occasional non-smoker who has lung cancer develops adenocarcinoma.

All lung cancers are associated with smoking.

- Active smokers have 10× greater risk compared with nonsmokers
- Risk is directly related to number of pack-years (40-pack-year history increases risk 60–70×)
- Those with asbestos exposure have 75x greater risk of bronchogenic carcinoma compared with nonexposed individuals

There is no available screening test for lung cancer at this time.

Pathology. The most common lung cancers are adenocarcinoma (~40% in some studies) and squamous cell carcinoma.

- **Adenocarcinoma.** Adenocarcinoma is a peripherally located lesion. This lesion metastasizes widely to essentially the same sites as small-cell carcinoma. Bronchioalveolar carcinoma is a subtype of adenocarcinoma; it is a low-grade carcinoma that can occur in single or multiple nodules. Asbestos exposure can be an underlying causative agent, usually after a latent period of 30 years. Adenocarcinoma is usually associated with pleural effusions that have high hyaluronidase levels. Diagnosis often requires thoracotomy with pleural biopsy.
• **Squamous Cell Carcinoma.** Squamous cell carcinoma is a centrally located lesion. It is associated with cavitary lesions. Squamous cell carcinoma usually metastasizes by direct extension into the hilar node and mediastinum. These lesions are associated with hypercalcemia from the secretion of a parathyroid hormone–like substance.

• **Small-Cell Carcinoma.** Small-cell carcinomas are centrally located lesions. These tumors are rapidly growing with early distant metastasis to extrathoracic sites such as liver, adrenal glands, brain, and bone. Prognosis does not improve with early diagnosis. Small-cell carcinoma is associated with Eaton-Lambert syndrome, syndrome of inappropriate antidiuretic hormone, and other paraneoplastic syndromes. Small-cell carcinoma is also the most common cause of venocaval obstruction syndrome.

• **Large-Cell Carcinoma.** Large-cell carcinoma is a peripherally located lesion. This carcinoma can metastasize to distant locations late in the course of disease. Large-cell carcinoma in early stages is associated with cavitation.

Symptoms. The most common symptom at the time of diagnosis is cough (74%). Weight loss is seen in 68% of patients. Dyspnea is seen in 58% of patients. Other associated symptoms of bronchogenic carcinoma include hemoptysis, chest wall pain, and repeated pneumonic processes (caused by postobstructive pneumonia). Hoarseness when seen indicates a nonresectable bronchogenic carcinoma.

Diagnosis. The diagnosis of bronchogenic carcinoma can be made by sputum cytology, with the highest yield in patients with squamous cell carcinoma (>80%) because it is intraluminal and centrally located. Bronchoscopy is best for centrally located lesions (yield of 90%) and is helpful in staging. For the 10% of centrally located lesions not detected by bronchoscopy, a needle aspiration biopsy should be performed if carcinoma is highly suspect. In other words, if there is a high degree of suspicion for carcinoma and the bronchoscopy results are nonspecific, a biopsy must be requested. Needle aspiration biopsy is also good for peripheral nodules with pleural fluid aspirate (positive in 40–50% of cases). Mediastinoscopy is useful in diagnosing and staging mediastinal tumors.

• **Workup of a chest x-ray with an effusion and a lung mass.** Ninety percent of tumors with malignant effusions are unresectable. These tumors are usually adenocarcinomas. Atelectasis on chest x-ray suggests central airway obstruction. Next step in such a patient is to do thoracocentesis and cytologic evaluation of the pleural fluid.

Treatment. Symptoms that suggest an unresectable lesion include weight loss >10%, bone pain or other extrathoracic metastases, CNS symptoms (treated by radiation or chemotherapy), superior vena cava syndrome, hoarseness, mediastinal adenopathy on the contralateral side, split-lung test tidal volume <800 ml, tumor classification of M1 within 3 months, and tumor involving the trachea, esophagus, pericardium, or chest wall.

Resectable lesions of small-cell carcinoma are treated with chemotherapy; VP16 (etoposide and platinum) is the treatment of choice. Surgery is not indicated for these lesions. Non-small-cell lesions that are resectable are treated with chemotherapy and radiation therapy or CAP (cyclophosphamide, adriamycin, and platinum). Effusions can be sclerosed with tetracycline. Complications are treated with radiation therapy, which in most cases is palliative.

Prognosis is best after surgical resection of squamous-cell carcinoma (30–35%). Large-cell carcinoma and adenocarcinoma have a prognosis of 25%. Prognosis is poorest for small-cell carcinoma.
Recommendations for lung cancer screening are as follows (see also Preventive Medicine section):

- In cases where >30 pack-years of smoking, patients age 55-80 should receive lung cancer screening with low dose CT (non-contrast). The patient has to be a current smoker or has quit >15 years.
- In cases where patients age >80, quit >15 years, has other medical problems such as severe COPD which significantly limits life expectancy or ability to undergo surgery, no screening is recommended.

ATELECTASIS

A 62-year-old man is dyspneic 24 h after cholecystectomy. His respiratory rate is 22/min and pulse 112/min. He has a mild fever, and decreased breath sounds are noted in the left lower lobe. Complete blood count shows leukocytosis 27,000/mm3.

Atelectasis is a collapse of part or the entire lung. It is most commonly seen in the immediate postoperative period, often secondary to poor inspiration or lack of coughing. A mucous plug, tumor, or foreign body can also lead to atelectasis.

Acute symptoms include tachycardia, dyspnea, fever, and hypoxemia. In the chronic phase patients may be asymptomatic with only x-ray abnormalities. On x-ray, upper lobe atelectasis can appear as tracheal deviation to the affected side. This phenomenon occurs secondary to volume loss from atelectasis. Lower lobe atelectasis may cause an elevation of the corresponding part of the diaphragm. In massive atelectasis, a mediastinal shift to the involved side can be seen. The atelectatic lobe will appear to be densely consolidated and smaller than the normal lobe on x-ray.

Treatment. In the postoperative phase, it is important to induce deep breathing and stimulate coughing. Incentive spirometry and pulmonary toilet are effective. Bronchoscopy with subsequent removal of mucous plugs is highly effective for spontaneous atelectasis.

Clinical Recall

A 36-year-old woman presents to the ER complaining of a sudden onset of difficulty breathing. She has a significant smoking history and is suspected of having a pulmonary embolism. Which of the following is the gold standard test for this patient?

A. ABG
B. Chest x-ray
C. D Dimer
D. Pulmonary angiogram
E. Pulmonary function testing

Answer: D
Learning Objectives

- List the steps to follow in basic life support (cardiopulmonary resuscitation)
- Interpret EKG strips to diagnose cardiac dysrhythmias and present the appropriate emergency management
- Answer questions about principles of toxicology and initial management with specific management for poisoning or overdose
- Describe direct and indirect complications and emergency management of acute/chronic alcohol use
- Describe the emergency management of head trauma, anaphylaxis, subarachnoid hemorrhage, burns, radiation injuries, drowning, and venomous bites/stings

BASIC LIFE SUPPORT (CARDIOPULMONARY RESUSCITATION)

A 54-year-old man is at the opera when he suddenly jumps up and clutches his chest. He falls to his side into the lap of the woman sitting next to him.

Basic life support is the initial management algorithm of any patient who seems to have become unresponsive. Etiology is a cardiac, neurologic, or toxicologic event leading to markedly diminished responsiveness or loss of pulse.

Most causes of cardiac arrest are related to ventricular rhythm disturbance. The most common etiology of serious cardiac dysrhythmia is ischemia-related, particularly with coronary artery disease or another cardiac anatomic abnormality (especially cardiomyopathy).
Clinical presentation is any patient with diminished responsiveness that is usually sudden in onset.

- At first this is a clinically determined diagnosis. The initial step is to assess the patient’s responsiveness, to make sure he is truly unresponsive and not just asleep. Call to or gently shake him (but be careful about shaking a patient who might have serious traumatic injury, particularly of the cervical spine).

- After determining that the patient is truly unresponsive, call for help (dial 911). Although it is natural to reach down to check a pulse, this is not the action that the USMLE or the American Heart Association wants you to build as a reflex. Without the EKG, defibrillator, and cardiac medication, there is very little a rescuer can do for a patient with a serious dysrhythmia beyond chest compressions and opening the airway.

- If a patient has a serious dysrhythmia such as asystole or ventricular fibrillation, there is virtually no survival if the heart has not been restarted within 10 minutes. Chest compressions just perfuse vital organs; they will not convert the arrhythmia back to normal sinus. AHA guidelines emphasize high-quality CPR with uninterrupted chest compressions of adequate depth (5 cm, 2 in.) at 100/min and decreased intervals between stopping the chest compression and shock delivery.

- Avoid excessive ventilation as it can be detrimental. ABC, according to new guidelines, is now CAB (excluding newborns). Removing the 2 rescue breaths allows chest compressions to be delivered sooner. Earlier chest compressions and defibrillation are critical elements of CPR.
 - Do not look, listen, feel for breathing.
 - Do check for pulse (for 10 seconds); if there is no pulse, start chest compressions (after calling 911).
 - Do not give rescue breaths first, as that has been shown to delay vital chest compressions and leads to an increase in mortality.
 - Do not perform jaw thrust, which just delays chest compression.

- After calling for help, position the patient on a firm, flat surface, and roll to be face up. Check for a pulse by feeling for 5–10 seconds at the carotid artery. If there is no pulse, perform chest compressions at 100/min, “push hard and push fast.”
 - In adults, provide 30 compressions and then 2 ventilations, whether 1 or 2 rescuers is present.
 - In children, if 1 rescuer is present, perform 30 compressions and then 2 ventilations; if 2 rescuers are present, give 15 compressions and then 2 ventilations. Depth of chest compression is 2 inches or 5 cm.
Advanced Cardiac Life Support Algorithms

Figure 10-1. ACLS Pulseless Arrest Algorithm

Pulseless Arrest
- BLS Algorithm: call for help, give CPR
- Give oxygen when available
- Attach monitor/defibrillator when available

1. Check rhythm
 - Shockable rhythm?
 - Give 5 cycles of CPR*
 - **Asystole/PEA**

2. Check rhythm
 - Shockable rhythm?
 - Give 1 shock
 - Manual biphasic: device specific (typically 120–200 J)
 - AED: device specific
 - Monophasic: 360 J
 - **Resume CPR**
 - Manual biphasic: immediately

3. Give 1 shock
 - Manual biphasic: device specific (same as first shock or higher dose; if unknown, use 200 J)
 - AED: device specific
 - Monophasic: 360 J
 - **Resume CPR immediately** after the shock
 - Epinephrine 1 mg IV/IO
 - Repeat every 3 to 5 min
 - May give 1 dose of vasopressin 40 U IV/IO to replace first or second dose of epinephrine

4. Give 5 cycles of CPR*

5. Check rhythm
 - Shockable rhythm?
 - **Asystole/PEA**

6. Continue CPR while defibrillator is charging
 - Give 1 shock
 - Manual biphasic: device specific (same as first shock or higher dose; if unknown, use 200 J)
 - AED: device specific
 - Monophasic: 360 J
 - **Resume CPR immediately** after the shock
 - Epinephrine 1 mg IV/IO
 - Repeat every 3 to 5 min
 - May give 1 dose of vasopressin 40 U to replace first or second dose of epinephrine

7. Give 5 cycles of CPR*

8. Continue CPR while defibrillator is charging
 - Give 1 shock
 - Manual biphasic: device specific (same as first shock or higher dose; if unknown, use 200 J)
 - AED: device specific
 - Monophasic: 360 J
 - **Resume CPR immediately** after the shock
 - Consider antiarrhythmics: give during CPR (before or after the shock)
 - Continuing magnesium for torsades de pointes
 - After 5 cycles of CPR,* go to Box 5

9. Asystole/PEA
 - Resume CPR immediately for 5 cycles
 - When IV/IO available, give vasopressor
 - Epinephrine 1 mg IV/IO
 - Repeat every 3 to 5 min
 - May give 1 dose of vasopressin 40 U IV/IO to replace first or second dose of epinephrine

10. Check rhythm
 - Shockable rhythm?

11. Not shockable
 - Check rhythm
 - Shockable
 - Give 5 cycles of CPR*

12. If asystole, go to Box 10
 - If electrical activity, check pulse
 - If no pulse, go to Box 10
 - If pulse present, begin postresuscitation care

13. Go to Box 4

Note

The key to successful CPR is excellent chest compressions without interruption.
CARDIAC DYSRHYTHMIAS

Asystole

A 54-year-old man is at the opera when he suddenly jumps up and clutches his chest. He falls to his side into the lap of the woman sitting next to him. After confirming that he is unresponsive, a nearby physician performs chest compressions and ventilations. An EKG is done and reveals no evidence of electrical activity.

Asystole is the complete absence of electrical activity in the heart. This does not necessarily mean a completely flat line on an EKG because there may be slight variability on the rhythm strip.

The most common causes of asystole are ischemia and severe underlying cardiac disease; less common causes include metabolic derangements, drug overdose, and trauma.

Clinical presentation includes an unresponsive person with asystole on EKG; there is no pulse. Always confirm asystole by observing the rhythm in more than one lead on EKG.

Treatment. As you continue cardiopulmonary resuscitation (CPR), obtain IV access and prepare the patient for intubation.

1. Consider transcutaneous pacing only for very slow bradycardia. Perform it as early as possible. Pacing is not for asystole.
2. Next, administer 1 mg epinephrine via IV push every 3–5 minutes. (*Atropine is no longer recommended for asystole.*)
3. If asystole persists, withhold resuscitative efforts in order to evaluate the presence of atypical clinical features or cease-effort protocol.

When you see asystole on the monitor, make sure of the following:

- There are no loose or disconnected leads
- The power to EKG machine and monitor is on
- There is not a low signal gain on the monitor

Note: Bicarbonate is useful if the cause of asystole is attributed to a preexisting acidosis (except hypercarbic acidosis), tricyclic antidepressant overdose, aspirin overdose, hyperkalemia, or diabetic ketoacidosis.
Ventricular Fibrillation

A 54-year-old man is at the opera when he suddenly jumps up and clutches his chest. He falls to his side into the lap of the woman sitting next to him. He is not breathing. After confirming that he is unresponsive, a nearby physician performs chest compressions and ventilations. An EKG is done and reveals ventricular fibrillation. He has no spontaneous respirations.

Ventricular fibrillation is significant electrical activity on EKG with no signs of an organized pattern. The most common causes are ischemia, myocardial infarction, cardiomyopathy, and severe underlying cardiac disease. Remember the “Hs and Ts.”

Presentation is a dead person with ventricular fibrillation on EKG. Diagnosis is entirely based on the EKG.

Treatment. The differences between defibrillation and cardioversion are very important.

- **Defibrillation** is a nonsynchronized delivery of shock at any phase of cardiac cycle. It is used in VF and pulseless VT. During defibrillation you depolarize all of the myocytes simultaneously, hoping that the SA node will start up normal sinus rhythm.

- **Cardioversion** is a synchronized shock with the QRS complex. When performing cardioversion, the defibrillator will not shock until the QRS complex appears. You will be able to see spikes over the QRS complexes on the monitor. If you shock on the T wave, when ventricular repolarization is taking place, you may induce VF.

Make sure that the SYN button is pushed when performing cardioversion. Use UNsynchronized shock (defibrillation) for VF or pulseless VT only.

![Figure 10-3. Ventricular Fibrillation](image)

Post-Resuscitation Care. Most patients who survive resuscitation have anoxic brain injury. Therapeutic hypothermia reduces the risk of this type of severe neurologic injury. Initiate it if a patient is not following commands or showing purposeful movements. The goal of the protocol is to reach core temperature 32–34 C (90–93 F) within 6 hours and maintain for 12–24 hours. This can be done with ice packs, cooling blankets, or cold IV fluids.

Absolute contraindications for induced hypothermia are active bleeding and do-not-resuscitate order.

Note

The exact mechanism of cardiovascular collapse in an individual is often impossible to establish since patients rarely have cardiac electrical activity monitored. Research has shown that VT or VF accounted for the majority of sudden cardiac death cases, with bradycardia or asystole accounting for the remainder.
Figure 10-4. Algorithm for Tachycardia with Pulses

1. TACHYCARDIA with Pulses
 - Assess and support ABCs as needed
 - Give oxygen
 - Monitor ECG (identify rhythm) blood pressure, oximetry
 - Identify and treat reversible causes

2. Symptoms Persist
 - Is patient stable?
 - Stable: Unstable signs include altered mental status, ongoing chest pain, hypotension, or other signs of shock. Note: rate-related symptoms uncommon if heart rate <150/min
 - Unstable: Perform immediate synchronized cardioversion
 - Establish IV access and give sedation if patient is conscious; do not delay cardioversion
 - Consider expert consultation
 - If pulseless arrest develops, see Pulseless Arrest Algorithm

3. Is QRS narrow (<0.12 sec)?
 - Narrow: Irregular narrow-complex tachycardia
 - Probable atrial flutter or possible atrial flutter or MAT (multifocal atrial tachycardia)
 - Consider expert consultation
 - Control rate (e.g., diltiazem, β-blockers; use β-blockers with caution in pulmonary disease or CHF)
 - Prepare for elective synchronized cardioversion
 - Consider antiarrhythmics
 - Wide (0.12 sec): Irregular atrial fibrillation with aberrancy, see irregular narrow-complex tachycardia (Box 11)

4. Does rhythm convert?
 - Converst: If ventricular tachycardia or uncertain rhythm
 - Amiodarone
 - Does Not Convert: If SVT with aberrancy
 - Give adenosine
 - Prepare for elective synchronized cardioversion
 - If recurrent polymorphic VT, seek expert consultation
 - If torsade des pointes, give magnesium

5. Establish IV access
 - Obtain 12-lead ECG (when available) or rhythm strip
 - Is QRS narrow (<0.12 sec)?

6. Narrow QRS:
 - Is rhythm regular?
 - Regular: Irregular narrow-complex tachycardia
 - Probable atrial fibrillation or possible atrial flutter or MAT (multifocal atrial tachycardia)
 - Consider expert consultation
 - Control rate (e.g., diltiazem, β-blockers; use β-blockers with caution in pulmonary disease or CHF)
 - Prepare for elective synchronized cardioversion
 - Consider antiarrhythmics
 - Irregular: If atrial fibrillation with aberrancy, see irregular narrow-complex tachycardia (Box 11)
 - Irregular: If pre-excited atrial fibrillation (AF + WPW), seek expert consultation
 - Avoid AV nodal blocking agents (e.g., adenosine, digoxin, diltiazem, verapamil)
 - Consider antiarrhythmics

7. Attempt vagal maneuvers
 - Give adenosine

8. Does rhythm convert?
 - Note: Consider expert consultation

9. If rhythm converts, probable reentry SVT (reentry supraventricular tachycardia):
 - Observe for recurrence
 - Treat recurrence with adenosine or longer-acting AV nodal blocking agents (e.g., diltiazem, β-blockers)

10. If rhythm does NOT convert, probable atrial flutter, ectopic atrial tachycardia, or junctional tachycardia:
 - Control rate (e.g., diltiazem, β-blockers; use β-blockers with caution in pulmonary disease or CHF)
 - Treat underlying cause

During evaluation:
- Secure, verify airway and vascular access when possible
- Consider expert consultation
- Prepare for cardioversion

11. If SVT with aberrancy
 - Give adenosine
 - Prepare for elective synchronized cardioversion

12. If atrial fibrillation with aberrancy, see irregular narrow-complex tachycardia (Box 11)

13. If pre-excited atrial fibrillation (AF + WPW), seek expert consultation
 - Avoid AV nodal blocking agents (e.g., adenosine, digoxin, diltiazem, verapamil)
 - Consider antiarrhythmics

14. If recurrent polymorphic VT, seek expert consultation
 - If torsade des pointes, give magnesium

*Note: If patient becomes unstable, go to Box 4.
Ventricular Tachycardia

A 54-year-old man is at the opera when he suddenly jumps up and clutches his chest. He falls to his side into the lap of the woman sitting next to him. He is awake but disoriented and confused. He is complaining of dyspnea and lightheadedness. His exam reveals jugulovenous distention and blood pressure 114/80 mm Hg. EKG shows ventricular tachycardia at rate 180 beats/min.

Ventricular tachycardia (VT) is a wide complex tachycardia with an organized, uniform pattern on the EKG. No P-waves are visible. It is most commonly caused by ischemia, myocardial infarction, and anatomic cardiac disease. Other possible etiologies include quinidine, tricyclics, phenothiazines, and long QT syndromes.

The dysrhythmia originates from an ectopic focus in the myocardium or from the AV node. When the impulse originates from around the AV node, this is from reentry. The electrical impulses must travel throughout the myocardium, from myocyte to myocyte, without the benefit of the more rapidly conducting normal pathways such as the bundle branches or His-Purkinje fibers.

The slowness of the conduction produces the slower and therefore wider complexes on EKG. The rate most often varies 160–240/min. **Torsade de pointes** is a form of VT in which the morphology varies with an undulating amplitude, making it seem that it “twists around a point.” Torsade may be associated with hypomagnesemia and preceded by **long QT interval**.

![Figure 10-5. Torsade (Polymorphic VT)](image)

Symptoms are often related to duration of the dysrhythmia. Short bursts of a few seconds may produce no symptoms at all. VT lasting >30 seconds is referred to as sustained VT. Symptoms include lightheadedness, hypotension, CHF, syncope, and death.

Diagnosis. The EKG shows the VT. For those patients presenting with syncope suspected to be of cardiac origin and in whom an arrhythmia is not visible on the initial EKG, an electrophysiologic study can be done to try to elicit the VT.

Note

Medications that prolong QT interval
- TCAs
- Antipsychotics
- Macrolides
- Methadone
- Fluoroquinolones
- Amiodarone
- Quinidine
- Class III: sotalol, ibutilide, dofetilide
- Procainamide

Causes of prolonged QT and Torsade
- Hypothyroidism
- Hypokalemia
- Hypocalcemia
- Congenital or prolonged QT syndrome

Note

Amiodarone is superior to lidocaine for VF/VT.
For patients with sustained monomorphic VT and are hemodynamically stable, after recording a 12-lead ECG, consider starting an IV anti-arrhythmic agent (amiodarone, lidocaine) and reserving electrical cardioversion for refractory patients who become unstable.

Treatment. For those with sustained VT and with a pulse who are hemodynamically unstable, immediate synchronized cardioversion is required. Signs of hemodynamic instability requiring cardioversion include hypotension, chest pain, altered mental status, and CHF. A lower dose of electricity, starting at 100 J, can be used at first for monomorphic VT. The cardioversion should be synchronized. Conscious patients should be sedated with midazolam, fentanyl, or morphine before cardioversion.

VT for those without a pulse should be managed in the same way as ventricular fibrillation (unsynchronized shock). Stable VT (wide, monomorphic, regular) without serious hemodynamic compromise can be treated medically with antiarrhythmics. Magnesium may be useful in general but it is most useful for Torsade de pointes; if it fails to treat Torsade, then try isoproterenol or lidocaine. Overdrive pacing can be used if pharmacologic treatment fails. Patients undergoing cardioversion should be sedated first with medications like midazolam, fentanyl, or morphine. Long-term therapy is most effective with beta-blockers. VT that produces sudden death or that is sustained through initial drug therapy may require the placement of an implantable cardiac defibrillator (ICD) or catheter ablation technique. All patients with ejection fraction <35% should have ICD due to increased risk of VT and VF.

Pulseless Electrical Activity

Pulseless electrical activity (PEA) is hypotension to the point of losing one's pulse; there is still some type of electrical activity on the EKG that may even be normal or a simple tachycardia. More than the other dysrhythmias, knowing the etiology PEA is the key to the therapy because the specific therapies are so divergent.

Essentially, the heart may still be beating, but there is no blood in the heart, and therefore there is no cardiac output. Causes of PEA are severe hypovolemia, cardiac tamponade, tension pneumothorax, massive pulmonary embolism, and a massive myocardial infarction. Other causes in which there may not be actual muscular contraction are hypoxia, hypothermia, potassium disorders, acidosis, and drug overdoses with tricyclics, digoxin, beta-blockers, or calcium-channel blockers.

The patient appears to be dead with no pulse. Other symptoms are based on the specific nature of what led to the PEA, such as those described. Diagnosis is made with a pulseless patient who has significantly organized, and occasionally normal, activity on EKG.

Treatment. The most important action is to maintain CPR while determining the specific origin of the PEA. General therapy includes CPR, IV access, intubation, and epinephrine. Do not shock PEA arrest. The most important therapy is repair of the cause. Bicarbonate is useful.
if a known acidosis has caused the arrest; it can also be used in a prolonged resuscitation if severe lactic acidosis develops and causes the refractory state of arrest.

Clinical Recall

Which of the following disorders is not an indication for cardioversion?

A. Atrial fibrillation
B. Atrial flutter
C. Electromechanical dissociation
D. Ventricular tachycardia

Answer: C

Atrial Dysrhythmias

A 24-year-old medical student is brought to the emergency department because of palpitations. He has been studying vigorously for the USMLE Step 2 exam and has been up for the last 24 hours. He has had 5 cups of coffee, 4 beers, 3 stimulant tablets, 2 cheeseburgers, and 1 sildenafil (Viagra). Electrocardiogram reveals an atrial dysrhythmia.

Atrial fibrillation (A-fib), atrial flutter, and supraventricular tachycardia (SVT) are all characterized by an ectopic focus in the atrium or re-entry at the AV node.

- All have normal conduction in the ventricular myocardium once the impulse successfully passes the AV node and travels down the normal ventricular conduction system.
- All have a normal or narrow QRS complex and the absence of a normal P-wave.
- A-fib is caused by chronic hypertension (most common), but valvular heart disease (most often mitral valve pathology), left ventricular hypertrophy, cardiomyopathy, atrial fibrosis, atrial dilation, CAD, and CHF are other causes. Another cause is toxicity causing overstimulation of the heart, i.e., hyperthyroidism, pheochromocytoma, caffeine, theophylline, alcohol, and cocaine. Drug toxicity (such as digoxin), pericarditis, pulmonary embolism, surgery, chest wall trauma, or ischemia can also cause atrial dysrhythmias.
- SVT is caused by a re-entrant mechanism around or within the AV node.

Clinical Presentation. Symptoms vary on the basis of the duration of the disorder, the ventricular rate, and the underlying health of the heart.

- With a normal heart, only 10–20% of cardiac output is directly derived from the contribution of atrial systole.
- With a dilated or postinfarction heart, or with significant valvular disease, this contribution may rise to 30–40%, in which case more severe symptoms arise: from

Note

A-fib, atrial flutter, and SVT are discussed as a group because their initial management has considerable overlap.
complete absence to palpitations to lightheadedness, hypotension, disorientation, CHF, and syncope.

- Rate-related symptoms are unlikely in those with heart rate <150 per minute in atrial dysrhythmia.

Narrow complex tachycardia is always atrial in origin (QRS <0.12 sec). Wide complex tachycardia can be atrial or ventricular. For example, it is very difficult to distinguish A-fib in the presence of LBBB and VT. The key is that in A-fib with LBBB, the rate is irregular on EKG, whereas in VT it is regular. If in doubt, treat as VT.

Diagnosis. Initially, the diagnosis is based entirely on the EKG. Other patients may need a 24–72 hour Holter monitor to detect brief paroxysms of the dysrhythmia not seen on the initial brief EKG.

Note

- Narrow complex tachycardia is always atrial in origin (QRS <0.12).
- Wide complex tachycardia can be atrial or ventricular in origin.

Figure 10-7. Normal Sinus Rhythm

Figure 10-8. Atrial Tachycardia

Figure 10-9. Atrial Flutter
Treatment. Initial therapy is based on whether there are signs/symptoms of severe hemodynamic compromise, such as hypotension, confusion, CHF, or chest pain. If there are signs, perform immediate synchronized cardioversion.

If the patient is hemodynamically stable, then the first step is to control the ventricular rate. For SVT, a vagal maneuver such as carotid sinus massage, Valsalva, or ice water immersion is most effective.

- The modified Valsalva maneuver is more effective than the standard technique: do Valsalva followed by supine repositioning and immediate passive leg raise.
- Do not do carotid sinus massage bilaterally.
- Do not do carotid massage on patients with carotid bruits.

If vagal maneuvers do not work, treat SVT with several rapid IV infusions of adenosine. (Do not use adenosine in patients with asthma or COPD, as it can cause bronchospasms.)

If adenosine is not effective, use a calcium-channel blocker (diltiazem or verapamil), beta-blocker, or digoxin to slow the heart rate.

- Try to avoid verapamil in patients with severe left ventricular dysfunction and low ejection fraction.
- Be cautious using beta-blockers in patients with a history of reactive airway disease.

After the rate has been lowered ≤110/min, conversion of the rhythm to normal sinus does not need to be routinely done. Chronic rate control with anticoagulation with warfarin to INR 2–3 is superior to converting the patient into sinus rhythm. Returning the patient to a normal sinus rhythm is preferable because chronic A-fib can result in embolic stroke (5–7% of patients per year).

Amiodarone, ibutilide, propafenone, and dofetilide can all convert a minority of patients to sinus rhythm. (At the level of the Step 2 exam, you will not need to know much about the specific indications for each, though you will need to know that elective cardioversions should be preceded and followed by several weeks of anticoagulation with warfarin.)

Avoid adenosine in asthma and COPD, as it can cause bronchospasms.

Rate Control vs. Rhythm Control. When patients present in A-fib with rapid ventricular response, hemodynamic stability must first be determined.

- If hemodynamically stable: rate-control with AV nodal blocking agents
- If unstable, do immediate synchronized cardioversion

Note
Palpitations and lightheadedness are not signs of hemodynamic compromise.

Note
For patients with A-fib and flutter, give rate control treatment plus anticoagulation (aspirin, warfarin, etc). When warfarin is used, optimal INR therapeutic range is 2.0–3.0.
With long-term management, rate control and anticoagulation are preferred over rhythm control. Consider rhythm control for the following:

- Symptomatic patients on rate control (poor exercise tolerance)
- Younger patients with normal heart structure and function
- Patients unable to be rate controlled with AV nodal blocking agents

It is very difficult to keep patients with structural heart disease in normal sinus rhythm. Several studies have shown an increase in overall mortality with rhythm control. Catheter-directed ablation of the AV node or accessory pathway may be used when pharmacological treatment fails to control rate.

The rate control goal is HR <110/min. Diltiazem, beta blockers, verapamil, and digoxin may help.

- Most patients require combined therapy: beta blockers with digoxin have been shown to be best combination
- In patients with decompensated CHF: use digoxin first and amiodarone as second-line therapy; start beta blockers once patient is euvolemic on exam but use caution

Agents for chemical cardioversion in A-fib include amiodarone, dofetilide, flecainide, ibutilide, propafenone. In CHF patients, use amiodarone and dofetilide only.

Agents for maintaining sinus rhythm include flecainide, propafenone, sotalol, dronedarone, dofetilide, and amiodarone. To maintain normal sinus rhythm in CHF patients, use only amiodarone or dofetilide. In patients with coronary artery disease and normal EF, dofetilide, dronedarone, and sotalol are first line over amiodarone.

The CHADS2−VASc score is used to determine if a patient with non-valvular A-fib needs anticoagulation.

<table>
<thead>
<tr>
<th>CHADS2 Score</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nothing</td>
</tr>
<tr>
<td>1</td>
<td>Give aspirin or anticoagulation</td>
</tr>
<tr>
<td>≥2</td>
<td>Give anticoagulation</td>
</tr>
</tbody>
</table>

Dabigatran is an oral direct thrombin inhibitor shown to reduce the incidence of ischemic stroke compared with warfarin, with similar rates of bleeding. Rivaroxaban is an oral factor Xa inhibitor. For anticoagulation, use Coumadin, dabigatran, or rivaroxaban. Apixaban, another oral factor Xa inhibitor, may be used instead of Coumadin for stroke prophylaxis in patients with a-fib and high risk of stroke (CHADS2 score ≥2).

All 3 drugs—dabigatran, rivaroxaban, and apixaban—lead to similar or lower rates both of ischemic stroke and major bleeding compared to Coumadin; there is no need for monitoring INR.

Other advantages of these newer agents include convenience (no requirement for routine testing of the international normalized ratio), 50% less intracranial bleed than warfarin, and less susceptibility to dietary and drug interactions. Disadvantages include lack of an antidote and the potential that new side effects may be seen over time.
For patients undergoing elective cardioversion, first determine if they have been in A-fib for >48 hours. If they have, there are 2 options:

- Transesophageal echo can be done to exclude a clot; then, cardioversion (electrical or chemical). Cardioversion should be followed by 6 weeks of Coumadin.

- Coumadin can be administered for 3 weeks before electrical or chemical cardioversion. Cardioversion should be followed by another 6 weeks of Coumadin.

It is very difficult to maintain patients with structural heart disease in NSR, and most convert back into atrial fibrillation. Atrial flutter is managed the same way as atrial fibrillation.

For patients in A-fib with Wolff-Parkinson-White syndrome, administration of drugs which slow AV node conduction (Ca-channel blockers, digoxin) is strongly contraindicated as they can induce VT. Procainamide, ibutilide, flecaïnide, or amiodarone can be used in such cases.

If none of the medications described can successfully convert the patient to a normal sinus rhythm, then elective electrical cardioversion can be attempted. This too must be preceded and followed by several weeks of anticoagulation if the A-fib has been present for >48 hours. Transesophageal echo can be done to exclude a clot and allow the cardioversion without preconversion anticoagulation. Neither medical nor electrical cardioversion can permanently maintain the majority of patients on sinus rhythm. Most convert back into atrial fibrillation.

Bradycardia

A 48-year-old manager comes for advice about vaccinations and travel medicine before traveling to a far-off land. He feels well and has no symptoms. He takes no medications. On examination you find a blood pressure 118/76 mm Hg and pulse 40/min.

Bradycardia is a slow heart with rate <60 beats/min.

- **Sinus bradycardia** can be a normal phenomenon, particularly in trained athletes. Medications such as beta-blockers can cause it without serious sequelae. Symptomatic sinus bradycardia from sinus node disease can be from degeneration of the node or from ischemia.

- **More serious types of bradycardia** can be from Mobitz type II second-degree heart block and third-degree (complete) heart block. These can occur secondary to ischemic damage of the AV node. Other causes are myocarditis, infiltrative disease, such as amyloidosis or sarcoidosis, or neoplasms.

Clinical presentation can range from the lifelong absence of symptoms to severe symptoms of hypotension and decreased cardiac output. Diagnosis is made with EKG.
Note
Mobitz type I second-degree block is characterized by progressive P-R lengthening, whereas in Mobitz-type II, the P-R interval remains constant.

Figure 10-11. First-Degree Heart Block

Figure 10-12. Second-Degree Heart Block

Figure 10-13. Complete Heart Block

Note
In the acute setting, transcutaneous pacing is always preferred over transvenous pacing.

Note
If the patient is on a beta blocker, give glucagon. If the patient is on a calcium channel blocker, give calcium.

Note
If asymptomatic sinus bradycardia, first-degree AV block, and Mobitz type I (Wenckebach) second-degree AV block often need no specific therapy. Any form of severe symptomatic bradycardia is treated initially with atropine and then a pacemaker, if there is no improvement in symptoms.

Mobitz type II second-degree block and third-degree block require the placement of a pacemaker, even in the absence of symptoms. Dopamine or epinephrine is used to improve blood pressure if there is still hypotension after the use of atropine.

For symptomatic sinus bradycardia, treatment is atropine. If atropine fails, then use transcutaneous pacing.

Treatment. Asymptomatic sinus bradycardia, first-degree AV block, and Mobitz type I (Wenckebach) second-degree AV block often need no specific therapy. Any form of severe symptomatic bradycardia is treated initially with atropine and then a pacemaker, if there is no improvement in symptoms.

Mobitz type II second-degree block and third-degree block require the placement of a pacemaker, even in the absence of symptoms. Dopamine or epinephrine is used to improve blood pressure if there is still hypotension after the use of atropine.

For symptomatic sinus bradycardia, treatment is atropine. If atropine fails, then use transcutaneous pacing.
Chapter 10 Emergency Medicine

BRADYCARDIA
Heart rate <60 bpm and inadequate for clinical condition

2

• Maintain patent airway; assist breathing as needed
• Give oxygen
• Monitor ECG (identify rhythm), blood pressure, oximetry
• Establish IV access

3

Signs or symptoms of poor perfusion caused by the bradycardia?
(e.g., acute altered mental status, ongoing chest pain, hypotension, or other signs of shock)

4A

Observe/Monitor

| Adequate Perfusion | Poor Perfusion |

Reminders
• If pulseless arrest develops, go to pulseless arrest algorithm
• Search for and treat possible contributing factors:
 – Hypovolemia
 – Hypoxia
 – Hydrogen ion (acidosis)
 – Hypo-/hyperkalemia
 – Hypoglycemia
 – Hypothermia
 – Toxins
 – Tamponade, cardiac
 – Tension pneumothorax
 – Thrombosis (coronary or pulmonary)
 – Trauma (hypovolemia, increased ICP)

4

• Perfect for transcutaneous pacing; use without delay for high-degree block (type II second-degree block or third-degree AV block)
• Consider atropine while awaiting pacer; if ineffective, begin pacing
• Consider dopamine infusion while awaiting pacer or if pacing ineffective and blood pressure is low

5

• Prepare for transvenous pacing
• Treat contributing causes
• Consider expert consultation

Figure 10-14. Algorithm for Bradycardia
Clinical Recall

Which of the following medications causes a prolongation of QT interval?

A. Amoxicillin
B. Erythromycin
C. Isoniazid
D. Vancomycin

Answer: B

TOXICOLOGY

A 25-year-old medical student goes home after class and finds no messages on the answering machine from his girlfriend. In a fit of despair he takes a full bottle of pills in an attempt to commit suicide. He takes the label off the bottle to prevent any attempt to reverse the poisoning through the identification of the specific agent. Immediately after doing this, his girlfriend calls, after which he runs to the nearest emergency department and states that he has changed his mind and wants to live after all. He walks into the emergency department 30 minutes after the ingestion. He won't tell you the specific name of what he took and wants to know what is the next best thing to do.

The initial evaluation of a patient who has been poisoned involves attempting to find out the nature of the toxin ingested. At the same time, history and physical examination can provide clues to the nature of the toxin. In the patient described here, the key issue is the short time between the ingestion and his arrival in the emergency department. He is awake.

Toxidromes

Toxidromes are clinical syndromes which suggest a specific class of poisoning, each with associated physical findings:

- Clonidine, barbiturates, opiates, cholinergics, pontine stroke: **miosis**
- Sympathomimetics, anticholinergics: **mydriasis**
- Anticholinergics: dry skin
- Cholinergics, sympathomimetics: wet skin
- Barbiturates, carbon monoxide poisoning: blisters
Toxic Ingestion or Overdose

Gastric emptying is rarely, if ever, utilized. In ingestion of an unknown type, perform a urine or blood toxicology screen, but do not delay the administration of antidotes, charcoal, or gastric emptying (rarely needed).

- **Activated charcoal** (mainstay of therapy). Give every 2–4 hours to block further absorption of the substance and accelerate the removal of toxins already absorbed by the body. Charcoal is safe for all patients.

- **Induced vomiting.** Ipecac can be used only within 1–2 hours after ingestion, so it has no use in the hospital setting. Very few people arrive within the first hour. Therefore, it is more useful for ingestions in the home, where the time period since ingestion is short and there are no other effective modalities available. Ipecac is never recommended for children.

- **Lavage.** Gastric emptying with a large-bore (37–42 French) oropharyngeal hose (e.g., Ewald tube) should be used only in those with an altered mental status because of possible aspiration. Lavage should therefore be preceded by endotracheal intubation in most cases. The exact indications for lavage are not clear, but the contraindications are very clear.
 - Useful only within the first hour after ingestion, and thus rarely used
 - Decreases absorption by 52% at 5 min, 26% at 30 min, and 16% at 60 min
 - Contraindicated with the ingestion of caustic substances such as acid or alkalis

- **Whole bowel irrigation.** For large-volume pill ingestion where the pills can be seen on an x-ray, whole bowel irrigation can be effective. A gastric tube is placed and high-volume (1–2 liters per hour) GoLYTELY (polyethylene glycol) is administered until the bowel movements run clear.

- **Dialysis.** Dialysis is rarely necessary because the time delay to its initiation limits its efficacy. If it is necessary, hemodialysis is 20x more efficacious at removing drugs from the body than peritoneal dialysis. Dialysis is the best option when there are profoundly serious symptoms such as coma, hypotension, or apnea, especially when renal or hepatic failure limits the usual means of excreting substances from the body.

- **Cathartics.** Cathartics are useful when used with charcoal administration. Otherwise, they are almost never helpful. When cathartics appear in an exam question, they are generally the wrong answer.

- **Forced diuresis.** Alkaline diuresis can help eliminate salicylates and phenobarbital. Otherwise, simply making the patient urinate in high volumes is not helpful. Except for salicylates and phenobarbital, forced diuresis is generally the wrong answer in an exam question.

- **Naloxone/dextrose/thiamine.** These agents should be given first to anyone presenting with altered mental status or coma. They are particularly useful when a toxin ingestion produces confusion. Naloxone has almost no adverse effects and works instantly; because of its rapid response, it is both therapeutic and diagnostic. Dextrose is also very effective at preventing permanent brain damage from hypoglycemia. It does not matter whether the dextrose or thiamine is given first.

Note

- Ipecac is never used by physicians.
- Lavage has almost no utility.

Note

Charcoal does not bind to some substances (PHAILS):
- Pesticides
- Heavy metals
- Acid/alkali/alkohol
- Iron
- Lithium
- Solvents

Note

Substances/drugs that may require hemodialysis for removal include (ISTUMBLE):
- Isopropanol
- Salicylates
- Theophylline
- Uremia
- Methanol
- Barbbituates
- Lithium
- Ethylene glycol
Treat any toxin-related seizure with benzodiazepines as first-line therapy. If not effective, use barbiturates next. Phenytoin and fosphenytoin are not indicated or even effective for this type of seizure.

Toxicology Screen

Toxicology screen is a testing used to determine the approximate amount and type of legal and/or illegal drugs a person has taken. It is used to screen for drug abuse, monitor a substance abuse problem, and evaluate drug intoxication for overdose.

- The best initial test in toxicology screen is the urine immunoassay (qualitative test). Typically screened are alcohol, cocaine, PCP, amphetamines, and cannabinoids.
- The confirmatory test is gas chromatography/mass spectrometry, which provides qualitative analysis and allows identification of the specific drug or its metabolites.

Toxicology screen must be done within a certain amount of time after the drug is taken, or while metabolites can still be detected in the body. Some examples of clearance time are:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Clearance time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>3–10 hrs</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>24–48 hrs</td>
</tr>
<tr>
<td>Barbiturates</td>
<td>up to 6 wks</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>up to 6 wks with heavy use</td>
</tr>
<tr>
<td>Cocaine</td>
<td>2–4 days; up to 10–22 days with high level use</td>
</tr>
<tr>
<td>Codeine</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Heroin</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Methadone</td>
<td>2–3 days</td>
</tr>
<tr>
<td>Morphine</td>
<td>1–2 days</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>1–8 days</td>
</tr>
<tr>
<td>Tetrahydrocannabinol (THC)</td>
<td>6–11 wks with heavy use</td>
</tr>
</tbody>
</table>

ACETAMINOPHEN

A 38-year-old man comes to the emergency department 4 days after ingesting a full bottle (60 tablets) of acetaminophen (500 mg each). He complains of vomiting and right upper quadrant pain. Bilirubin, AST, and prothrombin time are all elevated.

Acetaminophen is one of the few toxins about which precise toxicity levels are known; the ingestion of ~140 mg per kg is usually sufficient to cause serious toxicity. In other words, in an average-sized, 70-kg (154-lb) person, ~7–10 grams is enough to produce toxicity, and fatalities can occur >12–15 grams. In those with liver disease or concomitant alcohol abuse and thus depleted glutathione stores, the hepatotoxic dose is less (4 grams/day).
Clinical Presentation.

- **Stage I (first 12–24 hrs):** As with most large-dose pill ingestions, initial symptoms are nausea and vomiting, caused mostly from a gastritis due to irritation from the pills.

- **Stage II (24–72 hrs):** An asymptomatic period often follows, as the acetaminophen is metabolized and part of the drug is converted to a toxic metabolite.
 - Starting at 24–48 hrs, subclinical elevation of the transaminases and bilirubin develops.
 - At 48–72 hrs post-ingestion, clinically symptomatic signs of liver damage begin: more nausea, jaundice, abdominal pain, and signs of hepatic encephalopathy, renal failure, and death.

Diagnosis. A clear history of a large volume of acetaminophen ingestion is initially sufficient to establish a diagnosis that warrants therapy with N-acetyl cysteine (NAC). Starting at 4 hours after ingestion, when most of the drug has been absorbed, drug levels are reliable. A nomogram based on relating the drug level to the time of ingestion is necessary to determine who will develop toxicity. In other words, a level by itself is not enough to determine who will develop toxicity. A certain level at 5–6 hours may not be toxic, but the same level at 10–12 hours post-ingestion may lead to the development of liver failure.

- Elevated AST is more common than elevated ALT. If a patient is known for alcohol abuse and presents with AST and ALT >1,000 U/L, the diagnosis is more likely to be acetaminophen toxicity than alcoholic hepatitis. Give NAC in such cases.

- Elevated bilirubin and prothrombin time indicate severe toxicity and hepatic necrosis. Studies show that NAC administration within the first 8 hours of severe drug poisoning improves liver microcirculation and prevents the need for liver transplant.

Treatment. NAC is preferably given within 8 hours of ingestion, when it is most effective. If >24 hours has elapsed since ingestion, there is no specific therapy which can prevent or reverse the toxicity, but always still give NAC. Give activated charcoal in repeated doses. Do not use gastric emptying because it will delay the administration of NAC as a specific antidote.

ALCOHOLS

At the opera, you go to see the Three Tenors, who exhibit confusion, ataxia, lethargy, drowsiness, and slurred speech; which is to say, you have really gone to see the Three Drunken Tenors. How would you distinguish between the tenors drunk on methanol or ethylene glycol from those drunk on simple ethanol?

Methanol (wood alcohol) is found in paint thinner, sterno, photocopier fluid, solvents, and windshield washer solution. Ethylene glycol is found in automotive antifreeze. All of the alcohols are metabolized by alcohol dehydrogenase, which then metabolizes methanol to formaldehyde and formic acid. Ethylene glycol is metabolized partially to oxalic acid and oxalate, which leads to kidney damage.
Clinical Presentation. Methanol, ethylene glycol, ethanol, and isopropyl alcohol can all produce intoxication.

- Methanol is characteristically associated with visual disturbances up to and including blindness from the production of formic acid.
- Ethylene glycol is distinguished by the development of renal failure and oxalate crystals and stones in the urine.
- Isopropyl alcohol ingestion is distinguished only once a specific drug level is done by the history or once acidosis has developed in the absence of an elevated anion gap.

Diagnosis. Determining specific levels of each alcohol is the most specific test.

- Methanol and ethylene glycol will be characterized by an increased serum osmolar gap and metabolic acidosis with an elevated anion gap.
- Ethylene glycol is characterized by oxalate crystals in the urine, increasing BUN/creatinine, or urine fluorescence (add fluorescein to the urine and observe with ultraviolet Wood’s lamp). Hypocalcemia may also be present.
- Isopropyl alcohol will produce an osmolar gap without an increased anion gap.

Treatment. Fomepizole (alcohol dehydrogenase inhibitor) is the drug of choice; it inhibits the production of toxic metabolites without leading to intoxication. Consider dialysis for those with severe anion gap metabolic acidosis or signs of end-organ damage (coma, seizures, renal failure).

In the past, methanol and ethylene glycol intoxication were treated with ethanol infusion (to prevent the production of the toxic metabolites), followed by hemodialysis to remove the substance from the body.

CARBON MONOXIDE

You are the chief resident at a metropolitan training program at the time of a fire at a large office building. A total of 2,500 people come to the emergency department to be treated for smoke inhalation. Among them is a 68-year-old man with a history of aortic stenosis who had to walk down 90 flights of stairs. What is the most important initial test for this man?

Poisoning with carbon monoxide (CO) occurs by exposure to burning materials (gasoline, wood, natural gas) and by entrapment in fires and smoke inhalation. CO itself is odorless and tasteless. CO poisoning is common, potentially fatal, and underdiagnosed because of its non-specific clinical presentation.

- CO binds to hemoglobin 200x more avidly than oxygen.
- Carboxyhemoglobin decreases release of oxygen to tissues and inhibits mitochondria, resulting in tissue hypoxia and anaerobic metabolism (similar to what would occur with anemia).

Clinical Presentation.

- Pulmonary symptoms include dyspnea, tachypnea, and shortness of breath.
- Cardiac symptoms include chest pain, arrhythmia, and hypotension.
• Early neurologic symptoms include headache (most common), nausea, blurry vision, and dizziness, while late symptoms include confusion, seizures, impaired judgment, and syncope.

Carboxyhemoglobin (COHb) levels indicate the severity of the exposure.

<table>
<thead>
<tr>
<th>COHb Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><10%</td>
<td>Levels up to 10% may occur in city dwellers who are smokers</td>
</tr>
<tr>
<td>20–30%</td>
<td>Mild symptoms</td>
</tr>
<tr>
<td>30–50%</td>
<td>Moderate to severe symptoms</td>
</tr>
<tr>
<td>>50–60%</td>
<td>May be fatal</td>
</tr>
</tbody>
</table>

Carbon monoxide pulse oximetry is the initial diagnostic test for suspected CO poisoning, as it provides a way to measure carboxyhemoglobin. Routine pulse oximetry is not helpful.

Influenza is the most common misdiagnosis because most people present during wintertime. When an entire family presents with “flu” symptoms without fever, think CO poisoning.

• Arterial or venous blood gases: metabolic acidosis is present from the failure of carboxyhemoglobin to release oxygen to tissues; pO₂ will be normal
• CPK may be elevated.

The first step in treatment is removal from the source of exposure and 100% oxygen administration. Give hyperbaric oxygen in severe cases: COHb >25% (pregnant women >15%); myocardial ischemia; EKG changes; CNS abnormalities other than headache or chest pain.

In room air, carbon monoxide has a half-life of 4–6 hours, which decreases to 40–80 minutes on 100% oxygen and to 15–30 minutes with hyperbaric oxygen.

CAUSTICS/CORROSIVES

Caustics/corrosives are the oral ingestion, inhalation, or cutaneous or ocular contact with various corrosive substances. The most common household **acids** are various toilet, drain, swimming pool, and metal cleaners. The most common **alkali** ingestions or exposures are from liquid and crystalline lye, dishwasher detergent, hair relaxer, and oven cleaner. The most common serious injury is from the oral ingestion of liquid drain cleaner.

Symptoms from ingestion injury include the following:

• Oral pain
• Drooling
• Odynophagia
• Abdominal pain
• Possible esophageal injury with subsequent stricture formation (from either acid or alkali ingestion)
• Possible gastric perforation

In most circumstances, **alkali exposures are more serious than acid exposures**, since alkaline substances are more destructive to tissues.

The history of exposure with subsequent characteristic injury is sufficient to establish the diagnosis. Upper endoscopy is critical for determining the extent of the injury.

Note

CO poisoning initially presents just like hypoglycemia. If fingerstick glucose is normal, that should raise your suspicions.

Note

Corrosive refers to any chemical that will dissolve the structure of an object. They can be acids or bases, meaning when they come into contact with a surface, the surface deteriorates.

Caustic is sometimes used as a synonym for corrosive but really only refers to strong bases, not acids.
Treatment. Management of both acid and alkali caustic ingestions is essentially the same.

• Wash out the mouth immediately with large volumes of cold water.
• Irrigate ocular exposures with large volumes of saline or water, followed by fluorescein staining to determine if there is significant corneal injury.
• Do not induce emesis with acid or alkaline ingestion because it can worsen the injury. Simply give water.
• Do not try to neutralize the acid with a base or a base with an acid because a heat-producing reaction can occur, which would destroy more tissue.
• Charcoal is not useful, nor are steroids or prophylactic antibiotics.

DRUGS OF ABUSE

Opiates

Opiate toxicity is predominantly respiratory related, via depressant effects upon the respiratory centers in the brain stem. Death can occur through acute respiratory acidosis. In addition to their analgesic and euphoric effects, opiates also cause pupillary constriction, constipation, bradycardia, hypothermia, and hypotension.

Opiates can be rapidly reversed by naloxone. Since opioids decrease gastric emptying by relaxation of smooth muscle, gastric lavage may be used in cases of overdose with oral agents.

Although withdrawal of opiates is uncomfortable, it is not fatal. It is usually treated with methadone or buprenorphine. Opiate withdrawal symptoms are the following.

• 3–4 hours: fear, anxiety, drug craving
• 8–14 hours: insomnia, yawning, rhinorrhea, diaphoresis, mydriasis, anxiety
• 1–3 days: tremor, muscle spasms, vomiting, diarrhea, tachycardia, chills, piloerection

Cocaine

Cocaine blocks the reuptake of norepinephrine and other catecholamines at the synapse. This leads to a wide variety of euphoric and toxic effects. Amphetamines work in a similar way but are less likely to produce severe toxicity or death. Severe toxicity from cocaine is far more likely with smoked (“crack”) or injected cocaine rather than snorted (inhaled).

Clinical Presentation. Toxic effects of cocaine are related to a very significant alpha-adrenergic stimulatory effect, resulting in the following (may lead to death):

• Very high BP
• Hemorrhagic stroke
• Subarachnoid hemorrhage
• Myocardial infarction
• Arrhythmia
• Seizures
• Metabolic acidosis, rhabdomyolysis, and hyperthermia in some cases
• Pulmonary edema (specific to smoked cocaine)
Treatment. There is no specific drug to reverse cocaine toxicity. Benzodiazepines such as diazepam are used to control acute agitation. Combined alpha/beta agents such as labetalol or alpha-blockers such as phentolamine are useful to control hypertension. Avoid pure beta-blockers because they lead to unopposed alpha stimulatory effects.

Cocaine withdrawal can cause depression as a result of the norepinephrine depletion. There is limited physiologic withdrawal from cocaine.

Benzodiazepines
Benzodiazepines (BZDs) produce somnolence, dysarthria, ataxia, and stupor. Very infrequently, they lead to death from respiratory depression; most deaths are associated with ethanol or barbiturate ingestion.

Patients receiving prolonged parenteral administration of BZDs are at risk for propylene glycol poisoning (used in parenteral formulations of diazepam and lorazepam). Rarely, this may cause hypotension, cardiac dysrhythmias, lactic acidosis, seizures, or coma.

Treatment. Good supportive care and monitoring are the foundation of treatment. As with any overdose, the first step is to stabilize the patient’s airway, breathing, and circulation.

- Flumazenil is a specific antidote for BZD poisoning, although its use in acute BZD overdose is controversial.
- In long-term BZD users, flumazenil may precipitate withdrawal and seizures.
- In BZD use for a medical condition, flumazenil may exacerbate the condition.

BZD withdrawal can be similar to the symptoms of alcohol withdrawal. Although rare, deaths have been reported from severe withdrawal. The recommendation for treatment of severe forms of withdrawal is the administrations of BZDs.

Barbiturates
Barbiturates are a class of drugs with various long- and short-acting agents. Massive overdose can result in death from respiratory depression or CNS depression.

- Can cause hypothermia, loss of deep tendon reflexes, and loss of corneal reflexes
- Could result in a coma simulating brain death
- May lead to absent EEG activity
- Withdrawal may result in seizures similar to alcohol or benzodiazepine withdrawal
- Have no specific antidote, although urinary excretion of phenobarbital can be increased with the use of bicarbonate (similar to treatment for salicylate intoxication)

Hallucinogens
Hallucinogens include a variety of agents such as marijuana, LSD, mescaline, peyote, and psilocybin. Although they may cause delirium and bizarre behavior, the adverse effects are often limited to their anticholinergic effects: flushed skin, dry mouth, dilated pupils, and urinary retention.

The only hallucinogen associated with a potentially fatal outcome is the artificially created, dissociative, anesthetic phencyclidine (PCP or “angel dust”), which may cause seizures.

Treatment for severe hallucinogen intoxication is with benzodiazepines.
Clinical Recall

A 19-year-old man is brought to the emergency room in an unconscious state after consuming an unknown substance at a party. The initial management of this patient should involve which of the following?

A. CT scan of the brain
B. Intubation
C. IV insulin
D. Naloxone/dextrose/thiamine
E. Video EEG

Answer: D

HEAVY METALS

Lead

Up to 12 million preschool children per year may be affected by lead in the United States. Lead is ingested from paint, soil, dust, drinking water, and in the past from gasoline. Lead poisoning is primarily a chronic condition, not acute.

- Can be absorbed by inhalation, from the skin, or from the GI tract (increased by deficiencies of zinc, iron, and calcium)
- Is primarily excreted through urine (80–90%), with the remainder through stool

Clinical Presentation

- Adults: abdominal pain, anemia, renal disease, azotemia, neurologic manifestations such as headache and memory loss; possible hypertension
- Children:
 - Acute: abdominal pain, anemia, lethargy, seizures, coma
 - Chronic: irreversible neurologic damage such as mental retardation and poor cognitive/behavioral function

Blood lead level is the key to diagnosis, with <10 µg/dL considered acceptable. In children, “lead lines” are densities seen at the metaphyseal plate of the long bones, indicating long-term exposure.

Treatment. Treatment includes chelation with calcium EDTA, dimercaprol (BAL), penicillamine, or succimer (oral therapy). Urine output should be maintained at 1–2 mL/kg/hr to aid in maximal excretion.

Management of lead toxicity/poisoning should be done according to blood lead level:

- Mild (5–44 mcg/dL): no treatment needed; repeat level in 1 month
- Moderate (45–69 mcg/dL): 2,3 dimercaptosuccinic acid (DMSA)
- Severe (≥70 mcg/dL): DMSA + EDTA (calcium disodium edetate)

Note

Lead is primarily excreted in urine and bile.

Note

Think lead in patients who have both microcytic anemia and abdominal pain.
LITHIUM

Lithium is a commonly used medication for the treatment of bipolar disorder and acute mania. Although effective, it has a narrow therapeutic window and is associated with toxicity. There are 2 main types:

• In **acute poisoning**, patients do not have a lithium burden
 - Symptoms are primarily GI, with nausea, vomiting, cramping, and possible diarrhea
 - Progression can involve neuromuscular signs: tremulousness, dystonia, hyperreflexia, and ataxia
 - Most common electrocardiographic finding is T-wave flattening

• In **chronic poisoning**, patients have a large body burden of lithium
 - Symptoms are primarily neurologic, with mental status often altered
 - Progression can lead to coma and seizures if diagnosis is unrecognized
 - May be difficult to treat
 - Usually precipitated by introduction of new medication which may impair renal function or cause hypovolemic state

Three major drug classes have been identified as **potential precipitants of lithium toxicity**:

• Diuretics which promote renal sodium wasting
• ACE inhibitors which reduce glomerular filtration rate (GFR) and enhance the tubular reabsorption of lithium
• NSAIDs which reduce the GFR and interrupt renal prostaglandin synthesis

Systemic effects include renal toxicity:

• Nephrogenic diabetes insipidus (most severe manifestation)
• Impaired sodium and water absorption, caused by inhibition of action of antidiuretic hormone on distal renal tubule
• Renal tubular acidosis, chronic tubulointerstitial nephritis, and nephrotic syndrome

The most common endocrine disorder secondary to chronic toxicity is hypothyroidism. Lithium is taken up by thyroid cells and blocks thyroid hormone release from thyroglobulin, which inhibits adenylate cyclase and prevents TSH from activating thyroid cells via the TSH receptor. Acute exposure to lithium can cause leukocytosis, whereas chronic exposure can produce aplastic anemia.

Elevated lithium in the blood will confirm toxicity, although levels may not correlate with clinical symptoms. Serial levels may be warranted in cases of sustained-release tablets.

Treatment. Supportive therapy is the mainstay of treatment. Gastric lavage may be attempted if patient presents within 1 hour of ingestion.

• Airway protection is crucial due to emesis and risk of aspiration.
• Seizures can be controlled with BZDs, phenobarbital, or propofol.
• Fluid therapy is crucial to restore GFR, normalize urine output, and enhance lithium clearance.
Lithium is readily dialyzed because of water solubility, low volume of distribution, and lack of protein binding. Thus, hemodialysis is indicated for patients who have renal failure (and unable to eliminate lithium) and patients who cannot tolerate hydration (e.g., those with CHF, liver disease, or severe toxicity meaning neurologic symptoms >4 mEq/L).

Lithium is a monovalent cation that does not bind to charcoal, so activated charcoal has no role.

SALICYLATES

An older woman with osteoarthritis comes to the emergency department with dyspnea, intractable nausea, vomiting, and tinnitus. She is fully alert and able to give a good history. Her only other problem is hypertension. She is on a wide variety of medications to reduce her pain. Her husband says she was in so much pain lately that she took half a bottle of extra pills 30 minutes ago.

Salicylate intoxication results from the ingestion of a large amount of aspirin and other salicylate-containing medications, resulting in a complex, systemic toxicity.

Salicylates are complex metabolic poisons. The most common presentation is GI distress such as nausea, vomiting, and gastritis. Tinnitus is one of the more specific complaints and is one of the best ways to identify the case, so as to answer the question: “Which of the following is the most likely diagnosis?”

Salicylates affect respiratory function in 2 ways:

- Directly stimulate the respiratory centers in the brainstem to cause a centrally mediated hyperventilation and hyperpnea
- Are directly toxic to the lungs themselves and can cause a noncardiogenic pulmonary edema similar to ARDS

Hyperthermia is possible. CNS toxicity such as confusion, coma, seizures, and encephalopathy can also occur, with possible death.

Salicylates also interfere with Krebs cycle and lead to a metabolic acidosis through the reversion to anaerobic glycolysis as a method of energy production in the body. In other words, salicylates lead to significant lactic acid production with metabolic acidosis and elevated anion gap. This ultimately results in a compensatory respiratory alkalosis.

The most specific test for diagnosis is aspirin level.

- Suggestive findings are elevated anion gap with metabolic acidosis. However, respiratory alkalosis may be the predominant defect, especially in early stages. Thus, blood gas can show low, high, or normal pH.
- Elevated prothrombin time and hypoglycemia may occur.
- Chest x-ray may be normal or show pulmonary edema.

Treatment. If the patient comes within 1 hour post-ingestion, attempt gastric decontamination. Charcoal may be useful, as it is in many types of ingestion. The mainstay of therapy, however, is increasing urinary excretion by alkalinizing the urine and administering aggressive fluid resuscitation. When urinary pH rises, that will charge the salicylate molecule (a weak acid) and will block the reabsorption of the substance at the kidney tubule.
Dialysis is sometimes necessary. Indications for dialysis include:

- Renal failure
- CHF
- ARDS
- Persistent CNS symptoms (confusion/seizures)
- Hemodynamic instability
- Severe acid/base or electrolyte imbalance
- Hepatic failure with coagulopathy
- Salicylate level >100 mg/dL

DIGOXIN

Toxicity of digoxin is seen with suicide attempts and accidental therapeutic overdosage. Toxicity is more common with renal failure because 60% of digoxin is normally excreted renally, and it will accumulate. The most common precipitating cause of digitalis toxicity is the reduction of potassium stores, often seen in patients with heart failure due to diuretic therapy or secondary hyperaldosteronism. **Hypokalemia** predisposes to toxicity because potassium and digoxin bind to the same site on the sodium–potassium ATPase pump, leading to increased intracellular calcium, thus leading to increased cardiac contractility. Drugs that have been implicated in digoxin toxicity include amiodarone, beta blockers, diltiazem, cyclosporine, macrolide antibiotics, indomethacin, spironolactone, and furosemide.

Clinical Presentation. GI symptoms are most common: nausea, vomiting, diarrhea, and anorexia. Neurologic and visual symptoms include blurred vision, color vision abnormality, hallucinations, and confusion. Cardiac disturbance is predominantly secondary to arrhythmia.

EKG abnormalities are common. Bradycardia, premature contractions, ventricular tachycardia, and any other arrhythmia may be seen (paroxysmal atrial tachycardia is most common). Hyperkalemia occurs acutely from inhibition of Na⁺/K⁺ ATPase by digoxin. Order a serum digoxin level if you suspect toxicity (due to history, etc.).

Treatment. For GI decontamination, give repeated doses of charcoal. For electrolyte abnormality correction, correct the potassium.

- Digoxin-specific antibodies (Digibind®) are useful for life-threatening toxicity, particularly with arrhythmias.
- Pacemaker placement may be necessary for bradycardia or third-degree AV block refractory to atropine.

Note

Arrhythmia is the most dangerous manifestation of digitalis poisoning.
TRICYCLIC ANTIDEPRESSANTS

A 28-year-old man with a history of depression comes to the emergency department 1 hour after a suicide attempt with his tricyclic antidepressants and benzodiazepines. He is stuporous with respiratory rate 7/min. EKG shows a wide QRS. What is the next step?

Tricyclic antidepressants (TCAs) are characterized by a number of anticholinergic and sodium channel blocker side effects. This is the predominant cause of their cardiac and CNS toxicity.

Clinical Presentation. The most common adverse effects are anticholinergic-mediated findings of dry mouth, tachycardia, dilated pupils, and flushed skin. A quick onset with rapid deterioration is common. The most serious effects are cardiac dysrhythmia with widening of the QRS complex, resulting in ventricular tachycardia and first-degree conduction blocks. CNS effects include altered mental status, confusion, and seizure.

Serum drug levels are the most specific test for diagnosis, but EKG with abnormalities is more important to determine who will have serious toxicity. The EKG may be normal or show any range of ventricular or atrial arrhythmias or conduction delays.

Treatment. TCA overdose has anticholinergic side effects, which include impaired peristalsis and delayed gastric emptying. TCAs block sodium channels and can cause ventricular tachycardia.

- Charcoal is the primary treatment in the acute setting.
- Bicarbonate protects the heart from the TCAs. Administer bicarbonate immediately if QRS >100 msec. Bicarbonate is not to increase urinary excretion (as opposed to the treatment of aspirin overdose).

ANTICHOLINERGIC POISONING

A 65-year-old man is brought to the emergency department by his wife with lethargy and confusion. She says that he has had a cold and has taken over-the-counter cold preparations for the last few days. On examination he is confused and does not recognize his wife. His temperature is 39.2°C (102.5°F), pulse 130/min and blood pressure 100/60 mm Hg. The skin is flushed, dry, and warm. The eyes are dilated.

Anticholinergic overdose may occur in any age group with high dose, but most commonly presents in the elderly. Anticholinergic drugs competitively inhibit binding of the neurotransmitter acetylcholine to muscarinic acetylcholine receptors, and are commonly called “antimuscarinic agents.” Muscarinic receptors are found on peripheral postganglionic cholinergic nerves in smooth muscle (intestinal, bronchial, and cardiac), in secretory glands (salivary and sweat), on the ciliary body of the eye, and in the central nervous system. Anticholinergic agents do not antagonize the effects at nicotinic acetylcholine receptors, such as at the neuro-muscular junction.

The onset of anticholinergic toxicity varies depending on the particular toxin, but usually occurs within 1–2 hours of oral ingestion. Some drugs may take up to 12 hours to have an effect. Be aware with patients on psychotropic agents.
The following medications may cause anticholinergic effects:

- Diphenhydramine
- Scopolamine and hyoscyamine
- TCAs
- Cyclobenzaprine
- Benztropine
- Belladonna

Clinical Presentation. Patients will present with the following characteristics:

- "Red as a beet": flushed, red skin due to cutaneous vasodilation
- "Dry as a bone": dry skin (anhydrosis) due to inability to sweat
- "Hot as a hair" anhidrotic hyperthermia
- "Blind as a bat": mydriasis
- "Mad as a hatter": delirium, psychosis, hallucinations, and seizures
- "Full as a flask": urinary retention and absent bowel sounds
- Tachycardia

Treatment. Treat with the ABCs, supportive care, and EKG monitoring. Anticholinergic poisoning may cause prolonged QRS and QT intervals; if that happens, use sodium bicarbonate to stabilize the myocyte membrane and prevent ventricular tachycardia. If a patient develops seizures, treat with benzodiazepines, not with phenytoin or fosphenytoin.

ORGANOPHOSPHATES

Organophosphates inhibit cholinesterase and have muscarinic and nicotinic effects. Patients tend to be farmers and gardeners.

- **Nicotinic effects**: weakness and decreased respiratory drive
- **Muscarinic effects**: defecation; urinary incontinence; muscle weakness/miosis; bradycardia/bronchospasm; emesis; lacrimation; salivation; seizure (known as DUMBELSS syndrome)

To diagnose, check RBC cholinesterase levels. Do not delay treatment while waiting for results.

Treatment. The first step is for the physician to put on protective clothing, as organophosphates are absorbed by the skin. Then, have patient remove clothing immediately. Start atropine immediately to treat the bradycardia. Start pralidoxime (2-PAM), which restores cholinesterase activity and reverses both the nicotinic and muscarinic effects.

Note

The role of physostigmine as an antidote is controversial. It may be considered in moderate to severe toxicity. If used, the patient should be placed on a cardiac monitor and atropine should be readily available.
ALCOHOL

A 35-year-old man is brought to the emergency department by his wife after he had a seizure. He is agitated and combative. He is yelling and trying to hit the nurses, and tells you that he is in France. He is also yelling at his mother, who is not in the room. His wife tells you that he drinks a liter of whiskey a day, though he has not had any in the last few days because he didn't have the money. His pulse is 130/min, blood pressure 160/90 mm Hg, and respirations 24/min. He is diaphoretic and extremely irritable. His temperature is 38°C (100.4°F). The rest of the exam is unremarkable.

Alcoholics may present with any one of the following symptoms:

Mild withdrawal: tremors, tachycardia, anxiety; seizures may be seen 6–12 hours after last drink

Delirium tremens (DT): (manifests 48–72 hours after last drink but can last up to 10 days): mental confusion, autonomic hyperactivity, visual hallucinations, severe agitation, diaphoresis

Alcoholic hallucinosis: (may be confused with DT) (starts 12–24 hours after last drink but can last days to weeks)

- Paranoid psychosis without tremors and confusion
- Normal vital signs (no hypertension or tachycardia)
- No agitation
- Normal appearance except for auditory (most common), visual, or tactile hallucinations

Wernicke encephalopathy: confusion, ataxia, and ophthalmoplegia (nystagmus)

Korsakoff psychosis: amnesia and confabulations

Treatment. Alcohol withdrawal has a very high mortality rate (5%). Benzodiazepines can be life-saving (*taper dose slowly*). Diazepam and chlordiazepoxide are common, due to their long half-life. Hydrate with isotonic fluids and electrolyte replacement.

- Anticonvulsants have no role.
- Avoid antipsychotics such as haloperidol, as they can lower the seizure threshold and cause prolonged QT interval.

Symptom-triggered therapy is recommended. A work-up for alternative diagnosis is also very important.

- Be careful when using benzodiazepines for cirrhosis
- CT head to look for intracranial bleed
- Lumbar puncture to rule out meningitis if there is a fever
- Chest x-ray: look for aspiration pneumonia

Note
The diagnosis of all alcohol withdrawal–related syndromes is made clinically, not by lab values.

Note
Benzodiazepines are dosed and administered using a validated assessment tool, the most common of which is Clinical Institute Withdrawal Assessment for Alcohol (CIWA-Ar) scale. This requires formally assessing the patient at regular intervals.
• High doses of thiamine IV for Wernicke and Korsakoff; treatment for alcoholic hallucinosis is benzodiazepines and haloperidol (there is no risk of seizures, so it can be used here)

Clinical Recall

A 17-year-old woman who drank from her grandfather’s whiskey bottle is brought to the emergency room with intermittent blurring of vision and vomiting. Which of the following is the treatment of choice?

A. Activated charcoal
B. Ethanol
C. Fomepizole
D. Thiamine

Answer: C

HEAD TRAUMA

A 20-year-old man is playing football when he is struck in the head and loses consciousness for a few minutes. He awakens and has some motor weakness of his left arm, which seems to slowly worsen over the course of the next hour as he is brought to the emergency department.

Head trauma is any degree of traumatic brain injury resulting in a range of injuries, from scalp laceration to headache to loss of consciousness or focal neurologic deficits. The term does not imply a specific mechanism of injury. The injury can result in concussion, contusion, epidural hematoma, subdural hematoma, or traumatic subarachnoid hemorrhage. Cerebral contusion can progress to intraparenchymal hemorrhage.

Clinical presentation is often only suggestive of the degree of injury. The specific injury can only be determined with CT scan.

- All forms of head trauma can result in headache, amnesia, and loss of consciousness. The degree of amnesia is loosely associated with the degree of head trauma, i.e., the worse the trauma, the more memory one loses.
- Memory loss starts from the time of injury and stretches both forward (anterograde, in which one doesn’t remember events since the time of the injury) and backward (retrograde, in which one forgets past events).
 - Retrograde amnesia (more common) starts from the time of the injury and moves further back in time depending on the severity of the injury. The more severe the injury, the further back in time you forget.
 - Recovery of memory starts with recollection of the most distant progressing to the most recent memories.
• Loss of consciousness, although possible in any form of head trauma, is not always present, even with relatively severe forms of brain injury. There can be very severe intracranial bleeding (e.g., subdural hematoma) without a loss of consciousness. This is particularly true of chronic subdural hematoma.

• Concussion is generally not associated with focal neurologic findings, such as motor or sensory deficits. The presence of focal findings, starting in order of highest frequency, is most commonly associated with epidural and subdural hematomas and contusion.

Diagnosis. CT scan of the head is the mainstay of diagnosis of brain injury. Contrast enhancement is not necessary because blood does not enhance with contrast.

• Hemorrhage should be visible instantly if present at the time of the initial presentation.

• **Subdural hematoma is crescent-shaped** and **epidural hematoma is lens-shaped**.

Follow-up scanning is also done with CT, as needed.

• Skull x-ray is never used for diagnostic purposes.

• Normal x-ray does not exclude hemorrhage, and abnormal x-ray does not confirm the presence of a hemorrhage.

• Cervical spine x-rays should be obtained if there are focal findings consistent with cervical radiculopathy or if spinal tenderness is present. Even without these findings, you should have a very low threshold for obtaining cervical spine x-rays.
Figure 10-15. Subdural Hematoma
(venous in origin; may be acute or chronic and may or may not result in midline shift)

Figure 10-16. Epidural Hematoma
(usually arterial and associated with skull fractures)

Figure 10-17. Depressed Skull Fracture

Figure 10-18. Cerebral Contusion
(petechial hemorrhage and/or edema, which may worsen over days)

Note
A concussion is diagnosed by a history of loss of consciousness plus a negative CT scan of the head.
Treatment. Severe intracranial hemorrhage should be managed by lowering the intracranial pressure.

- For acute response, use hyperventilation to PCO2 of 30–35, which will cause vasoconstriction of cerebral vessels and then a drop in intracranial pressure; use in moderation and for limited amount of time

- Osmotic diuretics such as mannitol and elevation of the head of the bed are also helpful for lowering intracranial pressure. This is in preparation for surgical evacuation. Elevate the head of the bed to 30 degrees and maintain systolic BP to 110–160 mm Hg. This slight degree of hypertension assures that the cerebral perfusion pressure is adequate.

- Steroids are not effective for head trauma.

Cerebral perfusion pressure is best when mean arterial pressure ≥60 mm Hg above the intracranial pressure. Stress ulcer prophylaxis with medications such as PPIs and H2 blocker is given after all severe head trauma and after intubation for >72 hours.

SUBARACHNOID HEMORRHAGE

A 52-year-old woman is at her office when she develops the sudden onset of a severe headache, stiff neck, photophobia, and loss of consciousness. She awakens within the hour that she arrived in the hospital. She is noted to have a severe headache, nuchal rigidity, photophobia, and temperature 38.5 C (101.3 F).
Subarachnoid hemorrhage (SAH) is the sudden onset of bleeding into the subarachnoid space. It most often occurs spontaneously.

- Aneurysm formation is the most common etiology. The aneurysms can be saccular or fusiform, and are most commonly around the circle of Willis. The most common sites are anterior communicating artery, middle cerebral artery, and posterior communicating artery.
- There is an association with polycystic kidney disease, Ehlers-Danlos syndrome, and some other connective tissue diseases.
- Head trauma is rarely a cause.

Clinical Presentation. Sudden onset of severe headache is the hallmark of SAH. Other features include:

- Loss of consciousness due to sudden rise in intracranial pressure (up to 50% of patients)
- Focal neurologic symptoms (>30%), most commonly from compression of the oculomotor cranial nerve
- Other possible neurologic defects, due to the pressure of the bleed dissecting into surrounding tissues
- Nuchal rigidity, photophobia, headache, and papilledema due to meningeal irritation
- Fever 3–4 days after the initial hemorrhage; this can simulate meningitis because SAH is a form of chemical meningitis from irritation by the blood
- Seizures (extremely common); 1-year mortality can be up to 50%, with half of the patients dying upon immediate occurrence of the bleed

![Figure 10-20. Subarachnoid Hemorrhage on CT Scan](image-url)
Longer-term manifestations include the development of focal deficits, seizures, rebleeding, and hydrocephalus. Vasospasm after the bleed results in hypoperfusion to portions of the brain parenchyma and the development of stroke. Rebleeding occurs when the clot falls off of the original site of bleeding. Up to half of the people who rebleed will die. Hydrocephalus occurs when the blood cells clog up the arachnoid granulations through which CSF normally drains.

Diagnosis. The initial test is the CT scan, which is more sensitive than MRI for the diagnosis of SAH. The CT, done without contrast, has a sensitivity of 90–95% within the first 24 hours after the onset of the bleed. With time, the diagnostic sensitivity of the CT actually diminishes, as the red cells within the CSF hemolyze and are resorbed and converted into the yellowish coloring (described on CSF examination as xanthochromia).

- If the initial CT is normal and SAH is still suspected, do a **lumbar puncture**. The lumbar puncture is the most sensitive diagnostic test, i.e., an absence of red cells and xanthochromia on lumbar puncture essentially excludes an SAH. Xanthochromia is due to lysis of RBCs and formation of bilirubin (straw-colored CSF). Xanthochromia needs 4–6 hours to develop.
- Angiography is used to determine the specific anatomic site of the vascular defect and the site of the bleed. EKG abnormalities such as inverted or enlarged T-waves are often associated with the development of SAH, and are not a cause for alarm.

Treatment. Initial steps are to maintain systolic BP at 110–160 mm Hg. Pressure higher than that can provoke more bleeding, while pressure lower can provoke cerebral ischemia through hypoperfusion (given the increased intracranial pressure).

- Use nimodipine, a calcium-channel antagonist, to lower the risk of spasm in the blood vessel, thus lowering the risk of subsequent stroke.
- Do **angiography** to determine the anatomic site that will need catheter or surgical correction. It is important to perform this so that surgical correction (usually with embolization or clipping of the AVM) can occur before rebleeding develops. If hydrocephalus occurs, then shunting will be needed. Embolization is superior to surgical clipping.

BURNS

A 32-year-old fireman is caught in a fire and briefly trapped under a burning staircase. He is quickly extracted and brought to the emergency department fully alert. His respiratory rate is 14/min and weight is 220 pounds. There is soot in his mouth and nose and on his face, and his sputum not carbonaceous. The nasal hairs are singed. He has no stridor or hoarseness, and the lungs are clear to auscultation. He has first-degree burns on his right leg and second- and third-degree burns on his right arm and chest.

Injury due to burns can be divided into several types. The most common causes of death from fire are **smoke inhalation** and **carbon monoxide poisoning**. Thermal injury is most dangerous when it is respiratory related. Skin injury is labeled **first degree** when the skin is fully intact, even though it may be discolored.
• **First-degree** burns are not associated with blister formation and appear “sunburn-like.” The skin may be red or gray, but capillary refill remains normal.

• **Second-degree** burns result in blister formation.

• **Third-degree** burns are deeper and destroy skin appendages such as sweat glands, hair follicles, and sometimes pain receptors. This leaves patients with third-degree burns insensate; any pain they perceive is from surrounding structures where pain receptors are intact.

Although not apparent at first, respiratory injury can be the most life-threatening injury.

• Soot in the mouth or nose, stridor, wheezing, altered mental status, burned nasal hairs, and burns involving closed spaces are all clues to impending pulmonary and laryngeal edema.

• Shock occurs not only from direct skin loss but also from release of a host of mediators that cause **diffuse capillary leak** for the first 18–24 hours. Serious capillary leak occurs when the percentage of serious body surface area burn >20–25%.

Clinical Presentation. Altered mental status, dyspnea, headache, and chest pain are clues to severe carbon monoxide poisoning. Laryngeal edema can result in stridor, hoarseness, and dyspnea. Soot in the nose and mouth can imply impending airway compromise.

The “**Rule of Nines**” is used to determine the body surface area that has been burned, and thus assess fluid resuscitation needs:

- **Head and arms:** 9% each
- **Chest, back, and legs:** 18% each
- Patchy burns can be estimated by using one hand’s width as an estimate of 1% of body surface area burned.
- Circumferential burns are critical in the assessment because as they heal, they tighten and cut off circulation, leading to limb compromise and the need for escharotomy.

Diagnosis. Besides the obvious burn, carboxyhemoglobin levels are essential in severe burns. Severe burns are defined as combined second- and third-degree burns >20% in adults or >10% in the very old or very young or third-degree burns >5% of body surface area (BSA). Chest x-ray and bronchoscopy help determine the exact extent of respiratory injury when it is uncertain. Bronchoscopy can reveal severe thermal injury to the lungs even when the initial chest film is normal. Foley catheter placement helps determine the adequacy of fluid resuscitation.

Treatment.

- If patient has signs of severe respiratory injury, the first step is to intubate before more severe laryngeal edema can occur and make the intubation difficult.
- If carboxyhemoglobin level is significantly elevated (>5–10%), administer 100% oxygen.
- Fluid resuscitation over the first 24 hours is based on a formula of 4 mL per % BSA burned per kg. Use second- and third-degree burns in your calculation.
 - Use Ringer’s lactate as the preferred fluid; give 50% of the fluid in the first 8 hours, 25% in the second 8 hours, and 25% in the final 8 hours. (This is known as the **Parkland formula**.)
 - Afterward, when the diffuse capillary leak improves, give enough fluid to maintain urine output >0.5–1 mL per kg per hour.
• Give stress ulcer prophylaxis with H2 blocker or PPI.
• To prevent infection, use topical treatment with silver sulfadiazine.
• Do not break blisters and do not use steroids.
• Escharotomy is useful in circumferential burns.
• Skin grafting is done on the basis of the size and severity of the injury.
• Patients with burn injuries are at increased risk for pseudomonal and staphylococcal infections; if there is concern for infection, give IV antibiotics that cover these organisms.

HEAT DISORDERS

Heat disorders are divided into 2 types. **Exertional** disorders vary from mild cramps to more severe heat exhaustion to potentially lethal heat stroke. **Nonexertional** disorders are malignant hyperthermia, neuroleptic malignant syndrome, and serotonin syndrome.

Exertional Disorders

- **Heat cramps** (mild exertional disorder) can happen to any healthy person who develops fluid and electrolyte depletion
 - Patient develops painful muscular contractions lasting a few minutes, with muscle tenderness present. Body temperature is normal.
 - Patient is able to sweat. There are no neurologic abnormalities.
 - Treatment is rest, oral rehydration, and salt replacement.

- **Heat exhaustion** (more severe)
 - Patient is weaker with more systemic symptoms. Body temperature may be slightly elevated.
 - Patient is able to sweat and remove heat from the body. There may be mild neurologic symptoms such as headache, nausea, and anxiety, but severe confusion is rare.
 - Death is very unlikely, but the disorder can progress to heat stroke if not treated.
 - Treatment is oral fluid and electrolyte replacement. For severe weakness, IV hydration may be needed.

- **Heat stroke** (very severe and potentially life-threatening)
 - Patient has lost the ability to remove heat from the body because of an impaired ability to sweat; 50% of patients retain some capacity to sweat but in insufficient amounts to keep up with heat generation.
 - Body temperature may become severely elevated (>41°C), resulting in confusion, disorientation, nausea, blurred vision, and seizures.
 - Numerous lab abnormalities may occur, including hemoconcentration, rhabdomyolysis, and elevated BUN, creatinine, and white cell count.
 - Anuria, DIC, and lactic acidosis may develop.
 - Treatment for **non-exertional heat stroke** is IV fluid replacement and external evaporative cooling of the body (place in cool environment and spray with water, then fan to evaporate the fluid). Treatment for young athletes with **exertional heat stroke** is immersion in ice water. In the elderly, chlorpromazine and diazepam can be used to control shivering.
Nonexertional Disorders

- **Malignant hyperthermia** occurs as an idiosyncratic reaction to an anesthetic such as halothane or succinylcholine. Virtually any anesthetic may cause it.
 - Rhabdomyolysis may develop.
 - Treatment is dantrolene, which directly relaxes muscles by inhibiting calcium release from the sarcoplasmic reticulum.
- **Neuroleptic malignant syndrome** occurs an idiosyncratic reaction to a phenothiazine or butyrophenone such as haloperidol. It is postulated that dopamine blockade or depletion can lead to abnormal regulation of body temperature and Parkinsonian features.
 - Muscular rigidity and rhabdomyolysis may occur; also, altered mental status, muscle rigidity, and autonomic dysfunction
 - Treatment, besides stopping the drug, is bromocriptine and dantrolene.
- **Serotonin syndrome** (common and potentially life-threatening) is a drug reaction that often occurs when 2 medications affecting the body’s level of serotonin are taken together, such as SSRI, SNRI, meperidine and tramadol.
 - Symptoms can range from mild to severe: agitation, confusion, muscle rigidity, and heavy sweating
 - No single test can confirm serotonin syndrome and a number of other conditions have similar symptoms
 - Treatment is supportive care and cyproheptadine (serotonin antagonist)

HYPOTHERMIA

Hypothermia is a medical emergency that occurs when the body loses heat faster than it can produce heat, causing a dangerously low core body temperature <35°C (normal 37°C). Core temperature is measured with a rectal probe or through the esophagus. It is often seen in association with alcohol intoxication, particularly in the elderly.

Severe hypothermia is core temperature <30°C.

Clinical Presentation. Symptoms of severe hypothermia commonly relate to the central nervous system. Lethargy, confusion, and weakness may occur. Death is most commonly a result of arrhythmia (Osborne wave or J wave), from the effect of the cold on altering cardiac conduction. Other complications include metabolic acidosis, respiratory acidosis, kidney injury, and hyperkalemia.

Diagnosis. The EKG can show a wide variety of serious arrhythmias, including ventricular fibrillation or ventricular tachycardia. The most characteristic finding is an elevated J-point, known as Osborne waves. J-wave elevation may mimic ST-segment elevation.

Treatment. Most patients respond well to common-sense treatment such as a warm bed, bath, and heated blanket. For very severe cases, use warmed IV fluid or humidified oxygen. Caution, though, because overly rapid rewarming can cause arrhythmias; if life-threatening arrhythmias occur, it is important to continue resuscitative efforts until body temperature >35°C. If the patient is cold but not shivering, active measures should be used:

Active external rewarming: only to truncal areas; warm blankets; heat lamps; hot-water bottles

Active internal rewarming: warm IVFs (45°C), warm humidified oxygen (45°C), warmed gastric lavage via NGT, warmed hemodialysis

Hypothermia is one of the few times in which a patient can be resuscitated from pulselessness beyond the usual 10 minutes of efforts.
Clinical Recall

A 65-year-old woman is brought to the emergency department after a fall in the shower. On examination, there is a contusion on the posterior aspect of the skull. On examination of the eye, there is mild dilation of the right pupil with evidence of papilledema in both eyes. Which of the following would not be considered in the management of this condition at this time?

A. Administer IV steroids
B. Elevate head end of bed
C. Hyperventilate the patient
D. Maintain systolic blood pressure >110 mm Hg
E. Mannitol infusion

Answer: A

RADIATION INJURIES

Ionizing radiation damages tissues primarily through destructive changes to DNA molecules. Ionizing radiation is lethal and can often cause cancer. Longer exposures give worse injury.

Nonionizing radiation is less destructive to tissue and causes injury primarily as burns. Examples include infrared, ultraviolet, and microwave radiation.

Clinical Presentation. To give a sense of scale, mortality is almost zero with <2 Gy (or Sv) of exposure. This rises almost to 100% mortality with >10 Gy (or Sv). (10 Gy = 1,000 rad.)

Any cell can be damaged by ionizing radiation, but the more rapidly the cell divides, the more vulnerable it is to radiation. This is because more DNA damage can be done during the time of division.

Common sites of radiation injury include the following:

- **Bone marrow**: As little as 2–3 Gy (200–300 rad) can depress lymphocyte count. Neutrophils are the next most sensitive cell, while erythrocytes are the least sensitive.
 - Long-term, leukemia is the earliest and most common cause of cancer from radiation exposure.
 - Thrombocytopenia can result in death from bleeding.
 - Overall, infection and bleeding from depressed bone marrow function are the most common causes of death in acute exposure.

- **Gonads**: 2–3 grays result in temporary aspermatogenesis, while 4–5 grays can make men permanently sterile. Testes are more sensitive than ovaries.

- **GI**: Nausea and vomiting are the most common early symptoms of radiation exposure (50% of cases with 2 Gy (200 rad) exposure and 100% of patients with >3 Gy exposure). Also, the rapidly reproducing intestinal lining ulcerates, leading to bleeding and infection later.

- **Other common sites of radiation injury**: the skin, salivary glands, respiratory epithelium, and thyroid glands
Treatment. Management is supportive. There is no specific therapy to reverse radiation injury.

- Antiemetics, given that nausea is such a common feature of radiation sickness
- Blood products, ie, platelets and RBC transfusions; WBC transfusions do not help
- Colony-stimulating factors (G-CSF, GM-CSF) to help restore marrow function
- Antibiotics, used as needed when infection develops
- Bone marrow transplantation (occasionally useful)

DROWNING

Drowning is a significant worldwide public health concern. It is a major cause of disability and death, particularly in children. At least 35% of survivors sustain moderate-to-severe neurologic sequelae.

- Alcohol and drug use are strongly associated with an increased risk of death by drowning.
- Muscular exhaustion, head and spinal trauma, or acute myocardial infarction are predispositions to drowning and near drowning.
- 10–20 percent of drowning victims may have suffered dry drowning, in that there is no water aspirated into the lungs. Dry drowning is secondary to laryngospasm.

Drowning from aspiration of water can be divided into 2 types:

- Freshwater (hypotonic) alters pulmonary surfactant, resulting in unstable alveoli which then collapse.
 - The hypotonic water is absorbed into the body, leading to acute hypervolemia, hemodilution, and intravascular hemolysis.
 - At autopsy, the lungs may contain little water.
- Seawater (hypertonic) draws water out of the body into the lung, causing systemic hypovolemia and hemoconcentration.
 - The lungs become even more heavy and fluid-filled because the surfactant is essentially washed out.

Presentation. Only the presentation of near drowning is important to discuss because drowned victims are dead. Presentation can vary from coma to agitation. Cyanosis, coughing, and signs of pulmonary edema, such as tachypnea, tachycardia, and blood-tinged sputum are common. Rales and rhonchi can be found on the exam. Hypothermia is also common.

Laboratory Findings. Arterial blood gases show hypoxia and hypercarbia, as well as metabolic acidosis from anaerobic metabolism. Hyperkalemia may be present if there is significant hemolysis. Renal insufficiency on the basis of hypoxia is a rare finding.

Treatment. The first task is to remove the patient from the water and do ABCs (airway/breathing/circulation) of resuscitation.

- Endotracheal intubation as needed
- Supplemental oxygen

Note

Near drowning is survival after immersion, at least for some time. Morbidity is high and death may occur later. The exact definition is still the topic of much debate.

Drowning is defined as death within 24 hours after submersion in water.

Note

Young children are more likely to drown in freshwater (e.g., swimming pool) than in seawater.
After removal from water, the most important initial step is to establish an adequate airway. Continuous positive airway pressure (CPAP) is the most effective treatment and gives the best correction of hypoxia and acidosis. Even if the patient appears comfortable initially, observe for 24 hours because ARDS (acute respiratory distress syndrome) may develop as a late finding.

The following treatments do not help and may be harmful:

- **Abdominal thrusts** may lead to aspiration of gastric contents.
- **Antibiotics** are indicated only if pneumonia develops.
- **Steroids** have no benefit.

ANAPHYLAXIS

Anaphylaxis is a syndrome of histaminergic release in which there are signs of severe injury such as urticaria, angioedema, hypotension, tachycardia, and respiratory compromise. As an idiosyncratic reaction, patients can develop anaphylaxis from any medication, food, insect bite, or antigenic substance entering the body by oral or parenteral route.

- Penicillin, phenytoin, contrast agents, and allopurinol allergy are common
- Chocolate, peanuts, and strawberries are common
- Bee stings are common

Clinical Presentation. Mild symptoms include a rash known as “hives.” More severe symptoms include dyspnea, stridor, tachycardia, hypotension, and hemodynamic collapse.

Treatment. Treatment is epinephrine (intramuscular or IV) and inhaled albuterol.

VENOMOUS BITES AND STINGS

Cat and Dog Bites

Dog bites (most common bites in United States) are usually ripping and tearing in nature, whereas cat bites are usually a puncture wound.

Clinical Presentation. Infection is more likely in patients with a delay in treatment, extremes of age and extremity injuries. Infections are most often polymicrobial.

- Cat bites are highly associated with *Pasteurella multocida.*
- Dog bites are associated with *Pasteurella, Eikenella, hemolytic streptococci, Staph aureus,* and *Capnocytophaga canimorsus.*

Treatment. Treatment is exploration, debridement, irrigation, and proper wound care. If prophylactic antibiotics are indicated, the drug of choice is amoxicillin and clavulanate (with penicillin-allergy, use a combination of clindamycin or metronidazole plus ciprofloxacin or trimethoprim/sulfamethoxazole or doxycycline).
Indications for antibiotic prophylaxis:

- Any cat bite
- Any bite on hand, face, joint, or genitals
- Immunocompromised status
- Asplenic patient (high risk of overwhelming sepsis from *Capnocytophaga canimorsus*)

Most wounds should be left unsutured except for facial wounds for cosmetic reasons. Never suture the hand.

Human Bites

Human bites can occur as a result of incidental or purposeful injury. They carry an infection rate of 15%, which is greater than cat and dog bites together. The most common organisms are anaerobic and aerobic bacteria, specifically, *Eikenella corrodens*. Hepatitis B and HIV can also be transmitted through bites but are much less common.

Treatment. Clean and irrigate wound well. If bite <12 hours old, close loosely.

- Tetanus, hepatitis B, and prophylaxis counseling
- 5−7 day course of prophylactic antibiotics
- There is no place for cultures on fresh bites.

Rabies

Rabies (bite) is a viral disease that affects the central nervous system. It is carried by bats, dogs, bats, raccoons, rats, skunks, and foxes; transmission occurs through their saliva a few days before death, when the animal “sheds” the virus. Since it affects the nervous system, most rabid animals behave abnormally.

The incubation period of rabies is up to 1 year. It is nearly 100% fatal once the disease has been contracted.

Clinical Presentation. Prodrome of 2−10 days, including fever and paresthesias at the bite site. Neurologic changes include aphasia, paralysis, hypersalivation, and myoclonus. Diagnose with viral cultures from saliva, CSF, or serum.

Treatment. Ribavirin has been used in confirmed cases. Prophylaxis with human rabies immunoglobulin (HR16), which gives immediate passive immunity, and human diploid cell vaccine (HDCV) should be given. The current guidelines for rabies vaccination are as follows:

- **Preventive vaccination** (no exposure) (usually 3 doses)
 - Those at high risk of exposure to rabies (veterinarians, animal handlers, rabies lab workers, etc.) should be offered the vaccine
 - Those in frequent contact with rabies virus or potentially rabid animals (e.g., an international traveler who is likely to come into contact with animals in a region where rabies is common) should be offered the vaccine

- **Vaccination post-exposure**
 - Those who have been bitten by an animal or may have been exposed to rabies should receive wound cleaning and started on vaccine

Note

All human and monkey bites should receive prophylactic antibiotics.
If never vaccinated against rabies previously: 4 doses (1 dose right away and additional doses on days 3, 7, and 14); give rabies immune globulin at first dose

If vaccinated against rabies previously: 2 doses (1 dose right away and another on day 3); no need to give rabies immune globulin

Snakebites

Although 50,000 snakebites are reported per year worldwide, only about 8,000 are poisonous. There are <5–10 deaths per year, with rattlesnakes accounting for almost all fatalities.

Snake venom contains numerous potentially dangerous substances, such as hemolysis toxin, cardiotoxin, neurotoxin, and proteolytic enzymes. Some of these substances can result in neuromuscular blockade.

Factors which affect the severity of the bite:

- **Body size:** The smaller the body, the worse the effect; thus, bites tend to be worse in children.
- **Location of bite:** Trunk and face bites are worse than extremity bites.
- **Exercising after bite:** Muscular activity helps spread the venom through the lymphatics (so minimize physical activity).
- **Depth of injury:** No poisoning occurs in 20–50% of bites because they are too superficial.

Treatment. Transport the patient immediately to the nearest medical facility.

- **Immobilize:** will help decrease the spread of venom through the lymphatics, which increases with muscular contraction
- **Apply compression bandage:** will help to decrease lymph flow; be sure not to apply so tightly that it decreases venous flow
- **Antivenin:** be cautious of anaphylactic reaction that may occur to the horse serum
- **Supportive:** manage hypotension with fluids; ventilatory support may be necessary

Ineffective therapy includes incision and suction of the bites. Tourniquets and ice immersion do not help and might be harmful.
Learning Objectives

- Outline the presentation, diagnosis, and management of disease of the spinal cord including spinal cord compression, syringomyelia, subacute combined degeneration, anterior spinal artery occlusion, ALS, and Brown-Sequard syndrome.
- Describe the epidemiology, classification, and treatment of seizures and epilepsy.
- Describe the presentation, diagnosis, and management of movement disorders including benign essential tremor, restless leg syndrome, Huntington disease, and Parkinson disease.
- Present the diagnosis and management of autoimmune neurological diseases including Guillain-Barre syndrome, MS, and myasthenia gravis.
- Provide a differential diagnosis and work-up of patients presenting with headache, vertigo, or dizziness.
- List the criteria for prevention of cerebrovascular accident in patients with TIA, and outline the management of patients with acute cerebrovascular accident.
- Describe the epidemiology of dementia and typical course and complications.

SPINAL CORD COMPRESSION

A 63-year-old African-American man is brought to the emergency department complaining of back pain that started gradually 3 days ago. The patient describes the pain as “band-like” around the abdomen, without radiation. His past medical history is significant for prostate cancer, diagnosed 3 years earlier, and treated with radiation.

Note

Spinal Cord Compression
Acute: trauma
Subacute: neoplasm most common cause
Chronic: herniation
Spinal cord compression is an acute syndrome of back pain, associated with compression of the spinal cord. It is considered a neurologic emergency. Common causes include cancer (lymphoma; multiple myeloma; carcinoma of prostate, lung, breast, kidney, colon), herniated disk, epidural abscess, hematoma, and trauma (cause of acute cases).

Patients commonly present with insidious onset of mild sensory disturbance, lower extremity weakness, and/or sphincter or sexual dysfunction. The earliest symptom is almost always pain (which may be intensified by actions that increase intrathoracic and thus cerebral spinal fluid pressure).

Diagnosis of acute spinal cord compression has to be suspected on the basis of the history and neurologic exam; that is essential for instituting appropriate therapy early in the course of the disease. Cancer, fever, or bowel/bladder incontinence/retention in the clinical history would strongly suggest the possibility of acute spinal cord compression. Also, neurologic exam will show:

- Dermatomal sensory level with bilateral lower extremity weakness
- Increased lower extremity muscle tone
- Upper motor neuron signs below the level of compression

The thoracic cord is the most common site of compression (70%) because the spinal cord is narrowest at that point. Symptoms may progress quickly.

Diagnosis. Plain x-ray is abnormal in the far majority of cases. They are rarely done. The diagnostic test of choice is MRI of the spine; when that is contraindicated, do a CT myelogram.

Treatment. Once the diagnosis is suspected, start high-dose dexamethasone immediately. After the specific etiology is identified more clearly by MRI, initiate specific therapy:

- For a radiosensitive tumor such as lymphoma or multiple myeloma, start radiation therapy as soon as possible.
- For herniated disk, epidural abscess, or hematoma, start surgical decompression.

Prognosis depends mainly on the functional status of the patient at the time of presentation. Up to 80% of patients who are initially able to ambulate retain that ability after treatment. Only 5% of patients without antigravity leg strength are able to ambulate after treatment.

Syringomyelia

Syringomyelia is cavitation of the spinal cord. It occurs as communicating (with the CSF pathways) or noncommunicating. Communicating syringomyelia is usually associated with the congenital Arnold Chiari malformation. Noncommunicating syringomyelia is typically secondary to trauma or tumors of the spinal cord.

In the cervical vertebrae of both gray and white matter, there is typically sensory dissociation with impaired pain and temperature and intact sensation to light touch. The loss of pain and temperature occurs in a cape-like distribution across the neck and arms. There is sparing of tactile sensation, position, and vibratory sense. Reflexes are lost.

As the lesion enlarges, there may be lower motor neuron manifestations at the level of the lesion with upper motor neuron signs below the lesion. Cavitation most commonly occurs at the level of the cervical cord. MRI is the most accurate diagnostic test. Treatment is surgical, but often unsatisfactory.
SUBACUTE COMBINED DEGENERATION
Subacute combined degeneration occurs with vitamin B12 deficiency. Patients will complain of distal paresthesias and weakness of the extremities followed by spastic paresis and ataxia. On exam there is a combined deficit of vibration and proprioception with pyramidal signs (plantar extension and hyperreflexia). Diagnosis is established by finding a low serum vitamin B12. Treatment is vitamin B12 replacement.

ANTERIOR SPINAL ARTERY OCCLUSION
Anterior spinal artery occlusion presents with acute onset of flaccid paralysis that evolves into a spastic paresis over days to weeks. Additionally, there is loss of pain and temperature sensation with sparing of vibration and position sense as the posterior columns are supplied by the posterior spinal artery. Everything (motor, sensory, autonomic) is lost below the level of the infarction with the striking exception of retained vibration and position sense. Treatment is supportive.
BROWN-SÉQUARD SYNDROME

Hemisection of the cord results in a lesion of each of the 3 main neural systems: the principal upper motoneuron pathway of the corticospinal tract, one or both dorsal columns, and the spinothalamic tract. The hallmark of a lesion to these 3 long tracts is presentation with 2 ipsilateral signs and 1 contralateral sign.

- A lesion of the corticospinal tract results in an ipsilateral spastic paresis below the level of the injury.
- A lesion to the fasciculus gracilis or cuneatus results in an ipsilateral loss of joint position sense, tactile discrimination, and vibratory sensations below the lesion.
- A lesion of the spinothalamic tract results in a contralateral loss of pain and temperature sensation starting 1 or 2 segments below the level of the lesion.

At the level of the lesion, there will be an ipsilateral loss of all sensation, including touch modalities as well as pain and temperature, and an ipsilateral flaccid paralysis in muscles supplied by the injured spinal cord segments.

Figure 11-3. Hemisection: Brown-Séquard Syndrome

Clinical Recall

Which of the following is not a symptom of spinal cord compression?

A. Sensory disturbance
B. Back pain
C. Visual disturbance
D. Sexual dysfunction
E. Sphincter dysfunction

Answer: C
CEREBROVASCULAR ACCIDENT

A 56-year-old woman is brought to the emergency department by her daughter complaining of sudden onset of right upper extremity weakness that began while she was watching television early this morning. The daughter became concerned when her mother was unable to talk in response to questions. Neurologic exam shows right upper extremity weakness with pronator drift and right facial nerve palsy. When questioned, the patient seems to understand what is being said but cannot clearly respond.

Cerebrovascular accident (CVA) is sudden onset of a focal neurologic deficit. The principal mechanisms by which stroke occurs are:

- Large artery thrombosis
- Small artery thrombosis (lacunar)
- Embolic (cardiogenic or artery-to-artery)
- Vascular dissection
- Systemic hypertension
- Bleeding

Clinical Presentation. Stroke should be considered in any patient who presents with acute onset of a focal neurologic deficit. The specific clinical syndrome is determined by the mechanism and vascular territory affected.

The blood supply to the brain is divided into 2 systems: the carotid (anterior) circulation and the vertebrobasilar (posterior) circulation. The major blood vessels comprising the anterior circulation include the anterior cerebral artery (ACA) and middle cerebral artery (MCA).

Occlusion of the ACA presents with contralateral weakness and sensory loss in the leg more than in the upper extremity. Urinary incontinence, confusion, and behavioral disturbances are common. Lower extremity weakness exceeds upper extremity weakness.

Figure 11-4. CT Scan of a Right MCA Infarction
Occlusion of the MCA presents with contralateral hemiplegia, hemisensory loss, and homonymous hemianopia with eyes deviated toward the cortical lesion. Dominant hemisphere involvement results in aphasia. Nondominant hemisphere involvement results in preserved speech, comprehension with confusion, and apraxia with spatial and constructional deficits.

The posterior circulation provides blood supply to the cerebellum, brain stem, occipital lobe of the cortex, and pons. The major blood vessels that comprise the posterior circulation are the posterior cerebral artery (PCA), basilar artery (BA), and vertebral arteries.

Table 11-1. Posterior Circulation Syndromes

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral</th>
<th>Contralateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber</td>
<td>CN III</td>
<td>Hemiplegia</td>
</tr>
<tr>
<td>Benedikt</td>
<td>CN III</td>
<td>Ataxia</td>
</tr>
<tr>
<td>Wallenberg</td>
<td>Facial sensory loss</td>
<td>Body sensory loss</td>
</tr>
</tbody>
</table>

Occlusion of the PCA presents with contralateral homonymous hemianopia, visual hallucinations, and agnosias. Occlusion of the penetrating branches of this vessel can result in CN III palsy with contralateral hemiplegia (Weber syndrome) or CN III palsy with contralateral ataxia or athetosis (Benedikt syndrome).

Specific syndromes associated with occlusion of basilar artery branches include the “locked-in syndrome” (paramedian branches), presenting as quadriplegia with intact vertical eye movements; and Wallenberg syndrome (posterior inferior cerebellar artery), which presents ipsilateral facial sensory loss, contralateral body sensory loss, vertigo, ataxia, dysarthria, dysphagia, and Horner syndrome.

Occlusion of the major cerebellar arteries produces vertigo, vomiting, nystagmus, and ipsilateral limb ataxia.

Diagnosis. The initial test of choice will always be noncontrast CT of the head, done to distinguish between hemorrhagic and ischemic stroke. Noncontrast CT is the most sensitive test for detecting blood in the brain. CT is often negative for ischemia within the first 48 hours after symptom onset; diffusion-weighted MRI is the most accurate test for detecting cerebral ischemia.

Diagnostic workup for acute ischemic stroke involves searching for embolic sources (echocardiogram, carotid duplex, and 24-hour Holter monitor). Also consider a workup for inherited hypercoagulability. Subarachnoid hemorrhage is associated with EKG abnormalities such as ischemia or inverted T-waves, called cerebral T-waves. A “bubble study” is done on the echocardiogram to detect the presence of a patent foramen ovale or other cardiac defect.

Treatment. Tissue plasminogen activator is given if the patient presents within 3 hours of symptom onset. Contraindications for use of tissue plasminogen activator include:

- Stroke or serious head trauma within 3 months
- Hemorrhage (GI or GU) within 21 days
- Surgery within 14 days
- History of intracranial hemorrhage
- BP >185/110 mm Hg
• Current use of anticoagulants
• Platelets <100,000/mm3
• Coagulopathy (PT >15 seconds)

Patients who receive tissue plasminogen activator in an appropriate manner have better neurologic function 3 months after CVA as compared with those who do not receive it.

There is *no clear benefit to the use of heparin with stroke*. That is because of the increased risk of bleeding. Any benefit is offset by adverse events associated with treatment. For every stroke prevented, one intracranial hemorrhage is caused.

• Antiplatelet therapy is most useful in secondary prevention of ischemic stroke. Aspirin is considered first-line treatment (start 24 hours after TPA).
• When there is a known allergy to aspirin or recurrent cerebrovascular events on aspirin alone, add dipyridamol or switch to clopidogrel to enhance antiplatelet therapy.
• **Do not combine** aspirin and clopidogrel for a stroke. Combination of anti-platelet agents is used on coronary disease but not cerebral disease.
• Ticlopidine is no longer used because the rates of thrombotic thrombocytopenic purpura and leukopenia are unacceptably high.

Subarachnoid hemorrhage is treated with nimodipine to reduce the risk of ischemic stroke. Early surgical intervention to clip off the aneurysm or embolize the vessel with a catheter should be done in good operative candidates. “Early” means within several days. Don’t wait for the unrepaired aneurysm to rebleed. Unruptured aneurysms found incidentally should be repaired if they exceed 10 mm in size.

Carotid endarterectomy is recommended when an occlusion exceeds 70% of the arterial lumen and the lesion is *symptomatic*. Endarterectomy may benefit those who are asymptomatic if there is >60% stenosis in men age <60. The benefit of endarterectomy is less certain in women because they have a lower risk of stroke. The more severe the disease, the greater the benefit. Carotid stenting is an alternative to endarterectomy.

Endarterectomy is simply not clear in asymptomatic carotid stenosis. The Step 2 exam does not engage in unanswerable, controversial issues.

Carotid angioplasty and stenting are not as good as endarterectomy for symptomatic patients with >70% stenosis. Angioplasty and stenting should be considered only for those who cannot undergo surgical endarterectomy.

SEIZURES AND EPILEPSY

A 29-year-old man is brought to the emergency department by ambulance after being found convulsing in his bedroom. His mother says that during the episode, her son was unable to respond to her frantic cries. She describes jerking movements that became more frequent and then stopped after approximately 1 minute. The mother says that he seemed tired and lethargic for at least 20 minutes after the episode. She then called the ambulance to bring her son to the hospital.
A seizure is a paroxysmal event due to abnormally discharging central nervous system (CNS) neurons. Epilepsy is a condition involving recurrent seizures, due to a chronic underlying process. The causes of seizure can be remembered from the acronym “VITAMINS”:

- **V**ascular (stroke, bleed, arteriovenous malformation)
- **I**nfection (meningitis, abscess, encephalitis)
- **T**rauma (especially penetrating)
- **A**utoimmune (CNS vasculitis)
- **M**etabolic (hyponatremia, hypocalcemia, hypomagnesemia, hypoglycemia, hypoxia, drug overdose/withdrawal)
- **I**diopathic
- **N**eoplasm
- **P**sychiatric

Clinical Presentation. A seizure is essentially a paroxysmal, involuntary event (associated with abnormal movement or change of consciousness or both). Characteristically, it is sudden in onset, with or without an aura. Patients often complain of disorientation, sleepiness, and aching muscles for minutes to hours after the event. Patients may also experience incontinence, tongue biting, and headache as a result of the seizure.

It may be difficult to differentiate seizure from **syncope,** and it is important to obtain a complete history from anyone who witnessed the event. Generally, syncope will not present with significant postictal symptoms. Patients will recover consciousness within several minutes of the event. Physical exam for syncope will show no evidence of incontinence or tongue biting.

It is important to classify seizures according to their clinical features because this will determine what medications will be used for treatment. Seizures can be classified as **partial** versus **generalized, and then simple versus complex.**

- **Partial** seizure occurs within discrete portions of the brain. Symptoms include involuntary jerking of a finger or hand.
 - If consciousness is maintained for the duration of the seizure, that is a **simple** partial seizure. If there is a change in consciousness for the duration of the seizure, that is a **complex** partial seizure.
 - When a partial seizure progresses to a generalized seizure, that is a **partial seizure with secondary generalization.** Typically, the seizure will begin focally and become generalized as seizure activity involves both cerebral hemispheres.
- **Generalized seizure** arises from both cerebral hemispheres spontaneously without any detectable focal onset.
 - **Generalized tonic-clonic (grand mal)** seizure is characterized by tonic contraction of muscles throughout the body followed by intermittent relaxation of various muscle groups (clonic phase).
 - **Absence (petit mal)** seizure is more common in children than adults; it is characterized by sudden, brief loss of consciousness without loss of postural tone. Characteristically, EEG will show a generalized, symmetric 3-Hz spike-and-wave discharge pattern. **Atonic** seizure is characterized by sudden loss of postural tone lasting 1 to 2 seconds. **Myoclonic** seizure is characterized by sudden, brief muscle contraction.
Status epilepticus is defined as recurrent or continuous seizures (lasting at least 5–30 min).

Diagnosis. For idiopathic seizure, diagnosis is made only after secondary precipitating factors have been ruled out. For epilepsy, diagnosis is done with EEG. However, an abnormal EEG alone is not diagnostic, as 2-18% of the population has an abnormal EEG. Always check serum electrolytes, glucose, toxicology, and arterial blood gas to rule out hypoxia as a cause of a patient's seizure. CT scan or MRI of the head is usually indicated to rule out a structural lesion as the cause of seizure. Think of any seizure as a symptom, much like shortness of breath or chest pain, which has an extensive differential diagnosis. The evaluation of any seizing patient is to rule out reversible causes of seizure.

Treatment of seizure can be divided into management of the acutely seizing patient (status epilepticus) and the chronic epileptic patient.

In the acutely seizing patient:
- Secure the airway, breathing, and circulation.
- Once an adequate airway is established, breathing is assured, and the patient is hemodynamically stable, then simultaneously evaluate and treat any precipitating cause of seizure.
- If a reversible cause is identified, treat aggressively.
- If the patient continues to seize, the following strategy is appropriate.
 - The initial drug of choice is lorazepam or diazepam (both benzodiazepines). These medications work by potentiating GABA receptor function.
 - If the patient continues to seize, add phenytoin or fosphenytoin, which inhibits sodium-dependent action potentials. CNS side effects of phenytoin include diplopia, dizziness, and ataxia. Systemic side effects include gum hyperplasia, lymphadenopathy, hirsutism, and rash.
 - If the patient continues to seize, add phenobarbital. Side effects include sedation, ataxia, and rash.
 - If, despite all of the above therapy, the patient continues to seize, add midazolam or propofol.

In patients with first-time seizure, anticonvulsant therapy should be started only if patient has:
- Abnormal neurologic exam
- Presented with status epilepticus
- Strong family history of seizure
- Abnormal EEG

Otherwise, first-time seizure is generally not treated with long-term anticonvulsant therapy.

There is no superior drug in pregnancy. Valproic acid is clearly more dangerous in pregnancy.
For primary generalized tonic-clonic seizures, valproic acid, phenytoin, lamotrigine, carbamazepine, or levetiracetam can be used. Lamotrigine works by decreasing glutamate release. Side effects include Stevens-Johnson syndrome. Absence seizures are treated with ethosuximide as first-line therapy. If ethosuximide is not an answer choice, valproic acid is an acceptable option. For myoclonic and atonic seizures, valproic acid is the treatment of choice. Overall, there is no single antiepileptic drug that's truly superior to the others—valproic acid, phenytoin, levetiracetam and carbamazepine are all nearly equal in efficacy.
Partial seizures, whether they are complex or simple, and whether or not they progress to secondary generalized seizures, are all treated the same. Carbamazepine and phenytoin are considered first-line therapy. Valproic acid and lamotrigine are considered acceptable alternatives, as is levetiracetam. It is very difficult to determine when to stop therapy. Therapy may be stopped if the patient has been free of seizures for 2–3 years. Sleep-deprivation EEG may be done first to determine if the patient is at low risk of a recurrence. A normal sleep-deprivation EEG means there is a lower likelihood of seizures.

Clinical Recall

Which of the following symptoms are seen in Wallenberg syndrome?

A. CN III palsy with contralateral ataxia
B. Quadriparesis with intact vertical eye movements
C. Vertigo, nystagmus, and ipsilateral limb ataxia
D. Weakness and sensory loss of lower extremities
E. Facial nerve palsy, dysarthria, dysphagia, and Horner syndrome

Answer: E

Vertigo and Dizziness

A 53-year-old woman is brought to the emergency department complaining of dizziness. She describes walking to her bathroom and experiencing a sudden feeling of nausea. She then vomited and fell to the floor. She was unable to get up but was able to call 911. The patient describes a feeling of the room “spinning” around her, even though she realizes she was not moving.

Vertigo is a false sensation of movement, i.e., the sensation of movement in the absence of actual movement. It may be caused by Ménière disease, labyrinthitis, positional vertigo, traumatic vertigo, perilymphatic fistula, and cervical vertigo. Other causes include vascular disease of the brain stem, arteriovenous malformation, brain tumor, MS, drug overdose, and vertebrobasilar migraine.

Clinical Presentation. With the dizzy patient, the first step is to determine the nature of the patient’s complaints. “Dizziness” is a nonspecific term that provides no meaningful information about what is occurring to the patient. Simply by taking a complete history, it is possible to determine whether the patient is experiencing vertigo or presyncope.

Patients who experience vertigo will describe a sensation of movement without actually moving. They often describe their environment ‘spinning around them.’ Sensations of tilting, swaying, or falling forward or backward are all consistent with vertigo. Acutely, these episodes are commonly associated with nausea and vomiting.

Patients who complain of presyncope will describe their symptoms as “lightheadedness” or “feeling like I’m going to black out.” Associated symptoms include generalized weakness, palpitations, and shortness of breath. It is essential to differentiate vertigo from presyncope because vertigo is usually a manifestation of neurologic disease, whereas presyncope is a cardinal manifestation of cardiovascular disease.
Once you are convinced by the history that the patient is indeed experiencing vertigo, determine whether the vertigo is secondary to peripheral or central vestibular disease (management will differ). Several points on history and physical examination will help to distinguish them.

Table 11-2. Vertigo

<table>
<thead>
<tr>
<th></th>
<th>Central Vertigo</th>
<th>Peripheral Vertigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Gradual</td>
<td>Usually sudden</td>
</tr>
<tr>
<td>Tinnitus, hearing loss</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>Neighborhood signs (diplopia, cortical blindness, dysarthria, extremity weakness/numbness)</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>Pure, vertical, does not suppress with fixation, and multidirectional</td>
<td>Mixed, horizontal, suppresses with fixation, and unidirectional</td>
</tr>
</tbody>
</table>

Once you have determined that the patient has peripheral vertigo, there is a wide differential diagnosis that should be considered.

Ménière disease is characterized by tinnitus, hearing loss, and episodic vertigo. Each episode lasts 1 to 8 hours. The symptoms wax and wane as the endolymphatic pressure rises and falls. The two most common causes of Ménière disease are syphilis and head trauma.

Benign paroxysmal positional vertigo is a cause of peripheral vertigo that characteristically is exacerbated by head movement or change in head position. Typically, episodes will occur in clusters that persist for several days. There will be a latency of several seconds after head movement before the onset of vertigo. The vertigo usually lasts 10 to 60 seconds.

Labyrinthitis presents with sudden onset of severe vertigo that lasts for several days with hearing loss and tinnitus. The disease frequently follows an upper respiratory tract infection.

Perilymphatic fistula is a form of peripheral vertigo related temporally to head trauma (blunt trauma to the ear, e.g., a slap to the ear) or extreme barotrauma during air flight, scuba diving, or vigorous Valsalva maneuver. Explosions deafen people.

Central vertigo is caused by any cerebellar or brain-stem tumor, bleed, or ischemia. Drug toxicity or overdoses are important causes of central vertigo. Also, in the young patient with unexplained central vertigo, consider multiple sclerosis.

Treatment. Symptomatic treatment for peripheral vertigo includes meclizine or, in severe cases, diazepam.

Ménière disease is treated with a low-salt diet and diuretics. In patients who fail medical therapy, you can consider surgical decompression.

Benign paroxysmal positional vertigo is treated with positional maneuvers that attempt to move the otolith out of the circular canals (e.g., Dix Hallpike and Barany maneuvers).
Vertigo secondary to *labyrinthitis* is treated symptomatically with meclizine and diazepam when the symptoms are severe. Steroids help labyrinthitis.

DISORDERS ASSOCIATED WITH HEADACHE

Headache

A 32-year-old woman comes to the office complaining of a headache that started 2 days ago. She locates her headache at the right side of her head and describes it as throbbing in quality. The headache is worsened by walking up stairs or around the block. She experiences nausea but denies vomiting. She also states that loud noise and bright light exacerbate her pain.

Headache is defined as pain located in the head, neck, or jaw. There are many causes. **Primary headache syndromes** include migraine (affecting 15% of the general population), cluster, and tension headache. **Secondary causes of headache** include intracranial hemorrhage, brain tumor, meningitis, temporal arteritis, and glaucoma.

Clinical Presentation. The single most important question to answer with a patient presenting with a complaint of headache is whether a serious underlying cause exists for the symptoms. By taking a thorough history and performing an adequate physical examination, it is possible to make this differentiation.

- Determine whether this is the patient’s first episode of headache: a history of recurrent symptoms makes the diagnosis of a primary headache disorder more likely, while a first-time headache, especially severe and rapidly peaking, speaks strongly for serious underlying pathology.
- Headache with fever and nuchal rigidity suggests meningitis as the underlying cause. Conversely, a headache described as “the worst headache of my life” and/or “thunder-clap” at onset, and is accompanied by nuchal rigidity without fever, suggests an intracranial hemorrhage as the underlying cause.
- Patients with brain tumor will present complaining of headache that is described as a deep, dull, aching pain and disturbs sleep. A history of vomiting which precedes the onset of headache by a number of weeks, or a history of headache induced by coughing, lifting, or bending, is typical of posterior fossa brain tumor.
- Patients with temporal arteritis complain of a unilateral pounding headache associated with visual changes, described as dull and boring with superimposed lancinating pain. Their symptoms also include polymyalgia rheumatica, jaw claudication, fever, weight loss, and scalp tenderness (difficulty combing hair or lying on a pillow). The scalp tenderness is from pain over the temporal artery. Temporal arteritis is a disorder of the elderly, e.g., age >50. Temporal arteritis gives an elevated sedimentation rate and is diagnosed with biopsy of the temporal artery. Do not wait for the biopsy results to initiate therapy with steroids.
- Patients with glaucoma will usually give a history of eye pain preceding the onset of the headache.

Note

Any patient who presents with headache and the following should be considered to have a secondary headache syndrome:

- “Worst headache of my life”
- Worsening symptoms over days to weeks
- Abnormal neurologic exam
- Fever
- Vomiting preceding the headache
- Headache induced by coughing, bending, lifting, or onset age >55
Migraine headaches are defined as a benign and recurrent syndrome of headache, nausea/vomiting, and other varying neurologic dysfunctions. Patients will describe the headache as pulsatile, throbbing, unilateral, and aggravated by minor movement. Other associated features include photophobia, phonophobia, and the time to maximal pain (4 to 72 hours). Migraine is a likely diagnosis when a typical trigger can be identified. Typical triggers include alcohol, certain foods (such as chocolate, various cheeses, monosodium glutamate), hunger, or irregular sleep patterns.

- Migraine without aura is a migraine without a preceding focal neurologic deficit.
- Migraine with aura (classic migraine) is a migraine accompanied by a preceding aura that consists of motor, sensory, or visual symptoms. Focal neurologic symptoms usually occur during the headache rather than as a prodrome. The pathognomonic aura for classic migraine is the scintillating scotoma. Only 20% of migraine headaches are accompanied by an aura. Visual auras are also described as stars, sparks, and flashes of light. Migraine equivalent is defined as focal neurologic symptoms without the classic complaints of headache, nausea, and vomiting.
- Complicated migraine is migraine with severe neurologic deficits which persist after the resolution of pain.
- Basilar migraine is migraine associated with symptoms consistent with brain-stem involvement (vertigo, diplopia, ataxia, or dysarthria).

Tension-type headaches are described as tight, band-like headaches that occur bilaterally. Patients may also describe their headache as “vise-like,” and these headaches may be associated with tightness of the posterior neck muscles. Patients will describe their pain as one that builds slowly, and the pain may persist for several days with or without fluctuations. Movement will not generally exacerbate the headache.

Cluster headaches, common in men, begin without warning and are typically described as excruciating, unilateral, periorbital, and peaking in intensity within 5 minutes of onset. They are rarely described as pulsatile in nature. The attacks last from 30 minutes to 3 hours and occur 1–3 × day for a 4-to-8-week period. Symptoms associated with cluster headaches include rhinorrhea, reddening of the eye, lacrimation, nasal stuffiness, nausea, and sensitivity to alcohol. Horner syndrome is sometimes found. Emotion and food rarely will trigger a cluster headache.

Diagnosis. Patients with severe, sudden onset of a first-time headache accompanied by strong evidence for an underlying cause on history or physical examination should have a CT scan of the head to rule out any secondary causes.

Treatment. Always begin with an attempt to identify probable triggers for the patient and to modify lifestyle by avoiding those triggers. Most patients will require pharmacotherapy as well.

Pharmacologic treatment for migraine headaches can be divided into management of an acute episode and prophylaxis. Initially, for a mild migraine—which is defined as headache in the absence of nausea or vomiting—NSAIDs may be used.

Acutely, abortive therapy consists of sumatriptan, which acts as a serotonin receptor agonist. Dihydroergotamine is the alternative to the triptans. Ergotamine can be used in combination with caffeine. The triptans are contraindicated in patients with known cardiovascular disease,
uncontrolled hypertension, or pregnancy. In addition to sumatriptan, there is almotriptan, naratriptan, zolmitriptan, and eletriptan. These medications can be given orally, intranasally, or even subcutaneously, depending on the severity of the headache. Alternatively, ergotamine can be given for acute abortive therapy. Dopamine antagonists such as metoclopramide can be given acutely as oral formulations to aid in the absorption of other abortive medications. When given parenterally, dopamine antagonists can provide relief acutely for migraine headaches.

Prophylactic treatment for migraine therapy should be initiated when patients have acute migraine headaches >3–4/month. The best prophylactic medication is a beta blocker. Propranolol, valproic acid, and topiramate are all considered first-line therapy for migraine prophylaxis. Verapamil and tricyclics can also be used. These medications take 2 to 6 weeks to have an effect and can be discontinued gradually over 6 months once clinical stabilization has occurred. Methysergide is not used because of the serious side effects associated with prolonged use (valvular and retroperitoneal fibrosis). SSRIs such as sertraline and fluoxetine can also be used for prophylaxis.

Table 11-3. Migraine Therapies

<table>
<thead>
<tr>
<th>Abortive</th>
<th>Prophylactic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NSAIDs, aspirin, acetaminophen</td>
<td>• Beta blockers</td>
</tr>
<tr>
<td>• Triptans</td>
<td>• Calcium blockers</td>
</tr>
<tr>
<td>• Ergotamine derivatives</td>
<td>• Tricyclics</td>
</tr>
<tr>
<td></td>
<td>• SSRI</td>
</tr>
<tr>
<td></td>
<td>• Valproic acid</td>
</tr>
<tr>
<td></td>
<td>• Topiramate</td>
</tr>
</tbody>
</table>

Opioid analgesics are not routinely recommended for the treatment of migraine headaches because of the possibility of developing addiction. They are used only in patients with severe, infrequent migraines that are unresponsive to other therapy. Other therapies for migraine headaches are acetaminophen and NSAIDs such as ibuprofen.

Treatment for tension headaches consists of relaxation. Patients should be encouraged to find activities that are relaxing for them. Initial pharmacotherapy consists of acetaminophen and NSAIDs. If the headache remains refractory to these medications, a muscle relaxant can be added to the regimen.

Cluster headaches are treated with a triptan or 100% oxygen. Prophylaxis of cluster headaches is best done with a calcium channel blocker. Prednisone and lithium are sometimes used.

Pseudotumor Cerebri

Definition. An idiopathic increase in intracranial pressure also known as benign intracranial hypertension.

Etiology. The disorder is 8 to 10 times more common in women. There is an association with obesity, chronic lung disease, Addison disease, oral contraceptives, tetracycline use, and vitamin A toxicity. Often there is no identified cause and the disorder resolves spontaneously after several months.
Clinical Presentation. Patients present with a headache, visual disturbances such as diplopia, and sixth cranial nerve (abducens) palsy. Clinical findings include diplopia, papilledema, and enlargement of the blind spot on visual field testing. The CT and MRI are normal, and evaluation of cerebrospinal fluid is normal beyond an increase in pressure.

Treatment. Treatment consists of weight loss, removing offending agents such as oral contraceptives, and the use of diuretics such as acetazolamide or furosemide. Steroids such as prednisone may help as well. In urgent cases, repeated lumbar punctures may help. If this is not effective and the disorder does not resolve, definitive treatment can be achieved with the placement of a surgical shunt between the ventricles and the peritoneum.

Trigeminal Neuralgia

Also known as tic douloureux, trigeminal neuralgia is an idiopathic pain syndrome resulting in sudden, severe, sharp pain starting near the side of the mouth and progressing to the ear, eye, or nostril. Attacks can be triggered by touch or movement such as talking or by eating. Trigeminal neuralgia can be so severe as to be nearly incapacitating. The pain lasts for a few seconds and disappears. Despite the pain, the sensory examination will be normal. Generally, trigeminal neuralgia is felt to be secondary to compression of the trigeminal nerve root by a blood vessel. Occasionally it can be a manifestation of multiple sclerosis or a posterior fossa tumor. With the exception of multiple sclerosis or the posterior fossa tumor, all imaging and neurologic testing will be normal.

Carbamazepine is the standard of care for treatment. In those not controlled with carbamazepine, phenytoin, baclofen, or gabapentin can be tried. In those not responding to any form of medical therapy, surgery or radio-frequency lesioning into the affected nerve may work.

Clinical Recall

Which of the following are the characteristic features of labyrinthitis?

A. Syphilis induced vertigo, hearing loss, and tinnitus
B. Perilymphatic fistula as a result of head trauma
C. Sudden onset of vertigo following upper respiratory tract infection
D. Vertigo that occurs with changes in head position
E. Central vertigo following toxicity with gentamicin

Answer: C

GUILLAIN-BARRÉ SYNDROME

A 46-year-old man is brought to your office complaining of “rubbery legs.” The patient states that his symptoms began 2 days ago and that approximately 3 weeks ago, he experienced several episodes of diarrhea, which resolved spontaneously. On neurologic examination, bilateral lower-extremity weakness and a loss of reflexes are noted.
Guillain-Barré syndrome (GBS) is an acute, often severe polyradiculopathy, whose underlying pathophysiology is an autoimmune destruction of myelin. Evidence suggests that GBS is caused by a misdirection of the immune response, where the body’s immune system attacks self-antigens mistaken for foreign antigens (molecular mimicry).

Clinical Presentation. Most patients present with rapidly developing weakness that typically begins in the lower extremities and moves upward. On physical examination the patient is noted to lack reflexes in the muscle groups affected. The progression of the symptoms will develop over hours to days, with the legs typically more affected than the arms or face. Fever, constitutional symptoms, or bladder dysfunction are rare and should raise the possibilities of alternate diagnoses.

In addition to the motor weakness, patients will typically complain of sensory disturbances that can take the form of pain or tingling dysesthesia. Sensory changes are due to loss of large sensory fibers, producing loss of reflexes and proprioception. Autonomic instability (profuse sweating, postural hypotension, labile blood pressure, cardiac dysrhythmias) occurs in severe GBS, requiring patient treatment in an intensive care unit.

Approximately 75% of patients who present with GBS will have a history of an infection 1–3 weeks preceding the onset of symptoms. The infection is typically in the respiratory or GI systems (*Campylobacter jejuni*), it might be an infection with human herpesvirus, cytomegalovirus, or Epstein-Barr. GBS occurs more frequently in patients with HIV, systemic lupus erythematosus, and lymphoma.

Diagnosis. Diagnosis lies principally in recognizing the typical pattern of weakness with the absence of reflexes, fever, and constitutional symptoms. Lumbar puncture for protein and cell count is the best initial test. The characteristic finding is elevated protein without an associated rise in cell count on CSF (only seen 48 hours after the onset of symptoms). The most accurate test for diagnosis is electromyography (EMG). EMG is used to detect evidence of demyelination of the peripheral nerves.

Treatment. IV immunoglobulin and plasmapheresis are equally effective treatments. There is no benefit to combination therapy. Initiate treatment as quickly as possible, as therapy becomes ineffective about 2 weeks after the onset of symptoms.

Also, it is extremely important to monitor vital capacity in patients with GBS and initiate early respiratory support to prevent death from respiratory failure.

Glucocorticoids are not effective for acute GBS.

MYASTHENIA GRAVIS

A 35-year-old woman comes to the clinic complaining of double vision that seems to worsen near the end of the day. She also complains of difficulty chewing meat and other hard foods. She notices that her symptoms improve following a good night’s sleep. On neurologic examination you note a snarling appearance when the patient is asked to smile, and a nasal tone is heard in her voice. You also note a weakness in the upper extremities when the patient is asked to clench her fist around your finger repeatedly.

Note

The only association between immunizations and GBS occurred in 1976, with the introduction of the swine influenza vaccine. More recent formulations of influenza vaccine are associated with one case of GBS per million patients immunized.
Myasthenia gravis (MG) is a disease of the neuromuscular junction characterized by weakness and fatigability. In MG, an autoimmune process characterized by acetylcholine-receptor antibodies leads to a decreased number of active and functional acetylcholine receptors at the postsynaptic membrane.

Clinical Presentation. The major features in a patient's history which help to diagnose MG are muscle weakness and fatigability. Initially, patients will complain of diplopia, ptosis, and difficulty swallowing. Speech may have a "mushy" or nasal quality and facial weakness may manifest as a "snarling" appearance when smiling. As the disease progresses, weakness may become generalized, involving proximal muscles in an asymmetric pattern. Deep tendon reflexes are intact. Pupillary responses are normal. There are no sensory abnormalities. Very severe disease may affect the muscles of respiration.

Eaton-Lambert myasthenic syndrome is characterized by increasing muscle strength on repetitive contraction. This syndrome is seen in association with malignancy, especially small-cell carcinoma of the lung.

Botulism may cause a myasthenic-like illness, but the pupils are usually dilated and repetitive nerve stimulation (on EMG) shows an incremental increase in muscular fiber contraction (opposite of myasthenia gravis).

Diagnosis. The best initial test for the diagnosis of MG is the acetylcholine-receptor antibody test. In generalized MG, 80–90% of patients will have a positive test. In the presence of fatigable muscle weakness, a positive antibody test is specific and virtually diagnostic. Antibodies are present in only 70% of those with disease limited to the eyes.

The edrophonium (Tensilon) test is sensitive but not specific for the diagnosis. Additionally, patients may experience nausea, diarrhea, fasciculations, syncope (rare), or bradycardia during the test, which are cholinergic symptoms.

Imaging studies of the chest such as x-rays and CT scan should be performed to detect a thymoma. Thymoma is found in 10–15% of patients. Thymic hyperplasia is found in 65%.

The most accurate test for the diagnosis of myasthenia gravis is electromyography (EMG). The characteristic finding is a decremental decrease in muscle fiber contraction on repetitive nerve stimulation.

Treatment. Anticholinesterase (usually pyridostigmine or neostigmine) medications are useful for the symptomatic treatment of myasthenia gravis. Pyridostigmine is longer lasting. If treatment with anticholinesterase medications is unsuccessful in providing symptomatic relief, the physician should consider immunosuppressive therapy.

There are numerous medications used for immunosuppressive therapy. These interventions primarily differ in the onset of therapeutic benefit. They are used if thymectomy is not effective.

Glucocorticoids are effective in improving weakness but take 1 to 3 months for you to observe a clinical benefit. Steroids are the initial immunosuppressive of choice. If patients fail steroid therapy, azathioprine is the most widely used medication used in combination with steroids. The benefits of azathioprine therapy may take >3–6 months to peak. Cyclosporine and cyclophosphamide are alternatives to azathioprine but are more toxic.

Plasmapheresis and IV immunoglobulin are immunosuppressive therapies noted for their ability to rapidly improve weakness in myasthenia gravis. They are therefore reserved for patients in acute myasthenic crisis. These therapies are used when respiratory involvement occurs or when patients go to the operating room.
Thymectomy is indicated in postpubertal patients and in those age <60 with generalized myasthenia gravis before initiation of immunosuppressive therapy. Thymectomy is performed in those not controlled with anticholinesterase medications to prevent the use of potentially toxic medication such as systemic steroids. Thymectomies are also performed when a thymoma is present to prevent the spread of malignant thymic disease.

Aminoglycoside antibiotics may exacerbate myasthenia gravis and should be avoided. In fact, many medications may worsen myasthenia gravis.

Mycophenolate is a newer immunosuppressive drug with less adverse effects than steroids or cyclophosphamide.

AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is an idiopathic disorder of both upper and lower motor neurons. ALS has a unique presentation of muscle weakness combined with signs of upper motor neuron loss, cranial nerve palsies, respiratory involvement, and lower motor neuron destruction, while at the same time preserving bowel, bladder sensory, cognitive, and sexual function.

- The cranial nerve, or bulbar, palsies result in dysphagia, difficulty chewing, decreased gag reflex, dysarthria (difficulty in articulating words), and difficulty in handling saliva.
- Since there is often respiratory muscle involvement, recurrent aspiration pneumonia is the most common cause of death.
- A weak cough is also characteristic, and this only worsens the respiratory problem.
- There is no pain from abnormal sensory neuropathy because this is entirely a motor neuron disease. On the other hand, the upper motor neuron involvement gives significant spasticity that can lead to pain.
- Mentation, bowel, bladder, and sexual function remain intact for the same reason. In other words, a fully mentally alert patient loses nearly all motor control while still being able to think and perceive. The patient becomes fully aware of being trapped in a body that does not function.
- Head ptosis occurs because the extensor muscles of the neck become too weak to keep the head up.

Upper motor neuron manifestations are weakness with spasticity and hyperreflexia. Lower motor neuron manifestations are weakness with muscle wasting, atrophy, and fasciculations; this includes tongue atrophy. The combination of upper and lower motor neuron weakness is the unique presentation of ALS. The most accurate confirmatory test is the electromyogram, which will show diffuse axonal disease. CPK levels are sometimes mildly elevated, and the cerebrospinal fluid and MRI scans are normal.

The only treatment that may slow down the progression of the disease is riluzole, which is thought to work by inhibiting glutamate release. Death typically results in 3–5 years. Spasticity is treated with baclofen and tizanidine.

Many of the USMLE exam questions regarding ALS will be ethical questions on issues of the withholding of care. Since ALS has no impact on cognitive function, the patient is felt to retain the capacity to make medical decisions.
• The patient has the right to refuse potentially life-saving therapy such as antibiotics, nasogastric tube placement, tracheostomy, or mechanical ventilation.

• The patient should not be allowed to commit suicide nor should the physician assist with suicide. (Withholding intubation or antibiotics is not considered assisting a suicide.)

• Every adult patient with the capacity to understand the implications of his or her choice is allowed to refuse any unwanted therapy.

MULTIPLE SCLEROSIS

A 32-year-old woman comes to the emergency department complaining of numbness and tingling in her right hand. Her symptoms began several days ago and have worsened over the last several hours. She states that 3 years ago she had an episode of “seeing double” that lasted 2 days and resolved on its own. Physical examination is significant for hyperreactive reflexes bilaterally in her lower extremities. Increased spasticity is also noted in her lower extremities.

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the CNS white matter characterized by a relapsing or progressive course. The cause is thought to be multifactorial; there is evidence that genetic susceptibility plays an important role. The disease occurs primarily in female populations of Northern European descent and of child-bearing age, respectively. This implies a role for some sort of environmental trigger (infectious, dietary, climatic). Pathologically, focal areas of demyelination are characteristic of the disease.

Clinical Presentation. Commonly, patients will present complaining of weakness, numbness, tingling, or unsteadiness of a limb. Urinary urgency or retention, blurry vision, and double vision are all common initial manifestations of the disease. Symptoms may persist for several weeks or may resolve spontaneously over a few days.

There are several forms of the disease that may change the course of management and are therefore important to recognize. Most patients will have a months-long to years-long disease-free period after their first exacerbation.

• **Relapsing remitting disease:** progression is characterized by relapses of active disease with incomplete recovery during the periods of remission

• **Secondary progressive disease:** progression becomes more aggressive so that a consistent worsening of function occurs

• **Primary progressive disease:** symptoms are progressive from the onset of disease with the early onset of disability (least common form)

It is important to understand when the diagnosis of multiple sclerosis should be suspected. Classically, the diagnosis is made clinically when a young patient (usually age <55) presents with a history of multiple neurologic complaints that cannot be explained by the presence of one CNS lesion. In other words, suspect the diagnosis when a patient presents with multiple neurologic deficits separated by time and space (anatomy).

A number of triggers are known to exacerbate the disease. Infections or trauma may acutely worsen the disease. Pregnancy, especially the 2 to 3 months following birth, may also exacerbate symptoms. However, there are generally fewer attacks during the pregnancy. Uncomplicated MS typically has no adverse effects on the outcome of the pregnancy.
Diagnosis. To diagnose MS you have to rely on clinical criteria supplemented with radiologic and laboratory confirmations. The advent of MRI scanning of the brain has dramatically changed the methods by which multiple sclerosis is diagnosed.

MRI of the brain is the most accurate test to diagnose MS, reaching a sensitivity of 85 to 95% in symptomatic persons. Increased T2 and decreased T1 intensity represent the increased water content of demyelinated plaques in the cerebrum and spine. Enhancement of lesions with gadolinium indicates active MS lesions that may enhance for up to 2 to 6 weeks after an exacerbation. MS is an unusual disease in that the best initial test for the diagnosis is also the most sensitive one, namely MRI of the brain and spine.

Evoked response potentials detect slow or abnormal conduction in response to visual, auditory, or somatosensory stimuli. The limitation of this test for the diagnosis of MS is that many other neurologic diseases can give an abnormal result. The test is not specific for the diagnosis of MS. As a result, evoked potentials are rarely used to make the diagnosis.

Cerebrospinal fluid (CSF) analysis usually reveals a mild pleocytosis (usually <50 cells/μL) and a total protein that is mildly elevated. A protein level exceeding 100 mg/dL is unusual and should be considered as evidence against the diagnosis of MS. An elevated IgG index (oligoclonal bands) is found in 70 to 90% of patients with MS. The finding is nonspecific, and as a result, CSF for oligoclonal banding is recommended only when the MRI is nonconfirmatory but clinical suspicion for MS remains high.

Treatment. The treatment of multiple sclerosis can be divided into disease-modifying therapy, treatment of complications, and treatment for symptomatic relief during an acute exacerbation. The specific agents used depend on progression of the disease at the time of diagnosis.

In relapsing-remitting disease, there are 3 disease-modifying agents that have been shown to reduce the number of clinical exacerbations and the number of MRI lesions:

- Interferon-β1a
- Interferon-β1b
- Glatiramer acetate

More importantly, these medications seem to delay the onset of significant disability. Glatiramer is also known as copolymer I.

In secondary progressive disease, interferon-β1b and mitoxantrone have been shown to reduce the number of exacerbations, decrease MRI activity, and delay onset of disability. In patients who receive mitoxantrone, dose-related cardiotoxicity is a concern; mitoxantrone should be given only to patients with a normal ejection fraction. Mitoxantrone is not a first-line agent to prevent disease progression because of its cardiotoxicity. In patients with relapsing-remitting disease or secondary progressive disease who cannot tolerate treatment with IFN-β1b, IFN-β1a, or glatiramer acetate, you can consider treatment with methotrexate, mitoxantrone, cyclophosphamide, IV immunoglobulin, or azathioprine. ACTH is no longer used.

No approved disease-modifying therapy exists at this time for primary progressive disease.

Mitoxantrone, cyclophosphamide, and natalizumab are not used for a first episode of disease. Natalizumab is associated with progressive multifocal leukoencephalopathy (PML).

The length and intensity of an acute exacerbation are shortened by the administration of glucocorticoids. Typically, an acute exacerbation is treated with 3 days of intense IV steroids followed by a course of oral medication tapered over 4 weeks. In patients with severe disease who are unresponsive to steroid therapy, plasma exchange can be used as an alternative treatment.
For patients with spasticity, baclofen is the most effective medication. Tizanidine and diazepam are useful for nocturnal spasticity but are limited in their use for daytime symptoms because they cause intense somnolence. Pain secondary to trigeminal neuralgia and dysesthesias responds well to carbamazepine, gabapentin, phenytoin, pregabalin, or tricyclic antidepressants. Bladder hyperactivity is treated with oxybutynin, whereas urinary retention is treated with bethanechol. Fatigue may be treated with amantadine or fluoxetine. Erectile dysfunction can be treated with sildenafil acetate.

All disease-modifying therapies are relatively contraindicated in pregnancy. Interferon and glatiramer should both be stopped for a pregnancy.

Fingolimod is an oral disease-modifying medication that decreases rates of MRI progression. It prevents lymphocytes from proliferating outside of lymph nodes. Cardiac toxicity can be severe.

Dalfampridine is an oral disease-modifying medication that increases walking speed. It is a unique potassium channel blocker for which the precise mechanism of action (for improved walking speed) is not clearly known.

Clinical Recall

What is the best initial test in the diagnosis of myasthenia gravis?

A. Tensilon (Edrophonium) test
B. EMG
C. Chest CT
D. Acetylcholine receptor antibody test
E. Muscle biopsy

Answer: D

DEMENTIA

A 67-year-old woman is brought to the clinic complaining of forgetfulness. She states that recently she has been forgetting common phone numbers and the name of her mailman, whom she has known for 25 years. Her past medical history is significant for hypertension, coronary artery disease, and high cholesterol. Her physical examination is unremarkable.

Cognitive function is measured by various mental functions, including memory, concentration, language, praxis, visuospatial functioning, and executive functions. “Dementia” refers to loss of memory with impairment of any other cognitive function sufficient to interfere with social or occupational functioning.
There are more than 100 identifiable causes of dementia in the elderly.

- **Reversible causes** include hypothyroidism, vitamin B12 deficiency, hepatic or uremic encephalopathy, CNS vasculitis, syphilis, brain abscess, brain tumor (primary or metastatic), medications (especially anticholinergics), obstructive sleep apnea, central sleep apnea, trauma, subdural hematoma, normal pressure hydrocephalus (NPH), and depression.

- **Irreversible causes** include progressive multifocal leukoencephalopathy, Alzheimer disease (60–80% of all cases), dementia with Lewy bodies, frontotemporal degeneration including Pick disease, vascular dementia including multi-infarct dementia and Binswanger disease, and Creutzfeldt-Jakob disease (CJD).

Clinical Presentation. The most common cause of dementia is Alzheimer disease. Typically, patients will present with problems in memory and visuospatial abilities that generally occur early in the course of the disease. Social graces can be retained despite significant loss of cognitive decline. Hallucinations and personality changes typically occur late in the course of the disease.

Mild cognitive impairment refers to memory loss without dysfunction of other cognitive domains. These patients have a higher risk of developing Alzheimer disease later in life but do not have Alzheimer disease. The rate of progression is 15–20% per year.

Alzheimer disease is, by definition, the loss of memory as well as other cognitive disturbances, such as aphasia, agnosia (the failure to identify entities despite intact sensory function), apraxia, or the loss of the ability to make plans and execute them. There is no single diagnostic test for Alzheimer disease.

Patients with frontotemporal dementias such as Pick disease will typically present with personality changes early in the course of their disease, with relative sparing of their visuospatial function. Social, interpersonal, and emotional abnormalities precede memory impairment. Frontotemporal dementia is often noted primarily by the family because the patient lacks insight into their condition. There is no proven therapy for this condition.

Dementia with Lewy bodies (DLB) can be confused with delirium and is characterized by fluctuating cognitive impairment.

Dementia secondary to Parkinson disease should be accompanied by clinical findings consistent with that disease. Recurrent visual hallucinations are also characteristic.

Dementia secondary to CJD is characterized by a shorter (weeks to months), more aggressive course than Alzheimer disease. Patients with CJD will present with dementia and myoclonus. Variant CJD is bovine spongiform encephalopathy (BSE). BSE is from the ingestion of prions from affected cattle. The diagnosis of CJD is by rapidly progressive dementia, myoclonus, ataxia, and the presence of 14-3-3 protein in the CSF. EEG may also help diagnose. These criteria can eliminate the need for brain biopsy.

Vascular dementia is divided into multi-infarct dementia, which typically has a stepwise progression associated with discrete cerebrovascular events, and Binswanger disease, involving the subcortical white matter, which presents with a slowly progressive course.

Normal pressure hydrocephalus will present with prominent gait abnormalities early in the course of the disease that usually precede the onset of cognitive impairment. There will also be associated urinary incontinence.

Diagnosis. All patients with cognitive impairment should be assessed with a Mini Mental Status Examination (MMSE) to identify the areas of cognitive impairment.

Note

The prevalence of dementia is 1–5% at ages 65–69, and rising to 45% by age 100. Only 5% of Alzheimer disease is inherited.
Initially, the workup should focus on ruling out reversible causes of the dementia. If a reversible cause is identified, it should be treated, with the hope that cognitive function can be recovered. Laboratory studies should include a complete blood count (CBC), electrolytes, calcium, creatinine, liver function studies, glucose, thyroid-stimulating hormone (TSH), vitamin B12, RPR, and HIV.

Brain imaging is most useful for patients who have a focal neurologic exam, seizures, gait abnormalities, and an acute or subacute onset of their symptoms. EEG and CSF evaluation are not necessary except for NPH-opening pressure. No CSF marker is proven beneficial with the exception of 14-3-3 protein in CJD.

Treatment. Treatment of dementia revolves around ensuring that the family and the patient have the proper medical and emotional support to cope with the disease. Caregivers are at an increased risk for depression and anxiety. Their concerns and frustrations should be addressed at frequent intervals.

Raising the level of acetylcholine in CSF benefits patients with Alzheimer disease. Pharmacotherapy with donepezil has been shown to improve cognitive function in mild to moderate dementia. Other anticholinesterase inhibitors (rivastigmine, galantamine) appear to have similar efficacy.

Memantine is a disease-modifying drug used in advanced disease either alone or with a cholinesterase inhibitor. Memantine seems to be neuroprotective and reduces the rate of progression of disease.

HUNTINGTON DISEASE

A 34-year-old man comes to the clinic for an evaluation of strange spontaneous movements that have been occurring lately. Recently, while sitting at a family dinner, the patient experienced uncontrolled grimacing with grunting. His father died at the age of 41 from “dementia.”

Huntington disease is a genetic degenerative brain disorder caused by the presence of the HD gene located on chromosome 4p. The gene contains a CAG trinucleotide repeat expansion that codes for a protein called **huntingtin**. The HD mutation leads to abnormal cleavage of the huntingtin protein, interfering with nuclear mechanisms, and causing cell death.

The disease is inherited in an autosomal dominant fashion. Successive generations tend to have the disease occurring at an earlier age. This is called **anticipation**.

Clinical hallmarks of the disease include chorea and behavioral disturbance. Onset is usually in decade 4 or 5 of life, and can begin with either chorea or behavioral change.

- The personality changes consist of irritability, anger, paranoia, or signs of depression. Antisocial behavior may develop.
- The chorea changes may begin as fidgeting that progresses to sudden movements of the trunk or limbs. Gait is poorly coordinated and has a choreic quality. Memory is usually preserved until late in the disease but lack of judgment, disinhibition, and inattention are early manifestations. There is frequently an associated depression. Dementia becomes severe later in the disease.
Diagnosis is made by genetically testing for the presence of the CAG trinucleotide DNA repeat expansion. There is a 50% chance of passing it on to children. CT scanning shows cerebral atrophy. Atrophy of the caudate nucleus is severe later.

Tetrabenazine helps the movement disorder of Huntington disease but will not reverse or cure the underlying disease process. Death occurs 15–20 years after the diagnosis. Haloperidol or clozapine can be used to control behavioral changes.

PARKINSON DISEASE

A 56-year-old man is brought to the office by his wife for evaluation of a resting tremor that she noticed recently. She also states that her husband has been moving “very slowly” as of late. When questioned, the patient states that he feels fine and does not know why his wife is dragging him from doctor to doctor. His past medical history is significant for mild hypertension that has been treated with a thiazide diuretic.

Physical examination is significant for a resting tremor noted in his right hand. When walking, the patient is stooped forward, taking small steps. You note cogwheel rigidity in his right upper extremity with a positive Myerson sign.

Parkinson disease is a neurologic syndrome resulting from the deficiency of the neurotransmitter dopamine as a consequence of degenerative, vascular, or inflammatory changes in the basal ganglia. There are numerous causes.

- Drugs, including neuroleptic agents (haloperidol, chlorpromazine), antiemetics (metoclopramide), alpha-methyldopa, and reserpine
- Poisoning from MPTP, carbon monoxide, cyanide, and manganese
- Any structural lesion around the basal ganglia (trauma, tumor, abscess, infarct)
- Survivors of encephalitis can develop postencephalitic Parkinsonism.

Clinical Presentation. The cardinal manifestations of Parkinson disease are bradykinesia (manifested by slow movements, mask facies, reduction of automatic movements), cogwheel rigidity, postural instability, and resting tremor. A useful mnemonic is to think of Mr. Parkinson as a fine BRITish gentleman.

- Bradykinesia
- Rigidity (cogwheel)
- Instability (postural)
- Tremor (resting)

There are a number of “Parkinson plus” syndromes, which are characterized by their relative lack of response to therapy with levodopa/carbidopa.

- Parkinsonism + vertical gaze palsy = supranuclear palsy
- Parkinsonism + prominent ataxia = olivopontocerebellar atrophy
- Parkinsonism + prominent orthostatic hypotension = Shy-Drager syndrome (now called multiple-system atrophy)
Several other diseases can imitate Parkinsonism. Severe depression can cause a paucity of spontaneous movement that can mimic Parkinsonism. Essential tremor can be mistaken for the tremor of Parkinson disease, but the lack of other neurologic symptoms and a positive family history of tremor and its amelioration with alcohol distinguish the two entities. A normal pressure hydrocephalus can present with ataxia and gait disturbances, which can also be mistaken for Parkinson disease. The presence of dementia and urinary incontinence with dilated ventricles on a CT scan of the head can help identify this disorder. Huntington disease can present with akinesia and chorea. The positive family history and dementia usually suggest the correct diagnosis.

Diagnosis. The diagnosis of Parkinson disease is a clinical one. It is important to identify any secondary causes of a patient's Parkinsonism that are potentially reversible. There is no diagnostic test of choice that can identify patients with Parkinson disease.

Treatment. There are many medications available for the treatment of Parkinson disease. The underlying pathophysiology that causes Parkinson disease is the imbalance of dopaminergic (too little) and cholinergic (too much) tone on the basal ganglia. Thus, medical treatment revolves around increasing dopaminergic tone or decreasing cholinergic tone on the basal ganglia.

Not surprisingly, the medications available for the medical treatment of Parkinson disease directly stimulate dopamine receptors (carbidopa/levodopa, dopamine agonists), indirectly increase the amount of dopamine available (COMT inhibitors, selegiline, amantadine), or block acetylcholine stimulation of the basal ganglia (benztropine, trihexyphenidyl).

Direct-acting dopamine agonists such as pramipexole or ropinirole can be used alone as initial therapy or in combination with small doses of levodopa/carbidopa. Two other dopamine agonists are bromocriptine and cabergoline. All of them are less efficacious than levodopa. Dopamine agonists do, however, have less dyskinetic side effects. Bromocriptine and pergolide are ergot derivatives and can cause cardiac toxicity.

The first step when considering what medication to start with is evaluating the patient’s functional status. Patients with an intact functional status are managed differently from patients with a compromised functional status.

Patients with intact functional status (less bradykinesia) are not generally given carbidopa/levodopa as initial therapy. Such patients are started on anticholinergic medication when they are age <60. This is particularly true for those in whom tremor is the predominant symptom. When age >60, the treatment of choice is amantadine. The reason why anticholinergics are relatively contraindicated in elderly patients is because the side effects (dry mouth, urinary retention, constipation, confusion/hallucinations) occur more frequently and severely. Anticholinergics such as benztropine and trihexyphenidyl are used mostly to relieve tremor and rigidity. Avoid with BPH and glaucoma.

For patients with compromised functional status (more significant bradykinesia), the best initial therapy is carbidopa/levodopa. Carbidopa inhibits extracerebral dopa-decarboxylase, allowing more of the levodopa to reach the central nervous system, where it is needed. Levodopa is the precursor to dopamine. Carbidopa protects the levodopa from breakdown in the periphery, ensuring its secure delivery to the central nervous system. There are several late complications to carbidopa/levodopa therapy: Dyskinesia (abnormal movements), akathisia (restlessness), and “on-off” phenomena are all disconcerting to the patient. All of these late side effects are termed “response fluctuations” and can be managed by using a sustained release form of carbidopa/levodopa, adding a dopamine agonist, selegiline, or a COMT inhibitor, or restricting the main protein meal to the night. COMT inhibitors are tolcapone and entacapone. They are always used in conjunction with levodopa to help reduce the dose or modify response fluctuations. COMT inhibitors have no effect alone; they decrease the metabolism of the levodopa. They are an adjunct to the use of levodopa to reduce adverse effects.
Selegiline was once thought to slow the progression of the disease. Selegiline can be used in those with a declining or fluctuating response to levodopa. Selegiline offers mild symptomatic benefit in early disease. Rasagiline is a newer version.

Surgery should only be considered for patients who cannot tolerate or respond adequately to medical therapy. The procedures usually performed are pallidotomy or thalamotomy. The placement of deep brain stimulators is also effective when placed in the globus pallidus or subthalamic nuclei. Surgical therapy is a last resort.

BENIGN ESSENTIAL TREMOR

This is an idiopathic disorder consisting of an isolated tremor of the hands, head, or both. The lower extremities tend to be spared. Essential tremor can be worsened by the use of caffeine or beta agonists. Examination reveals no other abnormalities. Although the level of disability tends to be limited, there can be interference with manual skills such as the ability to write. It is characteristic of this disorder that there is an improvement with the use of alcohol. The patient will describe shaky hands, which improve with 2–3 drinks.

There is no specific diagnostic test for this disorder. Treatment is propranolol. If propranolol is ineffective, alternate medications are primidone, alprazolam, and clozapine. If no medical therapy is effective, thalamotomy is indicated.

RESTLESS LEG SYNDROME

Restless leg syndrome (RLS) is an idiopathic condition resulting in a sensation of creeping and crawling dysesthesia within the legs, leading to involuntary movements during sleep. Often the condition is brought to attention because of multiple bruises sustained by the sleep partner. The condition can be familial and is exacerbated by sleep deprivation, caffeine, and pregnancy. There is also an association with uremia, iron deficiency, and peripheral neuropathy.

There is no specific diagnostic test for this disorder. Treatment is a dopamine agonist such as pramipexole or ropinirole, although some patients may need levodopa/carbidopa. Other therapies are narcotics and benzodiazepines.

Clinical Recall

Which of the following is a characteristic feature of Creutzfeldt-Jakob disease?

A. Memory loss without dysfunction of other cognitive domains
B. Gradual loss of memory with other cognitive disturbances
C. Memory impairment with social, interpersonal, and emotional problems
D. Stepwise progression of cognitive decline
E. Rapidly progressive dementia with myoclonic jerks

Answer: E
Learning Objectives

- Describe the mechanism of bullous and blistering diseases and approaches to treatment
- List the common dermatologic parasitic diseases, treatments, and common side effects
- Outline the treatment of skin and ulcer infections, including decubitus (pressure) ulcers and acne
- Describe the presentation and management of scalp, hair, and scaling disorders (eczema), and papulosquamous dermatitis
- Provide an overview of toxin-mediated diseases, hypersensitivity, and toxin-mediated diseases
- Describe benign lesions, precancerous lesions, and malignant diseases of the skin and their treatment and prognosis

Figure 12-1. Skin
BULLOUS/BLISTERING DISEASES

Pemphigus Vulgaris

Pemphigus vulgaris is an autoimmune disease of unclear etiology in which the body essentially becomes allergic to its own skin. Antibodies are produced against antigens in the intercellular spaces of the epidermal cells. They attack the “glue” that holds the epidermal cells together. “Pemphix” is from the Greek word for bubble, which is what a bulla looks like before it is broken. Pemphigus vulgaris is most often idiopathic, but ACE inhibitors or penicillamine can occasionally cause it.

Vulgaris occurs in patients age 30s and 40s. It occurs prominently in the mouth and starts there. The oral lesions are erosions, not bullae. The bullae are very thin and flaccid and break easily. This leads to the loss of large volumes of skin surface area, so it acts like a burn. This is because the bullae occur from destruction within the epidermis, making them thinner and more fragile. The presence of the Nikolsky sign (the easy removal of skin by just a little pressure from the examiner’s finger, pulling the skin off like a sheet) is seen in pemphigus vulgaris, staphylococcal scalded skin syndrome, and toxic epidermal necrolysis.

The lesions of pemphigus vulgaris are painful, not pruritic.

The most accurate diagnostic test is to biopsy the skin and to use immunofluorescent stains. These stains will detect intercellular deposits of IgG and C3 in the epidermis.

Treatment is with systemic glucocorticoids, such as prednisone. Topical steroids will not be sufficiently strong. Before the invention of steroids, pemphigus vulgaris was often fatal, with patients dying of sepsis and dehydration—just like a burn patient. For those in whom steroids are ineffective or not tolerated, you can use azathioprine, mycophenolate, or cyclophosphamide. Rituximab and IVIG are also effective.

Bullous Pemphigoid

Pemphigoid is 2× as common as pemphigus vulgaris and occurs in elderly persons age 70s and 80s. It can also be drug induced with sulfa drugs, including furosemide, penicillamine, and others.

The defect occurs at the dermo-epidermal junction, so the layer of skin that separates off is much thicker. Because the fracture of the skin causing the blisters is deeper, the bullae are thicker walled and much less likely to rupture. Oral lesions are rare. Because the bullae are tense and intact, the skin is better protected. There is no dressing for skin as good as skin itself. Hence, there is much less fluid loss, and infection is much less likely as compared with pemphigus vulgaris. Mortality is much less likely in bullous pemphigoid.

The most accurate diagnostic test is a biopsy with immunofluorescent antibodies at the dermo-epidermal junction (basement membrane).

Systemic steroids, such as prednisone, are the standard means of treatment. Tetracycline or erythromycin combined with nicotinamide is the alternative to steroids. Use topical steroids only if no oral lesions are present.

Note

Pemphigus vulgaris is a much more serious and potentially life-threatening disease than pemphigoid.
Porphyria Cutanea Tarda

Pathogenesis. Porphyria cutanea tarda is a disorder of porphyrin metabolism. Deficiency of the enzyme uroporphyrinogen decarboxylase results in an abnormally high accumulation of porphyrins, which then leads to a photosensitivity reaction. The test question should give a history of HIV, alcoholism, liver disease, chronic hepatitis C, or a woman taking oral contraceptives. The liver disease may be from any cause but is most likely to involve chronic infectious hepatitis or hemochromatosis because porphyria cutanea tarda is associated with increased liver iron stores. Diabetes is found in 25% of patients.

Clinical Presentation. Fragile, nonhealing blisters are seen on the sun-exposed parts of the body, such as the backs of the hands and the face. This leads to hyperpigmentation of the skin in general and hypertrichosis of the face.

Diagnosis. The diagnostic test is a level of urinary uroporphyrins. Uroporphyrins are elevated 2–5× above the coproporphyrins in this disease.

Treatment. The best initial step in management is to stop drinking alcohol (although it is unlikely to be effective) and to discontinue all estrogen use. Combine treatment with barrier sun protection, such as clothing, because most sunscreens do not seem to block the wavelength of light causing the dermal reaction. The most effective therapy to use if this is insufficient is phlebotomy to remove iron. Deferoxamine is used to remove iron if phlebotomy is not possible. Also, the antimalarial drug chloroquine increases the excretion of porphyrins.

DRUG ERUPTIONS/HYPERSENSITIVITY

Urticaria

Acute urticaria is a hypersensitivity reaction most often mediated by IgE and mast cell activation, resulting in evanescent wheals and hives. It is a type of localized, cutaneous anaphylaxis, but without the hypotension and hemodynamic instability. The most common causes of acute urticaria are allergic reactions to medications, insect bites, and foods, and occasionally, the result of emotions. The most common medications are aspirin, NSAIDs, morphine, codeine, penicillins, phenytoin, and quinolones. ACE inhibitors are also associated with urticaria, as well as angioedema. The most common foods are peanuts, shellfish, tomatoes, and strawberries. Contact with latex in any form can also cause urticaria.

Clinical Presentation. Acute urticaria lasts <6 weeks in duration and two-thirds of cases are self-limited. Chronic urticaria lasts >6 weeks in duration and is associated with pressure on the skin, cold, or vibration. Pressure on the skin resulting in localized urticaria is also known as dermatographism. In acute cases, the onset of the wheals and hives is usually within 30 minutes and lasts for <24 hours. Itching is prominent. In patients with chronic urticaria lasting >6 weeks, you should investigate the etiology.

Treatment. Urticaria is treated with H1 antihistamines. Severe, acute urticaria is treated with older medications, such as diphenhydramine (Benadryl”), hydroxyzine (Atarax”), or cyproheptadine. If it is life-threatening, use H2 antihistamines when H1 antihistamines fail and add systemic steroids. Chronic therapy is with newer, nonsedating antihistamines, such loratadine, desloratadine, fexofenadine, or cetirizine. Astemizole and terfenadine should never be used and are no longer marketed; they cause potentially fatal rhythm disturbances particularly when combined with other medications, such as macrolide antibiotics, because of their effect on the hepatic P450 system.
Note

For urticaria:

Answer “terfenadine” or “astemizole” only when the test question asks what will kill the patient or which is the most dangerous medication.

Answer “desensitization” when the trigger cannot be avoided, e.g., a beesting in a farmer. Beta-blocker medications must be stopped prior to desensitization because they inhibit epinephrine, which may be used if there is an anaphylactic reaction.

Morphillform Rashes

A morphillform rash is a milder version of a hypersensitivity reaction compared with urticaria. This is the “typical” type of drug reaction and is lymphocyte mediated.

The rash resembles measles and is usually secondary to medications that the patient is allergic to, such as penicillin, sulfa drugs, allopurinol, or phenytoin. It is a generalized, maculopapular eruption that blanches with pressure. The reaction can appear a few days after the exposure and may begin even after the medication has been stopped.

Antihistamines are effective, and steroids are rarely necessary.

Erythema Multiforme

Although erythema multiforme (EM) may be caused by the same types of medications that cause urticaria and morphillform rashes (penicillins, phenytoin, NSAIDs, and sulfa drugs), the most common cause of EM is a reaction to infection. The majority of cases follow infection with herpes simplex or Mycoplasma.

The most characteristic feature of EM is target-like lesions that occur especially on the palms and soles. These lesions can also be described as “iris-like.” Bullae are not uniformly found. EM of this type usually does not involve mucous membranes.

Treatment is antihistamines and treatment of the underlying infection.
Stevens-Johnson Syndrome
Stevens-Johnson syndrome (SJS) is sometimes called erythema multiforme major. It can be difficult to distinguish from toxic epidermal necrolysis (TEN) and, in fact, the two diseases may be considered a spectrum of severity of the same disorder. All of these disorders may arise as a hypersensitivity response to the same set of medications, such as penicillins, sulfa drugs, NSAIDs, phenytoin, and phenobarbital.

Clinical Presentation. SJS usually involves <10 to 15% of the total body surface area, and the overall mortality rate is <5 to 10%. There is mucous-membrane involvement in 90% of cases, most often of the oral cavity and the conjunctivae, although there may be extensive involvement of the respiratory tract.

Treat patients with early admission to a burn unit, withdrawal of the offending drug, and supportive care. Respiratory-tract involvement may be so severe as to require mechanical ventilation. Death occurs from a combination of infection, dehydration, and malnutrition.

There is no proven benefit for steroids. The best initial therapy for severe disease is IV immunoglobulins. Other therapies of unclear value are cyclophosphamide, cyclosporine, and thalidomide.

Toxic Epidermal Necrolysis
Toxic epidermal necrolysis (TEN) is the most serious version of a cutaneous hypersensitivity reaction. Mortality may be 40–50%.

Much more of the body surface area (BSA) is involved and may range from 30–100%. The Nikolsky sign is present, and the skin easily sloughs off. TEN has certain features similar to staphylococcal scalded skin syndrome; however, TEN is drug induced as opposed to being caused by a toxin coming from an organism.
Diagnosis of TEN is usually clinical. The most accurate diagnostic test is a skin biopsy, which will reveal full thickness epidermal necrosis. Skin biopsy is usually not necessary.

Treatment. Sepsis is the most common cause of death, but prophylactic systemic antibiotics are not indicated. Systemic steroids are not effective and may, in fact, decrease survival.

Fixed Drug Reaction

Fixed drug reaction is a localized allergic drug reaction that recurs at precisely the same anatomic site on the skin with repeated drug exposure. It is not known why the reactions are anatomically localized and do not become generalized morbilliform rashes. The most commonly implicated drugs include aspirin, NSAIDs, tetracycline, and barbiturates.

Fixed drug reactions are generally round, sharply demarcated lesions that leave a hyperpigmented spot at the site after they resolve.

Discontinue the offending drug, and treat the reactions with topical steroids.

Erythema Nodosum

Erythema nodosum (EN) is a localized inflammatory condition of the skin or panniculitis. It is secondary to recent infections or inflammatory conditions. It is also associated with pregnancy. The most common causes of EN are recent streptococcal infections, coccidioidomycoses, histoplasmosis, sarcoidosis, inflammatory bowel disease, syphilis, TB, and hepatitis. Enteric infections such as *Yersinia* also cause the disorder.

EN consists of multiple painful, red, raised nodules on the anterior surface of the lower extremities. They are extremely tender to palpation. They do not ulcerate, and they generally last about 6 weeks.

Diagnosis. ASLO titers can help determine who has recently had a streptococcal infection if there is no other etiology apparent from the history.

Treat the underlying disease and use analgesics and NSAIDs. Potassium iodide solution can be used when patients do not respond to symptomatic therapy. EN is usually a self-limiting condition.

Clinical Recall

A 23-year-old woman from Bangladesh presents with seizure disorders. Prior to initiating treatment, which of the following should you check to avoid Stevens-Johnson syndrome?

A. HLA-B27
B. HLA-B57
C. HLA-B1502
D. HLA-B5801

Answer: C
INFECTIONS

Fungal Infections

Tinea pedis, cruris, corporis, versicolor, capitis, and onychomycosis

All of the superficial fungal infections of the body share a number of common characteristics leading to the same answer on the test for similar questions for each of these diseases. “Superficial fungal infections” refer to those infections limited to the skin, nails, and hair. Remember, though, that these answers would not be valid for more deep-seated, life-threatening infections, such as fungal endocarditis, meningitis, or abscesses.

Clinical Presentation and Diagnosis. All superficial fungal infections of the skin, hair, and nails are primarily diagnosed by their visual appearance and confirmed by a potassium hydroxide (KOH) test of the skin. The leading edge of the lesion on the skin or nails is scraped with a scalpel to remove some of the epithelial cells or some of the nail and hair. KOH has the ability to dissolve the epithelial cells and collagen of the nail, but does not have the ability to melt away the fungus. Hence, a KOH preparation gives an immediate diagnostic answer by revealing fungal hyphae. This is particularly characteristic in tinea versicolor, where the *Malassezia furfur* (*Pityrosporum orbiculare*) organism appears in a “spaghetti and meatballs” pattern.

The most accurate test is to culture the fungus. This is usually not clinically practical because molds that grow on the skin (dermatophytes) take up to 6 weeks to grow even on specialized fungal media. A specific species usually does not need to be isolated in most cases, unless it is an infection of the hair or nails. In the case of nail and hair infections, oral therapy is necessary, and it is important to be precise because there are fewer medications that can be used to effectively treat onychomycosis. Tinea tonsurans is the cause of >90% of cases of tinea capitis.

Treatment. For onychomycosis (nail infection) or hair infection (tinea capitis), the medications with the greatest efficacy are oral terbinafine or itraconazole. These medications are used for at least 6 weeks for fingernails and 12 weeks for toenails. Terbinafine is potentially hepatotoxic, and it is important to periodically check liver function tests. Griseofulvin must be used for 6 to 12 months in the treatment of fingernails and has much less antifungal efficacy than terbinafine. Griseofulvin is no longer recommended in the treatment of onychomycosis of the toenails. In the treatment of tinea capitis, griseofulvin is recommended for 6 to 8 weeks.

The other fungal infections of the skin that don’t involve hair or nails may be treated with any of the following topical medications: ketoconazole, clotrimazole, econazole, terbinafine, miconazole, sertaconazole, sulconazole, tolnaftate, or naftifine. There is no clear difference in efficacy or adverse effects between them when used topically. Ketoconazole has more adverse effects when used systemically, such as hepatotoxicity and gynecomastia. This is why ketoconazole is not a good choice for onychomycosis. There is no topical form of fluconazole. Fluconazole is also less efficacious for dermatophytes of the nails when used systemically.

Antifungal medications generally should not be used in combination with topical steroids, unless a diagnosis has been confirmed. Steroids in a cream can relieve redness and itching and give the appearance of improvement even in impetigo and contact dermatitis.

Tinea versicolor

Tinea versicolor is a skin infection characterized by multiple macules (usually asymptomatic), varying in color from white to brown. It is caused by *Pityrosporum orbiculare* (*Malassezia furfur*).
Clinical Presentation. Tan, brown, or white scaling macular lesions that tend to coalesce; found on chest, neck, abdomen, or face. Lesions do not tan.

Diagnosis. Skin scrapings examined with 10% KOH under a microscope. The classic description is of “spaghetti and meatballs,” which refers to the hyphae and spores that can be seen in the KOH prep.

Treat with topical selenium sulfide, clotrimazole, ketoconazole, or oral itraconazole. Consider local or systemic therapy based on the amount of surface area involved.

Clinical Correlate

Tinea versicolor has some additional features that are important in its management. It presents with lesions of different colors from tan to pink (hence the name versicolor). The lesions often do not tan, and they present with pale areas in the middle of a normal tan. This can be distinguished from vitiligo by the fact that vitiligo has no pigmentation, whereas tinea versicolor presents with altered pigmentation. The organism may also be contagious. A KOH preparation and fungal culture are used in the same manner as for the other dermatophytes. The main therapeutic difference is the use of topical selenium sulfide every 2 to 3 weeks versus oral therapy with itraconazole or fluconazole. This is not because of antifungal resistance; it is because tinea versicolor is much more likely to involve large amounts of body surface area so it is difficult to cover this volume of skin with an ordinary topical cream or lotion.

Candidiasis

Candidiasis is a yeast infection usually involving skin and mucous membranes, but it can also be systemic. It is caused by *Candida albicans*. It usually spreads in patients with decreased host defenses, i.e., those with increased susceptibility due to systemic antibacterial therapy, obesity, DM, corticosteroid or antimetabolite therapy, pregnancy, debilitating disease and blood dyscrasias, or HIV.

Clinical Presentation

- **Intertriginous infection:** Well-demarcated, erythematous, itchy, exudative patches, usually rimmed with small red-based pustules that occur in the groin, gluteal folds (diaper rash), axilla, umbilicus, and inframammary areas.
- **Vulvovaginitis:** White or yellowish discharge with inflammation of the vaginal wall and vulva. Common in pregnant women and patients with diabetes mellitus.
- **Oral candidiasis (thrush):** White patches of exudates on tongue or buccal mucosa
- **Candidal paronychia:** Painful red swelling around the nail

Diagnosis. Potassium hydroxide on slide to visualize fungal forms. Culture is definitive.

Treatment

- Topical nystatin, clotrimazole, miconazole, ciclopirox, econazole, or terconazole
Bacterial Infections

Antistaphylococcal antibiotics

The most common bacterial organisms to cause skin infections of any kind are *Staphylococcus* and *Streptococcus*. Antibiotics used to treat *Staphylococcus* are dicloxacillin, cephalaxin (Keflex®), or cefadroxil (Duricef®). Cefadroxil, cefazolin, or cephalaxin are the preferred agents. If a patient is allergic to penicillin, but the reaction is only a rash, then cephalosporins can be safely used. There is far less than 5% cross-reaction between penicillins and cephalosporins. The IV equivalents of oral dicloxacillin include oxacillin and nafcillin. The IV equivalent of cefadroxil is cefazolin.

If the penicillin reaction is anaphylaxis then cephalosporins cannot be used. The alternative antibiotics that will treat the skin are macrolides, such as erythromycin, azithromycin, clarithromycin, or the newer fluoroquinolones (levofloxacin or moxifloxacin). Ciprofloxacin will not adequately cover the skin. Vancomycin is only for IV use for skin infections, and oral vancomycin is not absorbed. Oral therapy for MRSA is with clindamycin, TMP/SMX, or doxycycline. The ultimate form of oral MRSA therapy is linezolid.

Impetigo

Impetigo is a superficial, pustular skin infection, seen mainly in children (ecthyma is an ulcerative form of impetigo), with oozing, crusting, and draining of the lesions. It is a superficial bacterial infection of the skin largely limited to the epidermis and not spreading below the dermal-epidermal junction. It is caused by group A beta-hemolytic *Streptococcus* and *S. aureus* (*bullous impetigo*).

- Because it is limited to the epidermis, the purulent material is easily able to express itself through the surface; therefore, the patient history will describe the infection with words such as “weeping,” “oozing,” “honey colored,” or “draining.”
- Occurs more often in warm, humid conditions, particularly when there is poverty and crowding of children. This is because it is both contagious and autoinoculable.
- More common on arms, legs, and face
- May follow trauma to skin
- Begins as maculopapules and rapidly progresses to vesicular pustular lesions or bullae. The crusts are described as having a golden or yellow appearance and if untreated can progress to lymphangitis, furunculosis, or cellulitis, and acute glomerulonephritis.
- May cause glomerulonephritis, but it will not cause rheumatic fever

Treatment

- Oral first-generation cephalosporin or semisynthetic penicillin, e.g., oxacillin, cloxacillin, dicloxacillin (for severe or widespread cases)
- Topical mupirocin, bacitracin, or retapamulin for mild cases of impetigo
- Penicillin-allergic patients can be treated with macrolides such as clarithromycin or azithromycin.
- TMP/SMZ, clindamycin, or doxycycline for MRSA

Note

Group A streptococci and *S. aureus* are the most common causes of impetigo.

Note

Retapamulin is a topical antibacterial more active against staph and strep than mupirocin or bacitracin are.
Erysipelas
Erysipelas is a bacterial infection of a deeper layer of the skin than impetigo. Erysipelas involves both the dermis and epidermis and is most commonly caused by group A *Streptococcus (pyogenes).*

- Because it involves lymphatic channels in the dermis, erysipelas is more likely to result in fever, chills, and bacteremia.
- Often involves the face, giving a bright red, angry, swollen appearance
- Usually bilateral, shiny red, indurated edematous tender lesions on the face, arms, and legs
- Lesions are often sharply demarcated from the surrounding normal skin
- Differentiate from herpes, contact dermatitis, and angioneurotic edema

Treatment. Semisynthetic penicillin or first-generation cephalosporin if you cannot distinguish it from cellulitis; penicillin (if *Streptococcus* is certain).

Cellulitis
Cellulitis is a bacterial infection of the dermis and subcutaneous tissues with *Staphylococcus* and *Streptococcus.* Cellulitis is characterized by redness, swelling, and warmth and tenderness of the skin. Because it is **below the dermal-epidermal junction**, there is no oozing, crusting, weeping, or draining.

Treatment. Cellulitis is treated with the antibiotics prescribed for erysipelas on the basis of the severity of the disease. If there is fever, hypotension, or signs of sepsis or if oral therapy has not been effective, then the patient should receive IV therapy. Oxacillin, nafcillin, or cefazolin is the best therapy. Treatment is generally empiric because injecting and aspirating sterile saline for a specific microbiologic diagnosis has only a 20% sensitivity. Oral therapy for MRSA is with clindamycin, TMP/SMX, or doxycycline.

Folliculitis, furuncles, and carbuncles
Folliculitis, furuncles, and carbuncles represent 3 degrees of severity of staphylococcal infections occurring around a hair follicle. Occasionally, folliculitis can be the result of those who contract *Pseudomonas* in a whirlpool or from a hot tub.

As folliculitis worsens from a simple superficial infection around a hair follicle, it becomes a small collection of infected material known as a furuncle. When several furuncles become confluent into a single lesion, the lesion becomes known as a carbuncle, which is essentially a localized skin abscess. Folliculitis is rarely tender, but furuncles and carbuncles are often extremely tender.

Treatment. Folliculitis mainly can be treated with warm compresses locally without the need for antibiotics. If antibiotics are required, mupirocin is the best choice. Furuncles and carbuncles require treatment with systemic antistaphylococcal antibiotics, and in the case of carbuncles, should be administered intravenously. Treatment with dicloxacillin, cepalexin, or cefadroxil is acceptable. A large furuncle or carbuncle will also require surgical drainage.

Necrotizing fasciitis
Necrotizing fasciitis is an extremely severe, life-threatening infection of the skin. It starts as a cellulitis that dissects into the fascial planes of the skin. *Streptococcus* and *Clostridium* are the most common organisms because they are able to produce a toxin that further worsens the damage to the fascia. Diabetes increases the risk of developing fasciitis.
The features which distinguish necrotizing fasciitis from simple cellulitis are a very high fever, a portal of entry into the skin, pain out of proportion to the superficial appearance, the presence of bullae, and palpable crepitus.

Laboratory evidence of necrotizing fasciitis is an elevated creatine phosphokinase and an x-ray, CT, or MRI that show air in the tissue or necrosis. All of these lab methods of establishing a diagnosis lack both sensitivity and specificity. Surgical debridement is the best way to confirm the diagnosis and is also the mainstay of therapy.

Treatment. Surgery is the mainstay of therapy. The best empiric antibiotics are the beta-lactam/beta-lactamase combination medications, such as ampicillin/sulbactam (Unasyn™), ticarcillin/clavulanate (Timentin™), or piperacillin/tazobactam (Zosyn™). If there is a definite diagnosis of group A Streptococcus (pyogenes), then treat with clindamycin and penicillin. Without adequate therapy, necrotizing fasciitis has an 80% mortality rate.

Paronychia

Paronychia is an infection loculated under the skin surrounding a nail. It is generally treated with a small incision to allow drainage and with antistaphylococcal antibiotics. The antistaphylococcal antibiotics are dicloxacillin, cefadroxil, or cephalexin orally, or oxacillin, nafcillin, or cefazolin intravenously.

Viral Infections

Herpes simplex

Herpes simplex infections of the genitals are characterized by multiple, painful vesicles. The vesicles are usually obvious by examination, and antibiotic therapy should be initiated immediately without waiting for results of the tests.

Diagnosis is made with the direct fluorescent antibody (DFA) test or HSV PCR. Tzanck test and culture are no longer used. Serology is not useful for diagnosing herpes infections.

Immediate therapy is with oral acyclovir, famciclovir, or valacyclovir. Topical acyclovir has extremely little efficacy; it will slightly improve resolution in primary lesions and will do absolutely nothing for recurrent herpes simplex lesions. Topical penciclovir has some use for oral herpetic lesions, but it must be applied every 2 hours. The treatment of acyclovir-resistant herpes is with foscarnet.
Herpes zoster/varicella
Chickenpox is primarily a disease of children. Complications of varicella are pneumonia, hepatitis, and dissemination. Episodes of dermatomal herpes zoster, also known as shingles, occur more frequently in the elderly and in those with defects of the lymphocytic portion of the immune system (i.e., leukemia, lymphoma, HIV, or those on steroids).

The vesicles are 2–3 mm in size at all stages of development and are on an erythematous base.

Diagnosis. Diagnostic testing is generally not necessary because little else will produce a band of vesicles in a dermatomal distribution besides herpes zoster.

Treatment. Chickenpox is generally not treated with antivirals. If the child is immunocompromised or the primary infection occurs in an adult, then acyclovir, valacyclovir, or famciclovir should be given.

Steroid use is still not clearly beneficial, although the best evidence for efficacy is in elderly patients with severe pain. The rapid administration of acyclovir still has the best efficacy for decreasing the risk of postherpetic neuralgia.

Other treatments for managing the pain are gabapentin, tricyclic antidepressants, and topical capsaicin. The most effective analgesic specific for postherpetic neuralgia is gabapentin. Nonimmune adults exposed to chickenpox should receive varicella zoster immunoglobulin within 96 hours of the exposure in order for it to be effective.

Molluscum contagiosum
Molluscum contagiosum is skin-colored, waxy, umbilicated papules. It is caused by poxvirus. It is commonly seen in children; frequency is increased in patients infected with HIV.

Small papules appear anywhere on the skin (genital and pubic area), usually by venereal contact, and are asymptomatic. The lesions have a central umbilication. They can be transmitted by skin-to-skin contact or sexually.
Diagnosis is made mainly on appearance. Lab testing is rarely, if ever, necessary. Giemsa stain will show large cells with inclusion bodies.

Treat with freezing, curettage, electrocautery, or cantharidin.

Clinical Recall

What is the most appropriate management for onychomycosis of the toenails?

A. PO griseofulvin
B. PO terbinafine
C. Topical itraconazole
D. PO griseofulvin and topical corticosteroids
E. Topical itraconazole and PO corticosteroids

Answer: B

PARASITIC INFECTIONS

Scabies

Scabies is a parasitic skin infection characterized by superficial burrows, intense pruritus, and secondary infections. It involves vesicular eruptions resulting from the females of the *Sarcoptes scabiei (hominis)* burrowing into the skin. It is caused by the itch mite, *Sarcoptes scabiei*. Transmission is by skin-to-skin contact.

Scabies primarily involves the web spaces of the hands and feet. It also produces pruritic lesions around the penis, breasts, and axillary folds. Itching can be extreme. Because *Sarcoptes scabiei* is quite small, all that can be seen with the naked eye are the burrows and excoriations around small pruritic vesicles. Scabies often spares the head. Immunocompromised patients, such as those with HIV, are particularly vulnerable to an extremely exuberant form of scabies with severe crusting and malodorousness, known as Norwegian scabies.

Diagnosis in all cases is confirmed by scraping out the organism after mineral oil is applied to a burrow; however, skin scrapings are usually not necessary and are not routinely done.

Treat with permethrin. Lindane (Kwell) has equal efficacy, but also greater toxicity. Lindane should not be used in pregnant women. Ivermectin is a suitable alternative and is given as oral therapy if the disease is extensive. Treat Norwegian scabies with a combination of permethrin and ivermectin.

Pediculosis

Pediculosis is skin infestation by lice. It is caused by the following:

- **Head**: *Pediculus humanus capitis*
- **Body**: *Pediculus humanus corporis*
- **Pubic area**: *Phthirus pubis* ("crab louse")
Patients present with itching, excoriations, erythematos macules and papules, and sometimes secondary bacterial infection. Diagnosis is made by direct examination of the pubic area, axillae, scalp, and other hair-bearing surfaces for the organism (louse or nits). Treat with permethrin or lindane (Kwell).

TOXIN-MEDIATED DISEASES

Toxic Shock Syndrome

Toxic shock syndrome (TSS) is a systemic reaction to a toxin produced from \textit{Staphylococcus} attached to a foreign body. The majority of cases now are not from a menstrual source, such as a tampon or vaginal packing. Nasal packing, retained sutures, or any other form of surgical material retained in the body can promote the growth of the type of staphylococci that produces the toxin.

Because there is no single specific test, cases are matters of definition.

TSS is defined as the presence of 3 or more of the following findings:

- Fever $>$ 102 F
- Systolic BP $<$ 90 mm Hg
- Desquamative rash
- Vomiting
- Involvement of the mucous membranes of the eyes, mouth, or genitals
- Elevated bilirubin
- Platelets $<$ 100,000

In addition, TSS is a systemic disease:

- Raises creatinine, creatine phosphokinase, and liver function tests
- Lowers platelet count
- Can cause CNS dysfunction such as confusion
- Often produces hypocalcemia (usually because of a diffuse capillary leak syndrome that drops the albumin level)

Streptococcal toxic shock syndrome is essentially the same.

To treat, remove the source of the infection and give vigorous fluid resuscitation, pressors (e.g., dopamine), and antibiotics. Empiric treatment is with clindamycin plus vancomycin until cultures return. In confirmed cases of methicillin-sensitive strains, treat with clindamycin plus an antistaphylococcal medication (oxacillin, nafcillin). In methicillin-resistant strains (MRSA), use vancomycin or linezolid.

\textbf{Staphylococcal Scalded Skin Syndrome}

Staphylococcal scalded skin syndrome (SSSS) is transmitted through physical contact with surroundings. It most commonly occurs in infants, young children, and the immunocompromised.
SSSS is mediated by a toxin from *Staphylococcus*. The major presentation is the loss of the superficial layers of the epidermis in sheets. Nikolsky sign is present. It is markedly different from toxic shock syndrome in that there is normal BP and no involvement of the liver, kidney, bone marrow, or CNS.

Patients should be managed in a burn unit and given oxacillin or other antistaphylococcal antibiotics. Consider vancomycin because of possible MRSA.

BENIGN AND PRECANCEROUS LESIONS

The predominant method of distinguishing between benign and malignant lesions is by the shape and color of the lesion. Benign lesions, such as the junctional or intradermal nevus, do not grow in size and have smooth, regular borders with a diameter usually <1 cm. In addition, they are homogenous in color, and this remains constant. Biopsy is the most accurate method of making a diagnosis, and benign lesions need to be removed only for cosmetic purposes.

![Dysplastic Nevus](visualsonline.cancer.gov)

Figure 12-5. Dysplastic Nevus

Seborrheic Keratosis

Seborrheic keratosis is a benign condition with hyperpigmented lesions occurring in the elderly. It has no malignant potential and no relation to either actinic keratosis or seborrheic dermatitis. Lesions have a “stuck on” appearance, and are most common on the face, shoulders, chest, and back.

Lesions are removed only for cosmetic purposes with liquid nitrogen or curettage.

Note

Differential Diagnosis

SSSS: from an infection; splits off only the superficial granular layer of skin

TEN: from drug toxicity; splits off the full-thickness of skin
Actinic Keratosis

Actinic keratosis presents with precancerous lesions occurring on sun-exposed areas of the body in older persons. Lesions occur more often in those with light skin color. They contain chromosomal abnormalities, and although only 1:1,000 lesions progresses to squamous cell cancer, an individual patient may have dozens of them. Hence, the rate of transformation to squamous cell cancer is 0.25% per patient.

Although the lesions are usually asymptomatic, they can be tender to the touch and lighter in color.

Lesions should be removed with cryotherapy, topical 5 fluorouracil (5-FU), imiquimod, topical retinoic-acid derivatives, or even curettage. Advise patients to use sunscreen to prevent progression and recurrence.

MALIGNANT DISEASES

Melanoma

Superficial spreading melanoma is the most common type of malignancy, accounting for 70% of cases. The rate of occurrence of melanoma is rising faster than any other cancer in the United States.

Malignant lesions grow in size, have irregular borders, are uneven in shape, and have inconsistent coloring. Lentigo maligna melanoma arises on sun-exposed body parts in the elderly. Acral-lentiginous melanoma arises on the palms, soles of feet, and nail beds.

Biopsy diagnosis is best performed with a full-thickness sample because tumor thickness is by far the most important prognostic factor.
Table 12-1. Ten-Year Survival Rates for Melanoma

<table>
<thead>
<tr>
<th>Lesion Size (mm)</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.76</td>
<td>96%</td>
</tr>
<tr>
<td>0.76–1.69</td>
<td>81%</td>
</tr>
<tr>
<td>1.7–3.6</td>
<td>57%</td>
</tr>
<tr>
<td>>3.6</td>
<td>31%</td>
</tr>
</tbody>
</table>

Melanoma is removed by excision. Huge 5-cm margins are not routinely indicated. The size of the margin is determined by tumor thickness.

- Melanoma in situ needs only 0.5-cm margin
- Lesions <1 mm in thickness get 1.0-cm margin
- Lesions 1- to 2-mm in depth get 2-cm margin
- Lesions >2 mm in depth get 2- to 3-cm margin

There is no definitive chemotherapy for any form of skin cancer. Interferon seems to reduce recurrence rates.

Squamous Cell Carcinoma

Squamous cell carcinoma makes up 10–25% percent of all skin cancers. It develops on sun-exposed skin surfaces in elderly patients. It is particularly common on the lip, where the carcinogenic potential of tobacco is multiplicative.

Ulceration of the lesion is common. Metastases are rare (3–7%).

Diagnosis is confirmed with biopsy. Treatment is surgical removal. Radiotherapy can be used for lesions that cannot be treated surgically.
Basal Cell Carcinoma

Basal cell carcinoma makes up 65–80% of all skin cancers. It has a shiny or “pearly” appearance. Metastases are very rare (<0.1%).

Diagnosis is confirmed with shave or punch biopsy. Treatment is surgical removal. Mohs microsurgery has the greatest cure rate: instant frozen sections are done to determine when enough tissue has been removed to give a clean margin.

5-FU can be used in the treatment of superficial lesions.

Kaposi Sarcoma

The causative organism of Kaposi sarcoma is Human herpes virus 8. These are purplish lesions found on the skin, predominantly of patients with HIV and CD4 <100/mm³.

Treatment is antiretroviral therapy to raise CD4 count. When that does not occur, the specific chemotherapy for Kaposi sarcoma is liposomal doxorubicin hydrochloride or vinblastine.

Clinical Recall

What is the margin of excision of a suspected melanoma that has an in-depth thickness of 1.5 mm?

A. 0.5 cm margin
B. 2 cm margin
C. 3 cm margin
D. 4 cm margin

Answer: B
SCALING DISORDERS (ECZEMA)/PAPULOSQUAMOUS DERMATITIS

Psoriasis

The etiology of psoriasis is unknown. Silvery scales develop on the extensor surfaces, either locally or extensively. Nail pitting is a common accompaniment. The Koebner phenomenon is the development of lesions with epidermal injury.

Treatment. Salicylic acid is used to remove heaped-up collections of scaly material so that the other therapies can make contact. If the disease is relatively localized, topical steroids are used. Severe disease also needs coal tar or anthralin derivatives. To avoid the long-term use of steroids, which can cause skin atrophy, and to avoid coal tars, which are messy to use, substitute topical vitamin D and vitamin A derivatives. The vitamin D derivative most frequently used is calcipotriene. Tazarotene is a topical vitamin A derivative.

All patients should use emollients such as Eucerin™, Lubriderm™, or mineral oil. When >30% of the body surface area is involved, it is difficult to routinely use topical therapy to control disease. Ultraviolet light in that case is the most rapid way to control extensive disease. The most severe, widespread, and progressive forms of the disease can be controlled with methotrexate; however, it has the highest toxicity and may cause liver fibrosis.

The newest therapy is immunomodulatory biologic agents, such as alefacept, efalizumab, etanercept, and infliximab. These are monoclonal antibodies that target defects in the immune system, such as tumor necrosis factor.

Atopic Dermatitis

Atopic dermatitis is an extraordinarily pruritic disorder characterized by high IgE levels. Red, itchy plaques appear on the flexor surfaces. In children, lesions are common on the cheeks and scalp. Adults present with lichenification.

Active disease is managed with topical steroids, antihistamines, coal tars, and phototherapy.

• Use antistaphylococcal antibiotics if there is impetiginization of the skin
• Use topical immunosuppressants such as tacrolimus and pimecrolimus to decrease dependence on steroid use
• Every effort must be made to avoid scratching; the topical tricyclic doxepin can be used to help stop pruritus

Preventive therapy is achieved by keeping the skin moist with emollients, avoiding hot water and drying soaps, and using only cotton clothes, as patients with this condition are extremely sensitive to drying.

Seborrheic Dermatitis

An oversecretion of sebaceous material and a hypersensitivity reaction to a superficial fungal organism, *Pityrosporum ovale*, underlie seborrheic dermatitis. Patients present with “dandruff,” which may also occur on the face. Scaly, greasy, flaky skin is found on a red base on the scalp, eyebrows, and in the nasolabial fold.

Treatment is low-potency topical steroids such as hydrocortisone, or topical antifungals in the form of shampoo such as ketoconazole or sulfide. Zinc pyrithione is also used as a shampoo.

Stasis Dermatitis

Stasis dermatitis is a hyperpigmentation built up from hemosiderin in the tissue. It occurs over a long period, from venous incompetence of the lower extremities leading to the microscopic extravasation of blood in the dermis. There is no way to reverse this problem. Prevention of progression is with elevation of the legs and lower-extremity support hose.

Contact Dermatitis

Contact dermatitis is a hypersensitivity reaction to soaps, detergents, latex, sunscreens, or neomycin over the area of contact. Jewelry is a frequent cause, as is contact with the metal nickel from belt buckles and wristwatches. It can occur as linear, streaked vesicles, particularly when it is from poison ivy.

A definitive diagnosis can be determined with patch testing. Once the causative agent has been identified, treat with antihistamines and topical steroids.

![Figure 12-10. Contact Dermatitis Due to Poison Ivy](phil.cdc.gov)
Pityriasis Rosea
Pityriasis rosea is a pruritic eruption that often begins with a “herald patch.” It is mild, self-limited, and usually resolves in 8 weeks without scarring.

It is erythematous, salmon colored, and looks like secondary syphilis, except that it spares the palms and soles and has a herald patch. The lesions on the back appear in a pattern like a Christmas tree.

This is a clinical diagnosis. VDRL/RPR is negative. Treat very itchy lesions with topical steroids.

DECUBITUS (PRESSURE) ULCERS
Decubitus ulcers are chronic sores that occur in the pressure areas of the body, where bone is closer to the skin. They are often associated with patients who are immobilized or bedridden.

Clinical presentation is in stages.

• Stage I lesions consist of nonblanchable redness.
• Stage II lesions result in destruction of the superficial epidermis or partial destruction of the dermis.
• Stage III lesions have destroyed the full thickness of the skin but not the fascia.
• Stage IV lesions show destruction all the way to the bone.

Diagnosis. Never culture a swab of the superficial ulcer or drainage from the ulcer. It will be impossible to determine whether it is a genuine infection or simply colonization. A definitive microbiologic diagnosis is often obtained only in the operating room after debridement.

The major theme of treatment is to relieve pressure. If the lesions are definitely infected, then antibiotics are useful.

HAIR

Alopecia Areata
Alopecia areata is an autoimmune disease in which antibodies attack the hair follicles and destroy hair production. Most cases will resolve spontaneously over time. Immediate treatment is localized steroid injection into the area of hair loss.

Telogen Effluvium
Telogen effluvium is the loss of hair in response to an overwhelming physiologic stress, such as cancer or malnutrition. Treatment is correction of the underlying stress or disease.
ACNE

The contributing organism for acne is *Propionibacterium acnes*. Pustules and cysts occur, which rupture and release free fatty acids, which in turn causes further irritation. Acne is more common in girls, but boys have more severe disease.

Patients present both with closed comedones (which are white) and open comedones (which are black). The discharge, although purulent, is odorless.

Treat mild disease with a topical antibiotic (clindamycin, erythromycin, sulfaacetamide) plus the possible addition of the bacteriostatic agent benzoyl peroxide. If the attempts to control the load of bacteria locally are ineffective, use topical retinoids.

Treat moderate disease with benzoyl peroxide plus a retinoid (tazarotene, tretinoin, adapalene).

Treat severe cystic acne with an oral antibiotic (minocycline, tetracycline, clindamycin, oral isotretinoin). Oral retinoic-acid derivatives are a strong teratogen.

Clinical Recall

Which of the following treatment strategies is used to control extensive psoriasis (>30% BSA)?

A. Topical emollients
B. Topical vitamin A
C. Topical vitamin D
D. Phototherapy
E. Topical steroids

Answer: D
Learning Objectives

- List the indications and common abnormal findings for chest x-ray, abdominal x-ray, PET scan, bone scan
- Answer questions about different approaches to visualizing the CNS

This concise section should help you understand the types of tests offered in radiology.

CHEST X-RAY

The most basic radiologic examination is a chest x-ray. Standard x-rays are based on the degree of density of tissue and how much x-ray energy each type of tissue will absorb.

- The closer a bone structure is in density, the greater the energy it will absorb.
- Therefore, because bones block the most amount of x-ray energy, they will come out white on the film.
- Conversely, air absorbs or blocks the least amount of energy and thus will appear darkest.

Chest x-rays are not routine screening tests. There is no routine screening of the general population for cancer or tuberculosis. You can do a chest x-ray if the PPD skin test is positive, but that is not the same thing as just doing a general screening.

Most x-rays are posterior-anterior (PA) films. The x-ray plate is placed in front of the chest, and the patient leans forward against the plate. The x-ray beam is directed from posterior to anterior. The patient must be able to stand for a PA film to be performed.

Anterior-posterior (AP) films are less accurate but must be done if the patient is too ill or unstable to stand up.

- All patients with central venous lines or chest tubes
- Unstable patients, such as those in intensive care

The single greatest difference between the film types is heart size:

- AP films will show a heart size that is artificially enlarged; that is because the heart is more anterior in the chest and will therefore cast a wider shadow.
- AP films will show a heart >50% of the total transthoracic diameter, while normal PA films will show a heart <50%.

Note

The phenomenon produced by AP film is no different than holding your hand in a light shined against a wall. The farther your hand is away from the wall, the larger your hand’s shadow will appear.
Technical Aspects of Normal Film Quality

- When examining a chest x-ray, first assess the film for its technical quality. If the patient’s body is abnormally rotated, the film will be less accurate. You can determine this by seeing if the trachea and the spinous apophysis are midway between the clavicles.

- Perform chest x-ray when the patient is holding in a full inhalation. There should be at least 10 ribs visible, counting from top to bottom.

- An underexposed film will have the structures appearing too white, while an overexposed film will have the blood vessels appearing too dark (preventing one from accurately assessing the blood vessels).

- Note that on a PA film, the right hemidiaphragm is typically higher than the left. That is because the liver is underneath the right hemidiaphragm, pushing it up.

Expiratory Films

Expiratory films are used when one is looking for a pneumothorax. The lungs will appear smaller because less air will remain in the lungs on expiration. Because a pneumothorax is air outside the lungs in the pleural space, this air will appear relatively larger. The volume of air in the pleural space does not decrease on exhalation.

Lateral Chest X-ray

Lateral chest x-ray will determine whether a structure in the chest is more anterior or posterior. For example, it can determine whether a mass that is visible in the center of the mediastinum on a PA film is posterior, making it more likely to be a neurally derived tumor attached to the spinal cord or an anterior mass. Anterior mediastinal masses are from the thymus, thyroid, lymph nodes, or a teratoma.

Lateral x-ray also has a greater sensitivity for the detection of small pleural effusions.

- On a PA film, at least 100-200 mL of fluid needs to be present to even begin to see an effusion. Each hemithorax can contain 3 liters of fluid if it is filled to capacity.

- Lateral chest x-ray can detect as little as 50 mL.

- These figures represent the amount of fluid needed to barely begin seeing “blunting,” or obliteration, of the costophrenic angle.

On a lateral x-ray, the right hemidiaphragm is the one crossing the heart shadow.

Decubitus Film

Decubitus film helps detect the presence of a pleural effusion. It is taken with the patient lying on his side, and is employed when blunting or obscuration of the costophrenic angle is seen on a PA or lateral x-ray.

Effusions will move and form a layer on the side of the chest wall. Infiltrates from alveolar disease do not move with gravity. You cannot determine if an effusion is infected just from its appearance on an x-ray.
COMMON DISORDERS SEEN ON CHEST X-RAY

COPD/Emphysema
The most common appearance of COPD on a chest x-ray is related to hyperinflation of the lung.

• Leads to a darkening of the lung fields because more air is present
• Trapped air flattens the diaphragm and gives the impression of an elongated or tubular-shaped heart because it has been stretched down
• Leads to increased anterior/posterior diameter, or “barrel chest”
• Bullae may be seen (large, air-filled cavities that can give thin, white lines on a chest x-ray as walls of the cavities press up against each other)

Pneumonia

• Lobar pneumonia causes a whitening of each individual lobe of the lung because of greater density of the lung
• “Silhouette” sign is present (border between the affected lobe and surrounding denser structure is obscured)
• Density of the lung increases because of alveolar infiltration to the point where it takes on the density of the nearby heart or diaphragm; thus, one can no longer tell where the lung ends and the nearby denser structure begins
• Lower lobe pneumonia gives a silhouette over each half of the diaphragm. Right middle-lobe pneumonia obscures the right heart border and will not pass the minor or horizontal fissure seen on a PA chest x-ray. Upper-lobe infiltration will not pass the major fissure, and this is more easily seen on a lateral x-ray. You cannot determine a specific microbiologic etiology from the x-ray alone.
• Diseases of the lung outside the airspace but in the interstitial membrane give a fine, lacy appearance visible in most, if not all, of the lobes. Disorders which give interstitial infiltrates include Pneumocystis pneumonia, Mycoplasma, viruses, chlamydia, and sometimes Legionella. Noninfectious etiologies of an interstitial infiltrate are pulmonary fibrosis secondary to silicosis, asbestosis, mercury poisoning, berylliosis, byssinosis (from cotton), or simply idiopathic pulmonary fibrosis. As the long-standing disorders become worse and more chronic, a greater degree of fibrosis occurs and leads to greater thickening of the membrane (described as reticular-nodular and, later, honeycombing).
Congestive Heart Failure
The majority of pulmonary vascular flow is normally at the base of the lungs because of gravity. When there is fluid overload, the blood vessels toward the apices become fuller (called pulmonary vascular congestion or "cephalization" of flow). The term *cephalization* is used because more flow is moving toward the head.

The other findings associated with CHF are cardiomegaly, effusions, and Kerley B lines. Kerley B lines are the least important. They are small, horizontal lines at the bases that represent fluid in the interlobular septa. Each lung has several lobes. When fluid builds up outside the lobes, this is known as a pleural effusion. When fluid builds up within each lobe, in between the lobules, this is known as a Kerley B line.

Position of Lines and Tubes
Chest x-rays are routinely used to determine the appropriate position of central venous lines and both endotracheal and chest tubes. The proper position of the tip of an endotracheal tube is 1 to 2 cm above the carina. It is important to keep some space above the carina so that when the head moves forward, the tube does not push into the carina, which is extremely uncomfortable and will provoke coughing. The tip of central venous lines is at the junction of the superior vena cava and the right atrium, at the point where the right mainstem bronchus is seen. The tip of the line should not be fully inside the atrium because this can irritate the heart and may provoke an arrhythmia.

Air under the Diaphragm
When there is perforation of an abdominal hollow organ, such as the duodenum, air is released and is visible under the diaphragm. The proper film to detect this is a chest x-ray taken in the upright position. This will allow the air to collect under the diaphragm, which should be easily visible. Abdominal x-rays do not always visualize the top of the diaphragm because of differences in body size. Chest x-rays always visualize the top of the diaphragm.
Imaging Tools for Lung Parenchyma

High resolution CT scan provides greater detail than a chest x-ray or CT scan because of a 1 mm cut. This has a sensitivity of 95% and a specificity of close to 100% for lung parenchymal disease. High resolution CT scan is indicated in the following conditions:

- Symptomatic patients with a normal chest x-ray
- Detecting metastatic lesions, solitary nodules, bullae, bronchiectasis, and diffuse parenchymal disease (i.e., idiopathic lung diseases)
- To determine the type of lung biopsy required and site of biopsy

Clinical Recall

Which of the following is an indication for getting an expiratory chest x-ray?

A. Pleural effusion
B. Tuberculosis
C. COPD
D. Pneumothorax
E. Congestive heart failure

Answer: D
ABDOMINAL X-RAY

Compared with chest x-rays, standard abdominal films without barium contrast provide far less information.

- Beneficial only in the detection of an abdominal obstruction, such as an ileus or a volvulus
- Do not reliably detect mass lesions, polyps, cancer, ascites, IBD

Use the following guidelines for detection:

- Mass lesions in all abdominal organs are best detected with CT scan or MRI of the abdomen.
- Polyps are best detected by colonoscopy.
- Ascites are visualized by U/S or CT scan.
- IBD, diverticulosis, and cancer are best detected by endoscopy or barium study of the bowel.
- Although 80–90% of kidney stones (nephrolithiasis) can be seen on abdominal films, they are also best detected by U/S or CT scan. Only 10–15% of gallstones can be detected on an abdominal film because most of them do not calcify.
- Pancreatic calcifications can be detected in 30–50% of patients with chronic pancreatitis.

Sonography (U/S)

Sonography is used for evaluation of abdominal and pelvic pathology. Sonograms should be employed first for evaluation of the biliary tract because of their accuracy in evaluating dilation and obstruction of the ducts. The majority of cholelithiasis should be detected with sonography because cholesterol gallstones should be easily visible by sonography. The majority of nephrolithiasis is visible by sonography, although there is less accuracy in detecting stones in the ureters because they become retroperitoneal structures.

Sonography is useful in the evaluation of masses in the liver, spleen, pancreas, and pelvis, as well as for evaluating the presence of ascites. Despite this accuracy, CT scanning tends to have a greater sensitivity and specificity for the abdomen and pelvis. Sonography is particularly valuable in the evaluation of pregnant patients because it avoids radiation exposure to the fetus. Although less accurate, sonography is also practical in patients who have an absolute contraindication to the use of IV contrast. A total of 1:10,000 patients have a life-threatening reaction to the use of iodinated contrast agents.

There is very little utility of sonography in the evaluation of thoracic structures because the ribs block the sound waves. Also, sonography in the evaluation of intracranial structures, such as the brain, is not recommended because the skull blocks the sound waves.

Endoscopic U/S involves introducing a sonographic device into the abdomen at the end of an endoscope. Endoscopic U/S is extremely accurate in evaluating pancreatic pathology that is not easily visualized on CT scanning, such as a gastrinoma. Pancreatic lesions can also be effectively evaluated in this way.
Endoscopic Retrograde Cholangiopancreatography

Endoscopic retrograde cholangiopancreatography (ERCP) is an endoscopically introduced contrast procedure designed to visualize the biliary tract and pancreatic structures. ERCP is for therapy. The endoscope is introduced into the small bowel, and a catheter is placed through the sphincter of Oddi. Contrast is injected through the catheter. This allows extremely accurate visualization of the pancreatic ductal and biliary systems. ERCP is excellent for detecting strictures, stones, and neoplastic causes of obstruction. The other advantages of ERCP are the ability to perform therapy with the removal of these stones, to dilate strictures, and to perform biopsies. The scope does not routinely go up the sphincter of Oddi because it is too large to pass. MRCP is an MRI alternative to ERCP. It is less invasive than ERCP but does not allow an intervention.

The most common complication of ERCP is acute pancreatitis (around 10% in some series). Most of the time the pancreatitis is mild.

Barium Studies

Barium studies of the large bowel are never as accurate for colonic pathology as is endoscopy. In addition, you cannot biopsy with barium studies or perform therapeutic procedures, such as cautery or epinephrine injection for bleeding. The upper GI series is never as accurate as is upper endoscopy for the same reasons.

However, barium studies of the esophagus are a good test to start with for the evaluation of esophageal pathology. Barium esophagogram is particularly good for the detection of strictures, rings, and webs, or Zenker diverticulum. Barium is not as accurate as an upper endoscopy for the detection of esophageal cancer because a biopsy is required. (Endoscopy is far superior for the detection and therapy of esophageal varices as well.) Barium is not as accurate as manometry for the confirmation of the diagnoses of achalasia or muscular disorders, such as diffuse esophageal spasm and nutcracker esophagus.

Capsule Endoscopy

The ileum and jejunum are the hardest parts of the bowel to visualize by radiologic studies or endoscopy. In the past, a “push enteroscopy” was performed by introducing an extremely long, thin scope into the small bowel. Capsule endoscopy is a new technology that allows direct visualization of the small bowel by swallowing a camera that electronically relays thousands of photographic images from the small bowel to a receiver outside the body. The drawback of this procedure is that it is not possible to perform therapeutic interventions in this way. If a patient has GI bleeding that is serious and both upper and lower endoscopy do not reveal the source, then answer “capsule endoscopy” on the exam.

HIDA Scanning

This is a nuclear medicine scan useful only in the detection of acute cholecystitis. HIDA scanning is most useful in patients in whom the diagnosis of cholecystitis is not clear. An abnormal or positive test is the lack of visualization of the gallbladder. This is because the neck of the gallbladder or cystic duct becomes too edematous to allow the passage of the nuclear material. A normal scan will visualize the gallbladder. An abnormal scan will not visualize or fill the gallbladder.
Virtual Colonoscopy
This procedure uses CT scan or MRI to provide a computer-simulated bidimensional or tridimensional image of the air-filled, distended colon.

PET SCANNING
Positron emission tomography (PET) scans are useful in the detection of cancer. They are particularly useful in determining whether lesions that are visible on a CT scan of the chest are malignant or benign. Cancer is typically associated with the increased uptake of fluorodeoxy-glucose. PET scanning is used after chemotherapy to assess for the presence of residual cancer in some patients and can also be used to determine whether a patient is an operative candidate to remove a primary cancer. If the PET scan does not reveal malignancy, then the resection of certain primary cancers, such as lung cancer, is more likely to be successful.

Remember that slow-growing cancers (e.g., bronchoalveolar) may have a negative PET scan. Be careful when evaluating pulmonary nodules with PET scanning.

Clinical Pearl
Always check the patient’s glucose before doing a PET scan. If the glucose is elevated, the PET scan can be falsely negative.
CENTRAL NERVOUS SYSTEM VISUALIZATION

In general, the most accurate test for evaluating the central nervous system is magnetic resonance imaging (MRI). The MRI is superior for the detection of stroke, cancer, multiple sclerosis, and infections and in the evaluation of the posterior fossa, such as the cerebellum and brainstem.

The CT scan does not visualize the brainstem well. For example, a stroke is visible on an MRI in >90% of cases within the first 24 hours after its onset, whereas the CT scan needs 3 to 4 days before >90% are visible. This is because the MRI is based on the water content of tissues rather than on the calcium content or simple density of tissue. Within a few hours after the onset of a stroke, the cells begin to swell and increase their water content. This is immediately visible on an MRI, whereas for a CT scan to detect an abnormality, the cells must die to decrease the density of visible cells.

The single exception in which a CT scan is superior to an MRI is in the detection of blood. As soon as bleeding occurs, it is visible on a CT scan. Therefore, the two cases in which a CT scan is a better study are to evaluate head trauma and to exclude hemorrhagic stroke. When a patient arrives within 3 hours of the onset of the symptoms of a stroke, a CT scan is first performed to exclude hemorrhage. This is to see if a patient is eligible for the use of thrombolytic therapy within these first 3 hours.

A CT scan is also used first for the detection of subarachnoid hemorrhage. On the first day after the stroke's onset, the CT scan has 95% sensitivity. The sensitivity diminishes by about 5% per day as the blood is hemolyzed and removed.

Contrast on a scan of the head is indicated primarily for the detection of cancers and infection. When an abscess or neoplastic process is present, there is some disruption of the blood-brain barrier, causing some extravasation of the contrast, which is visible as a contrast, or “ring”-enhancing lesion around the mass.

BONE IMAGING

An x-ray is certainly the first study to implement when evaluating trauma and fracture. Unfortunately, the bone scan has much less specificity and does not reliably distinguish between bone infection and infection of the overlying soft tissue. The MRI is both 90 to 95% sensitive and 90 to 95% specific.

Osteomyelitis

When there is the suspicion of osteomyelitis, then an x-ray is done first. Although plain x-rays lack sensitivity for the first 1 to 2 weeks, the specificity for osteomyelitis is excellent. More than 50% of the calcium content of bone must be lost for osteomyelitis to be visible. The earliest finding of osteomyelitis on an x-ray is elevation of the periosteum. If the film returns normal and there is still suspicion of osteomyelitis, then the best test is an MRI. The MRI and technetium nuclear bone scan have the same sensitivity (90–95%); however, the MRI's specificity is far greater (90–95%). Both studies should become abnormal within 2 days of the onset of osteomyelitis. Therefore, a negative bone scan is very useful if it is normal; it means that there is no osteomyelitis. If it is abnormal, you may still need to perform an MRI.
Clinical Recall

Which of the following findings on CXR will be seen in a patient with a perforated peptic ulcer?

A. Kerley B lines with vascular cephalization
B. Blunting of the costophrenic angles with a clear meniscus sign
C. Pneumoperitoneum
D. Flattening of the diaphragm with a tubular shaped heart
E. Interstitial hyperdensities with hilar lymphadenopathy

Answer: C
Learning Objective

- Describe the presentation and treatment of glaucoma, cataracts, keratitis, uveitis, periorbital cellulitis, retinal diseases, and conjunctival diseases

RETINAL DISEASES

Diabetic Retinopathy

The etiology of diabetic retinopathy is based on damage to the endothelial lining of the small blood vessels of the eye. This is identical in pathogenesis to the damage that diabetes causes to all blood vessels in the body, such as in the heart, kidney, brain, and peripheral nervous system. The endothelial lining of the retinal vessels becomes damaged, leading to progressive occlusion on a microscopic level. The occlusion leads to obstruction and increased pressure.

- The earliest form of this adverse effect on the retina is called nonproliferative (or background) retinopathy. It is characterized by dilation of veins, microaneurysms, retinal edema, and retinal hemorrhages. Hemorrhages into the retina are not as damaging as intravitreal hemorrhages because they do not obstruct sight.

- Proliferative retinopathy is a more advanced form of the disease and is markedly more serious, meaning it progresses more rapidly to blindness. As the microvascular damage to the vessels worsens, these vessels secrete increased amounts of an angiogenesis factor. The vessels are not providing sufficient nutrition to the retina. The vessels themselves exert an increased effort to have more of them produced in an effort to deliver more nutrition and oxygen to the retina. Unfortunately, this “neovascularization,” or new blood vessel formation, leads to the optic nerve getting covered with abnormal new vessel formation. In addition, hemorrhages protrude into the vitreous chamber. Vitreal hemorrhages are much more serious than microaneurysms or intraretinal hemorrhages because they are much more sight threatening.

The whole point of therapy for diabetic retinopathy is to first prevent the patient from ever progressing to the proliferative phase and, second, to slow down the disease’s progress with laser photocoagulation, if it occurs.

Clinical Presentation. The clinical presentation of diabetic retinopathy is highly variable. There may be very advanced disease occurring with no symptoms. Vision may decrease slowly or rapidly. Vitreal hemorrhages may develop suddenly, and patients will complain of “floaters” in their vision.
Features of Diabetic Retinopathy

Diagnosis. Screening for the presence of retinopathy should be performed on an annual basis by an ophthalmologist. This is how candidates for fluorescein angiography and laser photocoagulation are found. Fluorescein helps identify which vessels should undergo laser photocoagulation. The laser selectively destroys focal areas of the retina and diminishes the production of the angiogenesis factor, which causes the proliferative retinopathy.

Treatment of both stages of diabetic retinopathy involves the attempt to have tight control of glucose, blood pressure, and lipid levels. Proliferative retinopathy additionally involves immediate treatment with laser photocoagulation. Aspirin, clopidogrel, and other platelet-inhibiting medications have shown no benefit. The more tightly the glucose is controlled within the normal range, the slower the progression of the retinopathy. Blood pressure should be controlled to a level of <130/80 mm Hg.

Diabetes is considered by the National Cholesterol Education Program (NCEP) to be the equivalent to coronary artery disease in terms of its effect on cardiac mortality and on LDL targets. Even if there is no evidence of coronary artery disease, the target LDL in a diabetic patient is <100 mg/dL. If the patient is diabetic and has evidence of coronary disease, then the target LDL can be as low as <70 mg/dL. Glucose control is the most effective of these methods of retarding progression of the disease.

Retinal Detachment

A 71-year-old woman presents to the physician with blurry vision in her left eye since that morning. She says it was as if “a curtain came down.” She has had floaters in the periphery of her left eye over the past few weeks but has had no pain or erythema. She has a history of stage I hypertension but is otherwise healthy.
Retinal detachment is usually spontaneous, but it may result from trauma. The term *rhegmatogenous*, which is used to describe the detachment, is from the Greek word for “tear.” The two most common predisposing factors are myopia and surgical extraction of cataracts. Traction on the retina can also occur from proliferative retinopathy from diabetes, retinal vein occlusion, and age-related macular degeneration.

The most common presentation is blurry vision developing in one eye without pain or redness. The patient may complain of seeing “floaters,” as well as flashes at the periphery of vision. Sometimes it is described as a “curtain coming down,” as the retina falls off the sclera behind it. Diagnosis is made by ophthalmologic examination.

Treatment. Various methods of trying to reattach the retina are employed. Patients should lean their heads back to promote the chance that the retina will fall back into place. The retina can be mechanically reattached to the sclera surgically, by laser photocoagulation, cryotherapy, or by the injection of expansile gas into the vitreal cavity. The gas will press the retina back into place. A “buckle,” or belt, can be placed around the sclera to push the sclera forward so that it can come into contact with the retina. If all of these methods fail to reattach the retina, then the vitreous can be removed and the retina can be surgically attached to the sclera. The majority (80%) of uncomplicated rhegmatogenous retinal detachments can be cured with one operation, with 15% needing a second operation.

Age-Related Macular Degeneration

Age-related macular degeneration (ARMD) is the most common cause of legal blindness in older persons in the Western world. The etiology is unknown. ARMD is characterized by the formation of deposits of extracellular material collecting into yellowish deposits seen on ophthalmoscopy. These deposits are known as “drusen.” They are small, granular, subretinal deposits that are age related.
There are 2 types of ARMD:

- A **dry**, or atrophic, form is characterized by slowly progressive visual loss in the elderly. Diagnosis is confirmed by finding clearly visible drusen on dilated eye exam. Dry-type ARMD leads to visual loss of a slow, gradual nature.

- A **wet**, or exudative, form is characterized by the abnormal growth of vessels from the choroidal circulation into the subretinal space. These vessels leak, leading to collections of subretinal fluid and a localized, exudative retinal detachment. Wet type can present with the rapid distortion of vision over weeks to months. Fluorescein angiography will help confirm the diagnosis of exudative ARMD.

Treatment. There is no clear evidence that any therapy will stop the progression of dry-type ARMD. There is some evidence that zinc, antioxidant vitamins such as vitamins C and E, and beta-carotene may retard progression of the disease.

Wet-type ARMD is treated with VEGF inhibitors ranibizumab and bevacizumab.

Central Retinal Artery Occlusion

There are various etiologies of central retinal artery occlusion: carotid artery embolic disease, temporal arteritis, cardiac thrombi or myxoma, or any of the usual causes of thrombophilia such as factor V Leiden mutation.

Patients present with a sudden, painless, unilateral loss of vision. There is no redness of the eye. Ophthalmoscopy reveals a pale retina, with overall diminished perfusion and a “cherry-red” spot at the fovea. There is also “box-car” segmentation of the blood in the veins.

To diagnose, patients should undergo evaluation with carotid artery imaging, echocardiography, and evaluation for thrombophilia.

Central retinal artery occlusion is managed in much the same way as for a stroke (cardiovascular accident or transient ischemia attack.

- Lay the patient flat
- Supply oxygen and ocular massage in an attempt to unobstruct the vessel

Also consider acetazolamide and thrombolytics. Anterior chamber paracentesis has been used to try to decompress the pressure in the eye and dislodge the embolus.

Central Retinal Vein Occlusion

Patients with retinal vein occlusion are at particularly high risk for developing glaucoma. They should be monitored for the possible use of laser photocoagulation. Younger patients should be investigated for inherited causes of thrombophilia, such as factor V mutation, protein C deficiency, and antiphospholipid syndromes.

Presentation is similar to retinal artery occlusion: sudden loss of vision without pain, redness, or abnormality in pupillary dilation. Ocular examination by funduscopy reveals disk swelling, venous dilation, tortuosity, and retinal hemorrhages.

Retinal hemorrhage is the main way to distinguish venous obstruction from arterial obstruction. You can’t have a hemorrhage in the retina if you don’t have blood getting into the eye.
There is no specific treatment for retinal vein obstruction.

Clinical Recall

Which of the following fundoscopic findings is representative of proliferative diabetic retinopathy?

A. Dilation of veins, microaneurysms, retinal edema, and retinal hemorrhages
B. Vitreal hemorrhages with optic nerve concealment by neovascular growth
C. Floaters, red cells in the vitreous with a wrinkled, detached retina
D. Yellowish, small, and granular extracellular subretinal deposits
E. A pale retina with diminished perfusion and a cherry-red spot at the fovea

Answer: B

GLAUCOMA

The precise etiology of glaucoma is not clearly known.

• In open-angle glaucoma, the precise etiology of the decrease in the outward flow of aqueous fluid has never been elucidated. Thus, the precise cause of the increase in intraocular pressure is not known.

• Acute angle-closure glaucoma can be precipitated by anticholinergic medications such as ipratropium bromide or tricyclic antidepressants; however, most people with narrow angles in their anterior chambers never develop glaucoma.

Open-Angle Glaucoma

This disorder accounts for >90% of cases of glaucoma. Patients are asymptomatic for a long time, and this is the reason why it is important to screen older patients.

The first clue to the diagnosis is a cup-to-disk ratio >0.5, which should be confirmed by repeated elevation in intraocular pressure as determined by tonometry.

Treatment is based on decreasing the production of aqueous humor while increasing its drainage.

• Medications that decrease the production of aqueous humor are beta-blockers (timolol, betaxolol, levobunolol), alpha-adrenergic agonists (apraclonidine, brimonidine), and carbonic anhydrase inhibitors (dorzolamide and brinzolamide).

• Medications that increase the outflow of the humor are prostaglandin analogs such as topical latanoprost, travoprost, and bimatoprost. (The prostaglandin analogs can lead to a change in the color of the eyes and a darkening of the eyelid. Pilocarpine is a miotic agent that constricts the pupil to allow greater outflow of the aqueous humor.)
If maximal medical therapy is ineffective in controlling intraocular pressure, consider surgery. Laser trabeculoplasty and surgical trabeculectomy are the most commonly performed procedures.

Closed-Angle Glaucoma

Closed-angle glaucoma is often an ophthalmologic emergency precipitated by the use of medications with anticholinergic properties.

It presents with an eye that is red, painful, hard to palpation, and associated with a fixed midpoint pupil. The cornea has a hazy cloudiness, and there is marked diminishment of visual acuity.

Treatment of acute angle-closure glaucoma is an ophthalmologic emergency. Use IV acetazolamide, urea, and osmotic diuretics such as mannitol and glycerol.

Pilocarpine can be used to open the canal of Schlemm, and beta-blockers are used to decrease humor production. If these medical therapies are ineffective, laser trabeculoplasty can be performed.

CATARACTS

Cataracts are opacifications of the lens. They are slowly progressive, with a blurring of vision occurring over months to years. Glare from the headlights of cars is particularly a problem when driving at night. Color perception is reduced in general. The etiology of cataracts is unknown, although there is an association with cigarette smoking.

Mature cataracts can be easily seen on physical examination. Earlier-stage disease is seen with a slit lamp.

There is no medical therapy for cataracts. Surgical removal with the placement of an intraocular lens is the standard of care.

CONJUNCTIVAL DISEASES

Conjunctivitis

Conjunctivitis can occur from any infectious agent, including bacteria, viruses, and fungi.

- **Bacterial conjunctivitis** is often unilateral and presents with a marked purulent discharge from the eye. This is most symptomatic in the morning, when the patient’s eye has developed a significant crust overnight, sometimes making it hard to open the eye. There is less itching compared with viral conjunctivitis. Although the eye can be red, there is a normally reactive pupil, normal ocular pressure, and no impairment of visual acuity.

- **Viral conjunctivitis** is often bilateral, with severe ocular itching and enlarged preauricular adenopathy. The eyes are also red, but there is a normally reactive pupil and no photophobia.

Treat **bacterial conjunctivitis** with a topical antibiotic such as erythromycin ointment, sulfacetamide drops, or topical fluoroquinolones.
Treat viral conjunctivitis symptomatically with topical antihistamine/decongestants. There is no specific microbiologic treatment.

Subconjunctival Hemorrhage

Subconjunctival hemorrhage is more dangerous in its appearance than in its actual damage to vision or even the eye itself. The most common cause is trauma, particularly in the presence of thrombocytopenia. The collection of the hematoma stops at the limbus, which is the anatomic connection between the conjunctiva and the cornea. Because this prevents the blood from covering the cornea, there is no impairment of vision.

There is no intraocular or intravitreal damage and hence no impairment of vision. No specific therapy is necessary.

KERATITIS

Keratitis refers to any infection or inflammation of the cornea. Usually, keratitis happens as a result of trauma to the cornea with the inoculation of bacterial or fungal elements into the cornea.

Herpes Simplex Keratitis

Herpes simplex keratitis is characterized by severe pain in the eye and a sensation that something is caught under the eyelid.

Diagnosis is based on finding a characteristic dendritic pattern over the cornea on fluorescein staining of the eye with examination under a blue light.

Treatment is oral acyclovir, famciclovir, or valacyclovir, plus topical trifluridine 1% solution or idoxuridine.

Note that oral and topical steroids should never be used in an attempt to relieve the inflammation of herpes simplex keratitis. That can markedly worsen the growth of the virus (acting as "fertilizer").

PERIORBITAL CELLULITIS

Cellulitis is caused by *Staphylococcus aureus* or *Streptococcus* invading the dermis and subcutaneous tissues surrounding the eye.

Treatment is an antistaphylococcal penicillin such as oxacillin or nafcillin. In cases of penicillin allergy, use a first-generation cephalosporin such as cefazolin.

UVEITIS

Uveitis occurs when the structures of the uveal tract (the iris, ciliary body, and choroid) become inflamed. It is caused by various systemic inflammatory conditions, such as psoriasis, sarcoidosis, syphilis, Reiter syndrome, and IBD.
Uveitis leads to a painful, red eye with marked photophobia. One clue to diagnosis is pain that occurs even when shining a light in the unaffected eye. This is because of the consensual light reflex in which the affected pupil will constrict even when light is shined in the normal eye.

Diagnosis is made by slit lamp examination. Inflammation of the iris, ciliary body, and choroid is visible. Inflammatory cells may accumulate on the inside of the cornea after they precipitate out of the aqueous humor, rather like an accumulating snowfall. These focal collections are called keratic precipitates.

Basic management, despite the varied underlying conditions, is to treat with topical or systemic steroids.

Clinical Recall

A 32-year-old man presents with redness of his eyes, marked photophobia, and normal conjunctiva. Which of the following is the best initial treatment?

A. Topical corticosteroids
B. Topical oxacillin
C. Topical acyclovir
D. Oral idoxuridine
E. Topical trifluridine

Answer: A
Index

A
Abacavir-lamivudine, 277
ABCDE regimen, ACS therapy, 145
Abdominal aortic aneurysm, 9
Abdominal x-ray, 470
ABVD regimen, Hodgkin disease, 216
ACC/AHA guidelines, essential hypertension, 311t
ACE inhibitors
 congestive heart failure, 155–156, 156t
 essential hypertension, 311–312
 hypertension, 315
 prerenal acute kidney injury, 288
 unstable angina and NSTEMI, 145
Acetaminophen
 influenza, 236
 ingestion, emergency management, 388–389
 osteoarthritis, 78
Acetylcholine-receptor antibody test, 432
Achalasia, 86–87, 87f
Acid-base disturbances, 322–330
 metabolic acidosis, 322–327
 metabolic alkalosis, 327–328
 mixed acid-base disorders, 329–330, 330t
 respiratory acidosis, 328
 respiratory alkalosis, 329
Acid exposure, 391–392
Acid-fast bacilli (AFB) stain, tuberculosis, 244
ACLS Pulseless Arrest Algorithm, 186f
Acne, 464
Acquired immune deficiency syndrome (AIDS), 273–279
 antiretroviral therapy, 277–278
 immune system monitoring, 275–276, 276t
 opportunistic infections, 273–275
 post-exposure prophylaxis, 278
 pre-exposure prophylaxis, 279
Acquired syphilis, 253
Acromegaly, 15–17, 15f
Actinic keratosis, 458
Acute bacterial pyelonephritis, 25
Acute bronchitis, 237
Acute chest pain/discomfort, 125–130, 128f, 129t
Acute coronary syndrome (ACS), 137–150, 138f
 complications, 146–150
Acute gouty arthritis, 79
Acute hematogenous osteomyelitis, 260–261
Acute interstitial nephritis (AIN), 293
Acute kidney injury (AKI), 286–294
 intrarenal, 286, 289–294
 postrenal, 286, 288–289
 prerenal, 286–288
Acute leukemia, 209–210
Acute lymphocytic leukemia (ALL), 209
Acute microvascular disorders, 293–294
Acute myelogenous leukemia (AML), 209
Acute pancreatitis, 116–118
Acute papillary necrosis, 293–294
Acute pericarditis, 171–172, 171t
Acute respiratory distress syndrome (ARDS), 340–342, 367
Acute tubular necrosis (ATN), 290–292, 290t
Acute viral hepatic infections. See Hepatitis
Adalimumab (Humira), rheumatoid arthritis, 67
Adam-Stokes attacks, 177
ADAMTS3 enzyme inhibition, 222–223
Addison disease, 54–57, 55f
Adenocarcinoma
 esophageal, 87–88
 lung, 368
Addenohypophysis, 11–12, 12f, 13f
Adenomas
 pituitary, 13, 13t
 thyroid disease, 25, 31–32
Adenomatous polyposis coli gene (APC), 112–113
Adenosine stress test, 135
Adrenal crisis, 56
Adrenal gland
 anatomy, 48–49, 49f
 hyperfunctioning of, 49–54
 hypofunctioning of, 54–57
Adrenal insufficiency syndromes, 54–57, 55f
Adrenocorticotropic (ACTH)
 Cushing syndrome and, 49–50, 51f
 hypopituitarism and, 18
 secondary failure in elaboration of, 54–57, 55f
Advanced cardiac life support algorithms, 373f
Age range
 colon cancer screening, 2
 immunization status and, 4
 ischemic heart disease, 132
Age-related macular degeneration (ARMD), 477–478
Airflow measurement, pulmonary function testing, 331
Albumin levels, hypocalcemia, 39
Albuterol, 346–347
Alcohol abuse, 8–9
eMERGENCY MANAGEMENT, 389–390, 400–401
Liver disease and, 119
Alcoholic hallucinosis, 400
Aldosterone antagonists, congestive heart failure, 155, 156t
Alkali exposure, 391–392
Allergic bronchopulmonary aspergillosis (ABPA), 349
Allogeneic bone marrow transplantation, acute leukemia, 210
Allopurinol, 79, 100
Acute interstitial nephritis, 293
All-trans-retinoic acid (ATRA), 210
Alopecia areata, 463
Alpha-1 antitrypsin deficiency (AATD), 123, 350
Alpha-adrenergic blockers, hypertension, 316
Alpha thalassemia, 198–199
Alport syndrome, 302
ALSO titers, erythema nodosum, 448
Anaphylaxis, 412
Anaplastic carcinoma, 32
Androstenedione, 53
Anemia, 193–209, 195f
Aortic stenosis, 163–164, 164t, 165t
PRinzmetal angina, 149
Stable, 133–137
Unstable, 137–140
Angiotensin receptor blockers (ARBs), hypertension, 315
Angiotensin receptor-neprilysin inhibitor (ARNI), congestive heart failure, 155
Anion gap
Metabolic acidosis, 324–326
Salicylate intoxication, 396
Antikylosis of spondylitis (AS), 74–75
Anterior cerebral artery (ACA), cerebrovascular accident, 419–421, 420
Anterior myocardial infarction, 143
Anterior pituitary, diseases of, 13–19
Anterior spinal artery occlusion, 417, 417f
Antiarrhythmic drugs, 188t
Antibodies, celiac sprue, 108–109
Antidiuretic hormone (ADH), 11
Diabetes insipidus and, 19–21
SIADH and, 19, 22
Antihyaluronic acid (AHT), 297
Antihypertensive medications, 315–316
Anti-myeloperoxidase antibody (P-ANCA), 296
Antineutrophil cytoplasmic antibodies (ANCAs), 64, 82, 100
Antinuclear antibodies (ANAs), 63–64, 64t, 69, 72–73
Antitrypsin deficiency, 324, 326
Antithrombin therapy, 139–140, 145
Antisaccocellular antibodies (IgA), 109
Antistaphylococcal antibiotics, skin reactions to, 451
Antistreptolysin (ASO) test, 297
Apixaban, 382
Aplastic anemia, 208–209
Argyll Robertson pupil, 253
Aronychia, 453
Arterial blood gases
 acute respiratory compromise and distress, 341, 367
 asthma, 345–346
 chronic obstructive pulmonary disease, 352
 metabolic acidosis, 322
Arthralgia, 108
Arthritis, 61–62
 acute gouty arthritis, 79
 osteoarthritis, 61–62, 77–78
 psoriatic arthritis, 76
 reactive arthritis, 75–76, 76f
 rheumatoid arthritis, 65–68
 septic arthritis, 81, 261–262
Asbestosis, 358–359
Ascites
 acute pancreatitis, 117–118
 liver disease, 119–120, 120f
Aspergillosis, 281–282
 allergic bronchopulmonary, 349
Aspirin
 ACS therapy, 145
 for unstable angina and NSTEMI, 139
Astemizole, 446
Asthma
 Churg-Strauss syndrome and, 296–297
 diagnosis, 344–345
 pathophysiology, 345–346
 pulmonary function testing, 334
 treatment, 346–348
Asymptomatic hyponatremia, 319
Asystole emergencies, 372, 372f
Atelectasis, 370
Atheroembolic disease, 293
Atherosclerosis, end-stage renal disease, 305
Atrofacentesis, 81
Atlantoaxial subluxation, rheumatoid arthritis, 67–68
Atonic seizure, 422
Atopic dermatitis, 461–462
Atovaquone, 273, 275
Atrial fibrillation (AF), 179–182, 179f, 180f, 182f
 emergency management, 379–383, 381f
 atrial flutter, 178, 178f
 emergency management, 379–383, 380f
 atrial tachycardia, 379–383, 380f
 atrioventricular block, 175–177, 176f, 177f
 auscultation, mitral valve prolapse, 163
 Austin-Flint murmurs, aortic regurgitation, 166
Autoimmune disease
 acute interstitial nephritis and, 293
 antinuclear antibodies in, 63–64, 64t
 distal (type 2) renal tubular acidosis, 326
 hemolytic anemia, 204–206, 205f
 pemphigus vulgaris, 444
 autoimmune pancreatitis, 118
 autologous bone marrow transplantation, multiple myeloma, 214
Automatic implantable cardioverter/defibrillator (AICD), 157–158, 170
Autonomic neuropathy, 46
Autosomal dominant polycystic kidney disease (ADPKD), 309
Azathioprine, 100
Azithromycin, 274
Azotemia, 286
Aztreonam, 228

B
Bacillus-Calmette-Guérin (BCG) vaccine, 243
Bacteremia, infective endocarditis and, 265
Bacterial infection
 conjunctivitis, 480
 reactive arthritis, 75
 skin, 451–453
Bacteriuria, 284, 284t
Balloon valvuloplasty, 164
Balloon valvulotomy, 161
Barbiturates, 393
Barium studies, 471
Barrett esophagus, 87–88, 94
Barter syndrome, 53
Basal cell carcinoma, 460, 460f
Basic life support, 371–373, 373f
Belimumab, systemic lupus erythematosus, 69
Bence-Jones protein, 300
Benedikt syndrome, 420, 420f
Benign essential tremor, 441
Benign paroxysmal positional vertigo, 426
Benzodiazepines (BZDs), 393, 400
Beta-adrenergic agonists
 asthma, 346–347
 chronic obstructive pulmonary disease, 351–352
Beta-adrenergic blockade
 congestive heart failure, 156, 156t
 Graves' disease, 27
Beta blockers
 atrial fibrillation, 182
 cardiovascular disease, 188, 189t
 congestive heart failure, 156–157, 156t
 hypertension, 315–316
 hypertrophic obstructive cardiomyopathy, 169–170
 unstable angina and NSTEMI, 139, 145
Beta-lactamase inhibitor, 393
Beta-lactamase inhibitor, 227
Beta thalassemia, 198–199
Bicarbonate levels
 anion gap metabolic acidosis, 325–326
 asystole management, 374
 sleep apnea, 367–368
Bilateral hiliar adenopathy, sarcoidosis, 358
Bilateral kidney disease, 286, 288–289
Bilevel positive airway pressure (BiPAP), 343
Bisoprolol, congestive heart failure, 156, 156t
Biventricular assist devices, 158–159
Biventricular pacemaker, 158–159
Blood pressure, essential hypertension, 310–312
Blood-urea nitrogen (BUN) test, 285
Bone and joint infections, 260–262
Bone biopsy, 261
Bone imaging, 473–474
Bone marrow radiation, 410
“Boosted” protease inhibitors, 278
Bortezomib, multiple myeloma, 214
Botulism, 432
Bradycardia, 146
emergency management, 383–386, 384f, 385f
Brain abscess, 232–233, 232f
Breast cancer
Klinefelter syndrome and, 58–59
screening, 2
Breast feeding, HIV-positive patients, 278
BRIT mnemonic, 439
Calcitonin, primary hyperparathyroidism, 37
Calcium, parathyroid regulation of, 33–39, 35f
Carbon monoxide diffusing capacity, 334
Carbon monoxide poisoning, 390–391, 406
Calcium hydroxyapatite (HA), 78–80
Calcium oxalate (CaOx), 78–80
Calcium pyrophosphate (CPPD), 78–80
Calcium stones, nephrolithiasis, 307
Calcium stones, nephrolithiasis, 307
Cancer screening, 1–3
Candida albicans, esophagitis, 89
Candidiasis, 450
Caplan syndrome, 359
Capsaicin cream, osteoarthritis, 78
Capsule endoscopy, 471
Carbamazepine, 430
Carbapenems, 228
Carbidopa, Parkinson disease, 440–441
Carbohydrate metabolism disorders, 40–47
Cardiac catheterization
angina, 135
cardiac tamponade, 173
constrictive pericarditis, 174
Cardiac failure, acromegaly and, 17
Cardiac output, 336
Cardiac rate and rhythm disturbances, 175–186
electrocardiography of, 334–338
emergency medicine, 374–386
hypothermia, 408
normal sinus rhythm, 381f
sinus node function disorders, 175–185
tacharrhythmias, 146
Torsades de Pointes, 185
ventricular fibrillation, 186, 186f
Cardiac surgery, 145
Cardiac tamponade, 172–173
Cardiac troponins, 127–128, 128f
Cardiogenic shock, 158–159, 189, 190t
Cardiology
acute chest pain/discomfort, 125–130, 128f, 129t
acute coronary syndrome, 137–150
cardiomyopathies, 167–170
congestive heart failure, 150–159
drugs for cardiovascular disease, 187–189, 188t, 189t
ischemic heart disease, 130–137, 131f
pericardial disease, 171–174
rate and rhythm disturbances, 175–186
shock syndromes, 189–190, 190t
valvular heart disease, 160–166
Cardiomyopathies, 167–170
Cardiopulmonary resuscitation, 371–373, 373f
Cardiovascular disease
acromegaly and, 16–17
diabetes and, 45
drugs for, 187–189, 188t, 189t
Cardioversion, 375
atrial fibrillation, 181, 379–383
Carditis. See endocarditis
Carotid endarterectomy, 421
Carvedilol, congestive heart failure, 156, 156t
Caspofungin, 282
Casts, urinalysis, 284, 284t
Cataracts, 480
Cat bites, 412–413
Catecholamines
asthma, 346
pheochromocytoma, 56–57
Cathartics, 387
Catheter ablation
atrial fibrillation, 181
Wolff-Parkinson-White syndrome, 183
Caustics/corrosives, 391–392
CD4 cells, 273–279
count procedures, 275–276, 276t
Cefotaxime, 119
Ceftriaxone, 119, 227, 230
urethritis, 252
Celiac sprue, 104, 107, 108–109
Cellulitis, 452
periorbital, 481
Central-acting sympatholytics, hypertension, 316
Central demyelinating syndrome, 319
Central diabetes insipidus (CDI), 19–21, 20f, 21f
Central nervous system (CNS)
encephalitis, 231–232
imaging, 473
infections, 228–233
Central retinal artery occlusion, 478
Central retinal vein occlusion, 478
Central sleep apnea, 368
Cephalosporins, 226–227
otitis media, 233
pneumonia, 242
Cerebral contusion, 403f, 404
Cerebrovascular accident (CVA), 419–421, 419f, 420t
Ceftaroline, 227
Cervical cancer, screening, 2
Cervical motion tenderness, 252
Ceftriaxone, 119
CHADS2-V ASc score, 382
CHADS score, atrial fibrillation, 181
Charcoal, 387
digitalis toxicity, 397
Chemical stress test, 134–135
Chest pain, acute chest pain/discomfort, 125–130, 128f, 129t
Chest x-ray
acute chest pain, 128
air under diaphragm, 468
anterior-posterior films, 465
asthma, 346
atrial fibrillation, 181
chronic obstructive pulmonary disease, 352
congestive heart failure, 154, 154f, 468
COPD, 467
decubitus film, 466
expiratory films, 466
film quality, 466
lateral, 466
line and tube positioning, 468
lung cancer, 369
mitral regurgitation, 162
mitral stenosis, 160–161
pneumonia, 239, 467, 468f
pneumoperitoneum, 469f
posterior-anterior films, 465
pulmonary thromboembolism, 362–363
pulmonology, 337–342, 337f, 339f, 340f
tuberculosis, 243f, 244
Chicken pox, vaccine, 7
Chikungunya, 280
Chlamydia pneumoniae, 240
Chlamydia trachomatis, 255
Chloroquine, 3–4
Chlorthalidone, 315
Cholesterol emboli syndrome, 293
CHOP regimen, non-Hodgkin lymphoma, 217
Chronic bronchitis, 237
Chronic disease, anemia of, 196–197
Chronic hypouricemic gout, 79
Chronic kidney disease (CKD), 286, 303
secondary hypertension, 314
Chronic leukemia, 210–212
Chronic lymphocytic leukemia (CLL), 211
Chronic myelogenous leukemia, 210–211
Chronic obstructive pulmonary disease (COPD), 349–355, 350f
acute respiratory compromise and distress, 340–342
chest x-ray, 467
Chronic pancreatitis, 108
Churg-Strauss syndrome, 82, 296–297
Cidofovir, 274
Cinacalcet, 37
Ciprofloxacin, 120, 252
Cirrhosis, 119–124
CK-MB isoenzyme, 127
Cladribine (2CDA), 212
Clindamycin, 227–228
Clonidine, pheochromocytoma, 57
Clopidogrel, 145
Closed-angle glaucoma, 479–480
Clostridial myonecrosis (gas gangrene), 262–263
Clostridium difficile
diarrhea and, 105–106
metronidazole, 228
Clostridium perfringens, 262
Cluster headaches, 428–429
Coagulopathies, 220–224
Coal miner’s lung/coal worker’s pneumoconiosis, 359–360
Coarctation of the aorta, secondary hypertension, 314
Cobalamin, 201
Cocaine abuse, 392–393
Cold agglutinin disease, 205–206, 205f
Colon cancer, 2, 111–113
Colonoscopy, 2
colon cancer, 111–112
virtual colonoscopy, 472
Common ALL antigen (CALL), 209
Communicating syringomyelia, 416
Community-acquired pneumonia (CAP), 240–242, 240t
COMT inhibitors, 440–441
Concussion, 402, 403f, 404f
Conduction abnormalities, 146
Condylomata acuminata, 257
Congenital adrenal hyperplasia (CHA), 53–54
Congenital syphilis, 253
Congestive heart failure (CHF), 150–159
chest x-ray, 468
clinical presentation, 152–154, 153f, 153t, 154f
management, 154–157, 156t
mechanical devices for, 158–159
pathophysiology, 150–152, 151f, 152f
staging system, 153–154
Conjunctivitis, 480
Constipation, 111
Constrictive pericarditis, 170, 173–174
Contact dermatitis, 462, 462f
Continuous positive airway pressure (CPAP), 343
Contrast agents, acute tubular necrosis, 292
Coronary angiography, 140
Coronary artery bypass graft (CABG), 136
Cor pulmonale, chronic obstructive pulmonary disease, 350
Corticosteroids
chronic obstructive pulmonary disease, 351–353
systemic lupus erythematosus, 69
Corticotropin-releasing hormone (CTH), Cushing syndrome and, 49–50, 51f
Cortisol, hypopituitarism and, 18
Cowden syndrome, 113
CPK levels, rhabdomyolysis, 291
Creatine kinase, acute chest pain/discomfort, 127
creatinine concentration, 285
CREST syndrome, 71–72
Cretinism, 29
Creutzfeld-Jakob disease, 437
Crohn’s disease, 100, 100t, 101t
enteropathic arthropathy, 76, 76f
Cromolyn, asthma, 347
Cryoglobulinemia, 297
Cryptococcosis, 275
Cryptosporidiosis, 104
Crystal-induced arthropathies, 78–80
Crystal precipitation, acute tubular necrosis, 292
CT scan
autosomal dominant polycystic kidney disease, 309
central nervous system, 473
osteoemyelitis, 261
postrenal acute kidney injury, 289
pulmonary thromboembolism, 363–364, 363f
Cullen sign, 117
CURB-85 regimen, 240
Cushing syndrome, 49–50, 51f
secondary hypertension, 314
Cyclooxygenase 2 (COX-2) inhibitors, rheumatoid arthritis, 66–67
Cycotoxic drugs, systemic lupus erythematosus, 69
Cystic fibrosis (CF), 353–354
Cystic kidney disease, 309
Cystine stones, 308
Cystitis, 258
Cytokines, rheumatoid arthritis, 65
Cytomegalovirus, 274
Cytoplasmic antineutrophil cytoplasmic antibody (C-ANCA), 100, 296

D
Dabigatran inhibitor, 382
Dapsone, 273, 275
Daptomycin, 227
Dawn phenomenon, 47
D-dimer test, 364
Decompensated heart failure (HF), 152
Decubitus film, 466
Decubitus (pressure) ulcers, 463
Deep venous thrombosis (DVT), 360–367, 361f
Defibrillation, 375
Dehydroepiandrosterone (DHEA), 53
Delirium tremens (DT), 400
“Demand ischemia,” 133
Dementia, 436–438
chronic pancreatitis, 108
Dengue, 280
Depressed skull fracture, 403f, 404
Depression, acute coronary syndrome, 147
De Quervain thyroiditis, 25–26, 30–31
Dermatitis, 461–462
Dermatographism, 445
Dermatology, 443–464
acne, 464
benign and precancerous lesions, 457–458
bullous/blistering diseases, 444–445
decubitus (pressure) ulcers, 463
drug eruptions/hypersensitivity, 445–448
hair disorders, 463
infectious disease, 449–455
malignant disease, 458–460, 459f, 459t, 460f
parasitic infections, 455–456
scaling disorders, 461–463, 462f
skin anatomy, 443f
toxin-mediated diseases, 456–457
Dermatomyositis, 83–84
Desensitization, 446
Desmopressin acetate (DDAVP), 219–220
DEXA bone density scan, 8
Dexamethasone, meningitis, 231
Dextrose, 387
Diabetes insipidus, 19–21, 20f, 21f
hypernatremia, 319–320
lithium toxicity, 395–396
Diabetes mellitus, 9, 40–48
classification, 40–41
complications, 43–48, 44f, 46f, 48t
ischemic heart disease and, 132
management, 41–43, 42t, 43t
Diabetic ketoacidosis (DKA), 43–44, 44f
Diabetic nephropathy, 45–46, 301
Diabetic neuropathy, 46–47, 46f
Diabetic retinopathy, 46, 475–476, 476f
Dialysis, 305–306
salicylate intoxication, 397
toxic overdose, 387
Diarrhea, 102–107, 103t
infectious, 246–248
traveler’s diarrhea, 4
Diastolic heart failure, 159
Diffuse capillary leak, 407
Diffuse esophageal spasm, 88
Digitalis, 157, 157t
Digoxin
 atrial fibrillation, 182
drug interactions with, 157, 157t
toxicity, 397
Dihydropyridines, hypertension, 315
Dilated (congestive) cardiomyopathy, 158, 167–168
Direct fluorescent antibody (DFA) test, 453
Disease-modifying anti-rheumatic drugs (DMARDs), rheumatoid arthritis, 67, 67t
Dipyridamole, hypertrophic obstructive cardiomyopathy, 169–170
Disseminated intravascular coagulation (DIC), 119, 221–222
acute leukemia and, 209
Distal (type 2) renal tubular acidosis, 326, 327t
Diuretics
 acute interstitial nephritis, 293
 congestive heart failure, 155, 156t
 essential hypertension, 312
 hypertension, 316
 metabolic alkalosis, 328
Diverticulitis, 110–111
Diverticulosis, 110
Dobutamine, cardiogenic shock, 158–159
Dobutamine stress test, 135
Dofetilide, systolic dysfunction, 378
Dog bites, 412–413
Dolutegravir, 277
Donovania granulomatis, 256
Dopamine agonists
 acromegaly, 17
 Parkinson disease, 440–441
Dopamine synthesis, hyperprolactinemia and, 14–15
Doxycycline, 3, 104, 228, 237
 Lyme disease, 271
 pneumonia, 242
Dressler syndrome, 147
Drowning, 411–412
Drug-induced acute tubular necrosis, 291–292
Drug-induced asthma, 345
Drug-induced hemolytic anemia, 204–206, 205f
Drug-induced hypersensitivity, 445–448
Drug-induced lupus, 70
Drugs of abuse, emergency management, 392–394
DUMBELSS syndrome, 399
Dumping syndrome, 99
Duroziez sign, aortic regurgitation, 166
Dyslipidemia, type 2 diabetes and, 45
Dysplastic nevus, 457, 457f
Dyspnea, aortic regurgitation, 166
Dysrhythmias, 146

E
Eaton-Lambert syndrome, 83–84
Echocardiography (ECG)
 aortic regurgitation, 166
 atrial fibrillation, 181
 congestive heart failure, 154
 hypertrophic obstructive cardiomyopathy, 169–170
 mitral regurgitation, 162
 mitral stenosis, 160–161
Eczema, 461–463, 462f
Edrophonium (Tensilon) test, 432
Efavirenz, 277–278
Effective arterial volume, prerenal acute kidney injury, 286
Electric shock, atrial fibrillation, 181
Electrocardiogram (EKG)
 acute chest pain/discomfort, 127
 angina, 134
 aortic stenosis, 164
 atrial fibrillation, 179–181, 179f, 180f
 hyperkalemia, 322
 mitral regurgitation, 162
 mitral stenosis, 160–161
 ventricular fibrillation, 375, 375f
Elvitegravir, 277
Emergency medicine, 371–414
 acetaminophen ingestion, 388–389
 alcohol abuse, 389–390, 400–401
 anaphylaxis, 412
 anticholinergic overdose, 398–399
 burns, 406–410
 cardiac dysrhythmias, 374–386
 cardiopulmonary resuscitation, 371–373, 373f
caustics/corrosives, 391–392

digoxin toxicity, 397
drowning, 411–412
drugs of abuse, 392–394

head trauma, 401–404, 403f, 404f

heavy metals exposure, 393
lithium toxicity, 395–396
organophosphate toxicity, 399
radiation injuries, 410–411

salicylate intoxication, 396–397
subarachnoid hemorrhage, 404–406, 405f
toxicology, 386–388

tricyclic antidepressants, 398

venomous bites and stings, 412–414

Emphysema, 349–355, 467

Empty sella syndrome (ESS), 18–19, 19f

Emtricitabine-tenofovir, 277–278

Encephalitis, 231–232

Encephalopathy, 121

Endocarditis
aortic regurgitation, 165–166
aortic stenosis, 164
colon cancer and, 111–112

infective, 263–270, 264t, 265t, 266t, 267t, 268t, 269f

Endocrine emergency, thyroid storm, 28

Endocrinology, 11–59

adrenal gland disorders, 48–56

carbohydrate metabolism disorders, 40–47

parathyroid glands, 33–39

pituitary gland diseases, 11–23
testicular disease and hypogonadism, 57–59

thyroid gland diseases, 23–33

Endoscopic retrograde cholangiopancreatography (ERCP), 116–118, 471

Endoscopy, gastrointestinal bleeding, 114–116
End-stage renal disease (ESRD), 303–306

hypervolemie hypernatremia, 318

Enteropath arthropathy, 76, 76f

Eosinophilic esophagitis, 90

Eosinophilic granulomatosis with polyangiitis (Churg-Strauss), 82, 296–297

Epidural hematoma, 403f

Epigastric pain, 91–99

Epilepsy, 421–425, 424f

Eplerenone, congestive heart failure, 155–156, 156t

Eptifibatide, 140

Erectile dysfunction, acute coronary syndrome, 148

Erysipelas, 452

Erythema migrans rash, Lyme disease, 229, 270–271

Erythema multiforme (EM), 448

Erythrocyte sedimentation rate (ESR), 261

Erythrocyanosis, chronic obstructive pulmonary disease, 350

Esophageal cancer, 87–88

Esophageal disease, 85–91

Esophageal dysphagia, 85

Esophagitis, 89–90

Essential hypertension, 310–312, 311t

Essential thrombocytopenia, 213

Estimated GFR (eGFR), 285

Etanercept (Enbrel), rheumatoid arthritis, 67

Ethics, amyotrophic lateral sclerosis, 432–433

Ethylene glycol toxicity
acute kidney injury, 292
emergency management, 389–390

Euvolemic hypernatremia, 317–319

Exchange transfusion, sickle cell disease, 204

Exenatide, 42, 42t

Exercise, ischemic heart disease and, 132

Exercise stress test (EST), 134–135, 146

Exertional heat stroke, 408

Extracellular volume status, hyponatremia, 317

Extracorporeal membrane oxygenation (ECMO), 158–159

Extrinsic (allergic, atopic) asthma, 345

Exudative pleural effusion, 338–339, 339t

F

Facial nerve palsy, 230

Factitious hyperinsulinism, 48, 48t

Factor VIII deficiency, 119, 220–221, 220t

Factor IX deficiency, 220–221, 220t

Factor Xa, pulmonary thromboembolism, 365–366

False-positive stress test, 135

Familial adenomatous polyposis, 112

Familial hypocalciuric hypercalcemia (FHH), 34

Fasting hypoglycemia, 47

Fat embolism, 367

Febuxostat, 100

Ferritin levels
hemochromatosis, 122
sideroblastic anemia, 197

Ferroportin inhibition, anemia and, 197

Fibrinolytic therapy, STEMI management, 143–145

Fidamoxicin, 106

First-degree AV block, 175, 383, 384f

First-degree burns, 407

Fixed drug reactions, 448

Flow volume loops, 335, 335f, 336f

Fluconazole, 89, 230, 275

Fluid and electrolyte disorders, 316–322

hyperkalemia, 321–322

hypernatremia, 319–320

hypokalemia, 320–321

hyponatremia, 316–319

Fluorescent antinuclear antibody test (FANA), 63–64, 64t

Fluorquinolones, 227, 233

Folic acid deficiency, 201

Focal-segmental glomerulosclerosis (FSGS), 300
Genital warts, 257
Gentamicin, 228
Ghon complex, tuberculosis, 244
Giardia lamblia, 104, 246–248
Glaucoma, 479–480
Glomerular disease, 294–303, 295t, 303t
chronic kidney disease and, 289
nephritic diseases, 294–299, 295t
nephrotic disease, 299–301
Glomerular filtration rate (GFR), 283, 285
Glomerulonephritis (GN), 294
Glucagon-like peptide (GLP), 42, 42t
Glucocorticoids, rheumatoid arthritis, 67
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, 207–208
Glucosuria, 284, 284t
Glycoprotein (GP) IIb/IIIa inhibitors, 140, 145
Glycosylated hemoglobin A\textsubscript{1c}, 41
Goiter, 23, 25–28
Hashimoto thyroiditis, 31
Gonadal radiation, 410
Gonadotropin-releasing hormone (GnRH)
acromegaly, 16
hyperprolactinemia, 13–15
Gonoccal septic arthritis, 262
Goodpasture syndrome, 295t, 298
Gout, 63, 78–79
chronic kidney disease, 292
Gram-negative bacilli, 227–228
Gram-positive cocci, antibiotics, 225–227
Gram stain, meningitis, 230
Grand mal seizures, 262
Granuloma inguinale, 256, 256f
Granulomatosis with polyangiitis, 296, 296t
Graves’ disease, 25–28, 26f
RAIU (thyroid-reactive iodine uptake) and, 24
thyroid-stimulating immunoglobulin in, 25
Growth hormone (GH)
acromegaly, 15–16
hypopituitarism and, 17–18
Guillain–Barré syndrome, 430–431
Gynecomastia, hyperprolactinemia, 14

H
Haemophilus ducreyi, 254–255
Haemophilus influenzae, vaccine, 229
Hair disorders, 463
Hairy cell leukemia (HCL), 211–212
Hallucinogens, 393
Hampton hump, 363
Hansel urine stain, acute interstitial nephritis, 293
Hashimoto thyroiditis, 28, 30–31
Headache disorders, 427–430
Head and neck infections, 233–236
Head trauma, 401–404, 403f, 404f
Heart transplantation, 158–159
Heat disorders, 408
Heavy metals exposure, emergency management, 393
Heerfordt-Waldenstrom syndrome, 357
Helicobacter pylori, 91, 95–96
Hematology, 193–224
- anemia, 193–209, 195f
- coagulopathies, 220–224
- leukemias, 209–213
- lymphomas, 214–217
- plasma cell disorders, 213–214
- platelet disorders, 218–219
Hematuria, 283–284, 284t
Goodpasture syndrome, 298
Hemochromatosis, 80, 122
Hemoglobin levels, gas exchange disturbances, 336
Hemolytic anemias, 201–208, 202t
Hemolytic uremic syndrome (HUS), 104, 222–223, 302
Hemopericardium, 172
Hemophilia A and B, 220–221, 220t
Hemoptysis, Goodpasture syndrome, 298
Hemorrhagic pleural effusion, 340
Henoch-Schönlein purpura (HSP), 298
Heparin-induced thrombocytopenia (HIT), 223, 365
Heparin-induced thrombocytopenia and thrombosis (HITT), 223
Heparin therapy, pulmonary thromboembolism, 365
Hepatic infections, 248–251, 249t
Hepatitis A, 248–251, 249t
- vaccine, 3, 6
Hepatitis B, 248–251, 249t
- chronic, 123–124
- vaccine, 3, 5
Hepatitis C, 119, 123–124, 248–251, 249t
- renal disease and, 297
Hepatitis D, 124, 248–251, 249t
Hepatitis E, 124, 248–251, 249t
Hepatorenal syndrome, 119, 121
- prerenal acute kidney injury, 288
Hepcidin, 197
Hereditary nonpolyposis syndrome (Lynch syndrome), 112
Hereditary polyposis syndromes, 112–113
Hereditary spherocytosis, 206, 206f
Heredit, ischemic heart disease risk and, 133
Herpes simplex virus, 232
- keratitis, 481
- skin infections, 453, 454f
Herpes virus type II, 257
Herpes zoster
- skin infections, 454
- vaccine, 7
High anion gap metabolic acidosis, 324–325
Histamine, peptic ulcers and, 95
Hives, 412
Hodgkin disease, 214–216, 215f
- “Honeymoon” period, diabetes, 47
Hospital-acquired pneumonia, 242
“Hs and Ts” mnemonic, 374–375
HSV PCR test, 453
Human bites, 413
Human immunodeficiency virus (HIV), 273–279
- acute, 278
- pregnancy and breastfeeding and, 278
Human papillomavirus (HPV), vaccine, 7
Hungry bones syndrome, 37
Huntington disease, 438–439
Hyaluronic acid, osteoarthritis, 78
Hydronephrosis, postrenal acute kidney injury, 286, 288–289
Hydroxyurea, sickle cell disease, 204
Hyperthyroidism, 23
Hyperaldosteronism, 52–53, 52f, 52t
- hypokalemia and, 321
Hypercalcemia, 33–36, 35f, 117
- Zollinger-Ellison syndrome, 97–98
Hypercalciuria, nephrolithiasis, 307
Hypercholesterolemia, 9
Hyperglycemia, pseudohyponatremia, 317
Hyperinsulinism, hypoglycemia and, 47
Hyperkalemia, 321–322
- end-stage renal disease, 304
Hyperkalemic (type 4) renal tubular acidosis, 326–327, 327t
Hyperlipidemia, pseudohyponatremia, 317
Hypermagnesemia, end-stage renal disease, 304
Hypermagnesemia, end-stage renal disease, 304
Hyperosmolar nonketotic coma (HONK), 45
Hyperoxaluria, nephrolithiasis, 307
Hyperparathyroidism, 80
- end-stage renal disease, 304
- Zollinger-Ellison syndrome, 97–98
Hyperphosphatemia, end-stage renal disease, 304
Hyperprolactinemia, 13–15
Hypertension, 9, 310–316
- antihypertensive medications, 315–316
- aortic regurgitation, 165–166
- complications, 310
- Cushing syndrome and, 49–50, 51f
- end-stage renal disease, 305
- essential, 310–312, 311t
- hypertensive emergency, 314–315
- ischemic heart disease and, 132
- secondary, 313–314
Hypertensive emergency, 314–315
Hypertensive nephrosclerosis, 302
Hyperthyroidism (thyrotoxicosis), 23, 25–28
Hypertriglyceridemia, 116–117
Hypertrophic obstructive cardiomyopathy (HOCM), 164t, 165t, 168–170, 169t
Hyperventilation, respiratory alkalosis, 329
Hypervolemic hyponatremia, 317–318
Hypocalcemia, 38
- end-stage renal disease, 304
Hypocitraturia, nephrolithiasis, 307
Hypochromic microcytic anemia, 196
Hypokalemia, 321–322
- end-stage renal disease, 304
Hypoparathyroidism, 80
Hypoproteinemia, pseudohyponatremia, 317
Hyposthenuria, 336
Hypothyroidism (myxoedema), 23, 25–28
- secondary, 313–314
Hypothermia, 144–145
Hypertensive emergency, 314–315
Hypertensive nephrosclerosis, 302
Hyperthyroidism (thyrotoxicosis), 23, 25–28
Hypertriglyceridemia, 116–117
Hypertrophic obstructive cardiomyopathy (HOCM), 164t, 165t, 168–170, 169t
Hyperventilation, respiratory alkalosis, 329
Hypervolemic hyponatremia, 317–318
Hypoalbuminemia, anion gap metabolic acidosis, 324
Hypocalcemia, 38
- end-stage renal disease, 304
Hypocitraturia, nephrolithiasis, 307
Index

| Hypoglycemia | carbohydrate metabolism and, 47–48 |
| Hypogonadism, 57–59 |
| Hypokalemia, 320–321 |
| digitalis toxicity and, 157, 397 |
| macrocytic anemia and, 201 |
| secondary hypertension, 314 |
| Hypomagnesemia, 38–39, 80 |
| Hyponatremia, 316–319 |
| Hypoparathyroidism, 38–39 |
| Hypopituitarism, 17–18 |
| Hypotension |
| acute tubular necrosis, 290 |
| prerenal acute kidney injury, 286 |
| Hypothalamic-pituitary axis, 11–12, 12f, 13f |
| Hypothalamus, anatomy and function, 11–12, 12f, 13f |
| Hypothyroidism, 28–30, 30t |
| lithium toxicity, 395 |
| Hypovolemic hyponatremia, 317–318 |
| Hypovolemic shock, 190, 190t |
| Hypoxemia, chronic obstructive pulmonary disease, 350–355, 350f |
| Hypoxia, respiratory alkalosis, 329 |

I

| Invasive ventilation, 343–344, 344f |
| Intrinsic/idiosyncratic asthma, 345 |
| Intracranial calcium, congestive heart failure, 157 |
| Intrarenal acute kidney injury, 286, 289–294 |
| acute microvascular disorders, 293 |
| interstitial disorders, 293 |
| tubular disorders, 290–292 |
| Irritable bowel syndrome (IBS), 106–107 |
| Ischemic heart disease (IHD), 130–137, 131f |
| acute coronary syndrome, 147 |
| aortic regurgitation, 165–166 |
| risk factors, 131–133 |

KAPLAN MEDICAL 493

I

- Idiopathic pulmonary fibrosis (IPF), 356
- Idiopathic thrombocytopenic purpura, 302
- IgA deficiency, 108–109
- IgA nephropathy, 298
- IgE, urticaria, 445
- IGF-1 levels, acromegaly, 16
- IgG4-related disease (IgG4-RD), 118
- Imatinib (Gleevec), 210–211
- Immune reconstitution inflammatory syndrome (IRIS), 278
- Immune system monitoring, AIDS patients, 275–276, 276t
- Immune thrombocytopenic purpura (ITP), 218
- Immunizations, 4–7
- Guillain-Barré syndrome, 431
- Immunoglobulins, acute kidney injury, 292
- Impetigo, 451
- Inclusion body myositis, 83–84
- Incretin mimetics, 41–42, 42t
- Induced vomiting, 387
- Infectious disease, 225–282
 - acquired immune deficiency syndrome, 273–279
 - antibiotics, 225–228
 - aspergillosis, 281–282
 - bone and joint infections, 260–262
 - cardiitis, 263–270
 - central nervous system, 228–233
 - diarrhea, 102, 103t, 104–105
 - end-stage renal disease, 305
 - fungal infections, 449–450
 - gastrointestinal infections, 246–248
 - genital and sexually transmitted infections, 251–257
 - head and neck infections, 233–236
 - hepatic infections, 248–251, 249t
 - immunizations against, 4–7
 - leptospirosis, 280
 - lung infections, 237–246
 - Lyme disease, 270–271
 - parasitic infections, 455–456
 - Rocky Mountain spotted fever, 272
 - tetanus, 280, 281t
 - toxic shock syndrome, 279
 - tropical disease, 280
 - urinary tract infections, 258–260
 - viral infections, 453–455, 454f
- Infective endocarditis, 263–270
 - clinical findings in, 266t
 - microorganisms linked to, 265t
 - peripheral manifestations, 267t
 - prevention, 269
 - risk factors, 263, 264t
 - therapy regimens, 268t, 269–270
- Inflammatory bowel disease, 100, 100t, 101t, 122
- Inflammatory disease, hypopituitarism and, 17
- Inflammatory myopathies, 83–84
- Infliximab (Remicade), rheumatoid arthritis, 67
- Influenza, 236
 - vaccine, 5, 236
- Injection drug use
 - infective endocarditis and, 236, 264t, 265t
 - vertebral osteomyelitis and, 260
- Injuries, 10
- Inotropic agents, congestive heart failure, 157
- Insulinoma, 47–48, 48t
- Insulin therapy, 42–43, 43t
- Integrase inhibitor, 277
- Interferon gamma release assay (IGRA), tuberculosis, 245
- International normalized ratio (INR), warfarin, 224t
- Interstitial kidney disorders, 100, 100t, 101t, 122
- Ischemic heart disease (IHD), 130–137, 131f
 - acute coronary syndrome, 147
 - aortic regurgitation, 165–166
 - risk factors, 131–133
- Isospora, 104
Ivabradine, congestive heart failure, 155
IVIG, thrombocytopenias, 218

J
Janeway lesions, infective endocarditis, 267t
Jarish-Herxheimer reaction, 254
Joint articulation, evaluation of, 61–62
Joint aspiration, 62–63, 63t
Joint inflammation, 62
Juvenile polyposis syndrome, 112

K
Kaposi sarcoma, 460
Kartagener syndrome, 354
Kayser-Fleischer rings, 122–123
Keratitis, 481
Kerley B line, congestive heart failure, 468
Kernig sign, 229
Kidney, ischemia and hypoperfusion, 290
Klebsiella pneumoniae, 238–239
Klinefelter syndrome, 177

L
Labyrinthitis, 426
Lactase intolerance, 106
Lactulose, 121
Lanreotide, acromegaly, 16
Large cell carcinoma, lung, 369
Latent syphilis, 253
Lead exposure, 393
Ledipasvir/sofosbuvir (Harvoni), 124
Legionella, 238–240, 238t
Lenègre disease, 177
Leptospirosis, 280
Leukemia
acute, 209–210
chronic, 210–212
Leukocyte alkaline phosphatase score (LAP), 210
Leukostasis syndrome, 209
Leuotriene modifiers, asthma, 347
Levodopa, Parkinson disease, 440–441
Levothyroxine, 29
Lewy body dementia, 437
Lidocaine, systolic dysfunction, 378
Lid retraction, Graves’ disease, 26f
Light chains, acute kidney injury, 292, 300
Limited cutaneous systemic sclerosis, 71–72
Limited scleroderma, 71–72
Linezolid, 227–228
Lipid lowering therapy, angina, 136
Liraglutide, 42, 42t
Listeria monocytogenes, 229
Lithium toxicity
anion gap metabolic acidosis, 324
emergency management, 395–396
Liver disease, 119–124
cogulopathy with, 221
LMWH, pulmonary thromboembolism, 365–366
Locomotor ataxia, 253
Löfgren syndrome, 357
Loop diuretics
congestive heart failure, 155, 156t
hypertension, 316
Lower GI bleed, 113–116
Low serum osmolality, 316–317
Lumbar puncture
meningitis, 229–230
subarachnoid hemorrhage, 406
Lung abscess, 237–238
Lung biopsy
Churg-Strauss hemorrhage, 297
Goodpasture syndrome, 298
Lung cancer, 368–370
screening, 2
Lung diffusing capacity test (DLCO), 334
Lung infections, 237–246
abscess, 237–238
bronchitis, 237
pneumonia, 238–242, 238t
tuberculosis, 243–245, 243f
Lung parenchyma, imaging tools, 469
Lung volume measurement, 332, 332f
Lupus nephritis, 298
Lupus pernio, 357, 357f
Luteinizing hormone (LH)
hyperprolactinemia, 13–15
hypopituitarism and, 17–18
Lyme disease, 229, 270–271
Lymphadenitis, tuberculosis, 243–244
Lymphocytic thyroiditis, 31
Lymphogranuloma venereum, 255, 256f
Lymphomas, 214–217
Lynch syndrome, 112

M
Macroadenomas, 13–14, 13t
acromegaly, 16
Macrocytic anemia, 193, 200–201
Macrocytosis, anemia with, 200–201
Macrolides, 227, 233
pneumonia, 242
Magnesium deficiency, hypoparathyroidism, 38–39
Magnetic resonance imaging (MRI), 473
Malabsorption syndromes, 108–110
Malaria, 280
prophylaxis, 3
Malignant hyperthermia, 408
Mallory-Weiss syndrome, 91
MAST cell stabilizers
 asthma, 347
 urticaria, 445
Maturity-onset diabetes. See type 2 non-insulin-dependent diabetes mellitus (NIDDM)
Measles, mumps, rubella (MMR) vaccine, 6
Medullary carcinoma, 32
Mefloquine, 3
Melanoma, 458–459, 459f, 459t
Memantine, 438
Membranoproliferative GN, 300
Membranous glomerulopathy, 300
Ménière disease, 426
Meningitis, 228–231
Meningococcal meningitis, vaccination, 4
7-Mercaptopurine, 100
Mesotheliomas, 359
Metabolic acidosis, 322–327
 end-stage renal disease, 304
Metabolic alkalosis, 327–328
Metformin, 41–42, 42t
Methacholine challenge test, 332, 334
Methanol, emergency management, 389–390
Methicillin-resistant Staphylococcus aureus (MRSA), 226–228
Methimazole, 27
Metoprolol, congestive heart failure, 156, 156t
Metronidazole
 anaerobes, 228
 diarrhea management and, 105–106
Microadenomas, 13–14, 13t
Microalbuminuria, 193, 195–200, 199t
Microscopic hematuria, sickle cell disease, 203, 204f
Middle cerebral artery (MCA) infarction, 419–421, 419f, 420t
Methicillin-resistant Staphylococcus aureus (MRSA), 226–228
Middle ear infection, 233
Midodrine, 121
Migraine headaches, 428–429, 429t
Migratory arthritis, 61
Minimal change disease, 300
Mini Mental Status Examination (MMSE), 437
Miosis toxidrome, 386
Mitral regurgitation, 161–162, 161t
 diagnosis, 164t
 management, 165t
Mitral stenosis, 160–161
Mitral valve prolapse, 162–163
Mitral valve replacement, 162
Mixed acid-base disorders, 329–330, 330t
Mobitz type II second-degree heart block, 383–386
Modified acid-fast test, cryptosporidiosis, 104
Molluscum contagiosum, 454–455
Monoarticular arthritis, 61
Monobactam antibiotics, 228
Monoclonal antibody
 hairy-cell leukemia, 212
 rheumatoid arthritis, 67
 systemic lupus erythematosus, 69
Monoclonal gammopathy of uncertain significance (MGUS), 214
Mononeuropathy, diabetes and, 46
Monosodium urate (MSU), 78–80
MOPP regimen, Hodgkin disease, 216
Morbilliform rashes, 446
Mucosal-associated lymphoid tissue (MALT), gastritis and, 97
MUDPIES mnemonic, metabolic acidosis, 324–325
Multifocal atrial tachycardia, 178
Multiple endocrine neoplasia (MEN)
 medullary carcinoma and, 32
 primary hyperparathyroidism and, 36–37
Zollinger-Ellison syndrome, 97–98
Multiple myeloma, 213–214
 metabolic acidosis, 324, 326
Multiple sclerosis, 433–435
Multiple-system atrophy, 439
Myalgia, 78
Myelodysplastic syndromes, 212
 acute leukemia and, 209
 sideroblastic anemia and, 197
Myocardial ischemia, 133
 nonatherosclerotic causes, 148–150
Myocardial perfusion imaging, 146
Myocarditis, 130
Myoclonic seizure, 422
Myoglobin levels, acute chest pain, 128
N
N-acetyl cysteine (NAC), emergency medicine, 389
Na+/K+-ATPase pump, congestive heart failure, 157
Naloxone, 387
Near drowning, 411–412
Nebivolol, 188
Necrotizing fasciitis, 452–453
Nedocromil, asthma, 347
Needlestick injury, AIDS risk and, 278
N. gonorrhoeae, 261–262, 262t
N. meningitidis, 229
Nephritic diseases, 294–299, 295t
 glomerular disease, 297–299
 vascular diseases, 295–296
Nephrogenic diabetes insipidus (NDI), 19–21, 20f, 21f
Nephrolithiasis, 307–308
Nephrology, 283–330
 acid-base disturbances, 322–330
 acute kidney injury, 286–294
cystic kidney disease, 309
end-stage renal disease, 303–306
fluid and electrolyte disorders, 316–322
glomerular disease, 294–303
hypertension, 310–316
nephrolithiasis, 307–308
renal disease diagnosis, 283–285
Nephrotic diseases, 299–301
Nephrotic syndrome, 299–300
Neuraminidase inhibitors, 236
Neurohypophysis, 11–12, 12f, 13f
Neuroleptic malignant syndrome, 408
Neurology, 415–441
amyotrophic lateral sclerosis, 432–433
anterior spinal artery occlusion, 417, 417f
benign essential tremor, 441
Brown-Séquard syndrome, 418, 418f
cerebrovascular accident, 419–421, 419f, 420t
dementia, 436–438
Guillain-Barré syndrome, 430–431
headache disorders, 427–430
Huntington disease, 438–439
multiple sclerosis, 433–435
myasthenia gravis, 431–433
Parkinson disease, 439–441
restless leg syndrome, 441
seizures and epilepsy, 421–425
spinal cord compression, 415–416
subacute combined degeneration, 417
syringomyelia, 416, 417f
vertigo and dizziness, 425–427, 426t
Neurosyphilis, 230
Newborns, hypothyroidism in, 29
Nicotine replacement therapy, 8
Nikolsky sign, 444
Nimodipine, 421
Nitrates
 cardiovascular disease, 187
 unstable angina and NSTEMI, 146
Nitrates, urinalysis, 284, 284t
Nitroglycerin
 stable angina, 135
 unstable angina/NSTEMI, 137–140
Nonatherosclerotic acute coronary syndromes, 148–150
Non-communicating syringomyelia, 416
Non-exertional heat stroke, 408
Nongonococcal septic arthritis, 262
Non-Hodgkin lymphoma (NHL), 216–217
Noninvasive ventilation (NIV), 343
Nonionizing radiation, 410
Nonnucleoside reverse transcriptase inhibitors, 277–278
Non-ST elevation myocardial infarction (NSTEMI), 137–140, 142f
Nonsteroidal antiinflammatory drugs (NSAIDs)
 acute interstitial nephritis and, 293
 asthma and, 345
 gout, 80
osteitis, 78
peptic ulcers and, 94–95
prerenal acute kidney injury, 288
rheumatoid arthritis, 66
systemic lupus erythematosus, 69
Norulcer dyspepsia, 99
Norfloxacin, 120
Normal anion gap metabolic acidosis, 325–326
Nondiabetic polyneuropathy, 440
Nonspecific acute peritonitis, 71
Nuchal rigidity, 108
Nuclear stress test, 135
Nutcracker syndrome, 230
Obesity
 empty sella syndrome, 18–19, 19f
 ischemic heart disease and, 132
Obstructive shock, 190, 190t
Obstructive sleep apnea (OSA), 368
Octreotide, 107, 121
acromegaly, 16
Oligoarticular arthritis, 62
Onychomycosis, 449
Open-angle glaucoma, 479
Ophthalmology, 475–482
 cataracts, 480
 conjunctival diseases, 480–481
 glaucoma, 479–480
 keratitis, 481
 periorbital cellulitis, 481
 retinal disease, 475–479, 476f, 477f
 uveitis, 481–482
Ophthalmoplegia, 108
Opiate abuse, 392
 Opportunistic infections in AIDS, 273–275
Oral hypoglycemic agents, 41–42, 42t
Orchitis, 107
Osteitis, 108
osteoid osteoma, 78
osteomalacia, 108
osteosclerosis, 108
osteoporosis, 108
Osteomyelitis, 260–261, 473–474
Osteopenia, 8
Otitis media, 233
Oxalate crystals, acute kidney injury, 292
Oxygen delivery and therapy
 asthma, 346
 chronic obstructive pulmonary disease, 351–352
 gas exchange disturbances, 336–337
 oxygen saturation, 352
 Oxycotin, 11
PaCO₂, metabolic acidosis, 324
Pancreatic pseudocysts, 118, 118f
Pancreatitis
 - acute, 116–118
 - autoimmune pancreatitis, 118
 - chronic, 108
 - severe necrotizing pancreatitis, 117–118
Papillary carcinoma, 32
Pap smear, 2
Papulosquamous dermatitis, 461–463, 462f
Parapneumonic effusion, 340
Parasitic infections, 455–456
Parathyroid glands, 33–39
Parathyroid hormone (PTH), 33–39
Parkinson disease, 439–441
 - “Parkinson plus” syndromes, 439–440
Parkland formula, burn injuries, 407–408
Paroxysmal nocturnal hemoglobinuria (PNH), 207
Paroxysmal supraventricular tachycardia, 177–178
Partial seizures, 422
Patent foramen ovale, venous thromboembolism and, 361
Pediculosis, 455–456
Pegvisomat, acromegaly, 17
Pelvic inflammatory disease (PID), 252
Pemphigus vulgaris, 444
Penicillins
 - brain abscess, 233
 - gram-negative bacilli, 227
 - infective endocarditis, 268t
 - penicillin G, 226
 - penicillin VK, 226
 - pneumonia, 242
 - skin reactions to, 451
 - syphilis, 254
Pentamidine, pneumocystis jiroveci, 273
Pentostatin, 212
Peptic ulcer disease, 94–96
Percutaneous coronary intervention (PCI)
 - stable angina, 136
 - STEMI management, 141, 143, 145
Percutaneous transluminal angioplasty, 313
Perinatal death, 225
Pericardial disease, 171–174, 171t
 - end-stage renal disease, 305
 - pericardial effusion, 172–173
Percarditis, 129
Dressler syndrome, 147
Periarteritis nodosa (PAN), 82, 297
Polyarteritis nodosa, 83–84
Poliomyelitis, 83–84
Polo, vaccination, 4
Polyarteritis nodosa (PAN), 82, 297
Polyarticular arthritis, 61
Polycythemia vera, 212–213
Polymyositis, 83–84
Porphyria cutanea tarda, 445
Portal hypertension, 119–124
Positive end-expiratory (PEEP), 343–344, 344f
Positron emission tomography (PET) scanning, 472
Posterior circulation syndromes, 419–421, 420t
Posterior pituitary, diseases of, 19–23
Postexposure prophylaxis, AIDS risk and, 278
Postinfectious glomerular nephritis, 297–298
Postrenal acute kidney injury, 286, 288–289
Post-void residual volume, postrenal acute kidney injury, 289
Potassium hydroxide (KOH) test, fungal infections, 449
Potassium-sparing diuretics, hypertension, 316
PPD test, tuberculosis, 244–245
Prednisone, thrombocytopenias, 218
Pre-exposure prophylaxis (PrEP), AIDS risk and, 279
Pregnancy
 essential hypertension in, 312
 HIV-positive patients, 278
 systemic lupus erythematosus and, 70
 thyroid disease in, 27
Premature beats, 146
Prerenal acute kidney injury, 286–288, 290t
Preventive medicine, 1–10
Primary adrenocortical insufficiency. See Addison disease
Primary aldosteronism, 52–53, 52f, 52t
 secondary hypertension, 314
Primary biliary cirrhosis, 121
Primary ciliary dyskinesia, 354
Primary hyperparathyroidism, 33–38
Primary hyperthyroidism, 26
Primary hypogonadism, 58–59
Primary progressive multiple sclerosis, 433–435
Primary sclerosis cholangitis, 122
Primary syphilis, 253
Prinzmetal angina, 149
Procalcitonin, 124
Procalcitoninemia, 125
Procalcitonin test, 125
Procalcitoninemia test, 125
Procalcitonin, 124
Procalcitoninemia, 125
Procalcitonin test, 125
Procalcitoninemia test, 125
Procalcitonin, 124
Procalcitoninemia, 125
Procalcitonin test, 125
Procalcitoninemia test, 125
Propionibacterium acnes, 464
Propranolol, Graves' disease, 27
Proptosis, Graves' disease, 26f
Propylthiouracil, 27
Prostate, screening, 2
Protease inhibitors, 277–278
Proteinuria, 283–284, 284t
Proton pump inhibitors (PPIs)
 acute interstitial nephritis, 293
 Barrett esophagus, 94
 gastroesophageal reflux disease, 92–94
 peptic ulcer disease, 94–96, 95–96
Proximal (type I) renal tubular acidosis, 326, 327t
Pseudogout, 63, 80
Pseudohyponatremia, 317
Pseudotumor cerebri, 429–430
Psoriasis, 461, 461f
Psoriatic arthritis, 76
Psychiatric disease, varenicline contraindication, 8
Pulmonary angiogram, 363–364
Pulmonary edema
 cardiogenic shock, 159
 causes, 153t
 congestive heart failure, 151
Pulmonary fibrosis
 idiopathic, 356
 systemic sclerosis, 71
Pulmonary function tests (PFTs), 331–334, 332f, 332t, 333f, 333t, 334f
 asthma, 346
 chronic obstructive pulmonary disease, 350–355
Pulmonary hypertension, chronic obstructive pulmonary disease, 350
Pulmonary indices, 333t
Pulmonary nodule, 338
Pulmonary thromboembolism, 129, 360–367, 361f, 363f
 management, 365–366, 365f
Pulmonic stenosis, 164t
Pulmonology, 331–370
 acute respiratory distress syndrome, 367
 atelectasis, 370
 chest radiography, 337–342, 337f, 339t, 340f
 diagnostic tests, 331–336, 332f, 332t, 333f, 333t, 334f, 335f, 336f
 gas exchange disturbances, 336–337
 interstitial lung disease, 355–360
 lung cancer, 368–370
 obstructive diseases, 344–355
 pulmonary thromboembolism, 360–367
 ventilation, 343–344, 344f
Pulseless Arrest Algorithm, 186f
Pulseless electrical activity, 378–379
Pulse oximetry, carbon monoxide, 391
Pulsus tardus et parvus, 163–164, 164t, 165t
Pump dysfunction, acute coronary syndrome, 147
Pyleonephritis, acute bacterial, 258
Pyrimethamine, 233
Q
QRS complex, 183, 184t
 atrial dysrhythmias, 379–383
 cardioversion, 375
QT interval, medications prolonging, 377
Quinolones, 227–228
 pneumonia, 242
Quinupristin/dalfopristin, 227
R
Rabies
 emergency management, 413–414
 vaccination, 4
Radiation injuries, 410–411
Radioactive iodine, Graves' disease, 28
Radiology/imaging, 465–474
 abdominal x-ray, 470
 barium studies, 471
 bone imaging, 473–474
 capsule endoscopy, 471
 central nervous system, 473
 chest x-ray, 465–469
 endoscopic retrograde cholangiopancreatography, 471
 HIDA scanning, 471, 472f
Index

PET scanning, 472
sonography, 470
virtual colonoscopy, 472
Radiotherapy
acromegaly, 17
hyperprolactinemia, 15
RAIU (thyroid-reactive iodine uptake), 24, 25t
Raltegravir, 277
Rapidly progressive glomerulonephritis (RPGN), 299
Rate control, atrial fibrillation, 181–182
Raynaud phenomenon, 62, 71–72
Reactive arthritis, 75–76, 76f
Rebound phenomenon, sinus tachycardia, 177
Red blood cells (RBC), urinalysis, 284, 284t
Reed-Sternberg cells, Hodgkin disease, 214–216, 215f
Refluxin, 121
Reiter syndrome, 75, 76f
Relapsing remitting multiple sclerosis, 433–435
Renal biopsy
glomerular disease, 294–295
nephrotic syndrome, 299–300
Renal crisis, systemic sclerosis, 71
Renal cysts, 309
Renal disease, diagnostic testing, 283–285
Renal insufficiency, 286
Renal osteodystrophy, 304
Renal sonography, 285–286, 289
autosomal dominant polycystic kidney disease, 309
Renal transplantation, 306
Renal tubular acidosis, 326–327, 327t
Renal tubular epithelial cells, 284
Reperfusion therapy, 143
Respiratory acidosis, 328
asthma, 348
Respiratory alkalosis, 329
Respiratory compensation, metabolic acidosis, 322
Respiratory infections, asthma, 345
Restless leg syndrome, 441
Restrictive cardiomyopathy, 170
Retapamulin, skin infections, 451
Retinase, 144
Retinal detachment, 476–477, 477f
Retinal disease, 475–479, 476f, 477f
RET mutations, 32
Revascularization, 140–142
Reversible airway obstruction, asthma, 344
Rhabdomyolysis, 291
Rhegmatogenous detachment, 477
Rheumatic fever
aortic stenosis, 163–164, 164t, 165t
mitral stenosis, 160–161
Rheumatoid arthritis (RA), 65–68
diagnostic criteria, 66
disease-modifying anti-rheumatic drugs, 67, 67t
Rheumatoid factors (RFs), 64
Rheumatology, 61–64
arthritis, 61–62
crystal-induced arthropathies, 78–80
inflammatory myopathies, 83–84
osteoarthritis, 77–78
rheumatoid arthritis, 65–68
septic arthritis, 81
seronegative arthropathies; spondyloarthropathies, 73–76
tests, 62–65, 63t, 64t
vasculitis syndromes, 81–83
RhoGAM, thrombocytopenias, 218
Rhythm control, atrial fibrillation, 181–182
Ribavirin, 413
Right ventricular infarction, 147
Rituximab, 212
Rivaroxaban, 382
Rocky Mountain spotted fever, 229, 272
Rome criteria, irritable bowel syndrome, 107
Rosiglitazone, 41–42, 42t
Roth’s spots, infective endocarditis, 267t
Rule of 10%, pheochromocytoma, 56–57
Rule of Nines, burn injuries, 407
S
Salicylate intoxication, 396–397
Salmeterol, 346–347
Samter’s triad, 345
Sarcoidosis, 356–358, 357f
Scabies, 455
Scaling disorders, 461–463, 462f
Rheumatoid arthritis, 412
Schilling test, 201
Schirmer’s test, 73
Scleroderma. See systemic sclerosis
Sclerosing cholangitis, 100
Screening
cancer screening, 1–3
lung cancer, 369–370
Scrombroid poisoning, 104
Seborrheic dermatitis, 462
Seborrheic keratosis, 457, 458f
Secondary aldosteronism, 52–53, 52f, 52t
Secondary hyperparathyroidism, 37–38
Secondary hypertension, 313–314
Secondary hypogonadism, 58–59
Secondary progressive multiple sclerosis, 433–435
Secondary syphilis, 253
Second-degree AV block, 176, 176t, 383–386, 384f
Second-degree burns, 407
Seizures, 421–425, 424f
toxin-related, 388
Selegiline, 440–441
Semisynthetic penicillinase-resistant penicillins, 225–226
Septic arthritis, 61, 63, 81, 261–262
Seronegative arthropathies, 73–76, 74t
Serosanguinous pericardial fluid, 172
Serum-Ascites Albumin Gradient (SAAG), 120
Serum creatinine (SCr) test, 285, 286
Serum osmolality, hyperosmolar nonketotic coma, 45
Serum protein electrophoresis (SPEP), 214
Serum sodium concentration, hyponatremia, 317
Serum thyroxine (T4), 18, 23
Severe necrotizing pancreatitis, 117–118
Sex, ischemic heart disease risk and, 133
Sex hormones, ischemic heart disease risk and, 133
Sexual abuse, 10
Sexually transmitted infections (STIs), 251–257
Sheehan postpartum necrosis, 17
Shingles, vaccine, 7
Shock syndromes, 189–190, 190t
Shy-Drager syndrome, 439
Sickle cell disease, 203–204, 204f
Sideroblastic anemia, 197, 198f
acute leukemia and, 209
Sigmoidoscopy, 111–112
“Silent” myocardial infarction, 141
“Silhouette” sign, chest x-ray, 467
Silicosis, 359
Sinus bradycardia, 175, 383
Sinusitis, 234–235, 234f
Sinus node disorders
atrial fibrillation (AF), 179–182, 179f, 180f, 182f
pre-excitation syndrome, 182–183, 183f
ventricular arrhythmia, 183–185, 184f, 184t
Sinus node function disorders, 175–185
atrioventricular block, 175–177, 176f, 177f
sinus bradycardia, 175
supraventricular arrhythmias, 177–178
Sinus tachycardia, 177
Sjogren syndrome, 62, 72–73
Skin anatomy, 443f
Skin cancer, 458–460, 459f, 459t, 460f
Sleep apnea, 367–368
Slit-lamp examination, Wilson disease, 122–123
Small cell carcinoma
lung, 369
SIADH with, 22
Smoke inhalation, 406
Smoking, 8
chronic obstructive pulmonary disease, 350
ischemic heart disease and, 132
Sneakbites, 414
Sofosbuvir/ledipasvir, hepatitis C, 250–251
Somatostatin analogues, acromegaly, 16
Somogyi effect, 47
Sonography. See ultrasound
Spinal cord compression, 415–416
Spirometry, pulmonary function testing, 331–334
Spironolactone, congestive heart failure, 155–157, 156t
Splenectomy
thrombocytopenias, 218
vaccination before, 5
Splenic vein thrombosis, 117–118
Splinter hemorrhage, infective endocarditis and, 267t
S. pneumoniae, 238–239, 238t
Spondylarthropathies, 73–76
Spontaneous bacterial peritonitis (SBP), 119–120
Squamous cell carcinoma
lung, 369
skin, 459
Stable angina, 133–137
Staph infections, 226–228, 451–452
Staphylococcal scalded skin syndrome (SSSS), 456–457
Stasis dermatitis, 462
Static lung compartments, pulmonary function testing, 331
Statins
protease inhibitors and, 278
unstable angina and NSTEMI, 146
Status epilepticus, 422–425, 424f
Steatorrhea, 108
ST elevation myocardial infarction (STEMI), 137, 140–150, 142f, 143f
Stenoses, angina and, 134
Steroid therapy
asthma, 347
pneumocystis jiroveci, 273
Stevens-Johnson syndrome, 447
Streptococcus, skin infections, 451–452
Streptococcus pneumoniae, 229
Streptococcus pyogenes, 235
Streptokinase, 144
Stress, ischemic heart disease risk and, 133
Stress echocardiogram, 135
Stroke, 419–421, 419f, 420t
hypopituitarism and, 17
Struvite/infection stones, 307
STUMBLE mnemonic, 387
Subacute combined nerve degeneration, 417
Subarachnoid hemorrhage (SAH), 404–406, 405f, 421
Subconjunctival hemorrhage, 233
Subtotal thyroidectomy, 28
Succinate, congestive heart failure, 156, 156t
Sudden cardiac death, 147
Sulfadiazine, 233
Sulfur drugs, acute interstitial nephritis, 293
Sulfonylurea drugs, 41–42, 42t
“Supply ischemia,” 133
Supraventricular arrhythmias, 177–179
Supraventricular tachycardia (SVT), 177–179
emergency management, 379–383, 380f
Sural nerve biopsy, polyarteritis nodosa (PAN), 297
Surgery, necrotizing fasciitis, 453
Symptomatic hyponatremia, 319
Syncope
 aortic stenosis, 163–164, 164t, 165t
 seizures and epilepsy, 422
Syndrome of inappropriate secretion of ADH (SIADH), 19–20, 22
Syndromes of adrenal androgen excess, 53
Synovial fluid analysis, 62–63, 63t
Syphilis, 229, 252–254, 253f, 254f
Syringomyelia, 416, 417f
Systemic lupus erythematosus (SLE), 68–70
 arthritis and, 61–62
 tests, 63–64, 64t
Systemic sclerosis (SSc), 62, 70–72, 71f
 progressive, 88
 tests, 63–64, 64t
Systolic heart failure (HF), 151, 151f
 cardiogenic shock, 158–159
 management, 154–159
 mechanical devices for, 158–159
Systolic murmurs, 165t
 aortic regurgitation, 166
T
Tabes dorsalis, 253
Tachycardia, 150–151
 emergency management, 379–383, 380f
 multifocal atrial tachycardia, 178
 paroxysmal supraventricular tachycardia, 177–178
 prerenal acute kidney injury, 286
 pulse algorithm for, 376f
 sinus tachycardia, 177
Tachyarrhythmias, 146
 hypokalemia, 321
Tamoxifen, 2
Tegacycline, 227
Telavancin, 227
Telogen effluvium, 463
Temporal arteritis (TA), 83
Tenecteplase, 144
Terbutaline, 346
Terfenadine, 446
Tertiary hyperparathyroidism, 38
Tertiary syphilis, 253–254
Testes, diseases of, 57–59
Tetanus, 280, 281t
Thalassemia, 198–199
Theophylline, 346–347
 toxicity, 352
Thiamine, 387
Thiazide diuretics, 315
 congestive heart failure, 155, 156t
Thiazolidinediones, 41–42, 42t
Thiopurine methyltransferase, 100
Third-degree AV block, 177, 177f, 383–386, 384f
Third-degree burns, 407
Thoracic cord compression, 416
Thoracoabdominal aneurysms, 395
Thoracoabdominal approach, 395
Thoracocentesis, pleural effusion, 339–340
Thoracotomy, 215
 heparin-induced thrombocytopenia, 223
Thrombocytopenias, 218
 heparin-induced thrombocytopenia, 223
Thromboembolism, acute coronary syndrome, 147
Thrombolysis therapy
 pulmonary thromboembolism, 366
 STEMI management, 143–144
Thrombosis, paroxysmal nocturnal hemoglobinuria, 207
Thrombotic thrombocytopenic purpura (TTP), 222–223
Thyroidectomy
 hyperthyroidism, 28
 thyroid carcinoma, 32
Thyroid function test, atrial fibrillation, 181
Thyroid gland
 anatomy, 23, 24f
 diseases of, 23–33
 functional evaluation, 25t
 neoplasia, 31–33
Thyroid hormones, synthesis and secretion, 23–24, 24f
Thyroiditis, 25–26, 30–31
 hypothyroidism and, 28
Thyroid-stimulating immunoglobulin (TSI), 25
Thyroid storm, 28
Thyrotoxicosis. See hyperthyroidism
 amiodarone-induced, 29
 atrial fibrillation with, 383
 drug-induced, 25
Thyrotropin (TSH)
 hypopituitarism and, 18
 thyroid disease and, 23, 25
Thyrotropin-releasing hormone (TRH), hyperprolactinemia and, 14
Tinea pedis, cruris, corporis, capitis, 449
Tinea versicolor, 449–450
Tirofiban, 140
Titratatable acid, anion gap metabolic acidosis, 325–326
T lymphocyte, rheumatoid arthritis, 65
Tobramycin, 228
Torsades de Pointes, 185, 185f, 377
Total iron binding capacity (TIBC), 197
Toxic adenoma, 25–26
Toxic epidermal necrolysis, 447–448
Toxic ingestion, 387
Toxicology, 386–388
 screening, 388
 toxic overdose, 387
Toxic shock syndrome (TSS), 279, 456
Toxidromes, 386
Toxoplasmosis, 232
 AIDS and, 274–275
Transcutaneous pacing, 384
Transfusions, 384
Traveler’s diarrhea, 4
Travel medicine, 3–4
Treponema pallidum, 252
Tricyclic antidepressants, toxicity, 398
Trigeminal neuralgia, 252
Trimethoprim/Sulfamethoxazole (TMP/SMZ), 228, 233, 237, 242
pneumocystis jiroveci, 273
toxoplasmosis, 274–275
Tropical infectious diseases, 280
Tropical sprue, 108
T-score, 8
Tuberculosis, 243–245
CD4 count and, 276
meningitis and, 229–230
Tubular disorders, 290–292
Tumor lysis syndrome (TLS), 217, 292
Tumor necrosis factor alpha (TNF-α), rheumatoid arthritis, 65–66
Tumor necrosis factor inhibitors, rheumatoid arthritis, 67
Turcot syndrome, 113
Turker’s sign, 117
Type 1 insulin-dependent diabetes mellitus (IDDM), 40
Type 2 non-insulin-dependent diabetes mellitus (NIDDM), 40
Type A gastritis, 97
Type B gastritis, 96
Typhoid, vaccination, 4

U
Ulcerative colitis, 100, 100t, 101t
tenteropathic arthropathy, 76, 76f
Ultrasound, 470
renal sonography, 285
Ultraviolet (UV)-B light, 68–69
Urine chloride levels, metabolic alkalosis, 328
Urine immunoassay, 388
Urinary tract infections (UTIs), 258–260
Urine protein levels, 285
Urticaria, 445, 446f
U.S. Preventive Services Task Force (USPSTF), 2
Uveitis, 481–482

V
Vaccination. See also immunizations
Bacillus-Calmette-Guérin (BCG) vaccine, 243
hepatitis, 5–6
herpes zoster, 7
HIV-positive patients, 275
human papillomavirus (HPV), 7
influenza, 5
measles, mumps, rubella, 6
pneumococcal vaccine, 5, 242
rabies, 4, 413–414
travel medicine, 3–4
varicella, 6
Valganciclovir, 274
Valsalva maneuver, atrial arrhythmias, 382
Valsartan, congestive heart failure, 155
Valvular heart disease, 160–166
mitral stenosis, 160–161
Vancomycin, 227
meningitis, 230
Varenicline, 8
Varicella zoster virus, vaccine, 7
Vascular dementia, 437
Vascular insufficiency, osteomyelitis and, 260–261
Vasculitis syndromes, 81–83
Vasodilators
aortic regurgitation, 166
congestive heart failure, 155, 155t
hypertension, 316
Vasopressin. See antidiuretic hormone
Venomous bites and stings, 412–414
Ventilation, 343–344, 344f
Ventilation-perfusion (V/Q) scan, pulmonary thromboembolism, 363–364
Ventricular arrhythmia, 183–185, 184f, 184t
Ventricular fibrillation, 186, 186f
emergency management, 375, 375f, 376f
Ventricular septal defect, 165t
Ventricular tachycardia (VT), 183–185, 184f, 184t
emergency management, 377–378, 377f, 378f
Vertigo and dizziness, 425–427, 426t
Vibrio vulnificus, 104, 248
Violence, 10
Viral infections, 453–455, 454f
conjunctivitis, 480
Viral load monitoring, 276
Viral sensitivity/resistance monitoring, 276
Vitamin A, deficiency, 108
Vitamin B12 (cyanocobalamin) deficiency, 200–201
Vitamin D
deficiency, 108
hypocalcemia, 38–39
primary hyperparathyroidism, 33–34
Vitamin E, deficiency, 108
Vitamin K
antagonists, 366
deficiency, 108, 221
VITAMINS mnemonic, seizures and epilepsy, 422
Volume depletion, metabolic alkalosis, 327–328
Von Willebrand disease (vWD), 218–219, 219f
Voriconazole, 282

W
Wallenberg syndrome, 420, 420t
Warfarin, 223–224, 224t
 pulmonary thromboembolism, 365–366
 unstable angina and NSTEMI, 146
Water restriction test, diabetes insipidus, 21, 21f
Weber syndrome, 420, 420t
Wegener granulomatosis, 81–82, 296, 296t
Wells’ Criteria, pulmonary thromboembolism, 362
Wernicke encephalopathy, 400–401
Westermark sign, pulmonary thromboembolism, 363
Whipple disease, 109
White blood cells (WBCs), urinalysis, 284, 284t
Whole bowel irrigation, 387
Wilson disease, 122–123
Winters formula, metabolic acidosis, 324
Wolff-Chaikoff effect, 28
Wolff-Parkinson-White syndrome, 182–183, 183f
 atrial fibrillation with, 383
Wound management, 280, 281t
Wright urine stain, acute interstitial nephritis, 293

X
Xanthochromia, 406

Z
Zenker diverticulum, 90–91, 90f
Zollinger-Ellison syndrome (ZES), 95, 97–98
Z-score, 8
Editor

Elmar Peter Sakala, MD, MA, MPH, FACOG
Professor of Gynecology and Obstetrics
Division of Maternal Fetal Medicine
Department of Gynecology and Obstetrics
Loma Linda University School of Medicine
Loma Linda, CA

Contributors

Joshua P. Kesterson, MD
Assistant Professor
Division of Gynecologic Oncology
Department of Gynecology and Obstetrics
Penn State College of Medicine
Hershey, PA

Alvin Schamroth, MD, FACOG
Bethesda, MD
We want to hear what you think. What do you like or not like about the Notes?
Please email us at medfeedback@kaplan.com.
Table of Contents

Part I: Obstetrics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reproductive Basics</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Failed Pregnancy</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Obstetric Procedures</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Prenatal Management of the Normal Pregnancy</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Prenatal Laboratory Testing</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Late Pregnancy Bleeding</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>Perinatal Infections</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>Obstetric Complications</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>Hypertensive Complications</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>Medical Complications in Pregnancy</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>Disproportionate Fetal Growth</td>
<td>109</td>
</tr>
<tr>
<td>12</td>
<td>Antepartum Fetal Testing</td>
<td>111</td>
</tr>
<tr>
<td>13</td>
<td>Fetal Orientation in Utero</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>Normal and Abnormal Labor</td>
<td>121</td>
</tr>
<tr>
<td>15</td>
<td>Obstetric Anesthesia</td>
<td>129</td>
</tr>
<tr>
<td>16</td>
<td>Intrapartum Fetal Monitoring</td>
<td>131</td>
</tr>
<tr>
<td>17</td>
<td>Operative Obstetrics</td>
<td>139</td>
</tr>
<tr>
<td>18</td>
<td>Postpartum Issues</td>
<td>143</td>
</tr>
</tbody>
</table>
Part II: Gynecology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Principles of Gynecology</td>
<td>151</td>
</tr>
<tr>
<td>2</td>
<td>Pelvic Relaxation</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>Disorders of the Vagina and Vulva</td>
<td>169</td>
</tr>
<tr>
<td>4</td>
<td>Disorders of the Cervix and Uterus</td>
<td>177</td>
</tr>
<tr>
<td>5</td>
<td>Disorders of the Ovaries and Oviducts</td>
<td>195</td>
</tr>
<tr>
<td>6</td>
<td>Gestational Trophoblastic Neoplasia</td>
<td>205</td>
</tr>
<tr>
<td>7</td>
<td>Sexually Transmitted Diseases</td>
<td>209</td>
</tr>
<tr>
<td>8</td>
<td>Pelvic Pain</td>
<td>213</td>
</tr>
<tr>
<td>9</td>
<td>Fertility Control</td>
<td>219</td>
</tr>
<tr>
<td>10</td>
<td>Human Sexuality</td>
<td>225</td>
</tr>
<tr>
<td>11</td>
<td>Menstrual Abnormalities</td>
<td>229</td>
</tr>
<tr>
<td>12</td>
<td>Hormonal Disorders</td>
<td>239</td>
</tr>
<tr>
<td>13</td>
<td>The Female Breast</td>
<td>255</td>
</tr>
</tbody>
</table>

Index ... 265

Additional resources available at
www.kaptest.com/usmlebookresources
PART I

Obstetrics
Learning Objectives

- Describe the basic physiology of spermatogenesis, ovulation, pregnancy, and lactation
- List the stages of fetal development and risks related to premature birth
- Answer questions about the terminology and epidemiology of perinatal statistics and genetic disorders detectable at birth

PLACENTAL HORMONES

Human Chorionic Gonadotropin

Human chorionic gonadotropin (hCG) is produced by the placental syncytiotrophoblast and first appears in maternal blood 10 days after fertilization. It peaks at 9–10 weeks and then gradually falls to a plateau level at 20–22 weeks.

By chemical structure, hCG is a glycoprotein with 2 subunits. The α-subunit is similar to luteinizing hormone (LH), follicle-stimulating hormone (FSH), and thyrotropin (TSH). The β-subunit is specific for pregnancy.

The functions of hCG are as follows:

- Maintain corpus luteum production of progesterone until the placenta can take over maintenance of the pregnancy
- Regulate steroid biosynthesis in the placenta and fetal adrenal gland as well
- Stimulate testosterone production in the fetal male testes

If hCG levels are high, twin pregnancy, hydatidiform mole, choriocarcinoma, or embryonal carcinoma can occur. If levels are low, ectopic pregnancy, threatened abortion, or missed abortion can occur.

Human Placental Lactogen

Human placental lactogen is chemically similar to anterior pituitary growth hormone and prolactin. Its level parallels placental growth, rising throughout pregnancy.

Its effect is to antagonize the cellular action of insulin, decreasing insulin utilization and thereby contributing to the predisposition of pregnancy to glucose intolerance and diabetes.

If levels are low, threatened abortion or intrauterine growth restriction (IUGR) can occur.
Progesterone

Progesterone is a steroid hormone produced after ovulation by the luteal cells of the corpus luteum to induce endometrial secretory changes favorable for blastocyst implantation. It is initially produced exclusively by the corpus luteum for up to 6–7 menstrual weeks. Between 7–9 weeks, both the corpus luteum and the placenta produce progesterone. After 9 weeks the corpus luteum declines, and progesterone is exclusively produced by the placenta.

The functions of progesterone are as follows:
- **In early pregnancy** it induces endometrial secretory changes favorable for blastocyst implantation.
- **In later pregnancy** its function is to induce immune tolerance for the pregnancy and prevent myometrial contractions.

Estrogen

Estrogens are steroid hormones that occur in 3 forms. Each form has unique significance during a woman’s life.
- **Estradiol** is the predominant moiety during the nonpregnant reproductive years. It is converted from androgens (produced from cholesterol in the follicular theca cells), which diffuse into the follicular granulosa cells containing the aromatase enzyme that completes the transformation into estradiol.
- **Estriol** is the main estrogen during pregnancy. Dehydroepiandrosterone-sulfate (DHEAS) from the fetal adrenal gland is the precursor for 90% of estriol converted by sulfatase enzyme in the placenta.
- **Estrone** is the main form during menopause. Postmenopausally, adrenal androstenedione is converted in peripheral adipose tissue to estrone.

Table I-1-1. Estrogens Throughout a Woman’s Life

<table>
<thead>
<tr>
<th>Estradiol</th>
<th>Nonpregnant reproductive years</th>
<th>Follicle Granulosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estriol</td>
<td>Pregnancy</td>
<td>Placenta from fetal adrenal DHEAS</td>
</tr>
<tr>
<td>Estrone</td>
<td>After menopause</td>
<td>Adipose from adrenal steroids</td>
</tr>
</tbody>
</table>

PHYSIOLOGIC CHANGES IN PREGNANCY

Skin
- **Striae gravidarum**: “stretch marks” that develop in genetically predisposed women on the abdomen and buttocks
- **Spider angiomata** and palmar erythema: caused by increased skin vascularity
- **Chadwick sign**: bluish or purplish discoloration of the vagina and cervix caused by increased skin vascularity
• **Linea nigra**: increased pigmentation of the lower abdominal midline from the pubis to the umbilicus

• **Chloasma**: blotchy pigmentation of the nose and face

Cardiovascular

- **Arterial blood pressure**: Systolic and diastolic values both decline early in the first trimester, reaching a nadir by 24–28 weeks and then gradually rising toward term (but never returning quite to prepregnancy baseline). Diastolic falls more than systolic, as much as 15 mm Hg. Arterial blood pressure is **never normally elevated in pregnancy**.

- **Venous blood pressure**: Central venous pressure (CVP) is **unchanged with pregnancy**, but femoral venous pressure (FVP) increases two- to threefold by 30 weeks’ gestation.

- **Plasma volume**: Plasma volume increases up to 50% with a significant increase by the first trimester. Maximum increase is by 30 weeks. This increase is even greater with multiple fetuses.

- **Systemic vascular resistance (SVR)**: SVR equals blood pressure (BP) divided by cardiac output (CO). Because BP decreases and CO increases, SVR **declines** by 30%, reaching its nadir by 20 weeks. This enhances uteroplacental perfusion.

- **Cardiac output (CO)**: CO **increases** up to 50%, with the major increase by 20 weeks. CO is the product of heart rate (HR) and stroke volume (SV), and both increase in pregnancy. HR increases by 20 beats/min by the third trimester. SV increases by 30% by the end of the first trimester.
 - CO is dependent on maternal position.
 - CO is **lowest** in the supine position because of inferior vena cava compression resulting in decreased cardiac return.
 - CO is **highest** in the left lateral position.
 - CO increases progressively through the three stages of labor.

- **Murmurs**: A systolic ejection murmur along the left sternal border is normal in pregnancy, owing to increased CO passing through the aortic and pulmonary valves. **Diastolic murmurs are never normal in pregnancy** and must be investigated.

<table>
<thead>
<tr>
<th>Table I-1-2. Cardiovascular Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial blood pressure</td>
</tr>
<tr>
<td>Systolic</td>
</tr>
<tr>
<td>Diastolic</td>
</tr>
<tr>
<td>Venous pressure</td>
</tr>
<tr>
<td>Central</td>
</tr>
<tr>
<td>Femoral</td>
</tr>
<tr>
<td>Peripheral vascular resistance</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Hematologic

- **Red blood cell (RBC) mass increases** by 30% in pregnancy; thus, oxygen-carrying capacity increases. However, because plasma volume increases by 50% the calculated hemoglobin and hematocrit values decrease by 15%. The nadir of the hemoglobin value is at 28–30 weeks' gestation. **This is a physiologic dilutional effect, not a manifestation of anemia.**

- **White blood cell (WBC) count increases** progressively during pregnancy, with a mean value of up to 16,000/mm³ in the third trimester.

- **Erythrocyte sedimentation rate (ESR) increases** in pregnancy because of the increase in gamma globulins.

- **Platelet count** normal reference range is **unchanged** in pregnancy.

- **Coagulation factors:** Factors V, VII, VIII, IX, XII, and von Willebrand factor **increase** progressively in pregnancy, leading to a hypercoagulable state.

Gastrointestinal

- **Stomach:** Gastric motility **decreases** and emptying time **increases** from the progesterone effect on smooth muscle. This increase in stomach residual volume, along with upward displacement of intraabdominal contents by the gravid uterus, predisposes to aspiration pneumonia with general anesthesia at delivery.

- **Large bowel:** Colonic motility **decreases** and transit time **increases** from the progesterone effect on smooth muscle. This predisposes to increased colonic fluid absorption, resulting in constipation.

Pulmonary

- **Tidal volume (Vt),** the volume of air that moves in and out of the lungs at rest, **increases** with pregnancy to 40%. It is the only lung volume that does not decrease with pregnancy.

- **Minute ventilation (Ve) increases** up to 40% with the major increase by 20 weeks. Ve is the product of respiratory rate (RR) and Vt. RR remains unchanged, with Vt increasing steadily throughout the pregnancy into the third trimester.

- **Residual volume (RV),** the volume of air trapped in the lungs after deepest expiration, decreases up to 20% by the third trimester. This is largely due to the upward displacement of intraabdominal contents against the diaphragm by the gravid uterus.

- **Blood gases:** The rise in Vt produces a **respiratory alkalosis,** with a decrease in Pco₂ from 40 to 30 mm Hg and an increase in pH from 7.40 to 7.45. An increased renal loss of bicarbonate helps compensate, resulting in an alkalotic urine.
Chapter 1 • Reproductive Basics

Figure I-1-1. Changes in Pulmonary System

![Diagram showing changes in pulmonary system](image)

Renal

- The **kidneys increase** in size 1.5 cm because of the increase in renal blood flow; this hypertrophy does not reverse until three months postpartum.
- **Ureteral diameter increases** owing to the progesterone effect on smooth muscle; the right side dilates more than the left in 90% of patients.
- **Glomerular filtration rate (GFR), renal plasma flow, and creatinine clearance all increase** by 50% as early as the end of the first trimester; this causes a 25% decrease in serum blood urea nitrogen (BUN), creatinine, and uric acid.
- **Urine glucose normally increases:** glucose is freely filtered and actively reabsorbed, although the tubal reabsorption threshold falls from 195 to 155 mg/dL.
- **Urine protein remains unchanged.**

Endocrine

- **Pituitary size increases** up to threefold due to lactotroph hyperplasia and hypertrophy, making it susceptible to ischemic injury (Sheehan syndrome) from postpartum hypotension.
- **Adrenal gland size is unchanged,** but production of cortisol **increases** two- to threefold.
- **Thyroid size remains unchanged:** thyroid binding globulin (TBG) increases, resulting in **increased** total T₃ and T₄ (although free T₃ and free T₄ remain **unchanged**).

Fetal Circulation

Three **in utero shunts** exist within the fetus.

- **Ductus venosus** carries blood **from umbilical vein to the inferior vena cava.**
- **Foramen ovale** carries blood **from right to left atrium.**
- **Ductus arteriosus** shunts blood **from pulmonary artery to descending aorta.**

OB Triad

Fetal Circulation Shunts
- **Ductus venosus**
 (UV → IVC)
- **Foramen ovale (RA → LA)**
- **Ductus arteriosus**
 (PA → DA)
PHYSIOLOGY OF LACTATION

Anatomy

The breast is made of lobes of glandular tissue, with associated ducts for transfer of milk to the exterior and supportive fibrous and fatty tissue. On average, there are 15–20 lobes in each breast, arranged roughly in a wheel-spoke pattern emanating from the nipple area. The distribution of the lobes, however, is not even.

- There is a preponderance of glandular tissue in the upper outer portion of the breast (responsible for the tenderness in this region that many women experience prior to their menstrual cycle).

- About 80–85% of normal breast tissue is fat during the reproductive years. The 15–20 lobes are further divided into lobules containing alveoli (small saclike features) of secretory cells with smaller ducts that conduct milk to larger ducts and finally to a reservoir that lies just under the nipple. In the nonpregnant, nonlactating breast, the alveoli are small.

- During pregnancy, the alveoli enlarge; during lactation, the cells secrete milk substances (proteins and lipids). With the release of oxytocin, the muscular cells surrounding the alveoli contract to express the milk during lactation.

- Ligaments called Cooper ligaments, which keep the breasts in their characteristic shape and position, support breast tissue. In the elderly or during pregnancy, these ligaments become loose or stretched, respectively, and the breasts sag.

- The lymphatic system drains excess fluid from the tissues of the breast into the axillary nodes. Lymph nodes along the pathway of drainage screen for foreign bodies such as bacteria or viruses.

![Figure I-1-2. Sagittal View of Breast](image-url)
Hormones
Reproductive hormones are important in the development of the breast in puberty and in lactation.

- **Estrogen**, released from the ovarian follicle, promotes the growth ducts.
- **Progesterone**, released from the corpus luteum, stimulates the development of milk-producing alveolar cells.
- **Prolactin**, released from the anterior pituitary gland, stimulates milk production.
- **Oxytocin**, released from the posterior pituitary in response to suckling, causes milk ejection from the lactating breast.

Table I-1-3. Effect of Hormones on Breast

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen</td>
<td>Ducts, nipples, fat</td>
</tr>
<tr>
<td>Progesterone</td>
<td>Lobules, alveoli</td>
</tr>
<tr>
<td>Prolactin</td>
<td>Milk production</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>Milk ejection</td>
</tr>
</tbody>
</table>

Lactation
The breasts become fully developed under the influence of estrogen, progesterone, and prolactin during pregnancy. Prolactin causes the production of milk, and oxytocin release (via the suckling reflex) causes the contraction of smooth-muscle cells in the ducts to eject the milk from the nipple.

- The first secretion of the mammary gland after delivery is colostrum. It contains more protein and less fat than subsequent milk, and contains IgA antibodies which impart some passive immunity to the infant. Most often it takes one to three days after delivery for milk production to reach appreciable levels.
- The expulsion of the placenta at delivery initiates milk production and causes the drop in circulating estrogens and progesterone. Estrogen antagonizes the positive effect of prolactin on milk production.
- The physical stimulation of suckling causes the release of oxytocin and stimulates prolactin secretion, causing more milk production.

EMBRYOLOGY AND FETOLOGY

Embryonic and Fetal Development
Postconception week 1: most significant event is the implantation of the blastocyst on the endometrium.

Week 1 begins with fertilization of the egg and ends with implantation of the blastocyst onto the endometrial surface. Fertilization usually occurs in the distal part of the oviduct. The egg is capable of being fertilized for 12–24 hours. The sperm is capable of fertilizing for 24–48 hours. Week 1 can be divided into 2 phases:

- The intratubal phase extends through the first half of the first week. It begins at conception (day 0) and ends with the entry of the morula into the uterine cavity (day 3). The conceptus is traveling down the oviduct as it passes through the 2-cell, 4-cell, and 8-cell stages.

OB Triad

Post-Conception Week 1
- Starts at conception
- Ends with implantation
- Yields morula → blastula
• The **intrauterine** phase begins with entry of the morula into the uterus (day 3) and ends with implantation of the blastocyst onto the endometrial surface (day 6). During this time the morula differentiates into a hollow ball of cells. The outer layer will become the trophoblast or placenta, and the inner cell mass will become the embryo.

Postconception week 2: most significant event is the development of the **bilaminar germ disk with epiblast and hypoblast layers**. These layers will eventually give rise to the 3 primordial germ layers.

Another significant event is the invasion of the maternal sinusoids by the syncytiotrophoblast. Because β-human chorionic gonadotropin (β-hCG) is produced in the syncytiotrophoblast, this now allows β-hCG to enter the maternal bloodstream. β-hCG pregnancy test now can be positive for the first time.

Postconception week 3: most significant event is the migration of cells through the primitive streak between the epiblast and hypoblast to form the **trilaminar germ disk with ectoderm, mesoderm, and endoderm layers**. These layers will give rise to the major organs and organ systems.

Postconception weeks 4–8 (period of major teratogenic risk): during this time, the major organs and organ systems are being formed.

- **Ectoderm**: central and peripheral nervous systems; sensory organs of seeing and hearing; integument layers (skin, hair, and nails)
- **Mesoderm**: muscles, cartilage, cardiovascular system, urogenital system
- **Endoderm**: lining of the gastrointestinal and respiratory tracts

Paramesonephric (Müllerian) Duct

This duct is present in all early embryos and is the primordium of the female internal reproductive system. **No hormonal stimulation is required.**

- In **males**, the Y chromosome induces gonadal secretion of müllerian inhibitory factor (MIF), which causes the müllerian duct to involute.
- In **females**, without MIF, development continues to form the fallopian tubes, corpus of the uterus, cervix, and proximal vagina.

Female External Genitalia

No hormonal stimulation is needed for differentiation of the external genitalia into labia majora, labia minora, clitoris, and distal vagina.

Mesonephric (Wolffian) Duct

This duct is also present in all early embryos and is the primordium of the male internal reproductive system. **Testosterone stimulation is required** for development to continue to form the vas deferens, seminal vesicles, epididymis, and efferent ducts. This is present in males from testicular sources. In females, without androgen stimulation, the Wolffian duct undergoes regression. If a genetic male has an absence of androgen receptors, the Wolffian duct will also undergo regression.

Male External Genitalia

Dihydrotestosterone (DHT) stimulation is needed for differentiation of the external genitalia into a penis and scrotum. If a genetic male has an absence of androgen receptors, external geni-

OB Triad

Post-Conception Week 2
- Starts with implantation
- Ends with 2-layer embryo
- Yields bi-laminar germ disk

OB Triad

Post-Conception Week 3
- Starts with 2-layer embryo
- Ends with 3-layer embryo
- Yields tri-laminar germ disk

OB Triad

Post-Conception Week 4–8
- Three germ layers differentiating
- Greatest risk of malformations
- Folic acid prevents NTD
Sertoli cell

Leydig cell

Anti-Müllerian hormone

Testosterone

5α-reductase

Dihydrotestosterone

Inhibits Müllerian duct development

Maintains Wolffian duct development

Virilizes urogenital sinus, external genitalia

Figure I-1-3. Testicular Function

Table I-1-4. Hormones

<table>
<thead>
<tr>
<th>Hormones Needed for Genital Development</th>
<th>External?</th>
<th>Internal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>♀</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>Androgen</td>
<td></td>
</tr>
</tbody>
</table>

Table I-1-5. Embryology

<table>
<thead>
<tr>
<th>Primordia</th>
<th>Female</th>
<th>Male</th>
<th>Major Determinant Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ cells</td>
<td>Oogonia</td>
<td>Spermatogonia</td>
<td>Sex chromosomes</td>
</tr>
<tr>
<td>Coelomic epithelium</td>
<td>Granulosa cells</td>
<td>Sertoli cells</td>
<td></td>
</tr>
<tr>
<td>Mesenchyme</td>
<td>Theca cells</td>
<td>Leydig cells</td>
<td></td>
</tr>
<tr>
<td>Mesonephros</td>
<td>Rete ovarii</td>
<td>Rete testis</td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramezonephric (Müllerian)</td>
<td>Fallopian tubes</td>
<td>Testis hydatid</td>
<td>Absence of Y chromosome</td>
</tr>
<tr>
<td>Mesonephric (Wolffian)</td>
<td>Uterus</td>
<td>Vas deferens</td>
<td>Testosterone</td>
</tr>
<tr>
<td>Mesonephric tubules</td>
<td>Part of vagina</td>
<td>Seminal vesicles</td>
<td>Müllerian-inhibiting factor</td>
</tr>
<tr>
<td>Fallopian tubes</td>
<td>Gartner’s duct</td>
<td>Epididymis</td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>Epooophoron</td>
<td>Efferent ducts</td>
<td></td>
</tr>
<tr>
<td>Part of vagina</td>
<td>Paroophoron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Genitalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urogenital sinus</td>
<td>Vaginal contribution</td>
<td>Prostate</td>
<td>Presence or absence of testosterone, dihydrotestosterone, and 5-alpha reductase enzyme</td>
</tr>
<tr>
<td>Genital tubercle</td>
<td>Skene’s glands</td>
<td>Bulbourethral glands</td>
<td></td>
</tr>
<tr>
<td>Urogenital folds</td>
<td>Bartholin’s glands</td>
<td>Prostatic utricle</td>
<td></td>
</tr>
<tr>
<td>Genital folds</td>
<td>Clitoris</td>
<td>Penis</td>
<td></td>
</tr>
<tr>
<td>Labia minora</td>
<td>Labia majora</td>
<td>Corpora spongiosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrotum</td>
<td></td>
</tr>
</tbody>
</table>
A 36-year-old woman undergoes a barium enema for rectal bleeding on February 1, with estimated radiation dose of 4 rad. Her last menstrual period (LMP) was January 1 and she has 35-day cycles. She was not using any contraception. On March 15, a urine pregnancy test is positive. She inquires about the risk to her fetus of teratogenic injury.

A teratogen is any agent that disturbs normal fetal development and affects subsequent function. The nature of the agent, as well as its timing and duration after conception, is critical. There are critical periods of susceptibility with each teratogenic agent and with each organ system.

The stages of teratogenesis are as follows:

- **From conception to end of second week:** embryo either survives intact or dies because the three germ layers have not yet been formed
- **Postconception weeks 3–8:** period of greatest teratogenic risk from formation of the three germ layers to completion of organogenesis
- **After week 9 of postconception:** teratogenicity is low but adverse effects may include diminished organ hypertrophy and hyperplasia

The types of agents that can result in teratogenesis or adverse outcomes are as follows:

- **Infectious:** Agents include bacteria (e.g., chlamydia and gonorrhea cause neonatal eye and ear infections), viruses (e.g., rubella, cytomegalovirus, herpes virus), spirochetes (e.g., syphilis), and protozoa (e.g., toxoplasmosis).
- **Ionizing radiation:** No single diagnostic procedure results in radiation exposure to a degree that would threaten the developing pre-embryo, embryo, or fetus. No increase is seen in fetal anomalies or pregnancy losses with exposure of <5 rads. The greatest risk of exposure is between 8 and 15 weeks’ gestation with the risk of nonthreshold, linear function at doses of at least 20 rads.
- **Chemotherapy:** Risk is predominantly a first-trimester phenomenon. Second- and third-trimester fetuses are remarkably resistant to chemotherapeutic agents.
- **Environmental:** Tobacco is associated with intrauterine growth restriction (IUGR) and preterm delivery, but no specific syndrome. Alcohol is associated with fetal alcohol syndrome: midfacial hypoplasia, microcephaly, intellectual disability, and IUGR.
- **Recreational drugs:** Cocaine is associated with placental abruption, preterm delivery, intraventricular hemorrhage, and IUGR. Marijuana is associated with preterm delivery but not with any syndrome.
- **Medications** (account for 1–2% of congenital malformations): The ability of a drug to cross the placenta to the fetus depends on molecular weight, ionic charge, lipid solubility, and protein binding. Drugs are listed by the FDA as category A, B, C, D, or X.

FDA Pregnancy Risk Categories

Prior to 2015

- **Category A:** adequate and well-controlled studies have failed to demonstrate a risk to the fetus. **Okay to use.** Examples include levothyroxine, folic acid, liothyronine.
• **Category B**: animal studies have failed to demonstrate a risk to the fetus but there are no good studies in pregnant women. **Okay to use**. Examples include metformin, hydrochlorothiazide, cyclobenzaprine, amoxicillin, pantoprazole.

• **Category C**: animal studies have shown an adverse effect on the animal fetus; there are no good studies in humans but potential benefits may warrant use of the drug in pregnant women. **May use**. Examples include tramadol, gabapentin, amlodipine, trazodone.

• **Category D**: human studies have shown an adverse effect on human fetus but potential benefits may warrant use of the drug in pregnant women. **May use**. Examples include lisinopril, alprazolam, losartan, clonazepam, lorazepam.

• **Category X**: human studies have shown an adverse effect on human fetus and risks clearly outweigh benefits in pregnant women. **Do not use**. Examples include atorvastatin, simvastatin, warfarin, methotrexate, finasteride.

After 2015

The A, B, C, D, and X risk categories in use since 1979 have now been replaced with narrative sections and subsections to include pregnancy (includes labor and delivery), lactation (includes nursing mothers), and females and males of reproductive potential.

While the new labeling improves the old format, it still does not provide a definitive “yes or no” answer in most cases. Clinical interpretation is still required on a case-by-case basis.

The Pregnancy subsection will provide information about dosing and potential risks to the developing fetus, and registry information that collects and maintains data on how pregnant women are affected when they use the drug or biological product.

Specific Syndromes

• **Alcohol**: fetal alcohol syndrome—IUGR, midfacial hypoplasia, developmental delay, short palpebral fissures, long philtrum, multiple joint anomalies, cardiac defects

• **Diethylstilbestrol**: DES syndrome—T-shaped uterus, vaginal adenosis (with predisposition to vaginal clear cell carcinoma), cervical hood, incompetent cervix, preterm delivery

• **Dilantin**: fetal hydantoin syndrome—IUGR, craniofacial dysmorphism (epicanthal folds, depressed nasal bridge, oral clefts), intellectual disability, microcephaly, heart defects

• **Isotretinoin** (Accutane): congenital deafness, microtia, CNS defects, congenital heart defects

• **Lithium**: Ebstein’s anomaly (right heart defect)

• **Streptomycin**: VIII nerve damage, hearing loss

• **Tetracycline**: after fourth month, deciduous teeth discoloration

• **Thalidomide**: phocomelia, limb reduction defects, ear/nasal anomalies, cardiac defects, pyloric or duodenal stenosis

• **Trimethadione**: facial dysmorphism (short upturned nose, slanted eyebrows), cardiac defects, IUGR, intellectual disability

• **Valproic acid**: neural tube defects (spina bifida), cleft lip, renal defects

• **Warfarin**: neural tube defects (stippled epiphysis), microcephaly, intellectual disability, optic atrophy
PERINATAL STATISTICS AND TERMINOLOGY

Table I-1-6. Terminology for Perinatal Statistics

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravidity</td>
<td>Total number of pregnancies irrespective of the pregnancy duration</td>
</tr>
<tr>
<td>Nulligravida</td>
<td>Woman who is not currently pregnant and has never been pregnant</td>
</tr>
<tr>
<td>Primigravida</td>
<td>Woman who is pregnant currently for the first time</td>
</tr>
<tr>
<td>Multigravida</td>
<td>Woman who is pregnant currently for more than the first time</td>
</tr>
<tr>
<td>Parity</td>
<td>Total number of pregnancies achieving ≥20 weeks’ gestation</td>
</tr>
<tr>
<td>Nullipara</td>
<td>Woman who has never carried a pregnancy achieving ≥20 weeks’ gestation</td>
</tr>
<tr>
<td>Primipara</td>
<td>Woman who has carried one pregnancy achieving ≥20 weeks’ gestation</td>
</tr>
<tr>
<td>Multipara</td>
<td>Woman who has carried more than one pregnancy to ≥20 weeks’ gestation</td>
</tr>
<tr>
<td>Parturient</td>
<td>Woman who is in labor</td>
</tr>
<tr>
<td>Puerpera</td>
<td>Woman who has just given birth</td>
</tr>
</tbody>
</table>

Table I-1-7. Terminology for Perinatal Losses

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortion</td>
<td>Pregnancy loss prior to 20 menstrual weeks</td>
</tr>
<tr>
<td>Antepartum death</td>
<td>Fetal death between 20 menstrual weeks and onset of labor</td>
</tr>
<tr>
<td>Intrapartum death</td>
<td>Fetal death from onset of labor to birth</td>
</tr>
<tr>
<td>Fetal death</td>
<td>Fetal death between 20 menstrual weeks and birth</td>
</tr>
<tr>
<td>Perinatal death</td>
<td>Fetal/neonatal death from 20 menstrual weeks to 28 days after birth</td>
</tr>
<tr>
<td>Neonatal death</td>
<td>Newborn death between birth and the first 28 days of life</td>
</tr>
<tr>
<td>Infant death</td>
<td>Infant death between birth and first year of life</td>
</tr>
<tr>
<td>Maternal death</td>
<td>A woman who died during pregnancy or within 90 days of birth</td>
</tr>
</tbody>
</table>
Table I-1-8. Terminology for Mortality Rates

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth rate</td>
<td>Number of live births per 1,000 total population</td>
</tr>
<tr>
<td>Fertility rate</td>
<td>Number of live births per 1,000 women ages 15–45 years</td>
</tr>
<tr>
<td>Fetal mortality rate</td>
<td>Number of fetal deaths per 1,000 total births</td>
</tr>
<tr>
<td>Neonatal mortality rate</td>
<td>Number of neonatal deaths per 1,000 live births</td>
</tr>
<tr>
<td>Perinatal mortality rate</td>
<td>Number of fetal + neonatal deaths per 1,000 total births</td>
</tr>
<tr>
<td>Infant mortality rate</td>
<td>Number of infant deaths per 1,000 live births</td>
</tr>
<tr>
<td>Maternal mortality ratio</td>
<td>Number of maternal deaths per 100,000 live births</td>
</tr>
</tbody>
</table>

Figure I-1-4. Perinatal Mortality Terminology

GENETIC DISORDERS

Human Genetics in Pregnancy

A 37-year-old G5 P0 Ab4 comes for prenatal care at 7 weeks’ gestation. She has experienced four previous spontaneous first-trimester abortions. She is concerned about the likelihood of her next pregnancy being successful.
Indicators for genetic counseling during pregnancy include the following:

- **Advanced maternal age**: women age \(\geq 35 \) at increased risk of fetal nondisjunction trisomies (e.g., trisomies 21 and 18)
- **Incidence of chromosomal abnormalities by maternal age**: the greater the age, the greater the risk
- **Multiple fetal losses**
- **Previous child**: neonatal death, intellectual disability, aneuploidy, known genetic disorder
- **Pregnancy or fetal losses**: stillborn with birth defect, multiple pregnancy, or fetal losses
- **Family history**: genetic diseases, birth defects, intellectual disability,
- **Abnormal prenatal tests**: triple marker screen, sonogram
- **Parental aneuploidy**

Chromosomal Aberrations

- **Aneuploidy** refers to numeric chromosome abnormalities in which cells contain other than 2 complete sets of 23 chromosomes. This usually occurs because of nondisjunction.
 - The most common aneuploidy is **trisomy**, the presence of an extra chromosome.
 - Most autosomal trisomies result in spontaneous abortion.
 - The most common trisomy in first-trimester losses is trisomy 16.
 - The most common trisomy at term is trisomy 21.
- **Polyploidy** refers to numeric chromosome abnormalities in which cells contain complete sets of extra chromosomes. The most common polyploidy is **triploidy** with 69 chromosomes, followed by tetraploidy with 92 chromosomes. An example of triploidy is an **incomplete molar** pregnancy, which occurs from fertilization of an egg by two sperm.
- **Structural alteration** refers to a condition in which chromosomal material is deleted, gained, or rearranged. It can involve single or multiple chromosomes. An example of a chromosomal deletion is del (5p) or cri du chat syndrome, which is a deletion of the short arm of chromosome 5.
- **Mosaicism** refers to the presence of \(\geq 2 \) cytogenetically distinct cell lines in the same individual. Mosaicism can involve the placenta, the fetus, or both. Gonadal mosaicism can result in premature **ovarian failure** and predispose the gonad to malignancy.

Translocations

- **Reciprocal translocation** involves any 2 or more nonhomologous chromosomes and occurs when there is a **breakage and reunion** of portions of the involved chromosomes to yield new products. Carriers of **balanced reciprocal translocations** have 46 chromosomes, with both derivative chromosomes present. Offspring may also have 46 chromosomes but only one of the derivative chromosomes is present.
Robertsonian translocation always involves the acrocentric chromosomes and is caused by centric fusion after loss of the satellite region of the short arms of the original acrosomic chromosome. The karyotype of a balanced Robertsonian translocation will appear to have only 45 chromosomes; however, the full complement of genetic material is present, and there are no clinical effects. The offspring may have 46 chromosomes but have double the genetic material of a particular chromosome.

Cytogenetic Disorders

At least 50% of first-trimester abortuses have abnormal chromosomes. The 2 most common aneuploidies in miscarriage are trisomy 16 and monosomy X (50% of these abnormalities are autosomal trisomies, with trisomy 16 the most common).

- **Turner syndrome (45,X)** (also known as gonadal dysgenesis or monosomy X) (1 in 2,000 births) is most often the result of loss of the paternal X chromosome; 98% of these conceptions abort spontaneously. Obstetric ultrasound shows the characteristic nuchal skin-fold thickening and cystic hygroma. Those fetuses that do survive to term have the following:
 - Absence of secondary sexual development
 - Short stature
 - Streak gonads
 - Primary amenorrhea/primary infertility
 - Broad chest
 - Neck webbing
 - Urinary tract anomalies
 - Bicuspid aortic valve and aortic coarctation
 - Normal intelligence
 - Possible mosaic patterns, with ovarian follicles present

- **Klinefelter syndrome (47,XXY)** (1 in 1,000 births) is seldom diagnosed before puberty. Physical findings include tall stature, testicular atrophy, azoospermia, gynecomastia, and truncal obesity. Learning disorders, autoimmune diseases, and low IQ are common.

- **Down syndrome (trisomy 21)** (1 in 800 births) accounts for 50% of all cytogenetic diseases at term. IUGR and polyhydramnios are common. T21 incidence increases with advancing maternal age. The syndrome is characterized by intellectual disability, short stature, muscular hypotonia, brachycephaly, and short neck. Typical facial appearance is oblique orbital fissures, flat nasal bridge, small ears, nystagmus, and protruding tongue. Congenital heart disease (endocardial cushion defects) is more common along with duodenal atresia.
Edward syndrome (trisomy 18) (1 in 5,000 births) is more frequent with advancing maternal age; 80% of cases occur in females. IUGR is common. It is associated with profound intellectual disability. Unique findings are rocker-bottom feet and clenched fists. Survival to age 1 year is <10%, with mean survival 14 days.

Patau syndrome (trisomy 13) is more frequent with advancing maternal age. It is associated with profound intellectual disability. Associated findings include IUGR, cyclopia, proboscis, holoprosencephaly, and severe cleft lip with palate. Survival to age 1 year is rare, with mean survival 2 days.

Table I-1-9. Genetic Syndromes

<table>
<thead>
<tr>
<th>Name</th>
<th>Karyotype</th>
<th>Stature</th>
<th>IQ</th>
<th>Unique Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinefelter</td>
<td>47,XXY</td>
<td>Tall</td>
<td>Decreased IQ</td>
<td>Microgenitals, infertility</td>
</tr>
<tr>
<td>Turner</td>
<td>45,X</td>
<td>Short</td>
<td>Normal IQ</td>
<td>Web neck, coarctation aorta</td>
</tr>
<tr>
<td>Down</td>
<td>T21</td>
<td>Short</td>
<td>Functional intellectual disability</td>
<td>Duodenal atresia, AV canal defect</td>
</tr>
<tr>
<td>Edward</td>
<td>T18</td>
<td>Short</td>
<td>Severe intellectual disability</td>
<td>Abnormal feet, fist</td>
</tr>
<tr>
<td>Patau</td>
<td>T13</td>
<td>Short</td>
<td>Profound intellectual disability</td>
<td>Holoprosencephaly, cyclops</td>
</tr>
</tbody>
</table>
Mendelian Disorders

A 23-year-old black primigravida is seen at 12 weeks’ gestation. She has been diagnosed with sickle cell trait (AS). Her husband and father of the baby is also AS. She inquires as to the risk of her baby having sickle cell disease (SS).

About 1% of liveborn infants have a congenital Mendelian disorder. About 15% of all birth defects are attributable to Mendelian disorders; of these, 70% are autosomal dominant. The remainder are autosomal recessive or X-linked.

Autosomal dominant

Transmission occurs equally to males and females, and serial generations are affected. Gross anatomic abnormalities are the most common findings. Age of onset is usually delayed, with variability in clinical expression.

Each affected individual has an affected parent (unless this is a new mutation). Affected individuals will transmit the disease to 50% of their offspring. Unaffected individuals will bear unaffected children (if penetrance is complete). There are no carrier states.

Autosomal dominant examples include the following:

<table>
<thead>
<tr>
<th>Polydactyly</th>
<th>Marfan syndrome</th>
<th>Neurofibromatosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huntington chorea</td>
<td>Myotonic dystrophy</td>
<td>Osteogenesis imperfecta</td>
</tr>
<tr>
<td>Achondroplasia</td>
<td>Polycystic kidneys</td>
<td></td>
</tr>
</tbody>
</table>

Autosomal recessive

Transmission occurs equally to males and females, but the disease often skips generations. Enzyme deficiencies are most common findings. Age of onset is usually earlier with consistency in clinical expression. Carrier states are common.

- If both parents are heterozygous for the gene, 25% of offspring will be affected, 50% will be carriers, and 25% will be normal.
- If one parent is homozygous and one is heterozygous, 50% of offspring will be affected, and 50% will be carriers.
- If both parents are homozygous, 100% of children will be affected.
- Carrier states are common.

Autosomal recessive examples include the following:

<table>
<thead>
<tr>
<th>Deafness</th>
<th>Albinism</th>
<th>Phenylketonuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital adrenal hyperplasia</td>
<td>Sickle cell anemia</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Thalassemia</td>
<td>Tay-Sachs disease</td>
<td>Wilson disease</td>
</tr>
</tbody>
</table>

OB Triad

Autosomal Recessive
- Transmitted by both sexes
- Often skips generations
- Male and female carriers
X-linked recessive

These conditions are functionally dominant in men, but may be dominant or recessive in women. There is no male-to-male transmission (because the father gives only his Y chromosome to his son), but transmission is 100% male to female. The usual transmission is from heterozygous females to male offspring in an autosomally dominant pattern.

The disease is expressed in all males who carry the gene. Family history reveals the disorder is only found in male relatives, and commonly in maternal uncles.

X-linked recessive examples include:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemophilia A</td>
<td>Diabetes insipidus</td>
</tr>
<tr>
<td>Color blindness</td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td>Complete androgen insensitivity</td>
<td>Duchenne muscular dystrophy</td>
</tr>
</tbody>
</table>

Every generation? No carrier states?

Yes

Dominant
(anatomic disorders)

Lethal in males?

No

Autosomal
achondroplasia

X-linked
hypophosphatemic rickets

No

Yes

Recessive
(enzyme disorders)

Father gives it to son?

Yes

Autosomal
CF, TS, SC, PKU, CAH

No

X-linked
hemophilia

Figure I-1-6. Mendelian Genetics

X-linked dominant

These conditions may show up as two types of disorders:

- Manifested in female heterozygotes as well as carrier males (hemizygotes), e.g., hypophosphatemic rickets
- Manifested in female heterozygotes but lethal in males (the increased spontaneous abortion rate represents male fetuses), e.g., incontinentia pigmenti, focal dermal hypoplasia, orofaciodigital syndrome
Chapter 1 • Reproductive Basics

Calculations of Autosomal Recessive Risk

Figure I-1-7. Calculations of X-linked Risk (Hemophilia)

Figure I-1-8. Familial Transmission Patterns of Inheritance
Multifactorial Disorders

A 32-year-old woman with corrected tetralogy of Fallot is pregnant at 18 weeks’ gestation with a male fetus. She inquires as to the chance that her son has congenital heart disease.

The majority of birth defects (70%) are multifactorial or polygenic in origin, which means there is an interaction of multiple genes with environmental factors. Characteristic Mendelian patterns are not found, but there is an increased frequency of the disorder or phenotype in families. Overall recurrence rate is 2–3%.

• As the number of genes for a multifactorial trait increases, the liability for the disease increases.
• The more severe the malformation, the higher the risk for recurrence.

Examples of multifactorial inheritance include the following:

<table>
<thead>
<tr>
<th>Neural tube defects</th>
<th>Cleft lip and palate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital heart disease</td>
<td>Pyloric stenosis</td>
</tr>
</tbody>
</table>

• Neural tube defects (NTD) (1–2 per 1,000 births): The spectrum ranges from anencephaly to very slight vertebral defects. Result from failure of neural tube closure by day 22–28 postconception. Anencephaly and spina bifida occur with equal frequency. Polyhydramnios is frequently seen.
 – Women at high risk for NTD should take 4 mg of folic acid. Preconception folic acid supplementation may decrease incidence of NTD.
 – All women should take 0.4 mg of folic acid.
• Congenital heart disease (CHD) (1% of births): The majority of isolated CHD are multifactorial with an overall recurrence risk of 2%. However, the specific recurrence risk depends on the defect and family history details. It is important to distinguish isolated defects from those that are part of a syndrome with a higher recurrence risk. Preconception folate reduces the risk of congenital CHD, as well as NTD.
• Cleft lip and palate (1 per 1,000 births): The risk of cleft lip in a second child of unaffected parents is 4%. If two children are affected, the risk of the third child being affected is 10%.
• Pyloric stenosis (more common in males): The risk of the condition in the offspring of an affected parent is much greater if that parent is female.
Learning Objectives

- Describe the detection and risks of ectopic pregnancy
- List the approaches to induced abortion at different stages of fetal development
- Describe the epidemiology and management of early pregnancy bleeding and fetal demise

INDUCED ABORTION

Nearly 50% of all pregnancies among American women are unintended, and 4 in 10 of these are terminated by abortion. Excluding miscarriages, 25% of all pregnancies end in abortion.

- Early first-trimester abortions pose virtually no long-term risk of infertility, ectopic pregnancy, spontaneous abortion (miscarriage), or congenital malformation (birth defect), and little or no risk of preterm or low birthweight deliveries. Very few abortion patients experience a complication that requires hospitalization.
- Numerous epidemiologic studies have shown no association between abortion and breast cancer or any other type of cancer.
- The risk of maternal death associated with abortion increases with advancing gestational age. The maternal mortality associated with childbirth is about 12 times as high as that associated with early first-trimester abortion.

First-Trimester Methods

- Vacuum curettage (dilation and curettage [D&C]) (most common abortion procedure in the United States at 90%) is performed before 13 weeks’ gestation. Prophylactic antibiotics are given to reduce the infection rate, and conscious sedation and paracervical block local anesthetic are administered for pain relief.
 - The cervical canal is dilated with tapered metal cervical dilators or hygroscopic/osmotic dilators such as laminaria.
 - Complications are rare but include endometritis (treated with outpatient antibiotics) and retained products of conception (POC) (treated with repeat curettage).
 - Maternal mortality ratio: 1 per 100,000 women.
- Medical abortion: Mifepristone has been marketed over the past decade as an alternative to surgical abortion. Medical induction of abortion can be induced using oral mifepristone (a progesterone antagonist) and oral misoprostol (prostaglandin E1). Use is limited to the first 63 days of amenorrhea.
 - Approximately 85% of patients will abort within three days. The earlier the gestational age, the higher the success rate. About 2% of patients abort incompletely and require vacuum curettage.
 - Rare cases of Clostridium sordellii sepsis have been reported.
Second-Trimester Methods

The more advanced the gestation, the higher the rate of complications.

- **Dilation and evacuation** (D&E) *(most common second-trimester abortion procedure)*: Cervical dilation is performed by inserting osmotic laminaria dilators 24 hours prior to the procedure. The **cervical dilation in millimeters equals the number of weeks of gestation** *(e.g., at 18 weeks, the cervix should be dilated 18 mm).*
 - Early second-trimester abortions (13–14 weeks) can be performed by vacuum aspiration. After 14 weeks, the fetus is morcellated and removed in pieces. Ultrasound guidance can ensure complete evacuation of pregnancy tissues. A D&E is difficult to perform after 20 weeks due to toughness of fetal tissues.
 - An **intact D&E** involves more advanced pregnancies, with ≥2 days of laminaria treatment to obtain wide cervical dilation, allowing assisted breech delivery of the fetus under ultrasound guidance and decompression of the calvaria; the fetus is otherwise delivered intact (sometimes referred to as "partial birth" abortion). An intact D&E can be performed up to 24 weeks.
 - Pain relief is achieved through local, intravenous, or spinal anesthesia.
 - **Immediate complications** may include uterine perforation, retained tissue, hemorrhage, infection, and, rarely, disseminated intravascular coagulation. **Delayed complications** may include cervical trauma with resulting cervical insufficiency. Maternal mortality ratio is **4 per 100,000** women.

- **Labor induction methods**: Stimulation of **uterine contractions** to dilate the cervix can be achieved with **prostaglandins** *(intra-amniotic PGF$_{2\alpha}$, vaginal PGE$_2$ (dinoprostone), IM 15-methyl PGF$_{2\alpha}$ (carboprost tromethamine), or PGE$_1$ (misoprostol)). Interval from induction to delivery may be up to 24 hours.
 - Delivery of a live fetus may occur with use of prostaglandin (PG) analogs; feticidal agents used include intracardiac injection of KCl or digoxin.
 - **Immediate complications** include retained placentae (the most common problem with all PG abortions), hemorrhage, and infection. **Delayed complications** include cervical trauma with resulting cervical insufficiency. Maternal mortality ratio is **8 per 100,000** women.

Table I-2-1. Methods of Induced Abortion

<table>
<thead>
<tr>
<th>Trimester</th>
<th>Method</th>
<th>Procedure</th>
<th>Maternity-Mortality Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Trimester</td>
<td>Surgical</td>
<td>Suction dilation & curettage (D&C)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Medical</td>
<td>Mifepristone (progesterone antagonist)</td>
<td>1</td>
</tr>
<tr>
<td>Second Trimester</td>
<td>Surgical</td>
<td>Dilation & evacuation (D&E)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PGE$_1$</td>
<td>Induction of labor contractions</td>
<td>8</td>
</tr>
<tr>
<td>Any Trimester</td>
<td>Major surgery</td>
<td>Hysterotomy, hysterectomy</td>
<td>25</td>
</tr>
</tbody>
</table>
EARLY PREGNANCY BLEEDING

A 40-year-old woman (G3 P1 Ab1) at 9 weeks’ gestation comes to the office complaining of vaginal bleeding. A urine pregnancy test was positive 3 weeks ago. She initially experienced breast tenderness, though it has now disappeared. She denies passage of any tissue vaginally.

Early pregnancy bleeding is bleeding that occurs before 12 weeks’ gestation. The most common cause of early pregnancy loss is fetal in origin.

- **Cytogenetic etiology:** Most early pregnancy losses are caused by gross chromosomal abnormalities of the embryo or fetus.
- **Mendelian etiology:** Other losses may be caused by autosomal or X-linked dominant or recessive diseases.
- **Antiphospholipid syndrome:** An uncommon cause of early pregnancy loss. Some women with SLE produce antibodies against their own vascular system and fetoplacental tissues. Treatment is subcutaneous heparin.

Clinical Findings: Speculum exam is essential to rule out vaginal or cervical lesions that are causing bleeding.

- **RhoGAM** should be administered to all Rh-negative gravidas who undergo dilatation and curettage (D&C).
- **Molar** and **ectopic pregnancy** should be ruled out in all patients with early pregnancy bleeding.

Clinical Entities

The following diagnoses represent findings along a continuum, from the beginnings of losing the pregnancy to complete expulsion of the products of conception (POC).

- **Missed abortion:** sonogram finding of a nonviable pregnancy without vaginal bleeding, uterine cramping, or cervical dilation. **Management:** Scheduled suction D&C, conservative management awaiting a spontaneous completed abortion, or induce contractions with misoprostol (PGE 1).
- **Threatened abortion:** sonogram finding of a viable pregnancy with vaginal bleeding but no cervical dilation (50% of these pregnancies will continue to term successfully). **Management:** Often the cause is implantation bleeding. Observation. No intervention is generally indicated or effective.
- **Inevitable abortion:** vaginal bleeding and uterine cramping leading to cervical dilation, but no POC has yet been passed. **Management:** Emergency suction D&C if bleeding is heavy to prevent further blood loss and anemia. Otherwise, conservative management awaiting a spontaneous completed abortion or induce contractions with misoprostol PGE 1.
- **Incomplete abortion:** vaginal bleeding and uterine cramping leading to cervical dilation, with some, but not all, POC having been passed. **Management:** Emergency suction D&C if bleeding is heavy to prevent further blood loss and anemia. Otherwise conservative management awaiting a spontaneous completed abortion or induce contractions with misoprostol PGE 1.

Note

For more discussion about antiphospholipid syndrome, see Thrombophilias section in chapter 10.
• **Completed abortion:** vaginal bleeding and uterine cramping have led to all POC being passed. This is confirmed by a sonogram showing no intrauterine contents or debris. **Management:** Conservative if an intrauterine pregnancy had been previously confirmed. Otherwise, serial β-human chorionic gonadotropin (β-hCG) titers should be obtained weekly until negative to ensure an ectopic pregnancy has not been missed.

Figure I-2-1. Approach to Early Pregnancy Bleeding

FETAL DEMISE

A 28-year-old multigravida at 33 weeks’ gestation comes to the office stating she has not felt her baby move for 24 hours. A previous 18-week sonogram showed a single fetus with grossly normal anatomy. You are unable to find fetal heart tones by auscultation with a Doppler stethoscope.

From a medical viewpoint, fetal demise applies to any death after the embryo period (≥ 10 menstrual weeks). From a perinatal statistics viewpoint, the term applies to in utero death of a fetus after 20 weeks’ gestation before birth.

Antenatal demise occurs before labor. **Intrapartum demise** defines death that occurs after the onset of labor.
Significance

- Disseminated intravascular coagulation (DIC) is the most serious consequence, with prolonged fetal demise (>2 weeks) resulting from release of tissue thromboplastin from deteriorating fetal organs.
- Grief resolution may be prolonged if psychosocial issues are not appropriately addressed.

Fetal demise is most commonly idiopathic. When a cause is identified, risk factors include antiphospholipid syndrome, overt maternal diabetes, maternal trauma, severe maternal isoimmunization, fetal aneuploidy, and fetal infection.

Clinical Findings. Before 20 weeks' gestation, the most common finding is uterine fundus smaller than dates. After 20 weeks' gestation, the most common symptom is maternal report of absence of fetal movements.

Diagnosis. Ultrasound demonstration of lack of fetal cardiac activity.

Management varies:

- **DIC present.** DIC is usually not seen until 4 weeks after demise. Coagulopathy should be ruled out with appropriate laboratory testing: platelet count, d-dimer, fibrinogen, prothrombin time, partial thromboplastin time. If DIC is identified, immediate delivery is necessary with selective blood product transfusion as clinically indicated.

- **No DIC present.** Delivery may best be deferred for a number of days to allow for an appropriate grief response to begin. Or if the patient wishes conservative management, follow weekly serial DIC laboratory tests. 90% of patients start spontaneous labor after 2 weeks.

- **Mode of delivery.** A dilatation and evacuation (D&E) procedure may be appropriate in pregnancies of <23 weeks' gestation if no fetal autopsy is indicated. Induction of labor with vaginal prostaglandin is appropriate in pregnancies of ≥23 weeks or if a fetal autopsy is indicated. Cesarean delivery is almost never appropriate for dead fetus.

- **Psychosocial issues.** Acceptance of the reality of the loss may be enhanced by allowing the patient and her family to see the fetus, hold the fetus, name the fetus, and have a burial. Encouraging expression of feelings and tears may speed grief resolution.

- **Identify cause.** Workup may include cervical and placental cultures for suspected infection, autopsy for suspected lethal anatomic syndrome, karyotype for suspected aneuploidy, total body x-ray for suspected osteochondrodysplasia, maternal blood for Kleihauer-Betke (peripheral smear for suspected fetomaternal bleed). Amniocentesis can yield living fetal amniocyte cells although the fetus is demised. Up to 10% of the karyotypes show aneuploidy.
ECTOPIC PREGNANCY

A 28-year-old woman visits the emergency department complaining of unilateral left-sided abdominal pain and vaginal spotting of 3 days’ duration. Her last menstrual period was 8 weeks ago, and before this episode she had menses every 28 days. Her only previous pregnancy was an uncomplicated term spontaneous vaginal delivery. She had used intrauterine contraception for 3 years in the past. On pelvic examination the uterus is slightly enlarged, and there is left adnexal tenderness but no palpable mass. Quantitative serum β-hCG value is 2,600 mIU.

Ectopic pregnancy (1% of pregnancies; 15% if patient has had one ectopic pregnancy) is pregnancy in which implantation has occurred outside of the uterine cavity. The most common location is an oviduct; within the oviduct, the most common location is the distal ampulla.

With a positive pregnancy test, the differential diagnosis consists of a threatened abortion, incomplete abortion, ectopic pregnancy, and hydatidiform mole. In a reproductive-age woman with abnormal vaginal bleeding, always consider the possibility of pregnancy or complication of pregnancy.

The most common predisposing cause is previous pelvic inflammatory disease (PID). Ectopic pregnancy risk is increased from any obstruction of normal zygote migration to the uterine cavity from tubal scarring or adhesions from any origin: infectious (PID, IUD), postsurgical (tubal ligation, tubal surgery), or congenital (diethylstilbestrol [DES] exposure).
Table I-2-2. Risk Factors for Ectopic Pregnancy

<table>
<thead>
<tr>
<th>Scarring or Adhesions Obstructing Normal Zygote Migration</th>
<th>Pelvic inflammatory disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
<td></td>
</tr>
<tr>
<td>Postsurgical</td>
<td>Tuboplasty/ligation</td>
</tr>
<tr>
<td>Congenital</td>
<td>Diethylstilbestrol</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>No risk factors</td>
</tr>
</tbody>
</table>

Clinical Findings.

- **Symptoms.** The classic triad with an unruptured ectopic pregnancy is amenorrhea, vaginal bleeding, and unilateral pelvic-abdominal pain. With a ruptured ectopic pregnancy, the symptoms will vary with the extent of intraperitoneal bleeding and irritation. Pain usually occurs after 6–8 menstrual weeks.

- **Signs.** The classic findings with an unruptured ectopic pregnancy are unilateral adnexal and cervical motion tenderness. Uterine enlargement and fever are usually absent. With a ruptured ectopic pregnancy, the findings reflect peritoneal irritation and the degree of hypovolemia. Hypotension and tachycardia indicate significant blood loss. This results in abdominal guarding and rigidity.

- **Investigative findings.** A \(\beta \)-hCG test will be positive. Sonography may or may not reveal an adnexal mass, but most significantly no intrauterine pregnancy (IUP) will be seen.

Diagnosis. The diagnosis of an unruptured ectopic pregnancy rests on the results of a quantitative serum \(\beta \)-hCG titer combined with the results of a vaginal sonogram. It is based on the assumption that when a normal intrauterine pregnancy has progressed to where it can be seen on vaginal sonogram at 5 weeks’ gestation, the serum \(\beta \)-hCG titer will exceed 1,500 mIU. With the lower resolution of abdominal sonography, an IUP will not consistently be seen until 6 weeks’ gestation. The \(\beta \)-hCG discriminatory threshold for an abdominal ultrasound to detect an intrauterine gestation is 6,500 mIU compared with 1,500 mIU for vaginal ultrasound.

Failure to see a normal intrauterine gestational sac when \(\beta \)-hCG titer > 1,500 mIU is presumptive diagnosis of an unruptured ectopic pregnancy. No intrauterine pregnancy is seen with vaginal sonogram.

Management.

- **Ruptured ectopic.** Diagnosis of a ruptured ectopic pregnancy is presumed with a history of amenorrhea, vaginal bleeding, and abdominal pain in the presence of a hemodynamically unstable patient. Immediate surgical intervention to stop the bleeding is vital, usually by laparotomy.

- **Intrauterine pregnancy.** If the sonogram reveals an IUP, management will be based on the findings. If the diagnosis is hydatidiform mole, the patient should be treated with a suction curettage and followed up on a weekly basis with \(\beta \)-hCG.

- **Possible ectopic.** If the sonogram does not reveal an IUP but the quantitative \(\beta \)-hCG is < 1,500 mIU, it is impossible to differentiate a normal IUP from an ectopic pregnancy. Because \(\beta \)-hCG levels in a normal IUP double every 58 hours, the appropriate management will be to repeat the quantitative \(\beta \)-hCG and vaginal sonogram every 2–3 days until the \(\beta \)-hCG level exceeds 1,500 mIU. With that information an ectopic pregnancy can be distinguished from an IUP.
- **Unruptured ectopic.** Management can be medical with methotrexate or surgical with laparoscopy. Medical treatment is preferable because of the lower cost, with otherwise similar outcomes.

 - **Methotrexate.** This folate antagonist attacks rapidly proliferating tissues including trophoblastic villi. Criteria for methotrexate include pregnancy mass <3.5 cm diameter, absence of fetal heart motion, β-hCG level <6,000 mIU, and no history of folic supplementation. Single dose 1 mg/kg is 90% successful. Patients with an ectopic pregnancy should be advised of the somewhat increased incidence of recurrent ectopic pregnancies. Follow-up with serial β-hCG levels is crucial to ensure pregnancy resolution. Rh-negative women should be administered RhGAM.

 - **Laparoscopy.** If criteria for methotrexate are not met, surgical evaluation is performed through a laparoscopy or through a laparotomy incision. The preferred procedure for an unruptured ampullary tubal pregnancy is a salpingostomy, in which the trophoblastic villi are dissected free preserving the oviduct. Isthmic tubal pregnancies are managed with a segmental resection, in which the tubal segment containing the pregnancy is resected.

 - **Salpingectomy** is reserved for the patient with a ruptured ectopic pregnancy or those with no desire for further fertility. After a salpingostomy, β-hCG titers should be obtained on a weekly basis to make sure there is resolution of the pregnancy. Rh-negative women should be administered RhGAM.

Patients who are treated with methotrexate or salpingostomy should be followed up with β-hCG titers to ensure there has been complete destruction of the ectopic trophoblastic villi.

Figure I-2-3. Approach to Ectopic Pregnancy

Used with permission: Elmar Sakala, MD
Learning Objectives

- Describe routine and high-risk prenatal diagnostic testing
- Describe the appropriate use of obstetrical monitoring procedures including U/S, choriocarcinoma sampling, amniocentesis, percutaneous umbilical blood sampling, and fetoscopy

OBSTETRICAL ULTRASOUND

Obstetrical ultrasound uses low-energy, high-frequency sound waves.

- Early first-trimester ultrasound utilizes a crown–rump (CRL) measurement.
- Later second- and third-trimester ultrasound utilizes four measurements: biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL).

Figure I-3-1. First-Trimester Obstetrical U/S Showing Crown Rump Length

Figure I-3-2. Second- and Third-Trimester Obstetrical U/S Showing Biparietal Diameter and Head Circumference
Part I • Obstetrics

Modalities

- **Transvaginal sonogram** is used in first trimester, producing high-resolution images that are not influenced by maternal BMI. Dating accuracy of early first-trimester sonogram is \(+/- 5-7\) days.

- **Transabdominal sonogram** is used any time during the pregnancy, but image quality may be limited by maternal obesity. No adverse fetal effects have been noted during decades of research studies. Dating accuracy of early second trimester sonogram is \(+/- 7-10\) days.

- **Doppler** ultrasound study is used to assess umbilical artery (UA) and middle cerebral artery (MCA) blood flow. This modality assesses fetal well-being in IUGR pregnancies, as well as fetal anemia in alloimmunized pregnancies.

Indications

There are many reasons to use obstetrical ultrasound.

- Pregnancy location & viability, gestational age dating
- Multiple gestation (zygosity, chorionicity, amnionicity)
- Amniotic fluid volume (oligohydramnios, polyhydramnios)
- Fetal growth (IUGR, macrosomia)
- Fetal anomalies, fetal well-being
- Pregnancy bleeding, fetal anemia

Genetic Sonogram

Genetic sonogram, ideally performed at 18–20 weeks, looks for anatomic markers of fetal aneuploidy which include:

- **Generic**: any structural abnormalities
- **Specific**: nuchal skin fold thickness (strongest predictor), short long bones, pyelectasis, echogenic intracardiac focus, hyperechoic bowel.
Nuchal Translucency

Nuchal translucency (NT) measurement is a screening test performed with sonogram between 10–14 weeks, measuring the fetal fluid collection behind the neck.

- A thickened NT increases the likelihood of aneuploidy and cardiac disease.
- It is combined with two maternal blood tests (free β-hCG & PAPP-A) in first-trimester screening to increase the sensitivity and specificity for aneuploidy screening.

INVASIVE PROCEDURES

Chorionic Villus Sampling

Chorionic villus sampling (CVS) is a diagnostic outpatient office procedure performed under ultrasound (U/S) guidance without anesthesia. Pregnancy loss rate is 0.7%.

- The catheter is placed directly into the placental tissue without entering the amniotic cavity. Chorionic villi, which are placental precursors, are aspirated from a pregnant uterus between 10 and 12 weeks’ gestation.
- The tissue is sent to the laboratory for karyotyping. The chromosomes of the villi are almost always identical to those of the embryo.
- The procedure can be performed either transcervically or transabdominally. Since the fetus and chorionic villi are both derived from a common origin (the zygote), their karyotype is identical more than 99% of the time.

Figure I-3-5. Chorionic Villus Sampling
Amniocentesis

Amniocentesis is a diagnostic, outpatient office procedure performed after 15 weeks under U/S guidance without anesthesia. Pregnancy loss rate is 0.5%.

- A needle is placed into a pocket of amniotic fluid under direct U/S guidance, aspirating amniotic fluid containing desquamated living fetal cells (amniocytes).
- Fetal karyotyping is performed on amniocytes. NTD (neural tube defect) screening is performed on amniotic fluid with biochemical analysis (AFP and acetylcholinesterase).

Percutaneous Umbilical Blood Sample (PUBS)

This transabdominal procedure, performed under U/S guidance, aspirates fetal blood from the umbilical vein after 20 weeks' gestation. It can be diagnostic (e.g., blood gases, karyotype, IgG and IgM antibodies) or therapeutic (e.g., intrauterine transfusion for fetal anemia). Pregnancy loss rate is 1–2%.

Fetoscopy

A fetoscopy is a transabdominal procedure performed with a fiberoptic scope in the operating room after 20 weeks under regional or general anesthesia. Indications for fetoscopy include intrauterine surgery or fetal skin biopsy.

Laser is used for coagulating placental vessels in twin–twin transfusion syndrome (TTTS). Skin biopsy may be performed for suspected fetal ichthyosis. Risks are bleeding, infection, membrane rupture, fetal loss. Pregnancy loss rate is 2–5%.
Table I-3-1. Prenatal Diagnostic Testing

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Best Time</th>
<th>Pregnancy Loss Rate</th>
<th>Void</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVS</td>
<td>10–12 wks</td>
<td>0.7%</td>
<td>Placental precursor</td>
</tr>
<tr>
<td>Nuchal Translucency</td>
<td>10–14 wks</td>
<td>0%</td>
<td>Nuchal T, PAPP-A, free β-hCG</td>
</tr>
<tr>
<td>Amniocentesis</td>
<td>≥15 wks</td>
<td>0.5%</td>
<td>Amniocytes; amniotic fluid AFP</td>
</tr>
<tr>
<td>Expanded X-AFP</td>
<td>15–20 wks</td>
<td>0%</td>
<td>MS-AFP, β-hCG, estriol, inhibin</td>
</tr>
<tr>
<td>Sonogram</td>
<td>18–20 wks</td>
<td>0%</td>
<td>Non-invasive anatomy scan</td>
</tr>
<tr>
<td>Fetoscopy</td>
<td>18–20 wks</td>
<td>3–5%</td>
<td>Laser in TTTS, fetal biopsy</td>
</tr>
<tr>
<td>PUBS</td>
<td>≥20 wks</td>
<td>1–2%</td>
<td>Umbilical vein blood</td>
</tr>
</tbody>
</table>
Learning Objectives

- Describe how to diagnose pregnancy, establish gestational age, and identify risk factors
- List normal pregnancy events and complaints
- Differentiate between safe and unsafe immunizations in pregnancy

DIAGNOSING PREGNANCY

Presumptive signs of pregnancy include amenorrhea, breast tenderness, nausea and vomiting, increased skin pigmentation, and skin striae.

Probable signs of pregnancy include enlargement of the uterus, maternal sensation of uterine contractions or fetal movement, Hegar’s sign (softening of the junction between the corpus and cervix), and positive urine or serum β-human chorionic gonadotropin (β-hCG) testing.

Positive signs of pregnancy include hearing fetal heart tones, sonographic visualization of a fetus, perception of fetal movements by an external examiner, and x-ray showing a fetal skeleton.

Table I-4-1. Signs of Pregnancy

<table>
<thead>
<tr>
<th>Presumptive</th>
<th>Unrelated to uterus or fetus</th>
<th>Amenorrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable</td>
<td>Related to uterus or mother’s feelings</td>
<td>Increased uterine size β-hCG</td>
</tr>
<tr>
<td>Definitive</td>
<td>Related to the fetus</td>
<td>Sonogram of fetus Heard FHT</td>
</tr>
</tbody>
</table>

ESTABLISHING GESTATIONAL AGE

Establishing gestational age is one of the most important purposes of the first prenatal visit. The earlier the gestational age, the more accurate the dating.

- **Conception dating:** Normal pregnancy duration postconception is 266 days or 38 weeks. However, most women cannot accurately identify conception date.

- **Menstrual dating:** Because the last menstrual period (LMP) is more easily identified than conception, pregnancy duration in most cases is determined to be 280 days or 40 weeks from the LMP. We assume a 28-day menstrual cycle in which ovulation occurs on day 14 after the beginning of the LMP. Yet only 10% of women have a 28-day cycle. A normal cycle length can vary from 21–35 days.
• **Ultrasound dating**: The accuracy of ultrasound dating is gestational-age-dependent. Earlier sonograms are more accurate than later ones.
 - If the difference between menstrual dates and ultrasound dates is **within the normal range** of variation, use the menstrual dates.
 - If the difference between menstrual dates and ultrasound dates is **outside the normal range** of variation, use the ultrasound dates.

• **Naegele’s rule**: Assuming 28-day cycles, a due date can be estimated as the LMP minus 3 months + 7 days.

Table I-4-2. Pregnancy Dating

<table>
<thead>
<tr>
<th>Duration of pregnancy using:</th>
<th>Conceptional dating</th>
<th>266 days or 38 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of pregnancy using:</td>
<td>Menstrual dating</td>
<td>280 days or 40 weeks</td>
</tr>
<tr>
<td>Assumed cycle length</td>
<td></td>
<td>28 days</td>
</tr>
<tr>
<td>Calculate due date</td>
<td>Naegele’s rule</td>
<td>Last menstrual period – 3 months + 7 days</td>
</tr>
</tbody>
</table>

• **Basal body temperature**: The rise in basal body temperature (BBT) is assumed to be caused by the thermogenic effect of progesterone produced by the corpus luteum that formed after ovulation. The accuracy of BBT is ±1 week.

• **Menstrual history**: Menstrual dating assumes ovulation occurred on day 14 after the first day of the LMP. However, normal menstrual cycles can vary from 21 to 35 days, making ovulation possible on day 7 to day 21. Because most women’s cycles are more or less than 28 days, adjustment of the due date may be necessary. Accuracy of menstrual dating is variable depending on the patient’s memory and record keeping. The accuracy of menstrual history is ±1 week.

OB Triad

Precise Day of Ovulation

- **21-day cycle**: day 7
- **28-day cycle**: day 14
- **35-day cycle**: day 21

Figure I-4-1. Variations in Menstrual Cycle

Figure I-4-1. Variations in Menstrual Cycle

4 week cycles

- 2 week proliferative phase
- Ovulation on day 14
- 2 week luteal phase

3 week cycles

- 1 week proliferative phase
- Ovulation on day 7
- 2 week luteal phase

5 week cycles

- 3 week proliferative phase
- Ovulation on day 21
- 2 week luteal phase
Chapter 4 • Prenatal Management of the Normal Pregnancy

Figure I-4-2. Effect of Cycle Length on Calculated Due Date

IDENTIFYING PRENATAL RISK FACTORS

Obstetrical history: number of pregnancies, pregnancy duration, complications, mode of delivery, perinatal outcome

Medical and surgical history: diabetes mellitus, hypertension, cardiac, thyroid, seizure disorder, anemia

Social history: educational level, marital status, social support, abusive relationships

Family history: inherited diseases, intellectual disability birth defects, perinatal deaths

Sexual history: age of first intercourse, current partners, lifetime sexual partners, previous sexual abuse

Lifestyle: alcohol, tobacco, recreational drugs, poor nutrition, eating disorders

Teratogenic exposure: x-radiation, toxins, chemicals, prescription medications
NORMAL PREGNANCY EVENTS

First Trimester
Assuming a 40-menstrual-week pregnancy, the first trimester is assumed to extend from conception through to 13 weeks.
- Normal symptoms seen in the majority of pregnancies include nausea, vomiting, fatigue, breast tenderness, and frequent urination.
- **Spotting and bleeding** occur in 20% of pregnancies, 50% of which will continue successfully.
- Average weight gain is 5–8 pounds.
- Complications include spontaneous abortion.

Second Trimester
Assuming a 40-menstrual-week pregnancy, the second trimester is assumed to extend from 13–26 weeks.
- Normal symptoms are an improved feeling of general well-being.
- Round ligament pain is common.
- **Braxton-Hicks** contractions are painless, low-intensity, long-duration contractions that can be palpated as early as 14 weeks.
- **Quickening** (maternal awareness of fetal movement) is detected at 18–20 weeks by primigravidas and 16–20 weeks by multigravidas.
- Average weight gain is 1 pound per week after 20 weeks.
- Complications include incompetent cervix (painless cervical dilation leading to delivery of a nonviable fetus), premature membrane rupture, and premature labor.

Third Trimester
Assuming a 40-menstrual-week pregnancy, the third trimester is assumed to extend from 26–40 weeks.
- Normal symptoms include decreased libido, lower back and leg pain, urinary frequency, and Braxton-Hicks contractions.
- **Lightening** describes descent of the fetal head into the pelvis resulting in easier maternal breathing, pelvic pressure.
- ** Bloody show** describes vaginal passage of bloody endocervical mucus, the result of cervical dilation before labor.
- Average weight gain is 1 pound per week after 20 weeks.
- Complications include premature membrane rupture, premature labor, preeclampsia, urinary tract infection, anemia, and gestational diabetes.
NORMAL PREGNANCY COMPLAINTS

- **Backache** is very common, especially in the latter part of pregnancy because of the change in center of gravity with the enlarging uterus. Muscles and ligaments are now used that otherwise would not be. **Management** is encouragement of correct posture.

- **Bleeding gums** are caused by the increase of blood flow to the gums with pregnancy. If it is associated with clinical swelling, it is known as epulis. **Management** is conservative.

- **Breast enlargement**: Each breast increases in size by 400 grams and may result in an increase of 1–2 cup sizes. **Management** is a support bra.

- **Carpal tunnel**: As many as 50% of pregnant women will experience numbness, tingling, burning, or pain in at least 2 of the 3 digits supplied by the median nerve. **Management** is fitting with a wrist splint (most cases will spontaneously resolve after delivery).

- **Complexion changes**: Some women develop brownish or yellowish patches called chloasma, or the “mask of pregnancy,” on their faces. Others may develop a linea nigra on the lower abdominal midline, as well as hyperpigmentation of the nipples and external genitalia. **Management** is conservative.

- **Dizziness**: BP normally decreases in pregnancy, which may lead to postural hypotension. **Management** is avoiding rapid postural changes, such as standing up quickly.

- **Fatigue** is very common in pregnancy, probably because of rapid hormonal changes. **Management** is adequate rest and avoiding excessive activity.

- **Fluid retention**: Increased circulating steroid levels and decreased serum albumin results in edema in over half of pregnant women. Edema is not a criterion for pre-eclampsia. **Management** is elevating legs and using support hose.

- **Hair and nails**: Hair shedding decreases in pregnancy. **Telogen effluvium** is the excessive shedding of hair occurring 1–5 months after pregnancy. Telogen effluvium occurs in 40–50% of women. Nails may become more brittle. **Management** is conservative.

- **Headaches**: Muscle contraction and migraine headaches are more common in pregnancy, probably because of increased estrogen levels. **Management** is physical therapy (e.g., ice packs, massage) with medication only as a last resort.

- **Leg cramps**: Lower extremity muscle cramps are frequent in pregnancy. **Management** is hydration, stretching exercises, and calcium supplementation.

- **Morning sickness**: Nausea and vomiting are common in early pregnancy and are probably mediated by elevated hCG levels. **Management** is eating small meals (with emphasis on crackers and carbohydrates).

- **Nosebleeds**: Vasodilation and increased vascular supply results in more frequent nosebleeds. **Management** is saline drops and the avoidance of nasal sprays.

- **Stretch marks**: Genetic predisposition and pregnancy can result in striae gravidarum. Women with stretch marks have increased risk of delivery lacerations. **Management** is conservative.

- **Stress incontinence**: Pressure on the bladder with an enlarging uterus frequently results in an involuntary loss of urine. **Management** is strengthening the pelvic diaphragm with Kegel exercises.

- **Varicose veins**: Increased blood volume, the relaxing effect of progesterone on smooth muscle, and an increased lower-extremity venous pressure often result in lower-extremity varicosities. **Management** is discouraging prolonged standing and sitting.
Table I-4-3. Pregnancy Danger Signs

<table>
<thead>
<tr>
<th>Complaint</th>
<th>Possible Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal bleeding</td>
<td>Early (spontaneous abortion)</td>
</tr>
<tr>
<td></td>
<td>Later (abruption, previa)</td>
</tr>
<tr>
<td>Vaginal fluid leakage</td>
<td>Rupture of membrane (ROM)</td>
</tr>
<tr>
<td></td>
<td>Urinary incontinence</td>
</tr>
<tr>
<td>Epigastric pain</td>
<td>Severe preeclampsia</td>
</tr>
<tr>
<td>Uterine cramping</td>
<td>Preterm labor</td>
</tr>
<tr>
<td></td>
<td>Preterm contractions</td>
</tr>
<tr>
<td>↓ Fetal movement</td>
<td>Fetal compromise</td>
</tr>
<tr>
<td>Persistent vomiting</td>
<td>Hyperemesis (early)</td>
</tr>
<tr>
<td></td>
<td>Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Pyelonephritis</td>
</tr>
<tr>
<td>Headache, visual changes</td>
<td>Severe preeclampsia</td>
</tr>
<tr>
<td>Pain with urination</td>
<td>Cystitis</td>
</tr>
<tr>
<td></td>
<td>Pyelonephritis</td>
</tr>
<tr>
<td>Chills and fever</td>
<td>Pyelonephritis</td>
</tr>
<tr>
<td></td>
<td>Chorioamnionitis</td>
</tr>
</tbody>
</table>

IMMUNIZATIONS

Safe Immunizations

Safe immunizations include antigens from killed or inactivated organisms:

- Influenza (all pregnant women in flu season)
- Tetanus, diphtheria, pertussis (Tdap) (all pregnant women irrespective of their prior history); to maximize the maternal antibody response and passive antibody transfer to the infant, optimal timing is between 27–36 weeks gestation. For women not previously vaccinated, if Tdap is not administered during pregnancy it should be administered immediately postpartum.
- Hepatitis B (pre- and postexposure)
- Hepatitis A (pre- and postexposure)
- Pneumococcus (only high-risk women)
- Meningococcus (in unusual outbreaks)
- Typhoid (not routinely recommended)

Unsafe Immunizations

Unsafe immunizations include antigens from live attenuated organisms:

- MMR (measles, mumps, rubella)
- Polio
- Yellow fever
- Varicella
Learning Objectives

- Clarify the difference between laboratory tests in the first, second, and third trimesters
- Explain the importance and function of each laboratory test

FIRST TRIMESTER LABORATORY TESTS

A 21-year-old primigravida G1 PO presents for her first prenatal visit at 11 weeks’ gestation, which is confirmed by obstetric sonogram. She has no risk factors. What laboratory tests should be ordered on her?

Complete Blood Count (CBC)

- **Hemoglobin and hematocrit** (normal pregnancy hemoglobin 10–12 g/dL): Although nonpregnancy female hemoglobin reference range is 12–14 g/dL, normal values in pregnancy will reflect the dilutional effect of greater plasma volume increase than red blood cell (RBC) mass.

- **Mean corpuscular volume (MCV)**: Because hemoglobin and hematocrit reflect pregnancy dilution, MCV may be the most reliable predictor of true anemia. A low hemoglobin and low MCV (<80 μm³) most commonly suggests iron deficiency, but may also be caused by thalassemia. A low hemoglobin and high MCV (>100) suggests folate deficiency or, rarely, vitamin B12 deficiency.

- **Platelet count**: A low platelet count (<150,000/mm³) is most likely indicative of gestational (pregnancy-induced) thrombocytopenia. Preeclampsia with severe features and idiopathic thrombocytopenic purpura (ITP) are uncommon causes of low platelets. Disseminated intravascular coagulation is rare.

- **Leukocyte count** (normal pregnancy white blood cell count in pregnancy is up to 16,000/mm³): Leukopenia suggests immune suppression or leukemia.

Rubella IgG Antibody

- **Immunity**: The presence of rubella antibodies rules out a primary infection during the pregnancy. Antibodies derived from a natural, wild infection lead to lifelong immunity. Antibodies from a live-attenuated virus are not as durable.

- **Susceptibility**: An absence of antibodies leaves the woman at risk for a primary rubella infection in pregnancy that can have devastating fetal effects, particularly in the first trimester. Rubella immunization is contraindicated in pregnancy because it is made from a live virus but is recommended after delivery.
Hepatitis B Virus (HBV)

- HBV surface antibodies are expected from a successful vaccination.
- The presence of HBV surface antigen represents either a previous or current infection. HBV surface antigen indicates high risk for vertical transmission of HBV from the mother to the fetus or neonate. This is the only specific hepatitis test obtained routinely on the prenatal laboratory panel.
- The presence of HBV E antigen signifies a highly infectious state.

Type, Rh, and Antibody Screening

- The patient's blood type and Rh is determined with the direct Coombs test. If the patient is Rh-negative, she is at risk for anti-D isoimmunization.
- The presence of atypical RBC antibodies is determined with the indirect Coombs test (or atypical antibody test [AAT]). Isoimmunization is identified if atypical antibodies are present. Follow-up testing is necessary to identify whether the fetus is at risk.

STD Screening

- Cervical cultures: Screening cultures for chlamydia and gonorrhea will identify whether the fetus is at risk from delivery through an infected birth canal.
- Syphilis: Nonspecific screening tests (venereal disease research laboratory [VDRL] or rapid plasma reagin [RPR]) are performed on all pregnant women. Positive screening tests must be followed up with treponema-specific tests (microhemagglutination assay for antibodies to T. pallidum [MHA-TP] or fluorescent treponema antibody absorption [FTA]). Treatment of syphilis in pregnancy requires penicillin to ensure adequate fetal treatment.
- Hepatitis B: Maternal hepatitis B surface antigen (HBsAg) screening assesses if the mother could have active hepatitis, as well as if she could transmit HBV to her newborn at the time of delivery.

Table I-5-1. Initial Prenatal Labs for STDs

<table>
<thead>
<tr>
<th></th>
<th>Screening</th>
<th>DNA probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydia/Gonorrhea (GC)</td>
<td>Screening</td>
<td>DNA probes</td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td>Screening</td>
<td>Hepatitis B surface antigen (HBsAg)</td>
</tr>
<tr>
<td>Syphilis</td>
<td>Screening</td>
<td>VDRL/rapid plasma reagin (RPR)</td>
</tr>
<tr>
<td></td>
<td>Definitive</td>
<td>Microhemagglutination assay/fluorescent treponema antibody absorption (MHA/FTA)</td>
</tr>
<tr>
<td>HIV</td>
<td>Screening</td>
<td>Enzyme-linked, immunosorbent assay (ELISA)</td>
</tr>
<tr>
<td></td>
<td>Definitive</td>
<td>Western Blot</td>
</tr>
</tbody>
</table>
Urine Screening

- **Urine analysis**: Assessment of proteinuria, ketones, glucose, leukocytes, and bacteria is important to screen for **underlying renal disease**, diabetes, and infection.

- **Culture**: Screening for **asymptomatic bacteriuria** (ASB) is essential (~8% of pregnant women have ASB). Left untreated, 30% of ASB progresses to pyelonephritis, which is associated with septic shock, pulmonary edema, and adult respiratory distress syndrome.

Tuberculosis (TB) Screening

Antituberculosis drugs are not contraindicated in pregnancy.

- **PPD or tine test**: This screening skin test determines **previous exposure to TB**. TB screening is not done routinely and performed only on high-risk populations. A negative test means no further follow-up is necessary. A positive test is induration, not erythema.

- **Chest x-ray**: If the screening skin test is positive, a chest x-ray is performed to rule out active disease. If the chest x-ray is **negative**, isoniazid (INH) (and vitamin B6) is given for 9 months. If the chest x-ray is **positive**, induced sputum is cultured and triple medications begun until cultures define the organisms involved.

HIV Screening

HIV screening is recommended for all pregnant women as part of the initial lab testing. The CDC recommends **Informed Refusal** (or “Opt Out,” where a patient is tested unless she refuses), rather than **Informed Consent** (or “Opt In,” where a patient must specifically consent). Retesting should take place in the third trimester in areas of high HIV prevalence or an at-risk patient. Rapid HIV testing in labor is recommended if the patient's HIV status is not known.

- The **ELISA test** (screening test) assesses presence of detectable HIV antibodies. A three-month lag exists between HIV infection and a positive ELISA test. All babies born to HIV-positive women will be HIV-antibody positive from passive maternal antibodies.

- The **Western blot test** (definitive test) identifies the presence of HIV core and envelope antigens. Triple antiviral therapy is recommended for all HIV-positive women starting at 14 weeks and continuing through delivery. With cesarean delivery and triple antiviral therapy, transmission rates are as low as 1%.

SECOND TRIMESTER LABORATORY TESTS

A 23-year-old woman (G3 P1 Ab1) is seen at 16 weeks’ gestation. Her previous pregnancy resulted in an anencephalic fetus that did not survive. She took 4 mg of folate preconception before this pregnancy but wants to know whether this fetus is affected.

Maternal Serum α-Fetoprotein (MS-AFP)

- **Alpha-fetoprotein** (AFP) is the major serum glycoprotein of the embryo. The concentration peaks at 12 weeks in the fetus and amniotic fluid (AF), then rises until 30 weeks in the maternal serum. Fetal structural defects (open neural tube defect
[NTD] and ventral wall defects) result in increased spillage into the amniotic fluid and maternal serum. Other causes include twin pregnancy, placental bleeding, fetal renal disease, and sacrococcygeal teratoma.

<table>
<thead>
<tr>
<th>Major Serum Glycoprotein of the Embryo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal AFP changes</td>
</tr>
<tr>
<td>Fetal serum</td>
</tr>
<tr>
<td>Amniotic fluid</td>
</tr>
<tr>
<td>Maternal serum</td>
</tr>
</tbody>
</table>

- **MS-AFP** is reported in multiples of the median (MoM) and is always performed as part of multiple marker screenings. Maternal serum testing is performed within a gestational window of **15–20 weeks**. Because reference ranges are specific to gestational age, accurate pregnancy dating is imperative.

Figure I-5-1. Midpoints of MSAFP

Elevated MS-AFP: A positive high value is >2.5 MoM. The next step in management is to obtain an obstetric ultrasound to confirm gestational dating. The most common cause of an elevated MS-AFP is **dating error.**

- If the true gestational age is more advanced than the assumed gestational age, it would explain the positive high value. In cases of dating error, repeat the MS-AFP if the pregnancy is still within the 15- to 20-week window. A normal MS-AFP will be reassuring.
- If the dates are correct and no explanation is seen on sonogram, perform amniocentesis for AF-AFP determination and acetylcholinesterase activity. Elevated levels of **AF acetylcholinesterase** activity are specific to open NTD.
- With unexplained elevated MS-AFP but normal AF-AFP, the pregnancy is statistically at risk for intrauterine growth restriction (IUGR), stillbirth, and preeclampsia.

Low MS-AFP: A positive low value is <0.85 MoM. The sensitivity of MS-AFP alone for trisomy 21 is only 20%. The next step in management is to obtain an obstetric ultrasound to confirm gestational dating. The most common cause of a low MS-AFP is **dating error.**

- If the true gestational age is less than the assumed gestational age, it would explain the positive low value. In cases of dating error, repeat the MS-AFP if the pregnancy is still within the window. A normal MS-AFP will be reassuring.
- If the dates are correct and no explanation is seen on sonogram, perform amniocentesis for **karyotype.**
Chapter 5 • Prenatal Laboratory Testing

Quadruple Marker Screen

- **Trisomy screening**: The sensitivity for trisomy 21 detection can be increased to 80% by performing maternal serum screen for not only MS-AFP, but also hCG, estriol, and inhibin-A. The window for testing is also **15–20 weeks**. Because reference values are gestational age specific, accurate dating is important.

- **Trisomy 21**: With Down syndrome, levels for MS-AFP and estriol are decreased, but **hCG and inhibin-A are increased**. Perform an amniocentesis for **karyotype**.

- **Trisomy 18**: With Edward syndrome, levels for **all four markers** (MS-AFP, estriol, inhibin-A, and hCG) **are decreased**. Perform an amniocentesis for **karyotype**.

THIRD-TRIMESTER LABORATORY TESTS

A 33-year-old woman (G4 P3) is at 25 weeks’ gestation. Her height is 63 inches (160 cm) and weight 250 pounds (113 kg) for a BMI of 44.3. She has gained 30 pounds thus far this pregnancy. With her last pregnancy she gained 60 pounds, was diagnosed with gestational diabetes, and delivered a 4,300-g female neonate by cesarean section. She wants to know whether she has diabetes with this pregnancy.

Diabetic Testing

- **1-h 50-g oral glucose tolerance test (OGTT)**: **screening** test administered to all pregnant women between 24–28 weeks’ gestation (no fasting state is needed).
 A 50-g glucose load is given, and serum glucose is measured 1 h later. A **normal value** is <140 mg/dL. An abnormal value is ≥140 mg/dL (15% of pregnant women). **Management** is a 3-h 100-g OGTT.
3-h 100-g OGTT: definitive test for glucose intolerance in pregnancy (15% of women with an abnormal screening test will be found to have gestational diabetes mellitus). After an overnight fast, a fasting blood sugar (FBS) is drawn. An FBS value >125 mg/dL indicates overt diabetes mellitus, and no further testing is performed. An FBS value <126 mg/dL requires administration of a 100-g glucose load, followed by glucose levels at 1, 2, and 3 h.

- Normal values are FBS <95 mg/dL, 1 h <180 mg/dL, 2 h <155 mg/dL, and 3 h <140 mg/dL.
- Gestational diabetes is diagnosed if ≥2 values are abnormal.
- Impaired glucose intolerance is diagnosed if only 1 value is abnormal.

Complete Blood Count

- **Anemia:** A complete blood count (CBC) should be performed between 24–28 weeks’ gestation in all women. With the increasing diversion of iron to the fetus in the second and third trimester, iron deficiency, which was not present early in pregnancy, may develop (particularly in those not taking iron supplementation).
 - Hemoglobin <10 g/dL is considered anemia.
 - The most common cause is iron deficiency, which occurs only after bone marrow iron stores are completely depleted.

- **Platelet count:** Reassessment of pregnancy-induced thrombocytopenia can be also be done with the CBC.

Atypical Antibody Screen

- Before giving prophylactic RhoGAM to an Rh-negative woman, an indirect Coombs test is performed at 28 weeks. This is obtained to ensure she has not become isoimmunized since her previous negative AAT earlier in pregnancy.

- Two-tenths of a percent of Rh-negative women will become isoimmunized from spontaneous feto-maternal bleeding before 28 weeks.

- If it is discovered that the patient already has anti-D antibodies, administration of RhoGAM is futile.
Learning Objectives

- Differentiate between placental disorders and late pregnancy bleeding, including abruptio placentae, placenta previa, vasa previa, placenta accreta, placenta increta, and placenta percreta
- Describe the risk factors for and prognosis of uterine rupture

LATE PREGNANCY BLEEDING

Late pregnancy bleeding is vaginal bleeding that occurs after 20 weeks’ gestation. Prevalence is <5%, but when it does occur, prematurity and perinatal mortality quadruple.

- **Cervical** causes include erosion, polyps, and, rarely, carcinoma.
- **Vaginal** causes include varicosities and lacerations.
- **Placental** causes include abruptio placentae, placenta previa, and vasa previa.

Initial Evaluation. What are patient’s vital signs? Are fetal heart tones present? What is fetal status? What is the nature and duration of the bleeding? Is there pain or contractions? What is the location of placental implantation?

Initial Investigation. Complete blood count, disseminated intravascular coagulation (DIC) workup (platelets, prothrombin time, partial thromboplastin time, fibrinogen, D-dimer), type and cross-match, and sonogram for placental location. **Never perform a digital or speculum examination until ultrasound study rules out placenta previa.**

Initial Management. Start an IV line with a large-bore needle; if maternal vital signs are unstable, run isotonic fluids without dextrose wide open and place a urinary catheter to monitor urine output. If fetal jeopardy is present or gestational age is ±36 weeks, the goal is delivery.

Common Causes

Abruptio placenta

A 32-year-old multigravida at 31 weeks’ gestation is admitted to the birthing unit after a motor-vehicle accident. She complains of sudden onset of moderate vaginal bleeding for the past hour. She has intense, constant uterine pain and frequent contractions. Fetal heart tones are regular at 145 beats/min. On inspection her perineum is grossly bloody.

OB Triad

Abruptio Placenta

- Late trimester painful bleeding
- Normal placental implantation
- Disseminated intravascular coagulopathy (DIC)
In abruptio placentae, a normally implanted placenta (not in the lower uterine segment) separates from the uterine wall before delivery of the fetus. Separation can be partial or complete.

- Most commonly, bleeding is **overt and external**. In this situation blood dissects between placental membranes exiting out the vagina.
- Less commonly, if bleeding remains **concealed or internal**, the retroplacental hematoma remains within the uterus, resulting in an increase in fundal height over time.

Diagnosis is based on the presence of painful late-trimester vaginal bleeding with a normal fundal or lateral uterine wall **placental implantation** not over the lower uterine segment.

Clinical Presentation. Abruptio placentae is the most common cause of late-trimester bleeding (1% of pregnancies at term). It is the most common cause of painful late-trimester bleeding. Classification is made as follows:

- With **mild abruption**, vaginal bleeding is minimal with no fetal monitor abnormality. Localized uterine pain and tenderness is noted, with incomplete relaxation between contractions.
- With **moderate abruption**, symptoms of uterine pain and moderate vaginal bleeding can be gradual or abrupt in onset. From 25–50% of placental surface is separated. Fetal monitoring may show tachycardia, decreased variability, or mild late decelerations.
- With **severe abruption**, symptoms are usually abrupt with a continuous knife-like uterine pain. More than 50% of placental separation occurs. Fetal monitor shows severe late decelerations, bradycardia, or even fetal death. Severe disseminated intravascular coagulation (DIC) may occur.
- Ultrasound visualization of a retroplacental hematoma may be seen.

Figure I-6-1. Abruptio Placentae

Abruptio placentae is seen more commonly with **previous abruption**, **hypertension**, and **maternal blunt trauma**. Other risk factors are smoking, maternal cocaine abuse, and premature membrane rupture.
Management is variable:

- **Emergency cesarean delivery** is performed if maternal or fetal jeopardy is present as soon as the mother is stabilized.

- **Vaginal delivery** is performed if bleeding is heavy but controlled or pregnancy is >36 weeks. Perform amniotomy and induce labor. Place external monitors to assess fetal heart rate pattern and contractions. Avoid cesarean delivery if the fetus is dead.

- **Conservative in-hospital observation** is performed if mother and fetus are stable and remote from term, bleeding is minimal or decreasing, and contractions are subsiding. Confirm normal placental implantation with sonogram and replace blood loss with crystalloid and blood products as needed.

Complications include the following:

- Severe abruption can result in hemorrhagic shock with **acute tubular necrosis** from profound hypotension and **DIC** from release of tissue thromboplastin into the general circulation from the disrupted placenta.

- **Couvelaire uterus** refers to blood extravasating between the myometrial fibers, appearing like bruises on the serosal surface.

Placenta previa

A 34-year-old multigravida at 31 weeks’ gestation comes to the birthing unit stating she woke up in the middle of the night in a pool of blood. She denies pain or uterine contractions. Examination of the uterus shows the fetus to be in transverse lie. Fetal heart tones are regular at 145 beats/min. On inspection her perineum is grossly bloody.

Placenta previa occurs when the placenta is implanted in the **lower uterine segment**. This is common early in the pregnancy, but is not typically associated with bleeding.

- Usually the lower implanted placenta atrophies and the upper placenta hypertrophies, resulting in **migration of the placenta**. At term, placenta previa is found in only 0.5% of pregnancies.

- Symptomatic placenta previa occurs when painless vaginal bleeding develops through avulsion of the anchoring villi of an **abnormally implanted** placenta as lower uterine segment stretching occurs in the latter part of pregnancy.

Diagnosis is based on the presence of **painless** late-trimester vaginal bleeding with an obstetric ultrasound showing placental implantation over the **lower uterine segment**. Classification is made as follows:

- **Total, complete, or central previa** is found when the placenta completely covers the internal cervical os. This is the most dangerous location because of its potential for hemorrhage.

- **Partial previa** exists when the placenta partially covers the internal os.

- **Marginal or low-lying previa** exists when the placental edge is near but not over the internal os.
Clinical Presentation. The classic picture is painless late-pregnancy bleeding, which can occur during rest or activity, suddenly and without warning. It may be preceded by trauma, coitus, or pelvic examination. The uterus is nontender and nonirritable.

Risk Factors. Placenta previa is seen more commonly with previous placenta previa and multiple gestation. Other risk factors are multiparity and advanced maternal age.

Management is variable:

- Emergency cesarean delivery is performed if maternal or fetal jeopardy is present after stabilization of the mother.
- Conservative in-hospital observation (bed rest) is performed in preterm gestations if mother and fetus are stable and remote from term. The initial bleed is rarely severe. Confirm abnormal placental implantation with sonogram and replace blood loss with crystalloid and blood products as needed.
- Scheduled cesarean delivery is performed if the mother has been stable after fetal lung maturity has been confirmed by amniocentesis, usually at 36 weeks’ gestation.

Complications can include:

- If placenta previa occurs over a previous uterine scar, the villi may invade into the deeper layers of the decidua basalis and myometrium, resulting in intractable bleeding requiring cesarean hysterectomy.
- Profound hypotension can cause anterior pituitary necrosis (Sheehan’s syndrome) or acute tubular necrosis.

Uncommon Causes

Morbidly adherent placenta

Normally, placental villi invade only the superficial layers of the endometrial decidua basalis. When the villi invade too deeply into the wall of the uterus, the condition is known as placenta accreta, placenta increta, or placenta percreta, depending on the depth of the invasion.
Approximately 1 in 2,500 pregnancies experience placenta accreta, increta, or percreta.

- **Placenta accreta** (most common, 80% of cases) occurs when the villi invade the deeper layers of the endometrial decidua basalis but do not penetrate the myometrium.
- **Placenta increta** (15% of cases) occurs when the villi invade the myometrium but do not reach the uterine serosal surface or the bladder.
- **Placenta percreta** (5% of cases) occurs when the villi invade all the way to the uterine serosa or into the bladder.

Vasa previa

A 21-year-old primigravida at 38 weeks’ gestation is admitted to the birthing unit at 6-cm dilation with contractions occurring every 3 min. Amniotomy (artificial rupture of membranes) is performed, resulting in sudden onset of bright red vaginal bleeding. The electronic fetal monitor tracing, which had showed a baseline fetal heart rate (FHR) of 135 beats/min with accelerations, now shows a bradycardia at 70 beats/min. The mother’s vital signs are stable with normal blood pressure and pulse.

Vasa previa is present when fetal vessels traverse the fetal membranes over the internal cervical os. These vessels may be from either a velamentous insertion of the umbilical cord or may be

OB Triad

Abnormal Placental Invasion

- **Accreta**: deeper layers decidua basalis
- **Increta**: myometrium not complete
- **Percreta**: uterine serosa or bladder

Vasa Previa

- Amniotomy—AROM
- Painless vaginal bleeding
- Fetal bradycardia
joining an accessory (succenturiate) placental lobe to the main disk of the placenta. If these fetal vessels rupture the bleeding is from the fetoplacental circulation, and fetal exsanguination will rapidly occur, leading to fetal death.

Diagnosis. This is rarely confirmed before delivery but may be suspected when antenatal sonogram with color-flow Doppler reveals a vessel crossing the membranes over the internal cervical os. The diagnosis is usually confirmed after delivery on examination of the placenta and fetal membranes.

Clinical Presentation. The **classic triad** is rupture of membranes and **painless** vaginal bleeding, followed by fetal bradycardia.

Vasa previa is seen more commonly with **velamentous insertion** of the umbilical cord, **accessory placental lobes**, and multiple gestation.

Management. Immediate cesarean delivery of the fetus is essential or the fetus will die from hypovolemia.

Figure I-6-4. Vasa Previa
Uterine rupture

A 27-year-old G2 P1 woman comes to the maternity unit for evaluation for regular uterine contractions at 34 weeks' gestation. Her previous delivery was an emergency cesarean section at 32 weeks because of hemorrhage from placenta previa. A classical uterine incision was used because of lower uterine segment varicosities. Pelvic exam shows the cervix to be closed and long. As she is being evaluated, she experiences sudden abdominal pain, profuse vaginal bleeding, and fetal bradycardia. Uterine contractions cannot be detected. The fetal head, which was at –1 station, now is floating.

Uterine rupture is **complete separation** of the wall of the pregnant uterus with or without expulsion of the fetus that endangers the life of the mother or the fetus, or both. The rupture may be **incomplete** (not including the peritoneum) or **complete** (including the visceral peritoneum).

Clinical Presentation. The most common findings are vaginal bleeding, loss of electronic fetal heart rate signal, abdominal pain, and loss of station of fetal head. Rupture may occur both before labor as well as during labor.

Diagnosis. Confirmation of the diagnosis is made by **surgical exploration** of the uterus and identifying the tear.

The most common risk factors are previous **classic uterine incision**, **myomectomy**, and excessive oxytocin stimulation. Other risk factors are grand multiparity and marked uterine distention.

A vertical fundal uterine scar is 20 times more likely to rupture than a low segment incision. Maternal and perinatal mortality is also much higher with the vertical incision rupture.

Management. Treatment is surgical. **Immediate delivery** of the fetus is imperative. Uterine repair is indicated in a stable young woman to conserve fertility. Hysterectomy is performed in the unstable patient or one who does not desire further childbearing.

OB Triad

Uterine Rupture
- Late trimester painful bleeding
- Previous uterine incision
- High perinatal mortality
Learning Objective

- Describe the route of transmission and common complications of perinatal infections including group B beta-hemolytic streptococci, toxoplasmosis, varicella zoster, rubella, cytomegalovirus, HSV, HIV, syphilis, and hepatitis B

Figure I-7-1. Prevalence of IgG Seropositivity in Pregnant Women

NONSEXUALLY TRANSMITTED

Group B β-Hemolytic Streptococci

A 20-year-old woman G2 P1 is admitted to the birthing unit at 35 weeks’ gestation in active labor at 6 cm dilation. Her prenatal course was unremarkable, with the exception of a positive first-trimester urine culture for GBS. Her first baby was hospitalized for 10 days after delivery for GBS pneumonia.

OB Triad

GBS Neonatal Sepsis
- Newborn sepsis
- Within hours of birth
- Bilateral diffuse pneumonia
Group B β-hemolytic streptococci (GBS) is a bacterium commonly found in normal GI tract flora (30% of women have asymptomatic vaginal colonization with GBS, with the majority having intermittent or transient carrier status). Most neonates delivered to colonized mothers will be culture positive. The significance of this is that 1 in 500 neonates will develop serious clinical infections or sepsis.

- **Early onset** infection is the most common finding, occurring within a few hours to days of birth, and is characterized by fulminant pneumonia and sepsis. This is usually vertical transmission from mother to neonate, with a 30% mortality rate at or before 33 weeks but <5% at term.

- **Late-onset** infection is less common, occurring after the first week of life, and is characterized by meningitis. This is usually hospital acquired, with a 5% mortality rate.

Prevention is to decrease early-onset infection only. Intrapartum antibiotic prophylaxis of neonatal GBS sepsis is given with IV penicillin G. If the patient is penicillin-allergic, use clindamycin or vancomycin.

Candidates for antibiotic prophylaxis are selected as follows:

- **No screening**: All women with a positive GBS urine culture or a previous baby with GBS sepsis will receive intrapartum prophylaxis. Prophylaxis of other women is based on either of the following two protocols, each of which will prevent 70% of neonatal sepsis.

- **Screening by vaginal culture**: Third-trimester vaginal and rectal cultures are obtained at 35–37 weeks gestational age, and intrapartum prophylaxis is administered only to those with positive GBS cultures. Antepartum treatment is not given.

- **Screening by intrapartum risk factors**: No vaginal cultures are obtained. Intrapartum prophylaxis is given on the basis of risk factors being present: preterm gestation (<37 weeks), membranes ruptured >18 h, or maternal fever (≥100.4°F) (38°C).

Toxoplasmosis

A 26-year-old primigravida was admitted to the birthing unit at 39 weeks’ gestation in active labor at 6 cm dilation. During her second trimester she experienced a mononucleosis-like syndrome. Uterine fundal growth lagged behind that expected on the basis of a first-trimester sonogram. Serial sonograms showed symmetrical intrauterine growth retardation (IUGR). She delivered a 2,250 g male neonate who was diagnosed with microcephaly, intracranial calcifications, and chorioretinitis.

Toxoplasmosis is caused by a parasite (*Toxoplasma gondii*) transmitted most commonly in the United States from exposure to infected cat feces. Infections can also occur from drinking raw goat milk or eating raw or undercooked infected meat.

- **Vertical transmission** from mother to fetus or neonate can only occur during the parasitemia of a primary infection because the result is residual lifelong immunity.

- Up to 40% of pregnant women are toxoplasmosis IgG seropositive.

- First-trimester infection risk is low (15%), but infections are most serious, even lethal.

- Third-trimester infection risk is high (50%), but infections are mostly asymptomatic.
Significance.

- **Fetal infection**: Manifestations may include symmetric IUGR, nonimmune fetal hydrops, microcephaly, and **intracranial calcifications**.
- **Neonatal presentation**: Manifestations may include chorioretinitis, seizures, hepatosplenomegaly, and thrombocytopenia.

Prevention includes avoidance of infected cat feces, raw goat milk, and undercooked meat.

Treatment. Pyrimethamine and sulfadiazine for known infections; spiramycin to prevent vertical transmission from the mother to the fetus.

Varicella

A 29-year-old woman (G2 P1) is at 34 weeks’ gestation. She complains of uterine contractions every 5 min. During the last few days she has developed diffuse pruritic vesicles on her neck that appear to be also developing on her chest and breasts. She has a fever and complains of malaise.

Varicella zoster (VZV) is a DNA virus that is the causative agent of chicken pox and herpes zoster. It is spread by **respiratory droplets**, but is less contagious than rubeola or rubella. By adulthood, >90% of women are immune.

Significance.

- **Fetal infection**: Transplacental infection rate is as low as 2%, with 25% mortality.
- **Neonatal presentation**: Congenital varicella syndrome is characterized by “zigzag” skin lesions, mulberry skin spots, optic atrophy, cataracts, chorioretinitis, extremity hypoplasia, and motor and sensory defects. The greatest neonatal risk is if maternal rash appears between 5 days antepartum and 2 days postpartum. No passive IgG antibodies are present.
- **Maternal infection**: 10% of patients with varicella will develop varicella pneumonia, which has a high maternal morbidity and mortality. Communicability begins 1–2 days before vesicles appear and lasts until all vesicles are crusted over. Pruritic vesicles begin on the head and neck, progressing to the trunk. The infection can trigger labor.

Prevention includes administration of VZIG (varicella zoster immune globulin) to a susceptible gravida within 96 h of exposure. Live-attenuated varicella virus (Varivax III) can be administered to nonpregnant or postpartum to varicella IgG-antibody-negative women.

Treatment. IV antiviral treatment with **acyclovir** for varicella pneumonia, encephalitis, or the immunocompromised.

Rubella

An 18-year-old primigravida is at 30 weeks’ gestation and is employed in a childcare center. One of the children had a rash that was diagnosed as rubella. The patient’s rubella IgG titer is negative. She is concerned about the possibility of her fetus getting infected with rubella.

OB Triad

Congenital Varicella
- “Zig-zag” skin lesions
- Microphthalmia
- Extremity hypoplasia

OB Triad

Congenital Rubella
- Congenital deafness
- Congenital cataracts
- Congenital heart disease
Rubella is a highly contagious RNA virus that is spread by respiratory droplets. Up to 85% of pregnant women are rubella IgG seropositive. Vertical transmission from mother to fetus or neonate can only occur during the viremia of a primary infection because the result is residual lifelong immunity.

- **Fetal infection:** Transplacental infection rate is >90% in first 10 weeks of pregnancy, but 5% in third trimester. Manifestations may include symmetric IUGR, microcephaly, or ventriculoseptal defect (VSD).
- **Neonatal infection:** Congenital rubella syndrome is characterized by congenital deafness (most common sequelae), congenital heart disease, cataracts, intellectual disability, hepatosplenomegaly, thrombocytopenia, and “blueberry muffin” rash.
- **Maternal infection:** Rubella infection during pregnancy is generally a mild, low-morbidity condition.

Prevention includes rubella IgG antibody screening for all pregnant women. Rubella-susceptible women should avoid known rubella cases, then receive active immunization after delivery. Because rubella vaccine is made using a live attenuated virus, pregnancy should be avoided for one month after immunization.

Treatment. No specific treatment is available.

Coxsackie Virus

Coxsackie is an enterovirus commonly known as hand, foot and mouth disease (HFMD). It is common, and pregnant women are frequently exposed to it, especially in summer and fall months. Infections are spread by fecal-oral and respiratory routes, with the majority of infections mild or asymptomatic mostly affecting children.

- **Fetal infection:** Enteroviruses rarely cross the placenta and cause disease in the fetus. There is no evidence of infection causing increased miscarriages, stillbirths, or malformations. Vertical transmission may occur at birth with exposure of the fetus to virus-containing maternal secretions.
- **Neonatal presentation:** Newborns who acquire infection from mothers at delivery are at risk of severe disease including sepsis, encephalitis, myocarditis, and pneumonia.
- **Maternal infection:** Most enterovirus infections during pregnancy cause mild or no illness in the mother. Clinical findings, when they occur, can include fever, oral vesicles of the mouth and tongue, as well as lesions on the hands and feet. Infection in the third trimester can trigger labor.

Prevention includes avoiding individuals with possible disease. Maintain good handwashing practices and wear a mask if contact with an infected person is unavoidable.

Treatment. No specific therapy is available.

Parvovirus B19

Parvovirus B-19 is a DNA virus also known as fifth disease. It is a common childhood illness characterized by a “slapped cheek” appearance on the face. When infection occurs in adults it is most often asymptomatic or mild. It preferentially infects rapidly dividing cells such as RBC precursors and stimulates apoptosis or cell death. About 50% pregnant woman have protective IgG antibodies. Vertical transmission is transplacental at the time of primary viremia.
• **Fetal infection:** Almost all fetal losses are linked to infections occurring prior to 20 weeks. Parvovirus B-19 is cytotoxic to fetal RBC precursors and may cause fetal anemia and hydrops fetalis. This non-immune hydrops is seen more commonly with infections prior to 32 weeks. Transient isolated fetal pleural or pericardial effusions may be seen that resolve spontaneously prior to delivery. The effusions are thought to be due to direct cardiac/pleural inflammation.

• **Neonatal presentation:** While fetal hydrops can occur, most intrauterine parvovirus infections do not have an adverse outcome. There is no evidence of teratogenicity.

• **Maternal infection:** Maternal parvovirus B-19 infections are mild and generally do not include the rash seen in children. Joint pains and fever may occur but the clinical course is usually self-limited.

Prevention. Pregnant women exposed to or with symptoms of parvovirus infection should have serologic testing for IgG and IgM antibodies.

- A positive IgG and negative IgM is consistent with maternal immunity so the fetus is protected.
- A positive IgM antibody is consistent with acute infection and should initiate obstetric ultrasound assessment starting at 22 weeks, looking for evidence of fetal hydrops as well as fetal Doppler screening for anemia.

Treatment. Intrauterine transfusion for severe fetal anemia (only intervention available).

Zika Virus

Zika virus is a mosquito-borne RNA flavivirus. Vertical transmission is transplacental; however, because the virus can persist longer in the serum of a pregnant woman as compared to that of one who is not, the fetus is at risk for infection and major CNS anomalies even if the mother is asymptomatic.

• **Fetal infection:** The greatest risk of serious perinatal sequelae appears to be with 1st and 2nd trimester infections. Ultrasound abnormalities seen with congenital infections include fetal growth restriction, ventriculomegaly, microcephaly, and intracranial calcifications.

• **Neonatal presentation:** Newborn findings other than listed above include ocular abnormalities (e.g. retinal atrophy, microphthalmia), hearing loss, and neurologic abnormalities (e.g. hypertonia, hypotonia, seizures).

• **Maternal infection:** Clinical signs consistent with Zika infection are maculopapular rash, arthralgias, conjunctivitis and fever. Only 20% of infected women will have these findings which are often mild. Zika can also be transmitted though sex without a condom with an infected person even if there are no symptoms.

Prevention. Pregnant women in endemic areas should follow steps to prevent mosquito bites. Avoid unprotected sex with an infected partner. Symptomatic or Zika-exposed women should undergo serum and urine nucleic acid test and IgM serology as soon as possible through 12 weeks after. Positive blood tests should be followed up by prenatal ultrasound and repeated monthly looking for findings listed above.

Treatment. No specific maternal treatment.
Cytomegalovirus

A 31-year-old neonatal intensive care unit nurse has just undergone an uncomplicated term spontaneous vaginal delivery of a 2,300 g female neonate with a diffuse petechial rash. At 12 weeks’ gestation she experienced a flu-like syndrome with right upper quadrant pain. Obstetric sonograms showed fetal growth was only at the fifth percentile.

Cytomegalovirus (CMV) is a DNA herpes virus that is spread by infected body secretions. Up to 50% of pregnant women are CMV IgG seropositive. Vertical transmission from mother to fetus or neonate occurs mainly during the viremia of a primary infection. However, because the result of primary infection is predisposition to a residual lifelong latency, fetal infection can occur with reactivation.

Significance.

- **Fetal infection:** Transplacental infection rate is 50% with maternal primary infections regardless of the pregnancy trimester, but <1% with recurrent infections. Manifestations may include nonimmune hydrops, symmetric IUGR, microcephaly, and cerebral calcifications in a periventricular distribution.

- **Neonatal infection:** From 1–2% of newborns have evidence of in utero exposure to CMV. Congenital CMV syndrome is the most common congenital viral syndrome in the United States. CMV is the most common cause of sensorineural deafness in children. Only 10% of infected infants have clinical disease, which includes petechiae, mulberry skin spots, meningoencephalitis, periventricular calcifications, hepatosplenomegaly, thrombocytopenia, and jaundice.

- **Maternal infection:** CMV infection during pregnancy is generally a mild, low-morbidity condition appearing as a mononucleosis-like syndrome with hepatitis.

Prevention includes following universal precautions with all body fluids. Avoid transfusion with CMV-positive blood.

Treatment. Antiviral therapy with ganciclovir

Herpes Simplex Virus

A 21-year-old multipara was admitted to the birthing unit at 39 weeks’ gestation in active labor at 6 cm dilation. The bag of water is intact. She had a history of genital herpes preceding the pregnancy. Her last outbreak was 8 weeks ago. She now complains of pain and pruritis. On examination she had localized, painful, ulcerative lesions on her right vaginal wall.
Herpes simplex virus (HSV) is a DNA herpes virus that is spread by intimate mucocutaneous contact. Up to 50% of pregnant women are HSV IgG seropositive.

- Most genital herpes results from HSV II, but can also occur with HSV I.
- Transplacental transmission from mother to fetus can occur with viremia during the primary infection but is rare. HSV infection predisposes to a residual lifelong latency with periodic recurrent attacks. The most common route of fetal infection is contact with maternal genital lesions during a recurrent HSV episode.

Diagnosis. The definitive diagnosis is a positive HSV culture from fluid obtained from a ruptured vesicle or debrided ulcer, but there is a 20% false-negative rate. PCR is 2–4x more sensitive and is best to detect viral shedding.

Significance.

- **Fetal infection:** The transplacental infection rate is 50% with maternal primary infections. Manifestations may include spontaneous abortions, symmetric IUGR, microcephaly, and cerebral calcifications.
- **Neonatal infection:** With passage through an HSV-infected birth canal, the neonatal attack rate is 50% with a primary infection, but <5% with a recurrent infection. Neonatal mortality rate is 50%. Those who survive have severe sequelae: meningoencephalitis, intellectual disability, pneumonia, hepatosplenomegaly, jaundice, and petechiae.
- **Maternal infection** (two types):
 - **Primary herpes** results from a viremia and has systemic manifestations: fever, malaise, adenopathy, and diffuse genital lesions (vagina, cervix, vulva, and urethra). Transplacental fetal infection is possible; however, in 2/3 of cases the infection is mild or subclinical.
 - **Recurrent herpes** results from migration of the virus from the dorsal root ganglion but is localized and less severe, with no systemic manifestations. Fetal infection results only from passing through a birth canal with lesions present.

Prevention includes performing a cesarean section in the presence of genital HSV lesions at the time of labor. (If membranes have been ruptured >8–12 h, the virus may already have infected the fetus and cesarean delivery would be of no value.)

Treatment. Acyclovir.

Human Immunodeficiency Virus

A 22-year-old multigravida is a former IV drug user. She was diagnosed as HIV positive 12 months ago during her previous pregnancy. She underwent vaginal delivery of an infant who is also HIV positive. She is now pregnant again at 15 weeks’ gestation.

Human immunodeficiency virus (HIV) is an RNA retrovirus spread by infected body secretions. Sharing contaminated needles, having sexual intercourse with an infected partner, and perinatal transmission are the most common modes of transmission.

The infected patient develops acquired immunodeficiency syndrome (AIDS). The clinical course from HIV to AIDS is a gradual but relentless immunosuppression during a period of years, resulting in death caused by overwhelming infection from opportunistic diseases.
Significance.

- **Fetal infection**: Transplacental infection occurs, but the major route of vertical transmission is contact with infected genital secretions at the time of vaginal delivery. Without maternal azidothymidine (AZT) prophylaxis, the vertical transmission rate is 30%, but with AZT the infection rate drops to 10% with vaginal delivery. With elective cesarean section without labor and before membrane rupture, the perinatal infection rate may be <5%. The greatest benefit to the fetus of cesarean delivery is probably in women with low CD4 counts and high RNA viral loads, making infection through a vaginal delivery much more likely.

- **Neonatal infection**: At birth neonates of HIV-positive women will have positive HIV tests from transplacental passive IgG passage. HIV-infected breast milk can potentially transmit the disease to the newborn. Progression from HIV to AIDS in infants is more rapid than in adults.

- **Maternal infection**: Pregnancy in an HIV-positive woman does not enhance progression to AIDS.

Prevention includes the following:

- **Antiviral prophylaxis**: The U.S. Public Health Service recommends that HIV-infected pregnant women be offered combination treatment with HIV-fighting drugs to help protect their health and prevent passing the infection on to their babies. Infected pregnant women should take triple-drug therapy including the drug zidovudine (ZDV) as part of their drug regimen, starting at 14 weeks and continuing throughout pregnancy, intrapartum, and after delivery.

- **Mode of delivery**: Vaginal delivery should be planned at 39 weeks, with the following guidelines:
 - Avoid amniotomy as long as possible.
 - Do not use scalp electrodes in labor.
 - Avoid forceps or vacuum extractor operative delivery.
 - Use gentle neonatal resuscitation.
 - If viral load $\geq 1,000$ copies/mL, offer cesarean section at 38 weeks without amniocentesis.

- **Breast feeding** should probably be avoided in HIV-positive women.

- **Universal precautions**: Pay careful attention to handling of all body fluids.

Treatment. Combination triple anti-viral HAART therapy for all HIV-positive pregnant women; this includes 2 nucleotide reverse transcriptase inhibitors (NRTIs) with an NNRTI or a protease inhibitor (e.g., zidovudine, lamivudine, or ritonavir).

Syphilis

A 34-year-old multigravida presents for prenatal care in the second trimester. She admits to a past history of substance abuse but states she has been clean for 6 months. With her second pregnancy, she experienced a preterm delivery at 34 weeks’ gestation of a male neonate who died within the first day of life. She states that at delivery the baby was swollen with skin lesions and that the placenta was very large. She was treated with antibiotics but she does not remember the name or other details. On a routine prenatal panel with this current pregnancy she is found to have a positive VDRL (Venereal Disease Research Laboratory) test.
Syphilis is caused by *Treponema pallidum*, a motile anaerobic spirochete that cannot be cultured. Syphilis does not result in a state of immunity or latency; the infection can be eradicated by appropriate treatment but reinfection can occur over and over again. It is spread as a sexually transmitted disease by intimate contact between moist mucous membranes or congenitally through the placenta to a fetus from an infected mother.

Significance.

- **Fetal infection**: Transplacental infection is common with vertical transmission rates of 60% in primary and secondary syphilis. The rate of fetal infection with latent or tertiary syphilis is lower. Without treatment, manifestations of early congenital syphilis include nonimmune hydrops, macerated skin, anemia, thrombocytopenia, and hepatosplenomegaly. Fetal death rates are high, with perinatal mortality rates approaching 50%. The placenta is typically large and edematous.

- **Neonatal infection**: Late congenital syphilis is diagnosed after age 2 years and includes “Hutchinson” teeth, “mulberry” molars, “saber” shins, “saddle” nose, and 8th nerve deafness.

- **Maternal infection** (four types):
 - **Primary syphilis** is the first stage after infection. Papules become painless ulcers with rolled edges (chancres) which appear 2–3 weeks after contact at the site of infection, most commonly the vulva, vagina, or cervix. Darkfield microscopy of lesion exudate is positive for the spirochete, but the nonspecific serologic tests VDRL or rapid plasma reagin (RPR) test) are not yet positive. Without treatment the chancre spontaneously disappears.

 - **Secondary syphilis** is characterized by systemic spirochetemia. Around 2–3 months after contact, fever, malaise, general adenopathy, and a maculopapular skin rash (“money spots”) are seen. Broad exophytic excrescences (condyloma lata) appear on the vulva. These physical findings also spontaneously disappear without treatment. Darkfield microscopy of condyloma exudate is positive for treponema. The VDRL or RPR test will be positive, but a diagnosis of syphilis must be confirmed with a treponema-specific test, such as the fluorescent titer antibody absorption (FTA-ABS) or microhemagglutination assay for antibodies to *T. pallidum* (MHA-TP). The treponema-specific tests do not correlate with disease activity and remain positive in spite of treatment.

 - **Latent syphilis** is characterized by absence of symptoms or physical findings. The nonspecific and treponema-specific tests remain positive. Around 35% of cases proceed to tertiary disease.

 - **Tertiary syphilis** is a symptomatic stage with symptoms dependent on which organ system is affected by the classic necrotic, ulcerative nodules (gummas). Lesion location may include the cardiovascular system (aortitis, saccular aneurysms), CNS (meningitis, tabes dorsalis, dementia, ataxia), or bone (osteitis). Not only are the blood tests positive, but also the cerebrospinal fluid will be positive with CNS involvement.
Table I-7-1. Syphilis in Pregnancy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic lesion</td>
<td>Chancre</td>
<td>Condyloma lata ("money spots")</td>
</tr>
<tr>
<td>Extent of disease</td>
<td>Localized</td>
<td>Systemic</td>
</tr>
<tr>
<td>Lab tests (VDRL, Darkfield, FTA-ABS)</td>
<td>VDRL (−)</td>
<td>VDRL (+)</td>
</tr>
<tr>
<td></td>
<td>Darkfield (+)</td>
<td>Darkfield (+)</td>
</tr>
<tr>
<td></td>
<td>FTA-ABS (+)</td>
<td>FTA-ABS (+)</td>
</tr>
<tr>
<td>Fetal infection rate</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Treatment of choice</td>
<td>Penicillin</td>
<td>Penicillin</td>
</tr>
</tbody>
</table>

Figure I-7-2. Maternal Syphilis

Prevention includes the following:
- Vaginal delivery is appropriate with cesarean section only for obstetric indications.
- Follow the principles of avoiding multiple sexual partners, and promote use of barrier contraceptives.

Management. Benzathine penicillin 2.4 million units IM × 1 in pregnancy to ensure adequate antibiotic levels in the fetus (other antibiotics do not cross the placenta well). Even if the gravida is penicillin-allergic, still give a full penicillin dose using an oral desensitization regimen under controlled conditions.

Follow serology titers at 1, 3, 6, 12, and 24 months. Decrease titers fourfold by 6 months; they should be negative in 12–24 months.
The Jarisch-Herxheimer reaction is associated with treatment and occurs in 50% of pregnant women. It starts in 1–2 hours, peaks in 8 hours, and resolves in 24–48 hours. It is associated with acute fever, headache, myalgias, hypotension, and uterine contractions. Management is supportive care.

Hepatitis B

A 29-year-old multigravida was found on routine prenatal laboratory testing to be positive for hepatitis B surface antigen. She is an intensive care unit nurse. She received 2 units of packed red blood cells two years ago after experiencing postpartum hemorrhage with her last pregnancy.

Hepatitis B (HBV) is a DNA virus that is spread by infected body secretions. Sharing contaminated needles, having sexual intercourse with an infected partner, and perinatal transmission are the most common ways of transmission. Vertical transmission accounts for 40% of all chronic HBV infections. Most HBV infections are asymptomatic.

Significance.

- **Fetal infection:** Transplacental infection is rare, occurring mostly in the third trimester. The main route of fetal or neonatal infection arises from exposure to or ingestion of infected genital secretions at the time of vaginal delivery. There is no perinatal transmission risk if the mother is positive for HBV surface antibodies but negative for HBV surface antigen.
- **Neonatal infection:** Neonatal HBV develops in only 10% of mothers positive for HBsAg but in 80% of those positive for both HBsAg and HBeAg. Of those neonates who get infected, 80% will develop chronic hepatitis, compared with only 10% of infected adults.
- **Maternal infection** (3 types):
 - **Asymptomatic HBV:** The majority of all infected patients fall into this category with no impact on maternal health. Hepatitis B surface antigen (HBsAg) is the screening test used for identifying existing infection and is obtained on all pregnant women. A positive HBsAg test is followed up with a complete hepatitis panel and liver enzymes assessing for active or chronic hepatitis.
 - **Acute hepatitis:** Acute and chronic HBV infections can result in right upper quadrant pain and lethargy varying according to the severity of the infection. Laboratory studies show elevated bilirubin and high liver enzymes. The majority of patients with acute hepatitis will recover normal liver function.
 - **Chronic hepatitis:** Cirrhosis and hepatocellular carcinoma are the most serious consequences of chronic hepatitis.
Prevention includes:

- Vaginal delivery is indicated with cesarean section only for obstetric indications.
- Avoid scalp electrodes in labor as well as scalp needles in the nursery. Neonates of HBsAg-positive mothers should receive passive immunization with hepatitis B immunoglobulin (HB Ig) and active immunization with hepatitis B vaccine. Breast feeding is acceptable after the neonate has received the active immunization and HBIG.
- HBsAg-negative mothers at high risk for hepatitis B should receive HB Ig passive immunization. Active immunization is safe in pregnancy because the agent is a killed virus.

Management. No specific therapy for acute hepatitis; interferon or lamivudine for chronic HBV.

Table I-7-2. HBV in Pregnancy

<table>
<thead>
<tr>
<th>Group</th>
<th>Lifelong</th>
<th>Treatment</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>β streptococcus</td>
<td>Colonization</td>
<td>Penicillin G</td>
<td>Vaginal</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>Immunity</td>
<td>Pyrimethamine sulfadiazine</td>
<td>Vaginal</td>
</tr>
<tr>
<td>Rubella</td>
<td>Immunity</td>
<td>None</td>
<td>Vaginal</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Latency</td>
<td>Ganciclovir</td>
<td>Vaginal</td>
</tr>
<tr>
<td>Varicella/HSV</td>
<td>Latency</td>
<td>Acyclovir</td>
<td>Cesarean section if active HSV</td>
</tr>
<tr>
<td>HIV</td>
<td>Latency</td>
<td>Triple Rx antivirals</td>
<td>Cesarean section if high viral load</td>
</tr>
</tbody>
</table>

Table I-7-3. Key Phrases in Perinatal Infections

<table>
<thead>
<tr>
<th></th>
<th>Findings</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasmosis***</td>
<td>Intracranial calcifications</td>
<td>Chorioretinitis</td>
</tr>
<tr>
<td>Varicella*</td>
<td>Zig zag lesions</td>
<td>Small eyes</td>
</tr>
<tr>
<td>Rubella***</td>
<td>Deafness</td>
<td>Congenital heart disease</td>
</tr>
<tr>
<td>Cytomegalovirus***</td>
<td>Petechiae</td>
<td>Enlarged liver, spleen</td>
</tr>
<tr>
<td>Syphilis*</td>
<td>Hydrops</td>
<td>Macerated skin</td>
</tr>
<tr>
<td>HSV, HIV, HBV△</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

*Associated with IUGR
**Transplacental vertical transmission
△Vaginal delivery vertical transmission
Learning Objectives

- Describe the management of cervical insufficiency and multiple gestation
- Answer questions about alloimmunization
- List the management steps for preterm labor, premature rupture of membranes, and post-term pregnancy

CERVICAL INSUFFICIENCY

A 32-year-old primigravida at 18 weeks’ gestation comes to the maternity unit complaining of pelvic pressure and increasing vaginal mucus discharge. She denies any uterine contractions. On pelvic examination the fetal membranes are seen bulging into the vagina, and no cervix can be palpated. Fetal feet can be felt through the membranes. Two years ago she underwent a cervical conization for cervical intraepithelial neoplasia.

Cervical insufficiency (or cervical incompetency) has been used to describe the inability of the uterine cervix to retain a pregnancy to viability in the absence of contractions or labor.

- In the past, a diagnosis was made on the basis of a history of painless cervical dilation after the first trimester with expulsion of a previable living fetus.
- Recent studies using U/S to examine cervical length suggest that cervical function is not an all-or-none phenomenon, but may be a continuous variable with a range of degrees of competency that may be expressed differently in subsequent pregnancies.

Causes of cervical insufficiency include trauma from rapid forceful cervical dilation associated with second trimester abortion procedures, cervical laceration from rapid delivery, injury from deep cervical conization, and congenital weakness from diethylstilbestrol (DES) exposure.

Diagnosis. Studies show the benefit of elective cervical cerclage with a history of \(\geq 1 \) unexplained second-trimester pregnancy losses. However, the benefit of cervical cerclage placement is unclear in the following situations: sonographic findings of a short cervix or funneling, history of cervical surgery, DES exposure. Serial transvaginal ultrasound evaluations of the cervix after 16–20 weeks may be helpful.

OB Triad
Cervical Insufficiency
- Pregnant 18–22 weeks
- Painless cervical dilation
- Delivery of previable fetus
Management. With sonographic demonstration for fetal normality, elective cerclage placement at 13–14 weeks’ gestation. With sonographic evidence of cervical insufficiency after ruling out labor and chorioamnionitis, possible emergency or urgent cerclage.

- Consider cerclage if cervical length <25 mm by vaginal sonography prior to 24 weeks and prior preterm birth at <34 weeks gestation.
- McDonald cerclage places a removable suture in the cervix. The benefit is that vaginal delivery can be allowed to take place, avoiding a cesarean.
- Shirodkar cerclage utilizes a submucosal placement of the suture that is buried beneath the mucosa and left in place. Cesarean delivery is performed at term.
- Cerclage removal should take place at 36–37 weeks, after fetal lung maturity has taken place but before the usual onset of spontaneous labor that could result in avulsion of the suture.

MULTIPLE GESTATION

A 21-year-old primigravida at 15 weeks’ gestation is seen for a routine prenatal visit. At her last visit four weeks ago, her uterus was appropriate for size and dates. Today, her uterine fundus is palpable at the umbilicus.

Multiple gestation is a pregnancy in which more than one fetus is present. The fetuses may arise from one or more zygotes and are usually separate, but may rarely be conjoined.

Risk Factors.

- Dizygotic twins are most common. Identifiable risk factors include race, geography, family history, or ovulation induction. Risk of twinning is up to 10% with clomiphene citrate and up to 30% with human menopausal gonadotropin.
- Monozygotic twins have no identifiable risk factors.

Diagnosis. Obstetric sonogram demonstration of more than one intrauterine fetus.

Complications for all twin pregnancies include nutritional anemias (iron and folate), pre-eclampsia, preterm labor (50%), malpresentation (50%), cesarean delivery (50%), and postpartum hemorrhage.

<table>
<thead>
<tr>
<th>Table I-8-1. Complications of Twin Pregnancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTEpartum</td>
</tr>
<tr>
<td>Anemia ↑ 3x (iron & folate)</td>
</tr>
<tr>
<td>Preeclampsia ↑ 3x</td>
</tr>
<tr>
<td>Gestational diabetes ↑ 2x</td>
</tr>
<tr>
<td>Thromboembolism ↑ 4x</td>
</tr>
<tr>
<td>INTRApartum</td>
</tr>
<tr>
<td>Preterm labor (50%)</td>
</tr>
<tr>
<td>Malpresentation (50%)</td>
</tr>
<tr>
<td>Cesarean delivery (50%)</td>
</tr>
<tr>
<td>POSTpartum</td>
</tr>
<tr>
<td>Hemorrhage ↑ 5x</td>
</tr>
</tbody>
</table>
Dizygotic twins arise from multiple ovulation with two zygotes. They are always dichorionic, diamnionic.

Monozygotic twins arise from one zygote. Chorionicity and amnionicity vary according to the duration of time from fertilization to cleavage.

- **Up to 72 hours** (separation up to the morula stage), the twins are dichorionic, diamnionic. There are two placentas and two sacs. This is the lowest risk of all monozygotic twins.

- **Between 4-8 days** (separation at the blastocyst stage), the twins are monochorionic, diamnionic. There is one placenta and two sacs. A specific additional complication is twin-twin transfusion, which develops in 15% of mono-di twins. The twins share a single placenta but do so unequally. The donor twin gets less blood supply, resulting in growth restriction, oligohydramnios, and anemia. However, neonatal outcome is usually better. The recipient twin gets more blood supply, resulting in excessive growth, polyhydramnios, and polycythemia. Intrauterine fetal surgery is indicated to laser the vascular connections on the placental surface between the two fetuses. Neonatal course is often complicated.
• Between 9–12 days (splitting of the embryonic disk), the twins are monochorionic, monoamnionic. There is only one placenta and one sac. Specific additional risks are twin–twin transfusion but particularly umbilical cord entanglement which can result in fetal death. This is the highest risk of all monozygotic twins.

• After 12 days, conjoined twins result. Most often this condition is lethal.

Table I-8-2. Postconception Days to Identical Twin Cleavage

<table>
<thead>
<tr>
<th>Dichorionic–diamnionic</th>
<th>0–3 days Morula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochorionic–diamnionic</td>
<td>4–8 days Blastocyst</td>
</tr>
<tr>
<td>Monochorionic–monoamnionic</td>
<td>9–12 days Embryonic disk</td>
</tr>
<tr>
<td>Conjoined</td>
<td>>12 days Embryo</td>
</tr>
</tbody>
</table>

With multiple gestation, *hyperemesis gravidarum* is common due to high levels of β-hCG. Uterus is larger than dates. Maternal serum *α*-fetoprotein is excessively higher than with one fetus.

Management.

• **Antepartum:** Give mother iron and folate supplementation to prevent anemia, monitor BP to detect preeclampsia, educate mother regarding preterm labor symptoms and signs, and perform serial ultrasound examinations looking for twin–twin transfusion (amniotic fluid discordance).
• **Intrapartum:** Route of delivery is based on presentation in labor—vaginal delivery if both are cephalic presentation (50%); cesarean delivery if first twin in noncephalic presentation; route of delivery is controversial if first twin is cephalic and second twin is noncephalic.

• **Postpartum:** Watch for postpartum hemorrhage from uterine atony owing to an overdistended uterus.

ALLOIMMUNIZATION

A 32-year-old woman, G2 P1, is seen for her first prenatal visit at 12 weeks’ gestation. Prenatal lab panel reveals a blood type of O negative. Atypical antibody screen (indirect Coombs test) is positive. She has been married to the same husband for 10 years and states he is the father of both her pregnancies. She did not receive RhoGAM during her last pregnancy.

With alloimmunization, a pregnant woman develops **antibodies to foreign red blood cells** (RBCs), most commonly against those of her current or previous fetus(es). It is rarely caused by transfusion of mismatched blood.

The most common RBC antigens are of the Rh system (C, c, D, E, e) (**most common is big D**).

- Antibodies to RBC antigens are detected by **indirect Coombs test** (atypical antibody test [AAT]). The concentration of antibodies is reported in dilutional titers with the lowest level being 1:1, and titers increasing by doubling (e.g., 1:1, 1:2, 1:4, 1:8, 1:16, 1:32... 1:1,024, etc.).

- **Hemolytic disease of the newborn** (HDN) is a continuum ranging from hyperbilirubinemia to erythroblastosis fetalis. HDN is caused by maternal antibodies crossing into the fetal circulation and targeting antigen-positive fetal RBCs, resulting in hemolysis. When severe, this can result in anemia, fetal hydrops, and even death.

Risk Factors. Alloimmunization most commonly occurs when fetal RBCs enter the mother’s circulation transplacentally at delivery. It can also occur if a woman is transfused with mismatched RBCs. Other pregnancy-related risk factors are amniocentesis, ectopic pregnancy, D&C, abruptio placentae, and placenta previa.

Protective Factors. ABO incompatibility decreases the risk of maternal alloimmunization from foreign RBCs. Naturally occurring anti-A and anti-B antibodies rapidly lyse foreign RBCs before maternal lymphocytes are stimulated to produce active antibodies.

Requirements (all must be present).

- Mother must be antigen-negative.
- Fetus must be antigen-positive, which means the father of the pregnancy must also be antigen-positive.
- Adequate fetal RBCs must cross over into the maternal circulation to stimulate her lymphocytes to produce antibodies to the fetal RBC antigens.
- Antibodies must be associated with HDN.
- Significant titer of maternal antibodies must be present to cross over into the fetal circulation and lead to fetal RBC hemolysis.
Management.

(1) Determine if the fetus is at risk for anemia.

- **Fetal risk is present** only if (a) atypical antibodies are detected in the mother’s circulation, (b) antibodies are associated with HDN, (c) antibodies are present at a significant titer (>1:8), and (d) the father of the baby (FOB) is RBC antigen-positive.

- **No fetal risk is present** if (a) the AAT is negative, (b) antibodies are present but are NOT associated with HDN, (c) antibody titer is ≤1:8, or (d) the FOB is RBC antigen-negative.

- If the atypical antibody titer is ≤1:8, management is conservative. Repeat the titer monthly as long as it remains ≤1:8.

(2) Assess if the fetus is anemic using Doppler ultrasound. Doppler ultrasound measures peak flow velocity of blood through the fetal middle cerebral artery (MCA). As fetal anemia worsens, the peak systolic velocity rises. Doppler MCA ultrasound is the **procedure of choice** since it is non-invasive and has a high correlation with fetal anemia.

(3) Intervene if the anemia is severe. This is diagnosed when amniotic fluid bilirubin is in Liley zone III or PUBS shows fetal hematocrit to be ≤25% or MCA flow is elevated. If gestational age <34 weeks, perform intrauterine intravascular transfusion. If gestational age ≥34 weeks, perform delivery.

Prevention. RhoGAM is pooled anti-D IgG passive antibodies that are given IM to a pregnant woman when there is significant risk of fetal RBCs passing into her circulation. The passive IgG antibodies attach to the foreign RBC antigens, causing lysis to occur before the maternal lymphocytes become stimulated.

- RhoGAM is routinely given to Rh(D)-negative mothers at 28 weeks, and within 72 h of chorionic villus sampling (CVS), amniocentesis, or D&C. It is also given within 72 h of delivery of an Rh(D)-positive infant. About 300 mcg of RhoGAM will neutralize 15 ml of fetal RBCs or 30 mL of fetal whole blood.

- Rosette test is a qualitative screening test for detecting significant feto-maternal hemorrhage (≥10 mL).

- Kleihauer-Betke test quantitates the volume of fetal RBCs in the maternal circulation by differential staining of fetal and maternal RBCs on a peripheral smear. This can assess whether more than one vial of RhoGAM needs to be given when large volumes of fetal–maternal bleed may occur (e.g., abruptio placentae).

PRETERM LABOR

A 24-year-old woman, G2 P1, at 28 weeks’ gestation by dates comes to the birthing unit complaining of regular uterine contractions every 7–10 min. She is a smoker with chronic hypertension. She has had no prenatal care. On examination her fundal height is 35 cm. Her previous pregnancy ended with spontaneous vaginal delivery at 30 weeks’ gestation.

Preterm delivery is the most common cause of perinatal morbidity and mortality. Overall, 12% of pregnancies deliver prematurely. Many patients will have preterm contractions but not be in preterm labor.
Preterm delivery categories include:

- **Extreme** preterm: <28 weeks
- **Very** preterm: <32 weeks
- **Moderate** preterm: 32–33 6/7 weeks
- **Late** preterm: 34–36 6/7 weeks

Risk Factors.

- **Most common:** prior preterm birth (PTB), short transvaginal (TV) cervical length (<25 mm), PROM, multiple gestation, uterine anomaly
- **Others:** low maternal pre-pregnancy weight, smoking, substance abuse, and short inter-pregnancy interval (<18 months)

Hazardsof PTB include neonatal death, respiratory distress syndrome (RDS), patent ductus arteriosus (PDA), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), and cerebral palsy (CP).

Figure I-8-3. Risk Factors and Interventions to Prevent Preterm Birth

Short Cervix

<table>
<thead>
<tr>
<th>Previous Preterm Birth</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Nothing needed</td>
<td>Progesterone: vaginal daily suppositories</td>
</tr>
<tr>
<td>Yes</td>
<td>17-OH-progesterone: IM weekly</td>
<td>17-OH-progesterone + cerclage</td>
</tr>
</tbody>
</table>

Used with permission: Elmar Sakala, MD

Prevention of Preterm Birth

All pregnant women should be screened for history of previous PTB on first prenatal visit and cervical length by sonogram prior to 24 weeks.

Interventions to prevent preterm delivery include the following:

- If cervical length >25 mm with prior spontaneous PTB: weekly IM 17-hydroxy progesterone caproate (17-OH-P)
- If cervical length <25 mm before 24 weeks with prior PTB: weekly IM 17-OH-P plus cervical cerclage placement
- If cervical length <20 mm before 24 weeks but no prior PTB: daily vaginal progesterone

No interventions are shown to have any benefit in cases of twin pregnancy.
Diagnosis of Preterm Labor

Symptoms of preterm labor include lower abdominal pain/pressure, lower back pain, increased vaginal discharge, or bloody show. Particularly in primigravidas, symptoms may be present for a number of hours to days but are not recognized as contractions by the patient.

Criteria that need to be met to make a diagnosis include:

- **Gestational age**: >20 weeks but <37 weeks
- **Uterine contractions**: at least 3 contractions in 30 minutes
- **Cervical exam**: serial examinations show a change in dilation or effacement, or a single examination shows cervical dilation >2 cm

Fetal fibronectin (fFN) is a protein matrix produced by fetal cells which acts as a biological glue, binding the trophoblast to the maternal decidua. It “leaks” into the vagina if PTB is likely and can be measured with a rapid test using a vaginal swab.

- Prerequisites for testing: gestation 22–35 weeks, cervical dilation <3 cm, and membranes intact
- Interpretation: main value of test is a negative, since chance of PTB in the next 2 weeks is <1%; with a positive result, likelihood of PTB is 50%

There are conditions under which stopping labor is either dangerous for the mother and baby or futile (makes no difference in outcome). Examples include the following:

- **Obstetric**: severe abruptio placentae, ruptured membranes, chorioamnionitis
- **Fetal**: lethal anomaly (anecephaly, renal agenesis), fetal demise or jeopardy (repetitive late decelerations)
- **Maternal**: eclampsia, severe preeclampsia, advanced cervical dilation

Interventions to Decrease Perinatal M&M

- **Intravenous magnesium sulfate for fetal neuroprotection**: Maternal IV MgSO₄ may reduce the severity and risk of cerebral palsy in surviving very preterm neonates.
 - Start infusion if PTB is anticipated <32 weeks gestation regardless of anticipated route of delivery.
 - It takes 4 hours of infusion to achieve steady state of Mg in the fetus.

- **Antenatal corticosteroid therapy for stimulation of pulmonary surfactant**: A single course of corticosteroids is recommended for pregnant women with gestational age 23–34 weeks of gestation who are at risk of preterm delivery within 7 days. Use in pregnancies 34–37 weeks is controversial.
 - A complete course is either 2 IM 12 mg doses of betamethasone given 24 hours apart or 4 IM 6 mg doses of dexamethasone given 12 hours apart.
 - Neonates whose mothers receive antenatal corticosteroids have significantly lower severity, frequency, or both of respiratory distress syndrome, intracranial hemorrhage, necrotizing enterocolitis and death.
• **Tocolytic agents.** Parenteral agents may prolong pregnancy, but for no more than 72 h. This does provide a window of time for (1) administration of maternal IM betamethasone to enhance fetal pulmonary surfactant and (2) transportation of mother and fetus in utero to a facility with neonatal intensive care. Oral tocolytic agents are no more effective than placebo.

 - **Magnesium sulfate** is a competitive inhibitor of calcium. Clinical monitoring is based on decreasing but maintaining detectable deep tendon reflexes. Side effects include muscle weakness, respiratory depression, and pulmonary edema. Magnesium overdose is treated with IV calcium gluconate. Contraindications include renal insufficiency and myasthenia gravis.

 - **β-adrenergic agonists** (e.g., terbutaline). Tocolytic effect depends on the β2-adrenergic receptor myometrial activity. Side effects include hypertension, tachycardia, and possible hyperglycemia, hypokalemia, and pulmonary edema. Contraindications include cardiac disease, diabetes mellitus, uncontrolled hyperthyroidism.

 - **Calcium-channel blockers** (e.g., nifedipine) decrease intracellular calcium. Side effects include tachycardia, hypotension, and myocardial depression. Contraindications include hypotension.

 - **Prostaglandin synthetase inhibitors** (e.g., indomethacin) decrease smooth muscle contractility by decreasing prostaglandin production. Side effects include oligohydramnios, in utero ductus arteriosus closure, and neonatal necrotizing enterocolitis. Contraindications include gestational age ≥32 weeks.

Management of Preterm Labor

Management of preterm labor involves several steps.

Step 1: Confirm labor using the three criteria listed earlier—gestational age, contraction frequency, cervical exam.

Step 2: Rule out contraindications to tocolysis. Do not try to prolong pregnancy if obstetric, fetal, maternal complications are present.

Step 3: Start IV MgSO4 if <32 weeks for fetal neuroprotection of cerebral palsy. Administer at least four hours before anticipated birth.

Step 4: Administer IM betamethasone if <34 weeks to stimulate fetal type II pneumocyte surfactant production. A 48-hr course is needed for full effect to take place.

Step 5: Start tocolytic therapy if <34 weeks to prolong pregnancy to allow for antenatal steroid effect. There is no benefit exceeding 48 hours. MgSO4, terbutaline, or nifedipine can be used up to 34 weeks. **Indomethacin** should not be used after 32 weeks due to concerns regarding in-utero closure of the PDA.

Step 6: Start IV penicillin G if <36 weeks for GBS sepsis prophylaxis (use vancomycin if allergic to penicillin G). First obtain recto-vaginal cultures.
Figure I-8-4. Diagnosis and Management for Preterm Labor

Contraindications for tocolysis?

Obstetrical: abruption, PROM, chorioamnionitis
Fetal: lethal anomaly, demise, distress
Maternal: eclampsia, HELLP syndrome

Prematurity Interventions

<32 wks
Neuroprotection
IV MgSO4: start ≥ 4 hr before delivery

<34 wks
Surfactant
IM betamethasone: 2 doses 24 hrs apart

<36 wks
GBS prophylaxis
IV penicillin G: start after GBS cultures

<34 wks
Tocolysis
MgSO4, terbutaline, indomethacin, nifedipine

OB Triad

Ruptured Membranes
- Posterior fornix pooling
- Fluid is nitrazine (phenaphthazine) (+)
- Glass slide drying: fern (+)

PREMATURE RUPTURE OF MEMBRANES

A 22-year-old primigravida at 33 weeks’ gestation comes to the birthing unit stating that 2 h ago she had a gush of fluid from her vagina. She denies vaginal bleeding or uterine contractions. Her perineum appears moist to gross inspection. On examination her temperature is 38.9 C (102 F).

Premature rupture of membranes (PROM) is rupture of the fetal membranes before the onset of labor, whether at term or preterm.

Risk Factors. Ascending infection from the lower genital tract is the most common risk factor for PROM. Other risk factors are local membrane defects and cigarette smoking.

Clinical Presentation. Typical history is a sudden gush of copious vaginal fluid. On external examination, clear fluid is flowing out of the vagina. Oligohydramnios is seen on ultrasound examination.
Diagnosis is made by **sterile speculum examination** meeting the following criteria:

- **Pooling positive**: clear, watery amniotic fluid is seen in the posterior vaginal fornix
- **Nitrazine positive**: the fluid turns pH-sensitive paper blue
- **Fern positive**: the fluid displays a ferning pattern when allowed to air dry on a microscope glass slide

Chorioamnionitis is diagnosed **clinically** with the following criteria: maternal fever plus uterine tenderness in the presence of confirmed PROM in the absence of a URI or UTI.

![Ferning Pattern of Amniotic Fluid](image)

With permission, Australian Society of Cytology Inc., cytology-asc.com

Figure I-8-5. Ferning Pattern of Amniotic Fluid

Management

- **If uterine contractions** occur, tocolysis is contraindicated.
- **If chorioamnionitis** is present, obtain cervical cultures, start broad-spectrum therapeutic IV antibiotics, and initiate prompt delivery.
- **If no infection** is present, management will be based on gestational age as follows:
 - **Before viability** (<23 weeks), outcome is dismal. Either induce labor or manage patient with bed rest at home. Risk of fetal pulmonary hypoplasia is high.
 - **With preterm viability** (23 0/7–33 6/7 weeks), conservative management. Hospitalize the patient at bed rest, administer IM betamethasone to enhance fetal lung maturity if <34 weeks, obtain cervical cultures, and start a 7-day course of prophylactic ampicillin and erythromycin.
 - **At term** (≥34 weeks), initiate prompt delivery. If vaginal delivery is expected, use oxytocin or prostaglandins as indicated. Otherwise, perform cesarean delivery.
Table I-8-3. Hazards Associated with PROM

<table>
<thead>
<tr>
<th>If Fetus Remains In Utero</th>
<th>If Preterm Delivery Occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal conditions</td>
<td>Neonatal conditions</td>
</tr>
<tr>
<td>• Infection and sepsis</td>
<td>• Respiratory distress syndrome (most common)</td>
</tr>
<tr>
<td>• Deformations</td>
<td>• Patent ductus arteriosus</td>
</tr>
<tr>
<td>• Umbilical cord compression</td>
<td>• Intraventricular hemorrhage</td>
</tr>
<tr>
<td>• Pulmonary hypoplasia</td>
<td>• Necrotizing enterocolitis</td>
</tr>
<tr>
<td>Maternal conditions</td>
<td>Maternal conditions</td>
</tr>
<tr>
<td>• Chorioamnionitis, sepsis</td>
<td>• Retinopathy of prematurity</td>
</tr>
<tr>
<td>• Deep venous thrombosis (DVT)</td>
<td>• Bronchopulmonary dysplasia</td>
</tr>
<tr>
<td>• Psychosocial separation</td>
<td>• Cerebral palsy</td>
</tr>
</tbody>
</table>

Speculum exam
- Positive pooling
- Positive nitrazine
- Positive ferning

Do not prolong pregnancy if:
- Labor: regular contraction—allow labor
- Fetal distress: category 3 EFM tracing—deliver
- Chorioamnionitis: fever, PROM, no UTI or URI—Rx gentamicin & clindamycin and deliver

PROM confirmed

Triage by gestational age

- **<23 wks**
 - Main concern: pulmonary hypoplasia
 - Induce labor or bed rest at home; no penicillin G or steroids

- **23 0/7 to 33 6/7 wks**
 - Main concern: prematurity
 - Admit, cervical cultures, lampire & erythromycin, steroids

- **≥34 wks**
 - Main concern: infection maternal-fetal
 - Prompt delivery, IV penicillin G, induce labor or Cesarean (only if indicated)

Figure I-8-6. Diagnosis and Management for Premature Rupture Membranes

POST-TERM PREGNANCY

A 21-year-old primigravida at 42 weeks’ gestation by dates comes to the outpatient prenatal clinic. She has been seen for prenatal care since 12 weeks’ gestation, confirmed by an early sonogram. She states that fetal movements have been decreasing. Fundal height measurement is 42 cm. Her cervix is long, closed, posterior, and firm. Nonstress test is reactive, but amniotic fluid index is 4 cm.
The most precise definition of post-term pregnancy is pregnancy that continues for ≥40 weeks or ≥280 days postconception (6% of all pregnancies). Because the date of conception is infrequently known, a practical definition is pregnancy that continues ≥42 weeks or ≥294 days after the first day of the last menstrual period.

- Generally, 50% of patients deliver by 40 weeks, 75% by 41 weeks, and 90% by 42 weeks.
- These statistics assume ovulation occurred on day 14 of a 28-day menstrual cycle (because up to 50% of patients have cycles longer than 28 days, these numbers are probably overstated).

The most common cause of true postdates cases are idiopathic (no known cause). It does occur more commonly in young primigravidas and rarely with placental sulfatase deficiency. Pregnancies with anencephalic fetuses are the longest pregnancies reported.

With post-term pregnancy, perinatal mortality is increased two- to threefold. This is a direct result of changes on placental function over time.

- **Macrosomia syndrome.** In most patients, placental function continues providing nutritional substrates and gas exchange to the fetus, resulting in a healthy but large fetus. Cesarean rate is increased owing to prolonged or arrested labor. Shoulder dystocia is more common with risks of fetal hypoxemia and brachial plexus injury.

- **Dysmaturity syndrome.** In a minority of patients, placental function declines as infarction and aging leads to placental scarring and loss of subcutaneous tissue. This reduction of metabolic and respiratory support to the fetus can lead to the asphyxia that is responsible for the increased perinatal morbidity and mortality. Cesarean rate is increased owing to nonreassuring fetal heart rate patterns. Oligohydramnios results in umbilical cord compression. Hypoxia results in acidosis and in utero meconium passage.

Management is based on two factors.

- **Confidence in dates.** Identify how much confidence can be placed on the gestational age being truly >42 weeks.

- **Favorableness of the cervix.** Assess the likelihood of successful induction of labor by assessing cervical dilation, effacement, position, consistency, and station. The Bishop score is a numerical expression of how favorable the cervix is and the likelihood of successful labor induction.
- A **favorable or ripe cervix** is dilated, effaced, soft, and anterior. A Bishop score ≥ 6 is an accurate predictor of successful vaginal delivery with induction of labor.

- An **unfavorable cervix** is closed, uneffaced, firm, and posterior. A Bishop score <3 is a predictor of unsuccessful vaginal delivery with induction of labor.

Table I-8-4. Bishop Scoring Method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td></td>
<td>Posterior</td>
<td>Intermediate</td>
<td>Anterior</td>
<td>–</td>
</tr>
<tr>
<td>Consistency</td>
<td></td>
<td>Firm</td>
<td>Intermediate</td>
<td>Soft</td>
<td>–</td>
</tr>
<tr>
<td>Effacement</td>
<td></td>
<td>0–30%</td>
<td>31–50%</td>
<td>51–80%</td>
<td>$>80%$</td>
</tr>
<tr>
<td>Dilation</td>
<td></td>
<td>0 cm</td>
<td>1–2 cm</td>
<td>3–4 cm</td>
<td>>5 cm</td>
</tr>
<tr>
<td>Fetal station</td>
<td></td>
<td>-3</td>
<td>-2</td>
<td>$-1, 0$</td>
<td>$+1, +2$</td>
</tr>
</tbody>
</table>

Patients can be classified into 3 groups.

- **Dates sure, favorable cervix.** Management is aggressive. There is no benefit to the fetus or mother in continuing the pregnancy. Induce labor with IV oxytocin and artificial rupture of membranes.

- **Dates sure, unfavorable cervix.** Management is controversial. Management could be aggressive, with mechanical cervical ripening using a Foley balloon catheter placed through the cervical canal, or with oral/vaginal/cervical prostaglandin to soften the cervix. Either method is followed by IV oxytocin.

- **Dates unsure.** Management is conservative. Perform twice weekly NSTs and AFIs to ensure fetal well-being and await spontaneous labor. If fetal jeopardy is identified, delivery should be expedited.

Table I-8-5. Placental Function in Post-term Pregnancy

<table>
<thead>
<tr>
<th>Maintained</th>
<th>Deteriorates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrosomia (80%)</td>
<td>Dysmaturity (20%)</td>
</tr>
<tr>
<td>Difficult labor and delivery</td>
<td>Placental insufficiency</td>
</tr>
<tr>
<td>↑ C section (forceps, vacuum extractor, shoulder dystocia, birth trauma)</td>
<td>↑ C section (acidosis, meconium aspiration, oxygen deprivation)</td>
</tr>
</tbody>
</table>

Prevention of **meconium aspiration syndrome** (MAS). Current recommendations reflect the understanding that MAS has its origin in-utero, often prior to labor. Randomized studies have shown that most interventions in the neonatal period do not lead to a change in the perinatal outcome.
• Amnioinfusion can be helpful to prevent umbilical cord compression but makes no difference in preventing MAS; **do not routinely perform.**

• Suctioning of fetal nose and pharynx makes no difference in preventing MAS; **do not routinely perform.**

• Laryngoscopic visualization of vocal cords is indicated only if the neonate is depressed; **perform selectively.**

Figure I-8-8. Diagnosis and Management for Post-Dates Pregnancy

How sure are the dates?
- LMP: sure, normal, planned, no OCPs
- **CLINICAL:** FHT, uterine size, quickening
- **SONO:** CRL \(\leq \) 12 wk; BPD \(\leq \) 18 wks

What is Bishop score?
- **Cervix:** anterior or posterior, soft or firm
- **Cervix:** thinned or thick; dilated or closed
- **Fetal station:** low in pelvis or high

Dates:
- **sure**
- **Bishop:** high

Dates:
- **sure**
- **Bishop:** low

Dates:
- **unsure**
- **Bishop:** N/A

Induce labor with oxytocin;
AROM

Cervical ripening (Foley/PGE1) or await labor with NST/AF

Await labor with NST/AF

Schedule CS if sonogram EFW >4500 g (DM) or >5000 g (non-DM)

Used with permission: Elmar Sakala, MD
Learning Objectives

- Differentiate between gestational hypertension, preeclampsia, eclampsia, and chronic hypertension with or without superimposed preeclampsia
- Describe the diagnosis, management, and complications of hypertensive syndromes in pregnancy
- Answer questions about HELLP syndrome

HYPERTENSION IN PREGNANCY

Systolic and diastolic BP both decline early in the first trimester, reaching a nadir by 24–28 weeks; then they gradually rise toward term but never return quite to prepregnancy baseline.

- Diastolic falls more than systolic, as much as 15 mm Hg.
- Arterial BP is never normally elevated in pregnancy.

GESTATIONAL HYPERTENSION

A 19-year-old primigravida is seen in the outpatient prenatal clinic for routine visit. She is at 32 weeks’ gestation, confirmed by first trimester sonogram. She has no complaints. She denies headache, epigastric pain, or visual disturbances. She has gained 2 pounds since her last visit two weeks ago. On examination her blood pressure is 155/95 mm Hg, which is persistent on repeat check 10 minutes later. She has only trace pedal edema. A spot urine dipstick is negative.

Gestational hypertension is diagnosed with sustained elevation of BP ≥140/90 mm Hg after 20 weeks of pregnancy without proteinuria. BP returns to normal baseline postpartum.

No symptoms of preeclampsia are seen, e.g., headache, epigastric pain, or visual disturbances. Physical findings are unremarkable for pregnancy. Lab tests are unremarkable for pregnancy. Proteinuria is absent.

Preeclampsia should always be ruled out.

Diagnosis is made with sustained elevation of BP ≥140/90 mm Hg without proteinuria (key finding).
Management. Conservative outpatient management with close observation since 30% of patients will develop preeclampsia. Appropriate lab testing should be performed to rule out preeclampsia, e.g., urine protein, hemoconcentration assessment. Deliver at 37 weeks.

PREECLAMPSIA

A 21-year-old primigravida without severe features is seen in the outpatient prenatal clinic for routine visit. She is at 32 weeks’ gestation, confirmed by first trimester sonogram. She denies headache, epigastric pain, or visual disturbances. She has gained 10 pounds since her last visit two weeks ago. On examination her BP is 155/95 mm Hg and it remains unchanged on repeat check in 15 min. She has 2+ pedal edema, and her fingers appear swollen. A spot urine dipstick shows 2+ protein.

Preeclampsia is sustained BP elevation in pregnancy after 20 weeks’ gestation in the absence of preexisting hypertension.

Pathophysiology involves diffuse vasospasm caused by (1) loss of the normal pregnancy-related refractoriness to vasoactive substances such as angiotensin and (2) relative or absolute changes in the following prostaglandin substances:

- Increases in the vasoconstrictor thromboxane
- Decreases in the potent vasodilator prostacyclin

This vasospasm contributes to intravascular volume constriction and decreased perfusion of most organs including uteroplacental unit, kidneys, liver, brain, and heart. Decreased renal blood flow leads to decreased clearance of body metabolic wastes. Capillary injury leads to loss of intravascular volume into the interstitial space and subsequent edema.

In preeclampsia without severe features, the symptoms and physical findings (if present) are generally related to excess weight gain and fluid retention. The presence of new onset of persistent headache, epigastric pain, or visual disturbances would move the diagnosis from preeclampsia without severe features to preeclampsia with severe features.

Differential Diagnosis. Chronic hypertension should always be ruled out.

Diagnosis is made with the diagnostic dyad, as there are no pathognomic tests:

- Sustained BP elevation of ≥140/90 mm Hg
- Proteinuria of ≥300 mg on a 24 h urine collection or protein/creatinine ratio of ≥0.3

Risk Factors. Preeclampsia is found 8 times more frequently in primiparas. Other risk factors are multiple gestation, hydatidiform mole, diabetes mellitus, age extremes, chronic hypertension, and chronic renal disease.

Lab abnormalities include the following: Evidence of hemoconcentration is shown by elevation of hemoglobin, hematocrit, blood urea nitrogen (BUN), serum creatinine, and serum uric acid. Proteinuria is present (described under diagnostic criteria). Evidence of disseminated intravascular coagulation (DIC) or liver enzyme elevation would move the diagnosis from preeclampsia without severe features to preeclampsia with severe features.
Management. The only definitive cure is delivery and removal of all fetal-placental tissue. However, delivery may be deferred in preeclampsia without severe features to minimize neonatal complications of prematurity. Management is based on gestational age.

- **Conservative management.** Before 37 weeks’ gestation as long as mother and fetus are stable, mild preeclampsia is managed in the hospital or as outpatient, watching for possible progression to severe preeclampsia. No antihypertensive agents or MgSO\(_4\) are used.
- **Delivery.** At ≥37 weeks’ gestation, delivery is indicated with dilute IV oxytocin induction of labor and continuous infusion of IV MgSO\(_4\) to prevent eclamptic seizures.

Complications can include progression from preeclampsia without severe features to preeclampsia with severe features.

PREECLAMPSIA WITH SEVERE FEATURES

A 21-year-old primigravida is seen in the outpatient prenatal clinic for a routine visit. She is at 32 weeks’ gestation, confirmed by first trimester sonogram. For the past 24 h she had experienced severe, unremitting occipital headache and mid-epigastric pain not relieved by acetaminophen, and she has also seen light flashes and spots in her vision. She has gained 10 pounds since her last visit two weeks ago. On examination her BP is 165/115 mm Hg. She has 2+ pedal edema, and her fingers appear swollen. Fundal height is 29 cm. Fetal heart tones are regular at 145 beats/min. A spot urine dipstick shows 4+ protein.

The pathophysiology of preeclampsia with severe features is the same as preeclampsia, but involves **severe diffuse vasospasm** and **more intense capillary injury** to where the ischemia demonstrates itself in overt, usually multiorgan system injury. Characteristic presenting symptoms include presence of new onset of persistent headache, epigastric pain, or visual disturbances.

Diagnosis is made in the presence of (at least) mild elevation of BP and mild proteinuria plus any one of the following:

- **Sustained BP elevation of ≥160/110**
- **Evidence of maternal jeopardy:** may include symptoms (headache, epigastric pain, visual changes), thrombocytopenia (platelet count <100,000/mL), doubling of liver transaminases, pulmonary edema, serum creatinine >1.1 mg/dL, or doubling of serum creatinine
- **Possible edema**

Risk factors are the same as preeclampsia, with the addition of diseases with small vessel disease such as systemic lupus and longstanding overt diabetes.

Lab abnormalities include the following: Evidence of **hemoconcentration** will be more severe. Proteinuria is described under diagnostic tests. Evidence of DIC and hepatocellular injury is characteristic of severe preeclampsia.

Note

Preeclampsia with severe features has many presentations.

Note

Quantification of proteinuria (e.g., ≥5 g on a 24 h urine collection) is no longer used as a finding indicating a severe feature of preeclampsia. Proteinuria may even be absent, yet the diagnosis still can be made if there is new onset of hypertension with evidence of maternal jeopardy.

OB Triad

Preeclampsia with Severe Features

- Pregnancy >20 wk
- Sustained HTN (>140/90 mm Hg)
- Headache or epigastric pain or visual changes
- Pregnancy >20 wk
- Sustained HTN (>140/90 mm Hg)
- DIC or ↑ liver enzymes or pulmonary edema
Management. Aggressive prompt delivery is indicated for preeclampsia with severe features at any gestational age with evidence of maternal jeopardy or fetal jeopardy. Main goals are seizure prevention and BP control.

- **Administer IV MgSO₄** to prevent convulsions. Give a 5 g loading dose, then continue maintenance infusion of 2 g/h. Continue IV MgSO₄ for 24 hours after delivery.

- **Lower BP** to diastolic values 90–100 mm Hg with IV hydralazine and/or labetalol. More aggressive BP control may jeopardize uteroplacental fetal perfusion.

- **Attempt vaginal delivery** with IV oxytocin infusion if mother and fetus are stable.

- **Cesarean section** is only for obstetric indications.

Conservative inpatient management may rarely be attempted in absence of maternal and fetal jeopardy with gestational age 26–34 weeks if BP can be brought <160/110 mm Hg. This should take place in an intensive care, tertiary-care setting. Continuous IV MgSO₄ should be administered, and maternal betamethasone should be given to enhance fetal lung maturity.

Complications can include progression from preeclampsia with severe features to eclampsia.

ECLAMPSIA

A 21-year-old primigravida is brought to the emergency department after suffering from a generalized tonic-clonic seizure at 32 weeks’ gestation. The seizure was preceded by a severe headache. She lost control of her bowels and bladder. She has gained 10 pounds since her last prenatal visit two weeks ago. On examination she is unresponsive and in a postictal state. BP is 185/115 mm Hg and spot urine dipstick shows 4+ protein.

Eclampsia is the presence of **unexplained generalized seizures** in a hypertensive, proteinuric pregnant woman in the last half of pregnancy. Pathophysiology is **severe diffuse cerebral vasospasm** resulting in cerebral perfusion deficits and cerebral edema.

In addition to those presenting symptoms of mild and severe preeclampsia, the most significant finding is **unexplained tonic-clonic seizures**.

Lab abnormalities are the same as those found with mild and severe preeclampsia.

Diagnosis is made clinically with unexplained generalized seizures occurring in a hypertensive, proteinuric pregnant woman in the last half of pregnancy.

Risk factors are the same as in preeclampsia. A primary seizure disorder does not predispose to eclampsia.

Management. The first step is to protect the mother’s airway and tongue.

- **Administer MgSO₄** with an IV bolus of 5 g to stop seizures, continuing maintenance infusion rate of 2 g/h. Continue IV MgSO₄ for 24 hours after delivery.

- **Aggressive prompt delivery** is indicated for eclampsia at any gestational age after stabilization of the mother and the fetus. Attempt vaginal delivery with IV oxytocin infusion if mother and fetus are stable.

- **Lower diastolic BP** between 90–100 mm Hg with IV hydralazine and/or labetalol.

Complications can include intracerebral hemorrhage, with possible death.
Table I-9-1. Preeclampsia–Eclampsia Spectrum

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Preeclampsia without Severe Features</th>
<th>Preeclampsia with Severe Features</th>
<th>Eclampsia</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Headache or epigastric pain or visual changes</td>
<td>Unexplained convulsions</td>
<td></td>
</tr>
<tr>
<td>Sustained ↑ blood pressure</td>
<td>>140/90 mm Hg <160/110 mm Hg</td>
<td>At least >140/90 mm Hg (if other findings) or >160/110 mm Hg</td>
<td>At least >140/90 mm Hg</td>
</tr>
<tr>
<td>Laboratory tests</td>
<td>Hemoconcentration >300 mg proteinuria in 24 hrs No DIC, normal liver function tests</td>
<td>Hemoconcentration, or DIC, or ↑ liver function tests</td>
<td>Hemoconcentration At least 1-2 + proteinuria</td>
</tr>
<tr>
<td>Other findings</td>
<td>None</td>
<td>Pulmonary edema</td>
<td>May or may not be present</td>
</tr>
<tr>
<td>Management</td>
<td><36 wk: observe in hospital, no MgSO₄, or blood pressure meds ≥36 wks: prompt delivery</td>
<td>MgSO₄; prevent or treat convulsions Lower diastolic, BP to 90–100 mm Hg Prompt delivery: not necessarily Cesarean section</td>
<td></td>
</tr>
</tbody>
</table>

CHRONIC HYPERTENSION WITH OR WITHOUT SUPERIMPOSED PREECLAMPSIA

A 35-year-old multigravida is seen in the outpatient prenatal clinic for her first prenatal visit. She is at 12 weeks’ gestation with a BP of 155/95 mm Hg. Chronic hypertension was diagnosed five years ago for which she has been treated with oral nifedipine. A spot urine dipstick protein is 2+. A recent 24 h urine collection showed 1.2 g of protein and a creatinine clearance of 85 ml/min. Serum creatinine is 1.2 mg/dl. She has no complaints of headache or visual changes.

Pathophysiology is vasospasm causing decreased end-organ perfusion, resulting in injury and damage. The acute problems arise from excessive systolic pressures, whereas the long-term problems arise from excessive diastolic pressures. Diagnosis of chronic HTN is made when BP ≥140/90 mm Hg with onset before the pregnancy or before 20 weeks’ gestation.

Risk Factors. Most chronic hypertension (HTN) is idiopathic without specific antecedents. Risk factors are obesity, advanced maternal age, positive family history, renal disease, diabetes, and systemic lupus erythematosus.
Pregnancy prognosis with chronic HTN is as follows:

- **Good:** Favorable maternal and neonatal outcome is found when BP 140/90–179/109 mm Hg and no evidence of end-organ damage.
- **Poor:** Pregnancy complications are more common in patients with severe HTN with the following end-organ damage: cardiac, renal, and retinal.
 - **Renal disease:** pregnancy loss rates increase significantly if serum creatinine value >1.4 mg/dL.
 - **Retinopathy:** longstanding HTN is associated with retinal vascular changes including hemorrhages, exudates, and narrowing.
 - **Left ventricular hypertrophy:** seen mostly in women with prolonged BP values >180/110 mm Hg.
- **Worst:** Tenfold higher fetal loss rate if uncontrolled HTN (before conception or early in pregnancy) and chronic HTN with superimposed preeclampsia.

Pregnancy prognosis with chronic HTN with superimposed preeclampsia (25% of patients with chronic HTN) is as follows:

- Risk factors include renal insufficiency, HTN for previous 4+ years, and HTN in a previous pregnancy.
- Adverse pregnancy outcomes for both mother and baby are markedly increased. Abruptio placentae incidence is markedly increased.
- Diagnosis is made on the basis of established chronic HTN along with any of the following: documented rising BP values, demonstrated worsening proteinuria, or evidence of maternal jeopardy (headache, epigastric pain, visual changes, thrombocytopenia [platelet count <100,000/mL], elevated liver enzymes, pulmonary edema, oliguria [<750 mL/24 h], or cyanosis). Edema may or may not be seen.

Lab abnormalities include the following:

- Mild HTN and no end-organ involvement have normal lab tests, whereas those with renal disease may have evidence of decreased renal function including proteinuria, lowered creatinine clearance, and elevated BUN, creatinine, and uric acid.
- Chronic HTN patients have a spectrum of etiologies and disease severity.

Antihypertensive drug therapy issues include the following:

- **Discontinuing medications** may be done in patients with mild-to-moderate HTN caused by the normal decrease in BP that occurs in pregnancy. Pharmacologic treatment in patients with diastolic BP <90 mm Hg or systolic BP <140 mm Hg does not improve either maternal or fetal outcome.
- **Maintaining medications** may be necessary in patients with severe HTN. The drug of choice is methyl-dopa because of extensive experience and documented fetal safety but labetalol and atenolol are acceptable alternatives. However, β-blocking agents are associated with intrauterine growth retardation (IUGR).
- **“Never use” medications:** Angiotensin-converting enzyme inhibitors are contraindicated in pregnancy, as they have been associated with fetal hypocalvaria, renal failure, oligohydramnios, and death. Diuretics should not be initiated during pregnancy owing to possible adverse fetal effects of associated plasma volume reduction.
- **BP target range.** Reduction of BP to normal levels in pregnancy may jeopardize uteroplacental blood flow. Maintain diastolic values between 90–100 mm Hg.
Management. Conservative outpatient management for uncomplicated mild-to-moderate chronic HTN.

Stop drug therapy. Attempt discontinuation of antihypertensive agents. Follow guideline outlined.

- Serial sonograms and antenatal testing are appropriate after 30 weeks’ gestation to monitor for increased risk of IUGR.
- Serial BP and urine protein assessment is indicated for early identification of superimposed preeclampsia.
- Induce labor at 38 weeks.

Aggressive prompt delivery for chronic HTN with superimposed preeclampsia at any gestational age.

- Administer IV MgSO₄ to prevent convulsions. Continue IV MgSO₄ for 24 hours after delivery.
- Keep diastolic BP between 90 and 100 mm Hg with IV hydralazine and/or labetalol.
- Attempt vaginal delivery with IV oxytocin infusion if mother and fetus are stable.

Complications can include progression from chronic HTN to superimposed preeclampsia, which can lead to maternal and fetal death.

HELP SYNDROME

A 32-year-old multigravida is at 32 weeks’ gestation. At a routine prenatal visit her BP was noted to be 160/105 mm Hg. Previous BP readings were normal. Preeclampsia workup was begun and revealed the following: elevated total bilirubin, lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase, as well as platelet count of 85,000. She has no complaints of headache or visual changes.

HELLP syndrome occurs in 5–10% of preeclamptic patients and is characterized by hemolysis (H), elevated liver enzymes (EL), and low platelets (LP). It can be confused with thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. HTN, although frequently seen, is not always present.

Risk Factors. HELLP syndrome occurs two times as often in multigravidas as primigravidas.

Management. Prompt delivery at any gestational age. Use of maternal corticosteroids may enhance postpartum normalization of liver enzymes and platelet count. Complicating conditions associated with HELLP include DIC, abruptio placentae, fetal demise, ascites, and hepatic rupture.

OB Triad

HELP Syndrome

- Hemolysis
- ↑ liver enzymes
- ↓ platelets
Learning Objectives

- Describe the risks and special management of co-occurring medical conditions in pregnancy, including seizure disorders, DM, anemia, thyroid disease, cardiac disease, and liver disease
- Manage common infections occurring in pregnancy including urinary tract infections, pyelonephritis, cystitis, bacteriuria, and asymptomatic bacteriuria
- Give an overview of diagnosis and management of thrombophilias and antiphospholipid syndrome

CARDIAC DISEASE

A 30-year-old multigravida with a childhood history of rheumatic fever has echocardiography-diagnosed mitral stenosis. She is now at 20 weeks' gestation and has no symptoms at rest but has mild shortness of breath and dyspnea with activity. On examination she has a diastolic murmur.

Cardiac disease includes general types of heart disease.

- **Coronary heart disease** (rarely found in women of childbearing age). Adverse consequences of hypoxic heart disease include miscarriage, fetal death, preterm delivery, and increased perinatal morbidity and mortality.

- **Rheumatic heart disease** (most common acquired lesion in pregnancy). The most common rheumatic heart disease is mitral stenosis. With severe stenosis (mitral valve area <2 cm²), the main problem is inadequate diastolic flow from the left atrium to the left ventricle. Obstruction to left ventricular filling may lead to left atrial enlargement, pulmonary congestion, atrial fibrillation, and subacute bacterial endocarditis (SBE) with valvular vegetations causing thromboemboli. Tachycardia and increased plasma volume, which are normal changes of pregnancy, will only exacerbate these problems. Treatment includes minimizing tachycardia and excessive intravascular volume. Balloon valvuloplasty may need to be performed as a last resort.

- **Congenital heart disease** (most common congenital lesions are atrial and ventricular septal defects [ASDs/VSDs]). The most common cyanotic congenital heart disease in pregnancy is tetralogy of Fallot. ASDs and VSDs are tolerated well with pregnancy, as are any regurgitation lesions.
Signs of heart disease include the following:

- Any diastolic or continuous heart murmur
- Any systolic murmur associated with a thrill
- Any severe arrhythmias
- Unequivocal cardiac enlargement

Maternal Mortality Risk

- **Low maternal mortality** (<1% risk of death): ASD, VSD, patent ductus arteriosus (PDA), minimal mitral stenosis, porcine heart valve, and corrected tetralogy of Fallot.
- **High maternal mortality** (25–50% risk of death): pulmonary hypertension, Eisenmenger's syndrome, Marfan syndrome with aortic root > 40 mm diameter, and peripartum cardiomyopathy.

Unique High-Risk Conditions

- **Eisenmenger syndrome** is characterized by pulmonary hypertension and a bidirectional intra-cardiac shunt. The normal decrease in systemic vascular resistance (SVR) in pregnancy places the patient at risk for having the pulmonary vascular resistance (PVR) exceed the SVR. When this develops, the path of least resistance for blood from the right heart is to bypass the pulmonary circulation across the shunt. This results in the left heart pumping unoxygenated blood into the systemic circulation, resulting in a 50% mortality risk. Management is by avoiding hypotension.

- **Marfan syndrome** is an autosomal dominant connective tissue disorder. In pregnancy, if the aortic root diameter is >40 mm, the risk of aortic dissection is high, placing the patient at a 50% mortality risk.

- In **peripartum cardiomyopathy**, the patient has no underlying heart disease but develops idiopathic biventricular cardiac decompensation between the last few weeks of pregnancy and the first few months postpartum. Risk factors include advanced maternal age, multiparity, hypertension, and multiple pregnancy. Mortality rate is 75% if reversal does not occur within six months. Management is supportive, in intensive care.

Classification of Heart Disease in Pregnancy

Following are the **New York Heart Association** (NYHA) functional classifications of heart disease in pregnancy:

- **Class I**: no signs or symptoms of cardiac decompensation with physical activity
- **Class II**: no symptoms at rest, but minor limitations with activity
- **Class III**: no symptoms at rest, but marked limitations with activity
- **Class IV**: symptoms present at rest, increasing with any physical activity

Specific Management

- **Antepartum.** Left lateral rest, 2 g sodium diet, digitalis as indicated, diuretics as indicated, avoid strenuous activity, avoid anemia, fetal echocardiogram (if patient has congenital heart disease).
• **Intrapartum.** Aim for vaginal delivery, left lateral rest, monitor intravascular volume, administer oxygen, reassurance, sedation, SBE prophylaxis, epidural, no pushing, elective forceps to shorten the second stage of labor, possible arterial line and pulmonary artery catheter (if Class III or IV status).

• **Postpartum.** Watch closely for postpartum intravascular overload caused by sudden emptying of uterine venous sinuses after placental delivery.

Table I-10-1. Heart Disease in Pregnancy

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Problems</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic mitral stenosis</td>
<td>↓ diastolic filling time</td>
<td>↓ HR; ↓ IV vol</td>
</tr>
<tr>
<td>ASD, VSD</td>
<td>Regurgitation</td>
<td>Conservative</td>
</tr>
<tr>
<td>Tetralogy of Fallot corrected</td>
<td>No problem</td>
<td>Conservative</td>
</tr>
<tr>
<td>Eisenmenger syndrome</td>
<td>Pulmonary HTN</td>
<td>Avoid hypotension</td>
</tr>
<tr>
<td></td>
<td>Intracardiac shunt</td>
<td></td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>Dilated aortic root</td>
<td>Surgical reconstruction</td>
</tr>
<tr>
<td></td>
<td>External diameter ≥4 cm</td>
<td></td>
</tr>
<tr>
<td>Peripartum cardiomyopathy</td>
<td>Biventricular cardiac failure</td>
<td>Supportive care</td>
</tr>
</tbody>
</table>

THYROID DISEASE

A 23-year-old primigravida is at 30 weeks’ gestation. She has lost 4 pounds during the past two months. She states her heart “feels like it is racing,” and her resting pulse is 135 beats/min. There is a noticeable tremor when she holds her arms out straight. Her eyes appear prominent and protruding. She is complaining of frequent uterine contractions.

In normal thyroid physiology, increased thyroid blood flow leads to thyromegaly. In pregnancy, increased glomerular filtration rate (GFR) enhances iodine excretion, lowering plasma iodine concentrations. Estrogen causes an increase in liver-produced thyroid binding globulin (TBG), thus increasing total T3 and T4. However, **free T3 and T4 remain unchanged**. Fetal thyroid function begins as early as 12 weeks with minimal transfer of T3 or T4 across the placenta.

Hyperthyroidism

The underlying etiology of hyperthyroidism may be Graves’ disease, toxic nodular goiter (Plummer’s disease), hydatidiform mole, or toxic diffuse goiter.

- **If uncontrolled,** it is associated with increased spontaneous abortions, prematurity, intrauterine growth retardation (IUGR), and perinatal morbidity and mortality.
- **If controlled,** pregnancy outcome is not altered. Clinical features include elevated resting pulse, thyromegaly, exophthalmos, inadequate weight gain or even weight loss, and markedly elevated total and free T₄.

OB Triad

Graves Disease

- ↓ TSH level
- ↑ free T₄ level
- TSHR-Ab
Thyroid storm is a life-threatening hypermetabolic state presenting with pyrexia, tachycardia, and severe dehydration. Management is propylthiouracil (PTU), β-blocking agents, steroids, and iodine.

Graves’ disease (most common kind of hyperthyroidism in pregnancy) is mediated by autoimmune production of thyrotropin-receptor antibodies (TSHR-Ab) that drives thyroid hormone production independent of thyrotropin (TSH). TSHR-Ab can cross the placenta, potentially causing fetal hyperthyroidism.

Diagnosis. Diagnosis is confirmed by elevated free T_4 and TSHR-Ab, as well as low TSH in the presence of clinical features described above.

Management. Antithyroid medications are the first line of therapy in pregnancy, but they can cross the placenta leading to fetal hypothyroidism. PTU and methimazole are thioamides that block thyroid hormone synthesis. Subtotal thyroidectomy is primarily indicated when antithyroid medical therapy fails and is ideally performed in the second trimester.

Thyroid ablation with radioactive iodine (I^{131}) is contraindicated because it can cross the placenta, destroying the fetal thyroid.

Hypothyroidism

Hypothyroidism is most commonly a primary thyroid defect and often results in anovulation and infertility.

- If uncontrolled, it is associated with spontaneous abortion; however, if pregnancy continues, the infant is healthy.
- If controlled with appropriate thyroid replacement, normal fertility and pregnancy outcomes are noted.

Diagnosis. Diagnosis is confirmed with an elevated TSH.

Management. Increase supplemental thyroid hormone by 30% in pregnancy.

| Table I-10-2. Thyroid Disorders in Pregnancy |
|-------------------------------|------------------|------------------|
| **Hyperthyroid** | **Hypothyroid** |
| Most common cause | Graves disease | Hashimoto's thyroiditis |
| Diagnostic criteria | ↓ TSH, ↑ free T_4 TSHR-antibody | ↑ TSH, ↓ free T_4 |
| Complication if untreated | Thyroid storm, IUGR | Anovulation, spontaneous abortion |
| Outcome if properly treated | Normal pregnancy | Normal pregnancy |
| Treatment medications | 1st trimester: PTU | Synthroid (↑ dose 30% above prepregnancy) |
| | 2nd + 3rd trimester: methimazole | |

SEIZURE DISORDERS

A 25-year-old primigravida is 19 weeks’ gestation. She has a 10-year history of generalized seizures poorly controlled requiring hydantoin and valproic acid. A triple marker screen result showed an elevated maternal serum alpha feto protein.
The prevalence of seizure disorders in women of childbearing age is 0.5%. There are classified as follows:

- **Partial seizures** do not involve both hemispheres. They can be simple (no loss of consciousness) or complex (consciousness may be impaired).
- **Generalized seizures** involve both hemispheres. They can be absence type (duration <20 s [formerly called “petit mal”]) or tonic-clonic (duration up to several minutes [formerly called “grand mal”]).

The **effect of pregnancy on seizure disorder** is as follows:

- **Seizures unchanged.** Up to 25% of these women will experience deterioration of seizure control during pregnancy, with 75% seeing no change. The more severe the disorder, the more likely it will worsen.
- **Anticonvulsant metabolism increased.** Seizure medication clearance may be enhanced by higher hepatic microsomal activity, resulting in lower blood levels.

The **effect of seizure disorder on pregnancy** is that pregnancy complications are minimal with appropriate prenatal care and compliance with anticonvulsant medications.

The **effect of anticonvulsants on the fetus and infant** is that congenital malformation rate increase from 3% to >10%. In addition, cerebral palsy, seizure disorders, and intellectual disability are increased in offspring of epileptic women. Maternal phenytoin use is associated with neonatal deficiency of vitamin K-dependent clotting factors: II, VII, IX, and X.

Management. Ensure extra **folic acid supplementation** before conception and during embryogenesis to minimize neural tube defects.

- **Anomaly screening.** Offer triple-marker screen and second trimester sonography to identify neural tube defects (NTDs) or other anomalies.
- **Drug monotherapy.** Use a single drug if possible, at the lowest possible dose, to ensure freedom from seizures.
- **Medication levels.** Monitor anticonvulsant levels each trimester and adjust dose as needed. Prevent seizures to minimize maternal and fetal hypoxia.

DIABETES

A 32-year-old Hispanic multigravida is at 29 weeks’ gestation. Her 1-h 50-g glucose screen came back at 175 mg/dL. She is 60 inches tall and weighs 200 pounds. Her pregnancy weight gain has been 30 pounds thus far. Her previous babies weighed 3,800 and 4,200 g.

If a pregnant woman is unable to maintain fasting (FBS) or postchallenge glucose values in the normal pregnant range before or after a standard 100-g glucose challenge, she is considered to have diabetes.

The most common risk factors for gestational diabetes are **obesity, age >30**, and **positive family history**. Other risk factors are fetal macrosomia, unexplained stillbirth or neonatal death, polyhydramnios, and previous traumatic delivery.

Prevalence of glucose intolerance in pregnancy is 2–3%.
Classification is done as follows.

- **Gestational diabetes mellitus (GDM)** (most common type with onset during pregnancy) is usually diagnosed in the last half. Pathophysiology involves the diabetogenic effect of human placental lactogen (hPL), placental insulinase, cortisol, and progesterone. Within 5–10 years after delivery, 35% of women with GDM will develop overt diabetes.

- **Type 1 DM** is juvenile onset, ketosis prone, insulin-dependent diabetes caused by pancreatic islet cell deficiency.

- **Type 2 DM** is adult onset, ketosis resistant, non–insulin-dependent diabetes caused by insulin resistance.

Table I-10-3. Classification of Diabetes Mellitus by Pathophysiology

<table>
<thead>
<tr>
<th>Type</th>
<th>Onset</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational</td>
<td>Pregnancy onset</td>
<td>Insulin resistance</td>
</tr>
<tr>
<td>Type 1</td>
<td>Juvenile onset</td>
<td>Ketosis prone</td>
</tr>
<tr>
<td>Type 2</td>
<td>Adult onset</td>
<td>Insulin resistance</td>
</tr>
</tbody>
</table>

Table I-10-4. White Classification of Diabetes in Pregnancy

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GDM with normal FBS not requiring insulin</td>
</tr>
<tr>
<td>A2</td>
<td>GDM with elevated FBS requiring insulin</td>
</tr>
<tr>
<td>B</td>
<td>Overt DM onset after age 20 years and duration <10 years</td>
</tr>
<tr>
<td>C</td>
<td>Overt DM onset age 10–19 years or duration 10–19 years</td>
</tr>
<tr>
<td>D</td>
<td>Overt DM onset before age 10 years or duration ≥20 years</td>
</tr>
<tr>
<td>E</td>
<td>Overt DM with calcified pelvic vessels</td>
</tr>
<tr>
<td>F</td>
<td>Overt DM with nephropathy</td>
</tr>
<tr>
<td>R</td>
<td>Overt DM with proliferative retinopathy</td>
</tr>
</tbody>
</table>

Screening is performed on all pregnant women 24–28 weeks’ gestation when the anti-insulin effect of hPL is maximal. On patients with risk factors it is performed on the first prenatal visit, then repeated at 24–28 weeks if initially negative.

- The screening test is a 1-h 50-g oral glucose challenge test (OGTT) with normal values being <140 mg/dL. (A fasting state is not needed.)

 - If screening value ≥ 140 mg/dL, then proceed to a definitive 3-h 100-g OGTT.

 - If screening value ≥ 200 mg/dL, and an FBS is ≥ 95 mg/dl, GDM is diagnosed and no further OGTT testing is needed.

Diagnosis. The 3-h OGTT is performed on all patients who have an abnormal screening test. Definitive diagnosis is based on an abnormal 3-h 100-g OGTT performed after an overnight fast. Four glucose values are obtained.

- Normal pregnant values are FBS <95 mg/dL, 1 h <180 mg/dL, 2 h <155 mg/dL, 3 h <140 mg/dL. If only one value is abnormal, impaired glucose tolerance is diagnosed. If ≥ 2 values are abnormal, GDM is diagnosed.

- If FBS ≥ 125, overt diabetes is diagnosed and the 100-g glucose load should not be given.
Antepartum glucose management

The most significant factor in management of diabetic pregnancies is achieving maternal euglycemia.

- **American Diabetes Association diet**: 80% of patients with GDM can maintain glucose control with diet therapy. Educate patient regarding spreading calories evenly throughout the day; encourage complex carbohydrates.

- **Home blood glucose monitoring**: Patient checks her own blood glucose values at least 4x/day with target values FBS <90 mg/dL and 1 h after meal <140 mg/dL.

- **Insulin therapy**: Start subcutaneous insulin with type 1 and type 2 DM and with GDM if home glucose values are consistently above the target range. Initial dose is based on pregnancy trimester.

 Total daily insulin units are determined as follows: actual body weight in kilograms × 0.8 (first trimester), 1.0 (second trimester), or 1.2 (third trimester).

 Dosing is divided: insulin is divided with 2/3 of total daily dose in morning (split into 2/3 NPH and 1/3 regular) and 1/3 of total daily dose in evening (split into 1/2 NPH and 1/2 regular). Insulin is a large molecule and **does not cross the placenta**. Insulin requirements will normally increase through the course of the pregnancy. About 15% of patients with GDM will require insulin.

- **Oral hypoglycemic agents**: These were contraindicated in the past because of concern that they would cross the placenta and cause fetal or neonatal hypoglycemia. **Glyburide** appears to cross the placenta minimally, if at all, and is being used for patients with GDM who cannot be controlled by diet alone.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Criteria/Problems</th>
<th>Diag/Mgmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-hr 50g OGTT Screening test</td>
<td><140 mg/dL</td>
<td>GDM ruled out</td>
</tr>
<tr>
<td>3-hr 100g OGTT Definitive diagnosis</td>
<td>≥2 values ↑</td>
<td>GDM diagnosed</td>
</tr>
<tr>
<td>Home glucose monitoring</td>
<td>Mean glucose values FBS >90; 1 hr pp >140</td>
<td>Start insulin or glyburide</td>
</tr>
<tr>
<td>Fetal demise risk factors</td>
<td>1: needs insulin or glyburide</td>
<td>Starting 32 wk</td>
</tr>
<tr>
<td></td>
<td>2: HTN</td>
<td>NST & AFI 2/wk</td>
</tr>
<tr>
<td></td>
<td>3: previous demise</td>
<td></td>
</tr>
<tr>
<td>L&D problems</td>
<td>Arrest stage 1 or 2</td>
<td>CS if estimated fetal weight >4,500 g</td>
</tr>
<tr>
<td></td>
<td>Shoulder dystocia</td>
<td></td>
</tr>
<tr>
<td>Postpartum management</td>
<td>Prevent postpartum hemorrhage</td>
<td>FBS ≥126 mg/dL</td>
</tr>
<tr>
<td></td>
<td>2 hr 75 g OGTT</td>
<td></td>
</tr>
</tbody>
</table>
Antepartum overt diabetes management

- **Hemoglobin A1c.** Obtain a level on the first visit to ascertain degree of glycemic control during the previous 60–120 days. Repeat levels each trimester.
- **Renal status.** Obtain an early pregnancy baseline 24-h urine collection for total protein and creatinine clearance.
- **Retinal status.** Obtain an early pregnancy ophthalmologic funduscopic evaluation for proliferative retinopathy.
- **Home blood glucose monitoring.** Patient checks her own blood glucose values at least four times a day with target values of FBS 60–90 mg/dL and 1 h after a meal of <140 mg/dL.

Preconception anomaly management

- **Anomaly risk.** Women with overt diabetes are at increased risk of fetal anomalies. This risk can be minimized by lifestyle modification. Diabetic embryopathy can affect almost any fetal organ system but the most common findings are CNS (anencephaly, spina bifida), skeletal (caudal regression syndrome, sacral agenesis), and cardiovascular (transposition of the great vessels, ventricular septal defects, atrial septal defects, coarctation of the aorta).
- **Euglycemia.** Maintaining glucose values at normal levels reduces anomaly risk close to that of nondiabetes; start three months prior to discontinuing contraception.
- **Folate supplementation.** Folic acid, 4 mg a day, should be started three months prior to conception to prevent both fetal neural tube defects, as well as congenital heart defects.

Antepartum fetal testing management

- **Anomaly screening.** Anomalies are mediated through hyperglycemia and are highest with poor glycemic control during embryogenesis. **Anomalies are not increased in GDM** because hyperglycemia is not present in the first half of pregnancy. Most common fetal anomalies with overt DM are **NTD and congenital heart disease.** An uncommon anomaly, but one highly specific for overt DM, is **caudal regression syndrome.** Obtain a **quadruple-marker screen** at 16–18 weeks to assess for NTD as well as a targeted ultrasound at 18–20 weeks to look for structural anomalies. If the glycosylated hemoglobin is elevated, order a fetal echocardiogram at 22–24 weeks to assess for congenital heart disease.
- **Fetal growth.** Monthly sonograms will assess fetal macrosomia (most commonly seen) or IUGR (seen with longstanding DM and vascular disease).
- **Fetal surveillance.** Start weekly NSTs and amniotic fluid index (AFIs) at **32 weeks** if taking insulin, macrosomia, previous stillbirth, or hypertension. Start NSTs and AFIs at **26 weeks** if small vessel disease is present or there is poor glycemic control. Biophysical profiles can be performed at the time of monthly sonograms.

General Management Intrapartum

- **Timing of delivery.** Fetal maturity is often delayed in fetuses of diabetic mothers, yet prolonging the pregnancy may increase the risk of stillbirth; delivery planning is a result of balancing these factors. The target delivery gestational age is 39 weeks, but may be necessary earlier in the presence of fetal jeopardy and poor maternal glycemic control. An amniotic fluid lecithin to sphingomyelin (L/S) ratio of **2.5** in the presence of **phosphatidyl glycerol** ensures fetal lung maturity.
• **Mode of delivery.** The cesarean section rate in diabetic pregnancies approaches 50% because of fetal macrosomia, arrest of labor, and concern regarding shoulder dystocia.

• **Glycemic control.** Maintain maternal blood glucose levels between 80–100 mg/dL using 5% dextrose in water and an insulin drip.

General Management Postpartum

• **Postpartum hemorrhage.** Watch for uterine atony related to an overdistended uterus.

• **Hypoglycemia.** Turn off any insulin infusion because insulin resistance decreases with rapidly falling levels of hPL after delivery of the placenta. Maintain blood glucose levels with a sliding scale.

Neonatal Issues Management

• **Hypoglycemia** caused by persistent hyperinsulinemia from excessive prenatal transplacental glucose.

• **Hypocalcemia** caused by failure to increase parathyroid hormone synthesis after birth.

• **Polycythemia** caused by elevated erythropoietin from relative intrauterine hypoxia.

• **Hyperbilirubinemia** caused by liver immaturity and breakdown of excessive neonatal red blood cells (RBCs).

• **Respiratory distress syndrome** caused by delayed pulmonary surfactant production.

ANEMIA

An 18-year-old woman G3 P2 had prenatal laboratory tests drawn when she was seen for her first prenatal visit at 18 weeks’ gestation. The complete blood count showed the following: hemoglobin 9.5 g/dL, hematocrit 28%, MCV 75, and RDW 17.0. Her first child was delivered two years ago, with her second child born one year ago.

Anemia is a hemoglobin concentration <10 g/dL during pregnancy or the puerperium. This is less than the 12 g/dL that is the lower limit of normal in the nonpregnant woman.

Iron Deficiency Anemia

Iron deficiency anemia is a nutritional anemia resulting in decreased hemoglobin production. A pregnant woman needs 800 mg of elemental iron; 500 mg goes to expand the RBC mass and 300 mg goes to the fetal-placental unit.

Falling hemoglobin values do not occur until complete depletion of iron stores in the liver, spleen, and bone marrow, which is followed by a decrease in serum iron with increase in total iron binding capacity (TIBC).

Findings may vary from none to general malaise, palpitations, and ankle edema.

Diagnosis. RBCs are microcytic and hypochromic. Hemoglobin <10 g/dL, MCV <80, RDW >15.

Risk factors include chronic bleeding, poor nutrition, and frequent pregnancies. Fetal effects include increased IUGR and preterm birth.
Part I Obstetrics

OB Triad

Folate Deficiency Anemia
- Hemoglobin < 10 g
- MCV > 100 μm³
- RDW > 15%

Prevention includes elemental iron 30 mg per day.

Treatment. FeSO₄ 325 mg po tid.

Folate Deficiency Anemia
Folate deficiency anemia is a nutritional anemia resulting in decreased hemoglobin production.

Folate stores in the body are usually enough for 90 days. Falling hemoglobin values occur only after folate stores have been completely depleted.

Findings may vary from none to general malaise, palpitations, and ankle edema.

Diagnosis. RBCs are macrocytic. Hemoglobin ≤ 10 g/dL, MCV > 100, RDW > 15. RBC folate levels are low. Peripheral smear may show hypersegmented neutrophils.

Risk factors include chronic hemolytic anemias (e.g., sickle cell disease), anticonvulsant use (phenytoin, phenobarbital), and frequent pregnancies. Fetal effects include increased IUGR, preterm birth, and NTD.

Prevention includes folic acid 0.4 mg po daily for all women and 4 mg po daily for those at high risk for NTDs.

Treatment. Folate 1 mg po daily.

Sickle Cell Anemia
Sickle cell anemia is an inherited autosomal recessive disease resulting in normal production of abnormal globin chains. Screening tests are peripheral blood tests used to detect the presence or absence of hemoglobin S; they do not differentiate between disease and trait. A hemoglobin electrophoresis (diagnostic test) will differentiate between SA trait (<40% hemoglobin S) or SS disease (>40% hemoglobin S).

African and Mediterranean descent is the only significant risk factor for sickle cell anemia.

Effects on pregnancy with SA may include increased urinary tract infection but unchanged pregnancy outcome; with SS, possible increased spontaneous abortions, IUGR, fetal deaths, and preterm delivery.

Treatment. Avoid hypoxia, take folate supplements, and monitor fetal growth and well-being.

LIVER DISEASE

Intrahepatic Cholestasis of Pregnancy
A 31-year-old primigravida woman with a history of infertility underwent ovulation induction. She is now at 20 weeks’ gestation with dizygotic twins of different genders. She is of Swedish descent and complains of intense skin-itching. She has not experienced these symptoms previously. Her sister experienced similar complaints when she was pregnant, and delivered her baby prematurely. No identifiable rash is noted on physical examination. She states that her urine appears dark-colored.
Intrahepatic cholestasis is stimulated by estrogen in genetically predisposed women in the second half of pregnancy. Bile acids are incompletely cleared by the liver and accumulate in the plasma. There is a high recurrence rate with subsequent pregnancies.

The overall prevalence is 0.5% in North America and Europe. Risk is increased in Chile, Finland, and Sweden, (as is twin pregnancy).

Clinical Findings. The most significant symptom is intractable pruritus on the palms and soles of the feet—worse at night—without specific skin findings. Lab tests show a mild elevation of bilirubin but diagnostic findings are serum bile acids increased 10- to 100-fold.

There is no adverse effect on maternal outcome, but preterm births and stillbirths are increased.

Management. Oral antihistamines for mild cases. Cholestyramine has been used to decrease enterohepatic circulation.

- **Ursodeoxycholic acid is the treatment of choice.** Antenatal fetal testing should be initiated at 34 weeks. Symptoms disappear after delivery.
- Induce labor at 37 weeks gestation.

Acute Fatty Liver

A 29 year-old primigravida is at 33 weeks' gestation. She is brought to the maternity unit by her husband who states she is becoming mentally confused. He reports she started experiencing nausea and vomiting three days ago which are becoming worse, associated with lack of appetite. Fundal height is 30 cm. Fetal heart rate 145/min with non-reactive non-stress test, BP 150/95 mm Hg, random blood glucose 52 mg/dL. Platelet count is 75,000 and PTT is prolonged at 64.7 seconds. Creatinine is 2.1 mg/dL. Uric acid is 11.9 mg/dL, lactic dehydrogenase 1063 U/I, ALT 220 U/I, AST 350 U/I, total bilirubin 8.4 mg/dL. Serum ammonia is elevated. Urine protein dipstick is 3+.

Acute fatty liver is a rare, life-threatening complication of pregnancy that usually occurs in the third trimester. Prevalence is 1 in 15,000. Maternal mortality rate is 20%. It is thought to be caused by a disordered metabolism of fatty acids by mitochondria in the fetus, caused by deficiency in the long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) enzyme.

Clinical Findings. Symptom onset is gradual, with nonspecific flulike symptoms including nausea, vomiting, anorexia, and epigastric pain.

- Jaundice and fever may occur in as many as 70% of patients.
- Hypertension, proteinuria, and edema can mimic preeclampsia.
- This may progress to involvement of additional systems, including acute renal failure, pancreatitis, hepatic encephalopathy, and coma. Laboratory findings may include: moderate elevation of liver enzymes (e.g., ALT, AST, GGT), hyperbilirubinemia, DIC.
- **Hypoglycemia and increased serum ammonia** are unique laboratory abnormalities.

Management. Intensive care unit stabilization with acute IV hydration and monitoring is essential. Prompt delivery is indicated. Resolution follows delivery if the mother survives.
URINARY TRACT INFECTIONS

A 23-year-old primigravida at 31 weeks’ gestation comes to the birthing unit with complaints of flank pain, nausea, vomiting, and shaking chills for the past 12 h. She has been diagnosed with sickle cell trait. On examination her temperature is 39.4 °C (103 °F), pulse 125 beats/min, and respirations 30 breaths/min. Her skin is grossly diaphoretic and she has exquisite right costovertebral angle tenderness. Electronic fetal monitoring shows baseline pulse 170/min with reactivity. Uterine contractions are noted every 10 min.

Urinary tract infections (UTI) may involve the **lower tract** (including the bladder or urethra) or **upper tract** (including the kidney). The most common organisms are **gram-negative enteric bacteria** with *Escherichia coli* the most frequent.

Pregnancy is a risk factor. Others include mechanical urinary obstructions and systemic diseases (such as sickle cell trait/disease, diabetes mellitus, and gout).

Asymptomatic Bacteriuria

Asymptomatic bacteriuria is the **most common** UTI in pregnancy. If not treated, 30% of cases will develop acute pyelonephritis.

Clinical Findings. No symptoms or signs are present.

Diagnosis is made with a positive urine culture showing >100K colony-forming units (CFU) of a single organism.

Treatment. Single-agent, outpatient oral antibiotics.

Acute Cystitis

Acute cystitis is a UTI localized to the bladder without systemic findings. If not treated, 30% of cases will develop acute pyelonephritis.

Clinical Findings. Urgency, frequency, and burning are common.

Diagnosis is made with a positive urine culture showing >100 K CFU of a single organism.

Treatment. Single-agent, outpatient oral antibiotics.

Acute Pyelonephritis

Acute pyelonephritis is a UTI involving the upper urinary tract with systemic findings. It is one of the **most common** serious medical complications of pregnancy.

Preterm labor and delivery can occur. Severe cases are complicated by sepsis, anemia, and pulmonary dysfunction, sometimes requiring ICU care, including intubation.

Clinical Findings. Symptoms include shaking chills, anorexia, nausea, vomiting, and flank pain. Signs include high fever, tachycardia, and costovertebral angle tenderness (R > L).
Diagnosis is confirmed with a positive urine culture showing >100 K CFU of a single organism.

Treatment. Hospital admission, generous IV hydration, parenteral antibiotics e.g., ceftriaxone, and tocolysis as needed.

THROMBOPHILIAS

A 26-year-old G4 P1 Ab2 woman comes in for her first prenatal visit at 8 weeks’ gestation by dates. Her first pregnancy was a spontaneous first-trimester loss, for which she underwent a D&C. In her second pregnancy she developed right lower extremity deep venous thrombosis at 29 weeks, which was followed by an unexplained fetal demise at 30 weeks. Labor was induced with PGE2. The fetus was normal in appearance, without congenital anomalies. Autopsy on the fetus was unremarkable. Her last pregnancy was also a spontaneous first-trimester loss. Her sister has a history of recurrent deep venous thrombosis.

The thrombophilias are disorders which promote blood clotting due to an excess of clotting factors or a deficiency of anticlotting proteins that limit clot formation. Prevalence is as high as 20% of the population, but most individuals are asymptomatic. Some will develop deep vein thrombosis or venous thromboembolism (VTE) that can become life-threatening.

Risk factors include immobilization, surgery, or pregnancy. Pregnant women with a thrombophilia are also at higher risk than other pregnant women of developing a VTE.

Pulmonary embolus is the leading cause of maternal death in the United States; >50% of pregnant women who develop a pulmonary embolus or other VTE have an underlying thrombophilia.

Diagnosis. Indications for testing are history of VTE or first-degree relative with high-risk thrombophilia or VTE age <50 years.

- **Inherited thrombophilias to test for** include factor V Leiden (FVL) mutation, prothrombin gene mutation (PGM) G2021 OA, protein C deficiency (PCD), protein S deficiency (PSD), and antithrombin deficiency (ATD).
 - **High risk** thrombophilias include homozygous FVL or PGM; compound heterozygote FVL and PTM; and all ATD.
 - **Low risk** thrombophilias include heterozygous FVL or PGM; and all PCD & PSD.
- **Acquired thrombophilias to test for** include antiphospholipid syndrome (APS). One or more of the following three antiphospholipid antibodies must be positive on ≥2 occasions at least 12 weeks apart.
 - Lupus anticoagulant
 - Anticardiolipin antibody (IgG & IgM)
 - Anti-β2-glycoprotein 1 (IgG & IgM)
Part I - Obstetrics

Treatment. Anticoagulation options:

- **Unfractionated heparin** (UFH) can be used antepartum & postpartum.
 - Advantages: inexpensive, can be reversed with protamine sulfate
 - Disadvantages: cannot use orally, short half-life, needs monitoring with aPTT levels, heparin-induced osteopenia, heparin-induced thrombocytopenia (HIT)

- **Low molecular weight heparin** (LMWH) can be used antepartum & postpartum.
 - Advantages: longer half-life, less need for monitoring with antifactor Xa levels
 - Disadvantages: cannot use orally, higher cost, can not be reversed

- **Warfarin (Coumadin)** can be used only postpartum.
 - Advantages: oral administration, long half-life, inexpensive, OK for breast feeding
 - Disadvantages: crosses placenta, needs monitoring with INR

For anticoagulation medications, use the following guidelines:

Antepartum: Use LMWH from first trimester to 36 weeks; then at 36 weeks transition to UFH until delivery.

- **None or prophylactic dose**
 - Low-risk thrombophilia without VTE episode

- **Prophylactic or intermediate-dose**
 - Low-risk thrombophilia with single VTE episode
 - High-risk thrombophilia without VTE episode

- **Therapeutic dose**
 - High-risk thrombophilia with single VTE episode
 - Any thrombophilia with VTE in current pregnancy

Intrapartum

- Discontinue UFH during immediate peripartum interval to decrease risk of hemorrhage and permit regional anesthesia.
- Protamine sulfate can be used to reverse UFH effect.

Postpartum

- VTE risk increased 20-fold in the first week postpartum.
- All patients at risk should be receive postpartum anticoagulation even if they did not receive it antepartum.
- Resume anticoagulation 6 hours after vaginal delivery and 12 hours after cesarean section.
- Warfarin (Coumadin) is safe for breast feeding moms.
ANTIPHOSPHOLIPID SYNDROME

Antiphospholipid syndrome (APS) is an autoimmune disorder defined by both the presence of characteristic clinical features and circulating antiphospholipid antibodies. Diagnosis requires that at least one clinical and one laboratory criterion are met.

The clinical criteria for diagnosis and indications for lab testing include:

- Vascular thrombosis: ≥1 clinical thrombotic episodes (arterial, venous, or small vessel)
- Pregnancy morbidity (unexplained): ≥1 fetal demise at ≥10 weeks; ≥3 consecutive miscarriages at <10 weeks

The lab criteria require that ≥1 of the following antiphospholipid antibodies be positive on ≥2 occasions at least 12 weeks apart.

- Lupus anticoagulant
- Anticardiolipin antibody (IgG & IgM)
- Anti-beta-2-glycoprotein I (IgG & IgM)

Management: For antepartum anticoagulation management, the following is recommended:

- APS without a thrombotic event: no heparin or only prophylactic heparin
- APS with a thrombotic event: prophylactic heparin

For all women with APS, the following general management is recommended:

- Antepartum: sono assessment of fetal growth monthly; modified Biophysical Profile weekly starting at 32 weeks
- Intrapartum: stop anticoagulation
- Postpartum: resume or start anticoagulation in 6 hours (after vaginal delivery) or 12 hours (after cesarean section); continue anticoagulation for 6 weeks using either heparin or warfarin (safe for breast feeding moms); avoid estrogen-containing contraceptives

Thromboembolism

The mediating factor is frequently endothelial injury from traumatic delivery or cesarean section. In the postpartum period, the risk is increased fivefold. Vascular stasis is the strongest predisposing factor, with decreased pelvic and lower extremity blood flow. Enhanced blood coagulability in pregnancy is due to increased factors II, VII, VIII, IX, and X. Risk is even more elevated if the patient has coagulation protein deficiencies: antithrombin III, protein C, protein S, and plasminogen.

Superficial Thrombophlebitis

Superficial thrombophlebitis does not predispose to thromboembolism but may mimic more severe disease.

- Clinical Findings: Symptoms include localized pain and sensitivity. Signs include erythema, tenderness, and swelling. Diagnosis is one of exclusion after ruling out DVT.
- Management: Treatment is conservative: bed rest, local heat, NSAIDs.
Deep Venous Thrombosis (DVT)

DVT does predispose to thromboembolic disease. The site of thrombosis is typically in the lower half of the body. Half of cases occur in the pelvic veins and half occur in the lower extremities.

- **Clinical Findings**: Symptoms may include pain and increased skin sensitivity, but there may be no complaints. Signs may include calf pain on foot dorsiflexion (Homan sign), although these findings are not highly sensitive or specific. Diagnosis is by duplex Doppler.

- **Management**: Full anticoagulation with IV heparin to increase PTT by 1.5–2.5 times the control value. Once therapeutic levels are achieved, subcutaneous heparin is used once. No warfarin is used antepartum because of teratogenicity concerns with the fetus. Perform thrombophilia workup.

Pulmonary Embolus

Pulmonary embolus (PE) is a potentially fatal result of DVT in which emboli travel through the venous system to the lungs. The source of the emboli is most commonly in the lower extremities or pelvis.

- **Clinical Findings**: Symptoms include chest pain and dyspnea (80%) but no single symptom(s) predominate because thrombi location varies. Physical and imaging findings include:
 - Tachypnea (90%)
 - Chest x-ray often normal
 - ABG showing low pO₂ (but often in the normal range)
 - EKG that may show tachycardia
 - Right axis deviation (but usually is normal)

- **Diagnosis** depends on the pulmonary imaging modalities used. Spiral CT scan of the chest is the best initial test for suspected PE. **Pulmonary angiography** is the most definitive diagnostic method; most common indication is a negative spiral CT scan in a high-risk and symptomatic patient.

- **Management**: Full anticoagulation (IV, SQ) heparin to increase PTT by 1.5–2.5 times the control value. No warfarin is used antepartum due to teratogenicity concerns. Perform thrombophilia workup.
Learning Objectives

- Demonstrate understanding of intrauterine growth restriction
- Answer questions about macrosomia

INTRAUTERINE GROWTH RESTRICTION

The common definition of intrauterine growth restriction (IUGR) (also known as fetal growth restriction) is a fetus with estimated fetal weight (EFW) < 5–10th percentile for gestational age. This assumes the fetus is not growing to its genetic potential.

Another definition is < 2,500 grams (5 lb, 8 oz). Clearly, neonatal morbidity and mortality are affected by lowering birth weight. However, 70% of these fetuses are constitutionally small.

Dating. Accurate early pregnancy dating is essential for making the diagnosis. An early sonogram (< 20 weeks) is most accurate if conception date is unknown. Don't change gestational age based on a late sonogram.

Fetal Causes. Examples include aneuploidy (e.g., T21, T18, T13); infection (e.g., TORCH), structural anomalies (e.g., congenital heart disease, neural tube defects, ventral wall defects). These causes typically lead to symmetric IUGR.

Placental Causes. Examples include infarction, abruption, twin-twin transfusion syndrome (TTTS), velamentous cord insertion. These causes typically lead to asymmetric IUGR.

Maternal Causes. Examples include hypertension (e.g., chronic, preeclampsia), small vessel disease (e.g., SLE, long-standing type 1 diabetes), malnutrition, tobacco, alcohol, street drugs. These causes typically lead to asymmetric IUGR.

Symmetric IUGR

- All ultrasound parameters (HC, BPD, AC, FL) are smaller than expected.
- Etiology is decreased growth potential, i.e., aneuploidy, early intrauterine infection, gross anatomical anomaly.
- Workup should include detailed sonogram, karyotype, and screen for fetal infections.
- Antepartum tests are usually normal.

OB Triad

Symmetric IUGR

- Head and abdomen both small
- Etiology: fetal (aneuploidy, infection, anomaly)
- Decreased growth potential
Asymmetric IUGR

- Ultrasound parameters show head sparing, but abdomen is small.
- Etiology is decreased placental perfusion due to chronic maternal diseases (hypertension, diabetes, SLE, cardiovascular disease) or abnormal placentation (abruption and infarction).
- Amniotic fluid index is often decreased, especially if uteroplacental insufficiency is severe.
- Monitoring is with serial sonograms, non-stress test, amniotic fluid index, biophysical profile, and umbilical artery Dopplers.

MACROSOMIA

Macrosomia is a fetus with estimated fetal weight (EFW) >90th–95th percentile for gestational age. Birth weight ≥4,000–4,500 grams (8 lb, 13 oz to 9 lb, 15 oz).

Sonogram EFW. Accuracy in estimating birth weight is poor. Errors in prediction of EFW at term are ±400 grams.

Risk Factors. Gestational diabetes mellitus, overt diabetes, prolonged gestation, increase in BMI (obesity), increase in pregnancy weight gain, multiparity, male fetus.

Maternal Hazards. Operative vaginal delivery, perineal lacerations, postpartum hemorrhage (uterine atony), emergency cesarean section, pelvic floor injury.

Fetal Hazards. Shoulder dystocia, birth injury, asphyxia.

Prevention. No accurate ways of predicting or prevention are currently available.

Management. Consider elective cesarean (if EFW >4,500 g in diabetic mother or >5,000 g in nondiabetic mother) or early induction, but this may result in increased cesarean delivery rate due to failure of induction.
Learning Objective

- Describe the appropriate use of antepartum fetal testing including nonstress test, amniotic fluid index, biophysical profile, contraction stress test, and umbilical artery Doppler

OVERVIEW

A 37-year-old multipara with systemic lupus erythematosus is at 31 weeks' gestation. She has chronic hypertension that is being controlled with methyldopa. She comes to the office stating her fetus is not moving as much as it used to.

Antenatal fetal tests are highly accurate in confirming fetal well-being but are poor predictors of fetal jeopardy. The most common reasons for fetal testing are decreased fetal movements, diabetes, post dates, chronic hypertension, and IUGR.

NONSTRESS TEST

The nonstress test (NST) assesses the frequency of fetal movements using an external fetal heart rate (FHR) monitoring device to detect the presence or absence of accelerations. These are abrupt increases in FHR above the baseline lasting <2 min and are unrelated to contractions. The criteria vary by gestational age:

- <32 weeks, the increase should be ≥10 beats/min lasting ≥10 s
- >32 weeks, the increase should be ≥15 beats/min lasting ≥15 s

They are mediated by the sympathetic nervous system and always occur in response to fetal movements. Interpretation: accelerations are always reassuring.

- **Reactive NST** requires the presence of 2 accelerations in a 20 min window of time meeting the above criteria. This is reassuring and highly predictive for fetal well-being. Fetal death rate is only 3 per 1,000 in the next week. **Management** is weekly NST.

- **Nonreactive NST** is diagnosed when any criteria for reactivity are not met: either the number of accelerations in 20 min or the amplitude or duration of the acceleration. 80% of nonreactive NSTs are false positives (meaning the fetus is not hypoxemic). Nonhypoxemic causes include fetal sleep, prematurity, drug effects, and CNS anomalies. **Management** is fetal vibroacoustic stimulation to see whether this results in reactivity. If the NST is persistently nonreactive, perform a biophysical profile.
Table I-12-1. Nonstress Test (NST)

<table>
<thead>
<tr>
<th>Type</th>
<th>Criteria</th>
<th>Assessment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive NST</td>
<td>≥2 accelerations in 20 min: ↑ FHR ≥15 beats/min and lasting ≥15 seconds</td>
<td>reassuring of fetal well-being</td>
<td>repeat weekly/biweekly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonreactive NST</td>
<td>no fetal heart rate accelerations or did not meet criteria</td>
<td>sleeping, immature, or sedated</td>
<td>vibroacoustic stimulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fetus; acidotic, compromised</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fetus?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If still NR</td>
<td>do contraction stress test or biophysical profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMNIOTIC FLUID ASSESSMENT

In the third trimester, the volume of amniotic fluid is considered to largely reflect a balance between fetal urine production and fetal swallowing. If fluid is low (oligohydramnios) consideration must be given to problems with urinary tract anomalies or renal perfusion. If fluid is excessive (polyhydramnios) consideration must be given to problems with the decreased fetal swallowing or GI tract anomalies.

Third trimester assessment of amniotic fluid uses ultrasound measurement:

- **Single deepest pocket (SDP)** or maximum vertical pocket (MVP): This is the vertical dimension (in cm) of the largest pocket of AF not persistently containing umbilical cord or fetal extremities. The horizontal measurement of the pocket must be at least 1 cm.
 - Oligohydramnios: depth <2 cm
 - Normal: depth ≥2 cm and <8 cm
 - Polyhydramnios: depth ≥8 cm

- **Amniotic fluid index (AFI)**: The four-quadrant AFI assesses (in cm) the deepest vertical AF pocket in each of the four quadrants of the uterus. The sum of the AF pocket dimensions is known as the AFI.
 - Oligohydramnios: <5 cm
 - Normal: 5–24 cm
 - Polyhydramnios: >25 cm

BIOPHYSICAL PROFILE (BPP)

A complete BPP measures five components of fetal well-being: NST, amniotic fluid volume, fetal gross body movements, fetal extremity tone, and fetal breathing movements. The last four components are assessed using obstetric ultrasound. Scores given for each component are 0 or 2, with maximum possible score of 10 and minimum score of 0.

- **Score of 8 or 10**: highly reassuring of fetal well-being. Management is to repeat the test weekly or as indicated. Fetal death rate is only 1 per 1,000 in the next week.
- **Score of 4 or 6**: worrisome. Management is delivery if the fetus is ≥36 weeks or repeat the biophysical profile in 12–24 h if <36 weeks. An alternative is to perform a CST.
- **Score of 0 or 2**: highly predictive of fetal hypoxia with low probability of false positive. Management is prompt delivery regardless of gestational age.
A modified BPP includes only the NST and amniotic fluid volume. Its predictive value is almost as high as a complete BPP.

(A) Normal baseline range, and no UCs are present. Thus, only the NST component can be assessed. Because 3 accelerations are present, the assessment is reactive NST. This is a reassuring tracing.

(B) Normal baseline range and no UCs are present. Thus, only the NST component can be assessed. Because no accelerations are present, the assessment is nonreactive NST. Because this is not a reassuring tracing, the next step should be a vibroacoustic fetal stimulation.

(C) Normal baseline range and 4 UCs are present in 10 minutes. Thus, both the NST and CST components can be assessed. Because 3 accelerations are present, and no late decelerations are present, the assessment is reactive NST, negative CST. This is a reassuring tracing.

(D) Normal baseline range and 4 UCs are present in 10 minutes. Thus, both the NST and CST components can be assessed. Even though no accelerations can be seen, no late decelerations are present. The assessment is nonreactive NST, negative CST. This suggests fetal sleep, sedation, or central nervous system (CNS) abnormality.

(E) Elevated baseline range and 4 UCs are present in 10 minutes. Thus, both the NST and CST components can be assessed. No accelerations can be seen, but repetitive late decelerations are present. The assessment is nonreactive NST, positive CST. This is highly suggestive of fetal compromise.

Figure I-12-1. Antepartum Electronic Fetal Monitor (EFM) Tracings

Note

All EFM tracings should be evaluated for the NST and the CST. If a technically adequate FHR tracing is present, the NST component can be assessed as reactive or nonreactive.

If ≥3 UCs are present in 10 minutes, the CST components can be assessed as negative or positive.
CONTRACTION STRESS TEST

The contraction stress test (CST) assesses the ability of the fetus to tolerate transitory decreases in intervillous blood flow that occur with uterine contractions. It uses both external FHR and contraction monitoring devices and is based on the presence or absence of late decelerations. These are gradual decreases in FHR below the baseline with onset to nadir of ≥30 s. The deceleration onset and end is delayed in relation to contractions. If 3 contractions in 10 min are not spontaneously present, they may be induced with IV oxytocin infusion or nipple stimulation. This test is rarely performed because of the cost and personnel time required. The most common indication is a BPP of 4 or 6.

- **Negative CST** requires absence of any late decelerations with contractions. This is reassuring and highly reassuring for fetal well-being. Management is to repeat the CST weekly. Fetal death rate is only 1 per 1,000 in the next week.

- **Positive CST** is worrisome. This requires the presence of late decelerations associated with at least 50% of contractions. 50% of positive CSTs are false-positive (meaning the fetus is not hypoxemic). They are associated with good FHR variability. The 50% of true-positives are associated with poor or absent variability. Management is prompt delivery.

- Contraindications include situations when contractions would be hazardous to the mother or fetus, e.g., previous classical uterine incision, previous myomectomy, placenta previa, incompetent cervix, preterm membrane rupture, and preterm labor.

Table I-12-2. Contraction Stress Test (CST)

<table>
<thead>
<tr>
<th>Negative CST</th>
<th>No late decelerations are seen in the presence of 3 uterine contractions in 10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment: reassuring of fetal well-being</td>
</tr>
<tr>
<td></td>
<td>Follow-up: repeat CST weekly as needed</td>
</tr>
<tr>
<td>Positive CST</td>
<td>Repetitive late decelerations are seen in the presence of 3 uterine contractions in 10 min</td>
</tr>
<tr>
<td></td>
<td>Assessment: worrisome, especially if nonreactive non-stress test</td>
</tr>
<tr>
<td></td>
<td>Follow-up: prompt delivery</td>
</tr>
</tbody>
</table>

Figure I-12-2. Contraction Stress Test
UMBILICAL ARTERY DOPPLER

This test measures the ratio of systolic and diastolic blood flow in the umbilical artery (UA). The umbilical circulation normally has low resistance, so significant diastolic blood flow is expected. The systolic/diastolic (S/D) ratio normally decreases throughout pregnancy.

The test is predictive of poor perinatal outcome only in IUGR fetuses. Nonreassuring findings, which may indicate need for delivery, are absent diastolic flow and reversed diastolic flow.

![Image of Doppler Waveform Patterns](image)

Figure I-12-3. UA Doppler Waveform Patterns
Figure I-12-4. Normal UA Diastolic Flow

Figure I-12-5. Absent UA Diastolic Flow

Figure I-12-6. Reversed Umbilical Artery Diastolic Flow
Learning Objective

- List the possible fetal orientations in utero and their relation to potential complications of delivery

ORIENTATION IN UTERO

Orientation of the long axis of the fetus to the long axis of the uterus. The most common lie is longitudinal (99% of fetuses at term).

- **Longitudinal**: fetus and mother in same vertical axis
- **Transverse**: fetus at right angle to mother
- **Oblique**: fetus at 45° angle to mother

Figure I-13-1. Longitudinal Fetal Lie

Figure I-13-2. Transverse Fetal Lie
Presentation
Portion of the fetus overlying the pelvic inlet. The most common presentation is cephalic (96% of fetuses at term).

- Cephalic: head presents first
- Breech: feet or buttocks present first. The major risk of vaginal breech delivery is entrapment of the after-coming head.
 - Frank breech means thighs are flexed and legs extended. This is the only kind of breech that potentially could be safely delivered vaginally.
 - Complete breech means thighs and legs flexed.
 - Footling breech means thighs and legs extended.
- Compound: more than one anatomic part is presenting (e.g., head and upper extremity)
- Shoulder: presents first
Position

Relationship of a definite presenting fetal part to the maternal bony pelvis. It is expressed in terms stating whether the orientation part is anterior or posterior, left or right. The **most common position at delivery is occiput anterior**.

- **Occiput**: with a flexed head (cephalic presentation)
- **Sacrum**: with a breech presentation
- **Mentum (chin)**: with an extended head (face presentation)

Attitude

Degree of extension-flexion of the fetal head with cephalic presentation. The **most common attitude is vertex**.

- **Vertex**: head is maximally flexed
- **Military**: head is partially flexed
- **Brow**: head is partially extended
- **Face**: head is maximally extended
Station

Degree of descent of the presenting part through the birth canal; expressed in centimeters above or below the maternal ischial spine.

Figure I-13-7. Station of Fetal Head Descent
Learning Objectives

- List the normal stages of labor and abnormalities that can occur in the process
- Describe the risks and management of obstetric complications during labor

OVERVIEW OF LABOR

Labor is a process whereby over time regular uterine contractions bring about progressive effacement and dilation of the cervix, resulting in delivery of the fetus and expulsion of the placenta. Contractions will occur at least every 5 min lasting 30 s.

Physiology. Increasing frequency of contractions is associated with the formation of gap junctions between uterine myometrial cells. These events are correlated with increasing levels of oxytocin and prostaglandins along with multiplication of specific receptors.

Uterine Changes. The contractile upper uterine segment, containing mostly smooth muscle fibers, becomes thicker as labor progresses, exerting forces that expel the fetus down the birth canal. The lower uterine segment, containing mostly collagen fibers, passively thins out with contractions of the upper segment.

Cervical Effacement. Cervical softening and thinning occur as increasing levels of oxytocin and prostaglandins lead to breakage of disulfide linkages of collagen fibers, resulting in increasing water content. Effacement is often expressed in percentages with the uneffaced (0%) cervix assumed to be 2 cm long and 2 cm wide. Progressive shortening and thinning lead to full effacement (100%) in which the cervix has no length and is paper-thin.

Cervical Dilation. This occurs as the passive lower uterine segment is thinned and pulled up by the contractile upper segment. In early labor (latent phase), the rate of dilation is slow, but at 6 cm of dilation, the rate accelerates to a maximum rate in the active phase of labor. Complete dilation is expressed as 10 cm.

Cardinal Movements of Labor. The first three steps occur simultaneously.

- Engagement: movement of the presenting part below the plane of the pelvic inlet
- Descent: movement of the presenting part down through the curve of the birth canal
- Flexion: placement of the fetal chin on the thorax

The next four steps occur in order.

- Internal rotation: rotation of the position of the fetal head in the mid pelvis from transverse to anterior-posterior
- Extension: movement of the fetal chin away from the thorax
- External rotation: rotation of the fetal head outside the mother as the head passes through the pelvic outlet
- Expulsion: delivery of the fetal shoulders and body
STAGES OF LABOR

Labor refers to the complex process through which uterine contractions bring about progressive dilation/opening and effacement/thinning of the cervix leading to descent of the fetus through the birth canal ending with expulsion of the neonate from the mother’s body.

A labor curve shows the change in cervical dilation over time. Older studies (Friedman, 1954) were based on 500 women at a single U.S. hospital. That labor curve is not applicable to today’s obstetric patients. Today’s population has a higher BMI than 60 years ago. This, along and changing obstetric and anesthesia practices, have led to new normal labor curves based on more current data.

Newer studies (Zhang et al, 2010) based on >60,000 laboring women at 19 U.S. medical centers produce contemporary labor curves and norms which differ significantly from the older Friedman data. The new data suggest the following:

• Transition from latent to active phase is at 6 cm, rather than 4 cm.
• Rate of active phase cervical dilation curve is much slower than previously thought.

Table I-14-1. Stages of Labor

<table>
<thead>
<tr>
<th>Labor Stage</th>
<th>Definition</th>
<th>Function</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1—Latent phase Effacement</td>
<td>Begins: onset of regular uterine contractions Ends: acceleration of cervical dilation</td>
<td>Prepares cervix for dilation</td>
<td><20 hours in primipara <14 hours in multipara</td>
</tr>
<tr>
<td>Stage 1—Active phase Dilation</td>
<td>Begins: acceleration of cervical dilation Ends: 10 cm (complete)</td>
<td>Rapid cervical dilation</td>
<td>≥0.7 cm/hours primipara ≥1.0 cm/hours multipara</td>
</tr>
<tr>
<td>Stage 2 Descent</td>
<td>Begins: 10 cm (complete) Ends: delivery of baby</td>
<td>Descent of the fetus</td>
<td><3 hours in primipara <2 hours in multipara Add 1 hour if epidural</td>
</tr>
<tr>
<td>Stage 3 Expulsion</td>
<td>Begins: delivery of baby Ends: delivery of placenta</td>
<td>Delivery of placenta</td>
<td><30 minutes</td>
</tr>
</tbody>
</table>

Stage 1 begins with onset of regular uterine contractions and ends with complete cervical dilation at 10 cm. Identification when regular contractions began is often imprecise. Stage 1 of labor is divided into a latent and an active phase.

• Latent phase begins with onset of regular contractions and ends with the acceleration of cervical dilation. Its purpose is to soften and efface the cervix preparing it for rapid dilation
 – Minimal descent of the fetus through the birth canal occurs.
 – Rate of dilation is slower than previous studies showed and is similar in both multiparas and nulliparas.
– Both nulliparas and multiparas may take up 6 h to dilate from 4–5 cm; and up to 3 h to dilate from 5–6 cm.

– Although the upper limit of latent phase duration may be up to 20 h in a primipara and up to 14 h in a multipara, this is never an indication for cesarean section.

• **Active phase** begins with cervical dilation acceleration ending with complete cervical dilation. Cervical dilation of 6 cm should be considered the threshold for active phase.

– **Cardinal movements of labor occur**, with beginning descent of the fetus in the latter part of this phase.

– **Slow but progressive labor in first stage of labor is normal** and should not be indication for cesarean delivery.

– Main abnormality is **arrest of active phase** (reserve this diagnosis for women ≥6 cm of dilation with ruptured membranes who show no cervical change despite 4 h of adequate uterine activity or ≥6 h of oxytocin administration with inadequate uterine activity).

Stage 2 begins with complete cervical dilation and ends with delivery of the fetus. Its **purpose** is **descent of the fetus** through the birth canal.

• Whereas in stage 1 **uterine contractions** are the only force that acts on cervical dilation, in stage 2 **maternal pushing efforts** are vitally important to augment the uterine contractions to bring about descent of the fetal presenting part.

• No absolute maximum length of time spent in stage 2 of labor, after which all women should undergo operative delivery, has been identified.

• Main abnormality is **prolonged second stage**.

• **Duration of stage 2** may be up to 3 h in a primipara (4 h with epidural) or 2 h in a multipara (3 h with epidural).

Stage 3 begins with delivery of the fetus and ends with expulsion of the placenta. The mechanism of placental separation from the uterine wall is dependent on myometrial contractions shearing off the anchoring villi. This is usually augmented with IV oxytocin infusion.

• **Signs of stage 3** include gush of blood vaginally, change of the uterus from long to globular, or “lengthening” of the umbilical cord

• **Duration** may be up to 30 minutes in all women.

• Main abnormality is **prolonged third stage**.

Stage 4 is not an official stage of labor but rather a critical 2 h period of close observation of the parturient immediately after delivery. Vital signs and vaginal bleeding are monitored to recognize and promptly treat preeclampsia and postpartum hemorrhage.
CONDUCT OF NORMAL SPONTANEOUS LABOR

A 20-year-old primigravida comes to the maternity unit at 39 weeks’ gestation complaining of regular uterine contractions every 3 min for the past 6 h. The contractions are becoming more frequent. She denies any vaginal fluid leakage. Vital signs are blood pressure 125/75 mm Hg, pulse 80 beats/min, respirations 17 breaths/min. On pelvic examination the fetus is cephalic presentation at –1 station. The cervix is 5 cm dilated, 90% effaced, and soft and anterior in position. On the electronic fetal monitor (EFM) the fetal heart rate baseline is 135 beats/min with moderate variability, frequent accelerations, and no decelerations. How will you manage this patient?

Preadmission
The parturient is not admitted to the maternity unit until cervical dilation is at least 4–5 cm, unless premature membrane rupture has occurred. Fetal presentation is confirmed to be cephalic.

Admission
On admission intravenous access is established, and oral clear liquid may be ingested. The patient is allowed whatever position is comfortable; however, the lateral recumbent position is encouraged as it optimizes uteroplacental blood flow.

First Stage
The fetal heart rate is assessed, usually with continuous electronic monitoring. Cervical dilation and fetal head descent are followed through appropriately spaced vaginal examinations. Amniotomy is performed in the active phase when the fetal head is well applied to the cervix. Obstetric analgesia is administered at patient request.
Second and Third Stages
Maternal pushing efforts augment uterine contractions in the second stage of labor. An episiotomy is not routine but is performed as indicated. After delivery of the fetus, the placenta is allowed to spontaneously separate, after which IV oxytocin is administered to prevent uterine atony and bleeding.

Recovery Period
For the first 2 hours postpartum, the parturient is observed closely for excessive bleeding and development of preeclampsia.

ABNORMAL LABOR

Prolonged Latent Phase
A 29-year-old multigravida at 40 weeks’ gestation is being observed in the maternity unit. She states she has been having regular uterine contractions for 24 h but cervical dilation remains at 1–2 cm. Her vital signs are stable. EFM tracing is reassuring regarding fetal status.

Diagnosis. Prolonged latent phase requires that, in the face of regular uterine contractions, the cervical dilation is <6 cm for a duration of >20 h in a primipara or >14 h in a multipara.

Cause. Latent-phase abnormalities are most commonly caused by injudicious analgesia. Other causes are contractions, which are hypotonic (inadequate frequency, duration, or intensity) or hypertonic (high intensity but inadequate duration or frequency).

Management. This involves (a) therapeutic rest with narcotics or sedatives, (b) oxytocin administration, or (c) amniotomy. Cesarean delivery is never appropriate management for prolonged latent phase.

Arrested Active Phase
A 22-year-old primigravida at 39 weeks’ gestation has progressed in labor to 8 cm of cervical dilation but has not changed for 3 h. Her vital signs are stable. EFM tracing is reassuring regarding fetal status.

Diagnosis. Arrested active phase is diagnosed if membranes are ruptured and cervical dilation has not changed for (a) ≥4 h with adequate uterine contractions or (b) ≥6 h of IV oxytocin administration with inadequate uterine contractions.

Causes. Active-phase abnormalities may be caused by either abnormalities of the passenger (excessive fetal size or abnormal fetal orientation in the uterus), abnormalities of the pelvis (bony pelvis size), or abnormalities of powers (dysfunctional or inadequate uterine contractions).
Management. This is directed at assessment of uterine contraction quality. Contractions should occur every 2–3 min and last 45–60 s with 50 mm Hg intensity. If contractions are hypotonic, IV oxytocin is administered. If contractions are hypertonic, give morphine sedation. If contractions are adequate, proceed to emergency cesarean section.

Prolonged Second Stage

A 20-year-old primigravida at 41 weeks’ gestation has progressed in labor to 10 cm of cervical dilation and has been pushing for the past 3 h. The fetus is cephalic presentation, right occiput transverse position. The fetal head has not descended below +2 station. Her vital signs are stable. EFM tracing is reassuring regarding fetal status.

Diagnosis.

- **Nulliparous** women: After complete dilation, no progress in either descent or rotation of the fetus after ≥3 h without epidural anesthesia and ≥4 h with epidural anesthesia.
- **Multiparous** women: After complete dilation, no progress in either descent or rotation of the fetus after ≥2 h without epidural anesthesia and ≥3 h with epidural anesthesia.

Management. This involves assessment of uterine contractions and maternal pushing efforts. IV oxytocin can strengthen the contractions. Enhanced coaching to optimize maternal pushing should be utilized as needed. If they are both adequate, assess whether the fetal head is engaged. If the head is not engaged, proceed to emergency cesarean. If the head is engaged, consider a trial of either obstetric forceps or a vacuum extractor delivery.

Prolonged Third Stage

A 20-year-old primigravida at 39 weeks’ gestation underwent a spontaneous vaginal delivery 40 min ago of a healthy 3,500 g daughter. However, the placenta has still not delivered. Her vital signs are stable.

Diagnosis. Failure to deliver the placenta within 30 minutes.

Cause. May be inadequate uterine contractions. If the placenta does not separate in spite of IV oxytocin stimulation of myometrium contractions, think of abnormal placental implantation (e.g., placenta accreta, placenta increta, and placenta percreta).

Management. May require manual placental removal or rarely even hysterectomy.
OBSTETRIC COMPLICATIONS DURING LABOR

Prolapsed Umbilical Cord

A 34-year-old multigravida with a known uterine septum comes to the maternity unit at 34 weeks’ gestation complaining of regular uterine contractions. She underwent a previous cesarean at 37 weeks’ gestation for breech presentation. Pelvic examination determines that the fetus is a footling breech. Her cervix is 6 cm dilated with bulging membranes. During the examination, the patient’s bag of waters suddenly ruptures, and a loop of umbilical cord protrudes through the cervix between the fetal extremities.

Umbilical cord prolapse is an obstetric emergency because if the cord gets compressed, fetal oxygenation will be jeopardized, with potential fetal death.

Prolapse can be occult (the cord has not come through the cervix but is being compressed between the fetal head and the uterine wall), partial (the cord is between the head and the dilated cervical os but has not protruded into the vagina), or complete (the cord has protruded into the vagina).

Risk Factors. Rupture of membranes with the presenting fetal part not applied firmly to the cervix, malpresentation.

Management. Do not hold the cord or try to push it back into the uterus. Place the patient in knee-chest position, elevate the presenting part, avoid palpating the cord, and perform immediate cesarean delivery.

Shoulder Dystocia

A 20-year-old primigravida at 39 weeks’ gestation was pushing in the second stage of labor for 90 min and has just delivered the fetal head. However, in spite of vigorous pushing efforts by the mother and moderate traction on the fetal head, you are unable to deliver the anterior shoulder. Since delivery of the fetal head, 30 s has passed. The fetal heart rate is now 70 beats/min.

Diagnosis. This diagnosis is made when delivery of the fetal shoulders is delayed after delivery of the head. It is usually associated with fetal shoulders in the anterior-posterior plane, with the anterior shoulder impacted behind the pubic symphysis. It occurs in 1% of deliveries and may result in permanent neonatal neurologic damage in 2% of cases.

Risk Factors. Include maternal diabetes, obesity, and postdates pregnancy, which are associated with fetal macrosomia. Even though incidence increases with birth weight, half of shoulder dystocias occur in fetuses <4,000 grams.

Management. Includes suprapubic pressure, maternal thigh flexion (McRobert’s maneuver), internal rotation of the fetal shoulders to the oblique plane (Wood’s “corkscrew” maneuver), manual delivery of the posterior arm, and Zavanelli maneuver (cephalic replacement).
Part I ● Obstetrics

Obstetric Lacerations

Perineal lacerations are classified by the extent of tissue disruption between the vaginal introitus and the anus.

- **First degree**: involve only the vaginal mucosa. Suture repair is often not needed
- **Second degree**: involve the vagina and the muscles of the perineal body but do not involve the anal sphincter; suturing is necessary
- **Third degree**: involve the vagina, the perineal body, and the anal sphincter but not the rectal mucosa; suturing is necessary to avoid anal incontinence
- **Fourth degree**: involve all the way from the vagina through to the rectal mucosa; complications of faulty repair or healing include rectovaginal fistula

Episiotomy

This is a surgical incision made in the perineum to enlarge the vaginal opening and assist in childbirth. It is one of the most common female surgical procedures. American-trained physicians tend to prefer a midline episiotomy whereas British-trained physicians tend to perform mediolateral episiotomies. It is not practiced routinely in the United States today because the arguments made in its favor have not been shown to have scientific support.

- **False arguments**: less perineal pain; more rapid return of sexual activity; less urinary incontinence; less pelvic prolapse
- **Disadvantages**: more perineal pain than with lacerations; longer return to sexual activity; more extensions into the anal sphincter and rectum
- **Possible indications**: shoulder dystocia, non-reassuring fetal monitor tracing, forceps or vacuum extractor vaginal delivery, vaginal breech delivery, narrow birth canal
Learning Objectives

- Differentiate the physiology of anesthesia as applied to a pregnant versus a non-pregnant woman
- Describe possible anesthetic complications and management strategies

PHYSIOLOGY

Pain relief from uterine contractions and cervical dilation in stage 1 of labor involves thoracic nerve roots, T10 to T12. Pain relief from perineal distention in stage 2 of labor involves sacral nerve roots, S2 to S4.

- Pregnancy predisposes to hypoxia because of decreased functional residual capacity.
- Placental transfer of medications exposes the fetus to lipid-soluble anionic substances.
- Antacids should be given prophylactically because of delayed gastric emptying time in pregnancy.
- Uterus should be laterally displaced to avoid inferior vena cava compression in the supine position.

ANESTHETIC OPTIONS DURING LABOR

Intravenous agents include sedatives, which are frequently given in the active phase of labor. Advantages include ease of administration and inexpensive cost. Disadvantages include neonatal depression if given close to delivery. The neonate may need administration of naloxone to reverse the effect.

Paracervical block is a mode of conduction anesthesia that involves bilateral transvaginal local anesthetic injection to block Frankenhauser’ ganglion lateral to the cervix. It is administered in the active phase of labor. Disadvantages include temporary high levels of local anesthetic in the uterus that may lead to transitory fetal bradycardia, which is managed conservatively.

Pudendal block is a mode of conduction anesthesia that involves bilateral transvaginal local anesthetic injection to block the pudendal nerve as it passes by the ischial spines. It is administered in stage 2 of labor to provide perineal anesthesia.

OB Triad

Paracervical Block Effect

- Term pregnancy in active labor
- Local anesthetic injection into cervix
- Immediate fetal bradycardia
Epidural block is a mode of conduction anesthesia that involves injection of local anesthetic into the epidural space to block the lumbosacral nerve roots during both stages 1 and 2 of labor. Advantages include use for either vaginal delivery or cesarean section. Disadvantages include patchy block from nonuniform spread of the local anesthetic around the nerve roots. Complications include hypotension from peripheral vascular dilation owing to sympathetic blockade and spinal headache from inadvertent dural puncture, as well as CNS bleeding or infection (rare). Hypotension is treated with IV fluids and IV ephedrine. Spinal headache is treated with IV hydration, caffeine, or blood patch.

Spinal block is a mode of conduction anesthesia that involves injection of local anesthetic into the subarachnoid space to block the lumbosacral nerve roots. It is used as a saddle block for stage 2 of labor and for cesarean delivery. Advantages are complete predictable anesthesia. Complications include hypotension from peripheral vascular dilation because of sympathetic blockade (common) and spinal headache (rare), as well as CNS bleeding or infection (rare).
Learning Objectives

- Describe the appropriate use of intrapartum fetal monitoring including FHR monitoring, fetal pH assessment, and category III fetal monitoring tracings
- Describe intrauterine resuscitation

FETAL HEART RATE MONITORING

Normal fetal heart rate (FHR) findings are highly reassuring of fetal well-being. Abnormal FHR findings are poor predictors of fetal compromise. Wide usage of electronic FHR monitoring has not lowered the rate of cerebral palsy (CP) because the antecedents of CP appear not to be intrapartum events, but rather antenatal events. The false-positive rate for electronic FHR monitoring for predicting CP is >99%.

Both of the following modalities are equivalent in predicting fetal outcome.

- **Intermittent auscultation** of FHR is performed with a fetoscope using auditory FHR counting averaged for 10–15 s.
- **Electronic monitoring** measures the milliseconds between consecutive cardiac cycles giving an instantaneous FHR continuously.

External Devices

External devices (most common) are placed on the uterine fundus. **Advantages** are utilization before significant cervical dilation and membrane rupture. **Disadvantages** are poor quality tracing with maternal obesity and maternal discomfort from the device belts.

- **Fetal.** A continuous ultrasound transducer picks up fetal cardiac motion but also can register maternal great vessel pulsations.
- **Constrictions.** A tocographic transducer device senses the change in uterine wall muscle tone. It can measure the beginning and ending of contractions but cannot assess contraction intensity.
Internal Devices

Internal devices are placed through the dilated cervix. Advantages include optimum signal quality, which is unaffected by maternal obesity. Disadvantages include limitation to labor when cervical dilation and membrane rupture have occurred.

- **Fetal.** A direct scalp electrode precisely senses each QRS complex of the fetal cardiac cycle. Complications can include fetal scalp trauma and infection.
- **Contractions.** An intrauterine pressure catheter (IUPC) placed into the uterine cavity precisely registers intrauterine hydrostatic changes with each contraction.

Figure I-16-1. Electronic Fetal Heart Rate Monitor

Figure I-16-2. Internal Fetal Heart Rate Monitor

INTRAPARTUM FETAL HEART RATE MONITORING

Definitions

Baseline Fetal Heart Rate (FHR): The mean FHR rounded to increments of 5 beats/min during a 10-minute segment. Normal FHR baseline is 110–160 beats/minute.

Tachycardia: FHR baseline is >160 beats/min.

- Non-hypoxic explanations include:
 - **Maternal:** medications (β-adrenergic agonists [terbutaline], atropine, scopolamine), fever, thyrotoxicosis
 - **Fetal:** repetitive accelerations (from fetal movements), fetal tachyarrhythmias, prematurity

Bradycardia: FHR baseline is <110 beats/min.

- Non-hypoxic explanations include:
 - **Maternal medications:** β-adrenergic blockers, local anesthetics
 - **Fetal arrhythmia:** congenital heart block (associated with maternal lupus)
Baseline variability describes fluctuations in the baseline FHR that are irregular in amplitude and frequency. It is a reflection of the autonomic interplay between the sympathetic and parasympathetic nervous system.

- **Absent** amplitude range undetectable
- **Minimal** amplitude range detectable but \(\leq 5 \text{ beats/min} \)
- **Moderate** (normal): amplitude range 6–25 beats/min
- **Marked**: amplitude range >25 beats/min

![Fetal Heart Rate Baseline Variability](image)

Figure I-16-3. Fetal Heart Rate Baseline Variability

Acceleration: A visually apparent abrupt increase (onset to peak in <30 seconds) in the FHR. These are mediated by the sympathetic nervous system in response to fetal movements or scalp stimulation.

- **At \(\geq 32 \text{ weeks gestation} \)**, an acceleration has a peak of >15 beats/min above baseline, with a duration of >15 seconds but <2 min from onset to return.
- **At <32 weeks gestation**, an acceleration has a peak of ≥10 beats/min above baseline, with a duration of ≥10 sec but <2 min from onset to return.
Early deceleration: A visually apparent usually symmetrical gradual decrease and return of the FHR associated with a uterine contraction. These are mediated by parasympathetic stimulation and occur in response to head compression.

- A gradual FHR decrease is defined as from the onset to the FHR nadir of ≥ 30 seconds.
- The decrease in FHR is calculated from the onset to the nadir of the deceleration.
- The nadir of the deceleration occurs at the same time as the peak of the contraction.

Late deceleration: A visually apparent usually symmetrical gradual decrease and return of the FHR associated with a uterine contraction. These are mediated by either vagal stimulation or myocardial depression and occur in response to placental insufficiency.

- A gradual FHR decrease is defined as from the onset to the FHR nadir of ≥ 30 seconds.
- The decrease in FHR is calculated from the onset to the nadir of the deceleration.
- The deceleration is delayed in timing, with the nadir of the deceleration occurring after the peak of the contraction.

Variable deceleration: A visually apparent abrupt decrease in FHR. These are mediated by umbilical cord compression.

- An abrupt FHR decrease is defined as from the onset of the deceleration to the beginning of the FHR nadir of < 30 seconds.
- The decrease in FHR is calculated from the onset to the nadir of the deceleration.
- The decrease in FHR is ≥ 15 beats per minute, lasting ≥ 15 seconds, and < 2 minutes in duration.

Sinusoidal pattern: A visually apparent, smooth, sine wave-like undulating pattern in FHR baseline with a cycle frequency of 3–5/min which persists for ≥ 20 min.
Fetal Heart Rate Categories

A three-tiered system for the categorization of FHR patterns is recommended. Categorization evaluates the fetus at that point in time; tracing patterns can and will change. FHR tracing may move back and forth between the categories depending on the clinical situation and management strategies used.

Category I: FHR tracings are normal
Criteria include all of the following:
- Baseline rate: 110–160 beats/min
- Baseline FHR variability: moderate
- Late or variable decelerations: absent
- Early decelerations: present or absent
- Accelerations: present or absent

Category II: FHR tracings are indeterminate
These include all FHR tracings not categorized as category I or III and may represent an appreciable fraction of those encountered in clinical care.

Category III: FHR tracings are abnormal
Criteria include absent baseline FHR variability and any of the following:
- Recurrent late decelerations
- Recurrent variable decelerations
- Bradycardia
- Sinusoidal pattern

Interpretation: strongly predictive of normal acid-base status at this time
Action: routine monitoring

Interpretation: not predictive of abnormal acid-base status at this time
Action: continued surveillance and re-evaluation

Interpretation: strongly predictive of abnormal acid-base status at this time
Action: intrauterine resuscitation; if no resolution, then prompt delivery

Note
Remember, FHR tracing patterns provide information only on the current acid–base status of the fetus.

Figure I-16-5. Categorization of FHR Patterns
INTRAUTERINE RESUSCITATION

Decrease uterine contractions: Turn off any IV oxytocin infusion or administer terbutaline 0.25 mg subcutaneously to enhance intervillous placental blood flow.

Augment IV fluid volume: Infuse the parturient with a 500 mL bolus of intravenous normal saline rapidly to enhance uteroplacental infusion.

Administer high-flow oxygen: Give the parturient 8–10 L of oxygen by facemask to increase delivery of maternal oxygen to the placenta.

Amnioinfusion is useful for eliminating or reducing the severity of variable decelerations.
Change position: Removing the parturient from the supine position decreases inferior vena cava compression and enhances cardiac return, thus cardiac output to the placenta. Turning the parturient from one lateral position to the other may relieve any umbilical cord compression that may be present.

Vaginal examination: Perform a digital vaginal examination to rule out possible prolapsed umbilical cord.

Scalp stimulation: Perform a digital scalp stimulation observing for accelerations, which would be reassuring of fetal condition.

FETAL pH ASSESSMENT

Intrapartum: Fetal scalp blood pH may be used in labor if the EFM strip is equivocal. Prerequisites include cervical dilation, ruptured membranes, and adequate descent of the fetal head. Contraindications are suspected fetal blood dyscrasia. A small, shallow fetal scalp incision is made resulting in capillary bleeding. The blood is collected in a heparinized capillary tube and sent to the laboratory for blood gas analysis. Normal fetal pH is ≥ 7.20. This procedure is seldom performed today.

Postpartum: Umbilical artery blood pH is used to confirm fetal status at delivery. It involves obtaining both umbilical cord venous and arterial samples. Arterial Pco_2 and base deficit values are higher than venous, but pH and Po_2 are lower. Normal fetal pH is ≥ 7.20.

CATEGORY III: ABNORMAL TRACINGS

A 20-year-old primigravida at 39 weeks’ gestation is in active labor at 7 cm of cervical dilation. The EFM strip shows a baseline heart rate of 175 beats/min, and variability is absent, but repetitive late decelerations are seen after each contraction. No accelerations are noted.

Recognize that most abnormal tracings are not caused by fetal hypoxia. Ask whether the tracing has biologic plausibility.

- **Examine the EFM strip carefully** looking for baseline heart rate, degree of variability, and presence of periodic changes (accelerations, decelerations).
- **Confirm abnormal findings** using criteria discussed above (category II or III).
- **Identify nonhypoxic causes** present that could explain the abnormal findings.
- **Initiate the intrauterine resuscitation measures** described previously to enhance placental perfusion and fetal oxygenation.
- **Observe for normalization** of the EFM tracing.
- **Prepare for delivery promptly** if resuscitation measures do not normalize EFM tracing.

Specific interventions if immediate delivery is indicated:

- In stage 1 of labor, the only option is emergency cesarean section.
- In stage 2 of labor, an operative vaginal delivery (e.g., vacuum extractor assisted or obstetrical forceps) may be appropriate, or an emergency cesarean section must be performed.
Learning Objective

- Describe the risks and indications for the use of obstetric forceps, vacuum extractor, emergency cesarean section, and elective cesarean section

OPERATIVE OBSTETRICS

Operative obstetrics refers to any method used to deliver the fetus other than uterine contractions and maternal pushing efforts. It may include vaginal or cesarean routes.

Forceps
Obstetric forceps are metal instruments used to provide traction, rotation, or both to the fetal head. Classification for use is as follows:

- **Outlet** (most common forceps use): fetal head is on pelvic floor
- **Low**: fetal head is below +2 station but has not reached the pelvic floor
- **Mid** (seldom used today): fetal head is below 0 station but has not reached +2 station
- **High** (never appropriate in modern obstetrics because of risk to both mother and fetus): fetal head is unengaged, above 0 station

Indications are as follows:

- **Prolonged second stage** (most common indication for forceps): may be because of dysfunctional labor or suboptimal fetal head orientation
- **Category III EFM strip**: fetal heart rate monitor pattern suggests fetus is not tolerating labor
- **Avoid maternal pushing**: include various conditions in which pushing efforts may be hazardous to parturient, e.g., cardiac, pulmonary, or neurologic disorders
- **Breech presentation**: shorten the time to deliver the head of a vaginal breech fetus

Prerequisites include the following:

- Clinically adequate pelvic dimensions
- Experienced operator
- Full cervical dilation
- Engaged fetal head
- Orientation of fetal head certain

Complications can include lacerations to the vagina, cervix, perineum, and uterus (maternal); and soft-tissue compression or cranial injury caused by incorrectly placed forceps blades (fetal-neonatal).
Vacuum Extractor

A vacuum extractor is a cuplike instrument that is held against the fetal head with suction. Traction is thus applied to the fetal scalp, which along with maternal pushing efforts results in descent of the head leading to vaginal delivery. The cups may be metal or plastic, rigid or soft.

A vacuum extractor has some advantages over forceps.

- **Fetal head orientation**: Precise knowledge of fetal head position and attitude is not essential.
- **Space required**: The vacuum extractor does not occupy space adjacent to the fetal head.
- **Perineal trauma**: Third- and fourth-degree lacerations are fewer.
- **Head rotation**: Fetal head rotation occurs spontaneously at the station best suited to fetal head configuration and maternal pelvis.

A vacuum extractor also has some disadvantages over forceps.

- **Cup pop-offs**: Excessive traction can lead to sudden decompression as the cup suction is released.
- **Scalp trauma**: Scalp skin injury and lacerations are common.
- **Subgaleal hemorrhage and intracranial bleeding** are rare.
- **Neonatal jaundice** arises from scalp bleeding.

The indications for a vacuum extractor are similar to those of forceps.

- **Prolonged second stage**: This may be because of dysfunctional labor or suboptimal fetal head orientation.
- **Nonreassuring EFM strip**: The FHR monitor pattern suggests the fetus is not tolerating labor.
- **Avoid maternal pushing**: These include various conditions in which pushing efforts may be hazardous to the parturient, e.g., cardiac, pulmonary, or neurologic disorders.

Prerequisites for vacuum extractor use include:

- Clinically adequate pelvic dimension
- Experienced operator
- Full cervical dilation
- Engaged fetal head
- Gestational age ≥34 weeks

Complications can include vaginal lacerations from entrapment of vaginal mucosa between the suction cup and fetal head (maternal), neonatal cephalohematoma and scalp lacerations (common), and life-threatening complications of subgaleal hematoma or intracranial hemorrhage (uncommon but associated with vacuum duration >10 min) (neonatal).

Cesarean Section

Cesarean section is a procedure in which the fetus is delivered through incisions in the maternal anterior abdominal and uterine walls. The overall U.S. cesarean section rate in 2011 was ~33% (includes both primary and repeat procedures).
Risks. Maternal mortality and morbidity are higher than with vaginal delivery, especially with emergency cesareans performed in labor. Maternal mortality is largely anesthetic-related, with overall mortality ratio of 25 per 100,000.

- **Hemorrhage**: Blood loss is 2× that of a vaginal delivery, with mean of 1,000 mL.
- **Infection**: Sites of infection include endometrium, abdominal wall wound, pelvis, urinary tract, or lungs. Prophylactic antibiotics can decrease infectious morbidity.
- **Visceral injury**: Surrounding structures can be injured (e.g., bowel, bladder, and ureters).
- **Thrombosis**: Deep venous thrombosis is increased in the pelvic and lower extremity veins.

Uterine Incisions

- **Low segment transverse**. This incision is made in the noncontractile portion of the uterus and is the one most commonly used. The bladder must be dissected off the lower uterine segment. It has a low chance of uterine rupture in subsequent labor (0.5%).
 - **Advantages** are trial of labor in a subsequent pregnancy is safe; the risk of bleeding and adhesions is less.
 - **Disadvantages** are the fetus(es) must be in longitudinal lie; the lower segment must be developed.

- **Classical**. This incision is made in the contractile fundus of the uterus and is less commonly performed. Technically it is easy to perform, and no bladder dissection is needed. Risk of uterine rupture both before labor as well as in subsequent labor is significant (5%). Repeat cesarean should be scheduled before labor onset.
 - **Advantages** are any fetus(es) regardless of intrauterine orientation can be delivered; lower segment varicosities or myomas can be bypassed.
 - **Disadvantages** are trial of labor in a subsequent pregnancy is unsafe; the risk of bleeding and adhesions is higher.

OB Triad

Low Transverse Uterine Incision

- Low risk of rupture (0.5% in labor)
- Less blood loss and adhesions
- Safe for subsequent labor trial

OB Triad

Classical Uterine Incision

- High risk of rupture (5% in labor)
- More blood loss and adhesions
- Risky for subsequent labor trial
Indications for primary cesarean section include the following:

- **Cephalopelvic disproportion (CPD)** (most common indication for cesarean delivery): This term literally means the pelvis is too small for the fetal head. In actual practice, it most commonly indicates failure of the adequate progress in labor, which may be related to dysfunctional labor or suboptimal fetal head orientation.

- **Fetal malpresentation:** This refers most commonly to breech presentation, but also means any fetal orientation other than cephalic.

- **Category III EFM strip:** The FHR monitor pattern suggests the fetus may not be tolerating labor, but commonly this is a false-positive finding.

Elective Cesarean

The U.S. National Institutes of Health (NIH) held a consensus conference in March 2006 to determine the scientific basis for maternal and fetal risks and benefits to cesarean delivery on maternal request (CDMR). After two days of presentations by experts in the field and input from the audience, the consensus was that “the available information comparing the risks and benefits of CDMR versus planned vaginal birth do not provide the basis for a recommendation in either direction.”

Recommendations from the independent panel of experts include:

- Women should be counseled individually for risks and benefits.
- Women who are considering having >2 children should be aware that a cesarean section causes uterine scarring; these women should avoid a primary cesarean section.
- Women should not have a cesarean section prior to 39 weeks’ gestation.

VAGINAL BIRTH AFTER CESAREAN (VBAC)

Successful vaginal delivery rate is up to 80% in carefully selected patients. **Criteria** for trial of labor include patient consent, nonrepetitive cesarean indication (e.g., breech, placenta previa), previous low segment transverse uterine incision, and clinically adequate pelvis.

EXTERNAL CEPHALIC VERSION

External cephalic version consists of externally manipulating the gravid abdomen without anesthesia to turn the fetus from transverse lie or breech presentation. The optimum time for version is 37 weeks' gestation, and success rates are 60–70%.

Potential hazards are umbilical cord compression or placental abruption requiring emergency cesarean section.
Learning Objectives

- Describe the causes and management of postpartum hemorrhage and fever
- List the sequence of physiologic changes expected after delivery
- Provide an overview of the special considerations for immunizations and contraception postpartum

POSTPARTUM PHYSIOLOGIC ISSUES

Reproductive Tract Changes

- **Lochia**: These are superficial layers of the endometrial decidua that are shed through the vagina during the first three postpartum weeks. For the first few days the color is red (lochia rubra), changing during the next week to pinkish (lochia serosa), ending with a whitish color (lochia alba) by the end of the second week.

- **Cramping**: The myometrial contractions after delivery constrict the uterine venous sinuses, thus preventing hemorrhage. These lower midline cramps may be painful and are managed with mild analgesics.

- **Perineal Pain**: Discomfort from an episiotomy or perineal lacerations can be minimized in the first 24 hours with ice packs to decrease the inflammatory response edema. A heat lamp or sitz bath is more helpful after the first day to help mobilize tissue fluids.

Urinary Tract Changes

- **Hypotonic Bladder**: Intrapartum bladder trauma can result in increased post-void residual volumes. If the residuals exceed 250 mL, the detrusor muscle can be stimulated to contract with bethanechol (Urecholine). Occasionally an indwelling Foley catheter may need to be placed for a few days.

- **Dysuria**: Pain with urination may be seen from urethral irritation from frequent intrapartum catheterizations. Conservative management may be all that is necessary. A urinary analgesic may be required occasionally.

Gastrointestinal Tract Changes

- **Constipation**: Decreased GI tract motility because of perineal pain and fluid mobilization, can lead to constipation. Management is oral hydration and stool softeners.

- **Hemorrhoids**: Prolonged second-stage pushing efforts can exaggerate preexisting hemorrhoids. Management is oral hydration and stool softeners.

OB Triad

Impaired Maternal–Infant Bonding

- Postpartum Day 1
- SVD: 1,900-g 31-week-old male in NICU
- Mom shows no interest in baby
Obstetrics

Psychosocial Problems

• Bonding: Impaired maternal–infant bonding is seen in the first few days postdelivery. Lack of interest or emotions for the newborn is noted. Risk is increased if contact with the baby is limited because of neonatal intensive care, as well as poor social support. Management is psychosocial evaluation and support.

• Blues: Postpartum blues are very common within the first few weeks of delivery. Mood swings and tearfulness occur. Normal physical activity continues and care of self and baby is seen. Management is conservative with social support.

• Depression: Postpartum depression is common but is frequently delayed up to a month after delivery. Feelings of despair and hopelessness occur. The patient often does not get out of bed with care of self and baby neglected. Management includes psychotherapy and antidepressants.

• Psychosis: Postpartum psychosis is rare, developing within the first few weeks after delivery. Loss of reality and hallucinations occur. Behavior may be bizarre. Management requires hospitalization, antipsychotic medication, and psychotherapy.

Postpartum Contraception and Immunizations

Contraception Planning

• Breast feeding: Lactation is associated with temporary anovulation, so contraceptive use may be deferred for three months. A definitive method should be used after that time.

• Diaphragm: Fitting for a vaginal diaphragm should be performed after involution of pregnancy changes, usually at the six-week postpartum visit.

• Intrauterine Device (IUD): Higher IUD retention rates and decreased expulsions are seen if IUD placement takes place at six weeks postpartum.

• Combination Modalities: Combined estrogen-progestin formulations (e.g., pills, patch, vaginal ring) should not be used in breast-feeding women because of the estrogen effect of diminishing milk production. In nonlactating women, they should be started after three weeks postpartum to allow reversal of the hypercoagulable state of pregnancy and thus decrease the risk of deep venous thrombosis.

• Progestin-only Contraception: Progestin steroids (e.g., mini-pill, Depo-Provera, Nexplanon) do not diminish milk production so can safely be used during lactation. They can begin immediately after delivery.

Postpartum Immunizations

• RhoGAM: If the mother is Rh(D)-negative and her baby is Rh(D)-positive, she should be administered 300 μg of RhoGAM IM within 72 hours of delivery.

• Rubella: If the mother is rubella IgG antibody-negative, she should be administered active immunization with the live-attenuated rubella virus. She should avoid pregnancy for one month to avoid potential fetal infection.
POSTPARTUM HEMORRHAGE
Postpartum hemorrhage is vaginal delivery blood loss \(\geq 500 \text{ mL} \) or cesarean section blood loss \(\geq 1,000 \text{ mL} \).

Uterine Atony
Uterine atony is the most common cause (80%) of excessive postpartum bleeding.

Risk Factors. Rapid or protracted labor (most common), chorioamnionitis, medications (e.g., MgSO\(_4\), \(\beta \)-adrenergic agonists, halothane), and overdistended uterus.

Clinical Findings. A soft uterus (feels like dough) palpable above the umbilicus.

Management. Uterine massage and uterotonic agents (e.g., oxytocin, methylergonovine, or carboprost).

Lacerations
Lacerations cause 15% of excessive postpartum bleeding.

Risk Factors. Uncontrolled vaginal delivery (most common), difficult delivery, and operative vaginal delivery.

Clinical Findings. Identifiable lacerations (cervix, vagina, perineum) in the presence of a contracted uterus.

Management. Surgical repair.

Retained Placenta
Retained placenta causes 5% of excessive postpartum bleeding.

Risk Factors. Accessory placental lobe (most common) and abnormal trophoblastic uterine invasion (e.g., cervix, vagina, perineum).

Clinical Findings. Missing placental cotyledons in the presence of a contracted uterus.

Management. Manual removal or uterine curettage under ultrasound guidance.

Disseminated Intravascular Coagulation
Disseminated intravascular coagulation (DIC) is rare.

Risk Factors. Abruptio placentae (most common), severe preeclampsia, amniotic fluid embolism, and prolonged retention of a dead fetus.

Clinical Findings. Generalized oozing or bleeding from IV sites or lacerations in the presence of a contracted uterus.

Management. Removal of pregnancy tissues from the uterus, intensive care unit (ICU) support, and selective blood-product replacement.
Uterine Inversion

Uterine inversion is rare.

Risk Factors. Myometrial weakness (most common) and previous uterine inversion.

Clinical Findings. Beefy-appearing bleeding mass in the vagina and failure to palpate the uterus abdominally.

Management. Uterine replacement by elevating the vaginal fornices and lifting the uterus back into its normal anatomic position, followed by IV oxytocin.

Table I-18-1. Postpartum Hemorrhage

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Diagnosis</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterus not palpable</td>
<td>Inversion (rare)</td>
<td>Elevate vaginal fornices, IV oxytocin</td>
</tr>
<tr>
<td>Uterus like dough</td>
<td>Atony (80%)</td>
<td>Uterine massage, oxytocin, ergot, PG F2α</td>
</tr>
<tr>
<td>Tears vagina, cervix</td>
<td>Lacerations (15%)</td>
<td>Suture & repair</td>
</tr>
<tr>
<td>Placenta incomplete</td>
<td>Retain placenta (5%)</td>
<td>Manual removal or uterine curettage</td>
</tr>
<tr>
<td>Diffuse oozing</td>
<td>DIC (rare)</td>
<td>Remove POC, ICU care, blood products prn</td>
</tr>
<tr>
<td>Persistent bleeding</td>
<td>Unexplained (rare)</td>
<td>Ligate vessels or hysterectomy</td>
</tr>
</tbody>
</table>

Unexplained

If despite careful searching no correctible cause of continuing hemorrhage is found, it may be necessary to perform a laparotomy and bilaterally surgically ligate the uterine or internal iliac arteries. Hysterectomy would be a last resort.

POSTPARTUM FEVER

Postpartum fever is defined as fever \geq 38 C (\geq100.4 F) on \geq 2 occasions \geq 6 hours apart, excluding first 24 hours postpartum.

PP Day 0: Atelectasis

Risk Factors. General anesthesia with incisional pain (most common) and cigarette smoking.

Clinical Findings. Mild fever with mild rales on auscultation. Patient is unable to take deep breaths.

Management. Pulmonary exercises (e.g., deep breaths, incentive spirometry) and ambulation. Chest x-rays are unnecessary.
PP Day 1–2: Urinary Tract Infection

Risk Factors. Multiple intrapartum catheterizations and vaginal examinations due to prolonged labor.

Clinical Findings. High fever, costovertebral flank tenderness, positive urinalysis (e.g., WBC, bacteria) and urine culture.

Management. Single-agent intravenous antibiotics.

PP Day 2–3: Endometritis

Endometritis is the most common cause of postpartum fever.

Risk Factors. Emergency cesarean section after prolonged membrane rupture and prolonged labor.

Clinical Findings. Moderate-to-high fever with exquisite uterine tenderness. Peritoneal signs should be absent and peristalsis should be present.

Management. Multiple-agent intravenous antibiotics (e.g., gentamycin and clindamycin) to cover polymicrobial genital tract flora.

PP Day 4–5: Wound Infection

Risk Factors. Emergency cesarean section after prolonged membrane rupture and prolonged labor.

Clinical Findings. Persistent spiking fever despite antibiotics, along with wound erythema, fluctuance, or drainage.

Management. Intravenous antibiotics for cellulitis. Wound drainage with twice-daily, wet-to-dry wound packing used for an abscess, anticipating closure by secondary intention.

PP Day 5–6: Septic Thrombophlebitis

Risk Factors. Emergency cesarean section after prolonged membrane rupture and prolonged labor.

Clinical Findings. Persistent wide fever swings despite broad-spectrum antibiotics with normal pelvic and physical examination.

Management. Intravenous heparin for 7–10 days, keeping PTT values at 1.5 to 2.0 times baseline.
Part I Obstetrics

PP Day 7–21: Infectious Mastitis

Risk Factors. Lactational nipple trauma leading to nipple cracking and allowing *Staphylococcus aureus* bacteria to enter breast ducts and lobes.

Clinical Findings. Fever of variable degree with localized, unilateral breast tenderness, erythema, and edema.

Management. Oral cloxacillin. Breast feeding can be continued. Ultrasound imaging is needed to rule out an abscess if lactational mastitis does not respond to antibiotics.

Table I-18-2. Postpartum Fever

<table>
<thead>
<tr>
<th>Physical Exam</th>
<th>Diagnosis</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung “crackles” PP Day 0</td>
<td>Atelectasis</td>
<td>Ambulation, pulmonary exercises</td>
</tr>
<tr>
<td>Flank pain, dysuria PP Day 1–2</td>
<td>Pyelonephritis</td>
<td>Single IV antibiotic</td>
</tr>
<tr>
<td>Tender uterus PP Day 2–3</td>
<td>Endometritis</td>
<td>IV gentamicin and clindamycin</td>
</tr>
<tr>
<td>Wound purulence PP Day 5–6</td>
<td>Wound infection</td>
<td>Wet-to-dry packs</td>
</tr>
<tr>
<td>Pelvic mass PP Day 5–6</td>
<td>Pelvic abscess</td>
<td>Percutaneous drainage</td>
</tr>
<tr>
<td>“Picket fence” fever PP Day 5–6</td>
<td>Septic thrombophlebitis</td>
<td>Full heparinization</td>
</tr>
</tbody>
</table>
PART II

Gynecology
Learning Objectives

❏ Provide an overview of female reproductive anatomy
❏ List the Tanner stages of development including expected changes and age of onset
❏ Describe the most common gynecologic procedures

FEMALE REPRODUCTIVE ANATOMY

Uterus
The embryologic origin of the uterus is from fusion of the two Müllerian ducts. Major structures include the corpus, cornu, isthmus and cervix. Internal layers of the uterus include the serosa, myometrium, and endometrium. The ligaments attached to the uterus include the broad ligament, round ligaments, cardinal ligaments, and uterosacral ligaments. Anatomical positions of the uterus include anteverted, retroverted, mid-position. Normal uterine position tips slightly anterior in the pelvis.

Oviducts
The oviducts extend from the uterus to the ovaries. Segments of the oviducts are the interstitium, isthmus, ampulla, and infundibulum. The oviducts function in facilitating sperm migration from the uterus to the ampulla and the transportation of the zygote toward the uterus. They are attached medially to the uterine corpus, laterally to the pelvic side wall, and inferiorly to the broad ligament. They receive dual blood supply from the ascending uterine artery and ovarian artery.

Ovaries
Functions of the ovaries include containment of oocytes within the ovarian follicles and production of reproductive and sexual hormones. The ovaries are attached by the ovarian ligament to the uterine fundus by the suspensory ligaments to the pelvic side wall, and by the mesovarium to the broad ligament. Lymphatic drainage of the ovaries is through the pelvic and paraaortic lymph nodes.

Vagina
The vagina is a tubular structure 8–9 cm in length that extends from the introitus to the cervix. The vagina traverses the urogenital diaphragm through the genital hiatus of the levator ani. It functions as the female copulatory organ, an outflow tract for menstrual flow, and birth canal in parturition.
GYNECOLOGIC PROCEDURES

Gynecologic Ultrasound
This imaging modality uses low-energy, high-frequency sound waves.

- **Transvaginal** transducers are utilized for lower pelvic masses, producing high-resolution images that are not influenced by the thickness of the maternal abdominal wall.
- **Transabdominal** transducers provide images throughout the entire pelvis as well as abdomen.
- Ultrasound works best when adjacent tissues have differing echodensities, particularly fluid/tissue interfaces.

Cervical Pap Smear
The cervical Pap smear, an outpatient office procedure, is a screening test for premalignant cervical changes that allows for early intervention and thus prevents cervical cancer. The diagnostic test for cervical dysplasia or cancer requires a histologic assessment made on a tissue biopsy specimen.

A Pap smear should include **cytologic specimens from two areas**: stratified squamous epithelium of transformation zone (TZ) of the ectocervix and columnar epithelium of the endocervical canal (EGG).

- **Ectocervix specimen**: Screening for squamous cell carcinoma, the most common cancer of the cervix (80%), involves scraping the TZ. The TZ is the area of the ectocervix between the old or “original” squamocolumnar junction (SCJ) and the new SCJ.
 - At puberty the vaginal pH falls, causing the “native” columnar epithelium to be transformed by metaplasia into normal-appearing “metaplastic” stratified squamous epithelium.
 - The TZ is the location where 95% of cervical dysplasia and cancer develop.
- **Endocervix specimen**: Screening for adenocarcinoma, the second most common cancer of the cervix (15%), involves scraping the endocervical canal with cytobrush.

![Figure II-1-1. Development of T-Zone](image-url)
Studies show that while the “liquid-based” methods reduce the percentage of unsatisfactory specimens as compared with the “traditional” method, both methods are equivalent in performance for detection of cervical dysplasia.

- With **traditional Pap smear**, samples are obtained using a wooden **spatula** on the ectocervix and a **Cytobrush** for the endocervical canal rotating in one direction 360°. The cells from each area are then smeared evenly onto a glass slide, which is then fixed in formalin and then stained and examined under a microscope by a cytologist. **Potential problems** include insufficient smearing of all abnormal cells onto the glass slide, air drying artifacts if fixing is delayed, and clumping of cells, making cytology assessment difficult.

- With **liquid-based Pap smear**, specimens are obtained using a **cervical broom**. Long central bristles are placed into the endocervix and short outer bristles over the ectocervix. The broom is rotated 5 times in the same direction, collecting and sampling both endocervical cells and transformation zone. The cervical broom is placed in the preservative solution and rotated 10 times vigorously to release collected material into the solution. **Advantages** include a lower chance of abnormal cells being discarded with the collecting instrument, lower likelihood of air-drying artifacts, and more even spread of cells on the glass slide surface.

![Figure II-1-2. Taking a Sample of Cells during Pap Smear](image)

Colposcopy

Colposcopy is an outpatient office procedure. A binocular, short focal-length instrument with built-in light source is used to look at the cervix through a speculum. The purpose is to (1) visually identify where the abnormal Pap smear cells originated, and (2) biopsy that area to send for histologic diagnosis.

The ectocervix is visually examined to localize areas of abnormal epithelium. Dilute acetic acid is applied to the cervix to aid in the detection of dysplasia. Areas of abnormal-appearing tissue that are biopsied include **punctuation, mosaicism, white epithelium**, and **abnormal vessels**. The specimens are sent to pathology for definitive diagnosis.
Endocervical Curettage

In endocervical curettage (ECC), the mucous membrane of the cervical canal is scraped at the time of colposcopy using a spoon-shaped instrument called a curette. This is usually performed as a follow-up for an abnormal Pap smear.

- Performed if normal-appearing metaplastic epithelium is seen on colposcopy to enter the endocervical canal
- May also be performed if no lesion is identified on the ectocervix
- Not performed on pregnancy patients due to risk of heavy bleeding

Cold Knife Cone Biopsy

Cold knife cone biopsy is a minor outpatient surgical procedure performed in the operating room under local or general anesthesia. It is a diagnostic test that examines the histology of cervical lesions.

- A cone-shaped tissue specimen is obtained with a scalpel by performing a circumferential incision of the cervix with a diameter that is wider at the cervical os and narrower toward the endocervical canal. The tissue is sent to pathology for histologic diagnosis.
- **Wide-shallow cone** is performed if the Pap smear shows changes more severe than the colposcopically directed biopsy.
- **Narrow-deep cone** is performed if a lesion extends from the exocervix into the endocervical canal.
- Long-term risks include cervical **stenosis**, cervical **insufficiency**, and preterm birth.
Loop Electrosurgical Excision Procedure

Loop electrosurgical excision procedure (LEEP) is a minor outpatient surgical procedure performed under local anesthesia. It is a diagnostic test that examines the histology of cervical lesions. Advantages are low cost, high success rate, and ease of use.

- This technique is used for diagnosing and treating cervical dysplasia. An electric current is passed through a thin wire loop to remove abnormal cervical tissues. The heated loop seals off blood vessels as it cuts.
- The tissue is sent to pathology. Follow-up Pap smears are performed every six months for two years to ensure that the dysplastic changes do not return.
- Long-term risks of LEEP include cervical stenosis and cervical insufficiency.

Cryotherapy

Cryotherapy is a minor outpatient procedure performed without anesthesia. It destroys dysplastic cervical tissue identified by colposcopy and cervical biopsy.

- A CryoProbe is placed over the abnormal cervical epithelium. The probe temperature is lowered to −50°C with liquid nitrogen. This causes the metal CryoProbe to freeze and destroy superficial abnormal cervical tissue. The freezing lasts for three minutes; the cervix is then allowed to thaw, and the freezing is repeated for another three minutes.
- A watery discharge will occur over the next few weeks as the destroyed tissue sloughs off. Follow-up Pap smears are performed every six months for two years to ensure that the dysplastic changes do not return.
- Long-term risks of cryotherapy include cervical stenosis.
Hysterectomy
Hysterectomy, removal of the uterus, is a major inpatient surgical procedure performed under either regional or general anesthesia. It is used for both diagnosis and therapy.

- Depending on the indications and pelvic exam, the procedure can be performed vaginally, abdominally, laparoscopically, or robot-assisted.
- **Subtotal** or supracervical hysterectomy removes only the corpus of the uterus, leaving the cervix in place.
- **Total hysterectomy**, the most common procedure, removes both the corpus and cervix of the uterus. Total hysterectomy is also known as **simple** hysterectomy.
- **Radical hysterectomy**, performed for early-stage cervical carcinoma, involves removal of the uterus, cervix, and surrounding tissues, including cardinal ligaments, uterosacral ligaments, and the upper vagina.

Hysteroscopy
Hysteroscopy is a minor outpatient surgical procedure performed in the operating room under either local-intravenous or general anesthesia for diagnosis and possibly for therapy.

- A fiberoptic scope is placed through a previously dilated cervix to directly visualize the endometrial cavity. A clear fluid is infused through side ports of the scope to distend the uterine cavity, allowing visualization.
- Other side ports of the hysteroscope can be used in placing instruments to biopsy lesions or to resect submucous leiomyomas, polyps, or uterine septa.

Figure II-1-5. Hysteroscopy
Laparoscopy
Laparoscopy is a minor outpatient surgical procedure performed in the operating room under general anesthesia for diagnosis and possibly for therapy.

- The abdominopelvic cavity is insufflated with pressured carbon dioxide to distend the abdomen and lift the abdominal wall away from the viscera. Through a port that is placed through the umbilicus, a fiberoptic scope is then inserted to visually examine the pelvis and abdomen.
- Common gynecologic indications for laparoscopy include diagnosing and treating causes of chronic pelvic pain (e.g., endometriosis or adhesions), resecting advanced ectopic pregnancies, and diagnosing and lysing tubal adhesions in infertility cases.

Hysterosalpingogram
Hysterosalpingogram (HSG) is a diagnostic outpatient radiologic imaging procedure performed without anesthesia. A cannula is placed in the endocervical canal and radio-opaque fluid is injected, allowing assessment of uterine malformations (e.g., uterine septum, bicornuate uterus) and Asherman's syndrome.

Tubal pathology can also be assessed by observing internal tubal anatomy and seeing whether the dye spills into the pelvic cavity.

Dilation and Curettage
Dilation and curettage (D&C) is a minor outpatient surgical procedure performed under anesthesia in an operating room under either local-intravenous or general anesthesia. It is a diagnostic test that examines the histology of endometrial lesions.

D&C is performed similarly to an endometrial biopsy. However, the cervix frequently requires dilation with cervical dilators prior to introduction of the curette. The curette is used to scrape the endometrium, obtaining larger amounts of endometrial tissue that are then sent to pathology.
Endometrial Biopsy

Endometrial biopsy, an outpatient office procedure, is a diagnostic test that examines the histology of endometrial lesions.

The direction of the cervical canal and endometrial cavity is identified by placing a uterine sound through the endocervical canal. A hollow suction cannula is then placed into the uterine cavity and suction is applied. As the cannula is rotated, endometrial tissue is aspirated into it. When the cannula is removed, the retrieved tissue is placed in formalin and sent to pathology.

Figure II-1-7. Endometrial Biopsy
Vulvar Biopsy

Vulvar biopsy is a minor outpatient office procedure performed under local anesthesia. It is a diagnostic test that examines the histology of vulvar lesions that can be performed using a punch biopsy or a scalpel.

![Vulvar Biopsy Image]

Figure II-1-8. Vulvar Biopsy
Learning Objectives

- Demonstrate the relation between uterine/vaginal prolapse and urinary incontinence
- Describe other expected complications

PELVIC ORGAN PROLAPSE

A 62-year-old woman complains of low back pain and perineal pressure for 18 months. She had been recommended by another physician to wear a pessary, which she is reluctant to do. On pelvic examination a second-degree uterine prolapse with a cystocele and a rectocele is observed.

The pelvic floor is made up of the diaphragm and perineal membrane.

- The pelvic diaphragm consists of the levator ani and coccygeus muscles. The levator ani consists of three muscles: puborectalis, pubococcygeus, and iliococcygeus.
- The perineal membrane is a triangular sheet of dense fibromuscular tissue that spans the anterior half of the pelvic outlet. The vagina and the urethra pass through the perineal membrane (urogenital diaphragm).
- The main structures that support the uterus are the cardinal ligaments, the uterosacral ligaments, and the endopelvic fascia.

The etiology of pelvic relaxation is most commonly related to childbirth. The mechanical trauma of childbirth stresses and tears the supporting ligaments of the pelvic retroperitoneum in the pelvis, whose main function is to support the pelvic viscera. Advancing age and obesity are risk factors for pelvic organ prolapse (POP).

The components of pelvic relaxation include uterine prolapse, cystocele, rectocele, and enterocele. Lesser forms of pelvic relaxation include vaginal or vault prolapse.

The severity of prolapse is indicated by increase in grade from 1 to 4:

- **Grade 1**: cervix descends halfway to the hymen
- **Grade 2**: cervix descends to the hymen
- **Grade 3**: cervix extends halfway past the hymen
- **Grade 4** (procidentia): entire uterus, as well as the anterior and posterior vaginal walls, extends outside the introitus
VAGINAL PROLAPSE

- **Cystocele**: herniation or bulging of the **anterior** vaginal wall and overlying bladder base into the vaginal lumen
- **Rectocele**: herniation or bulging of the **posterior** vaginal wall and underlying rectum into the vaginal lumen
- **Enterocele**: herniation of the **pouch of Douglas** containing small bowel into the vaginal lumen

The diagnosis of pelvic relaxation is mainly made through observation at the time of pelvic examination. The prolapsed vagina, rectum, and uterus are easily visualized, particularly as the patient increases intra-abdominal pressure by straining.

Grade 1: Uterine Prolapse

Grade 2: Uterine Prolapse

Grade 4: Uterine Prolapse (Perineal View)

Grade 4: Uterine Prolapse (Sagittal View)

Figure II-2-1. Uterine Prolapse

Management. **Non-surgical** treatment for a minor degree of relaxation.
- **Kegel** exercises involve voluntary contractions of the pubococcygeus muscle.
- **Estrogen** replacement may be useful in postmenopausal women.
- **Pessaries** are objects inserted into the vagina that elevate the pelvic structures into their more normal anatomic relationships.
Surgical treatment when more conservative management has failed.

- The **vaginal hysterectomy** repairs the uterine prolapse, the anterior vaginal repair repairs the cystocele, and the posterior vaginal repair repairs the rectocele.

- The **anterior and posterior colporrhaphy** uses the endopelvic fascia that supports the bladder and the rectum, and a plication of this fascia restores normal anatomy to the bladder and to the rectum.

Limit strenuous activity for 3 months postoperatively to avoid recurrence of the relaxation.

URINARY INCONTINENCE

A 58-year-old woman complains of urinary leakage after exertion. She loses urine while coughing, sneezing, and playing golf. She underwent menopause five years ago and is not on estrogen therapy. On examination there is evidence of urethral hypermobility with a positive Q-tip test.

Urinary incontinence is the inability to hold urine, producing involuntary urinary leakage.

The **physiology of continence** can be explained as follows:

- Continence and micturition involve a balance between urethral closure and detrusor muscle activity. Urethral pressure normally exceeds bladder pressure, causing urine to remain in the bladder.

- The proximal urethra and bladder are normally both within the pelvis.

- Intraabdominal pressure increases (from coughing and sneezing) are transmitted to both urethra and bladder equally, leaving the pressure differential unchanged, resulting in continence. Normal voiding is the result of changes in both of these pressure factors: urethral pressure falls and bladder pressure rises.

- Spontaneous bladder muscle (detrusor) contractions are normally easily suppressed voluntarily.

The **pharmacology of incontinence** can be explained as follows:

- **α-adrenergic receptors** are found primarily in the urethra and when stimulated cause contraction of urethral smooth muscle, preventing micturition. Drugs: ephedrine, imipramine, and estrogens. α-adrenergic blockers or antagonists relax the urethra, enhancing micturition. Drugs: phenoxybenzamine.

- **β-adrenergic receptors** are found primarily in the detrusor muscle and when stimulated cause relaxation of the bladder wall, preventing micturition. Drugs: flavoxate and progestins.

- **Cholinergic receptors** are found primarily in the detrusor muscle and when stimulated cause contraction of the bladder wall, enhancing micturition. Drugs: bethanechol and neostigmine. Anticholinergic medications block the receptors, inhibiting micturition. Drugs: oxybutynin and propantheline.
Evaluation of Incontinence

History: The patient should complete a 3-day (full, 24-hour days) voiding diary, a record of the bladder’s behavior that helps to identify the diagnosis.

- List the amount of fluid taken in and the amount of urine produced.
- Record each individual drink with its volume, each voiding with its volume (by using a measuring cup), and each incident of urine loss.
- For each event, record how much urge is felt and whether there is pain at, before, or after voiding.
 - Urine loss with physical activity suggests **stress**.
 - Urge to empty but not getting to the toilet fast enough suggests **urge**.
 - Incontinence with both physical activity and sense of urgency suggests **mixed**.
 - Continuous loss of urine day and night suggests **fistula**.

Physical exam: An abdominal exam should rule out masses, ascites, and organomegaly, which can influence intra-abdominal pressure.

- Assess **pudendal** nerve innervation of the perineum with the bulbocavernosus and clitoral sacral reflex (lightly brushing the labia majora or tapping the clitoris should produce a reflex of the external anal sphincter muscle).
- Do pelvic exam to evaluate for inflammation, infection, and atrophy, which can increase bladder sensitivity and lead to urgency, frequency, and dysuria.
- **Vaginal wall** prolapse findings will identify cystocele, rectocele, and enterocoele.
- Perform **Q-tip test** to assess for hypermobility of the urethrovaginal junction. With patient in supine position, place a sterile, well-lubricated cotton-tipped swab in the urethra (angle the swab <30 degrees from the horizontal; with inadequate bladder neck support, angle will be >30 degrees).
Urinalysis & culture: A urinalysis should be performed in all patients, looking for leukocytes (WBC), bacteria, and RBC.

- Many WBC and bacteria would suggest a UTI; do urine culture for identification of bacteria and antibiotic sensitivities. Treat with appropriate antibiotics.
- Microscopic hematuria would suggest a bladder stone or foreign body and tumor. Do further work-up with cystoscopy.

<table>
<thead>
<tr>
<th>Post-void residual</th>
<th><100 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensation of fullness</td>
<td>200–225 mL</td>
</tr>
<tr>
<td>Urge to void</td>
<td>400–500 mL</td>
</tr>
</tbody>
</table>

Cystometric studies: Basic office cystometry begins with the patient emptying the bladder as much as possible. A urinary catheter is first used to empty the bladder and then left in place to infuse saline by gravity retrograde assessing the following:

- Residual volume: how much is left in bladder after voiding (normal <100 mL)
- Sensation-of-fullness volume: how much infusion (in mL) until patient senses fluid in bladder (normal 200–225 mL)
- Urge-to-void volume: how much infusion (in mL) until patient feels the need to empty bladder (normal 400–500 mL)
- Involuntary bladder contractions: detect involuntary detrusor contractions by watching saline level in syringe rise or fall (absence of contractions is normal)

Classification of Incontinence

Most of the following types of incontinence result when bladder pressure rises in isolation of increases in urethral pressure.

Genuine stress incontinence (most common incontinence in young women) is the result of rises in bladder pressure due to intra-abdominal pressure increases (e.g., coughing and sneezing). These rises in bladder pressure are not transmitted to the proximal urethra because it is no longer a pelvic structure, owing to loss of support from pelvic relaxation. This may be associated with urethral hypermobility (see Q-tip test) or less commonly with intrinsic sphincteric deficiency.

- History. Loss of urine occurs in small spurts simultaneously with coughing or sneezing. It does not take place when the patient is asleep.
- Examination. Pelvic examination may reveal a cystocele. Neurologic examination is normal. The Q-tip test is positive—when a lubricated cotton-tip applicator is placed in the urethra and the patient increases intraabdominal pressure, the Q-tip will rotate >30 degrees.
- Investigative studies. Urinalysis and culture are normal. Cystometric studies are normal with no involuntary detrusor contractions seen.
- Management. Medical therapy includes Kegel exercises and estrogen replacement in postmenopausal women. Surgical therapy aims to elevate the urethral sphincter so that it is again an intraabdominal location (urethropexy). This is done by attachment

GYN Triad

Stress Incontinence
- Involuntary loss of urine
- With coughing and sneezing
- No urine lost at night
of the sphincter to the symphysis pubis, using the Burch procedure as well as the Marshall-Marchetti-Krantz (MMK) procedure. The success rate of both of these procedures is 85–90%. A minimally invasive surgical procedure is the tension-free vaginal tape procedure in which a mesh tape is placed transcutaneously around and under the mid urethra. It does not elevate the urethra but forms a resistant platform against intra-abdominal pressure.

Motor urge (hypertonic) incontinence (most common incontinence in older women) is the result of involuntary rises in bladder pressure, occurring from idiopathic detrusor contractions that cannot be voluntarily suppressed.

- **History.** Loss of urine occurs in large amounts often without warning. This can take place both day and night. The most common symptom is urgency.
- **Examination.** Pelvic examination shows normal anatomy. Neurologic examination is normal.
- **Investigative studies.** Urinalysis and culture are normal. Cystometric studies show normal residual volume, but involuntary detrusor contractions are present even with small volumes of urine in the bladder.
- **Management.** Anticholinergic medications (e.g., oxybutynin); NSAIDs to inhibit detrusor contractions; tricyclic antidepressants; calcium-channel blockers.

Mixed incontinence (mostly older women) is a combination of both stress and urge incontinence. The contribution of each type of involuntary urine loss varies by individual.

- **History.** Loss of urine may occur with both physical activity, coughing and sneezing as well as after experiencing an overwhelming urge to urinate.
- **Examination.** Pelvic exam may or may not show vaginal prolapse (cystocele, rectocele, or enterocele). Q-tip test is variable. Pudendal nerve innervation will be normal.
- **Investigative studies.** Urinalysis will be unremarkable. Cystometry will show a normal residual volume, but sensation-of-fullness and urge-to-void volume may be decreased. Involuntary detrusor contractions may be seen.
- **Management.** No single therapy works for everyone; options will be directed by whether the stress or the urge component is greater.

With functional incontinence (mostly older women), urinary storage and emptying functions are intact but the patient is unable to get to the toilet on time, whether physically challenged (not moving quickly enough out of a wheelchair due to arthritis or Parkinson’s disease) or psychologically challenged (unclear thinking or communication due to Alzheimer’s or dementia).

- **History.** Primary finding is inability to toilet oneself in a timely fashion. Loss of urine can vary, from small leakages to full emptying of the bladder.
- **Examination.** Varies with individual but the bladder support and innervation are intact.
- **Investigative studies.** Urinalysis and cystometry will be unremarkable. Involuntary detrusor contractions are not seen.
- **Management.** Treatment of the underlying medical condition; possible bladder training and pelvic floor exercises (Kegel exercises).
With **overflow (hypotonic) incontinence**, a rise in bladder pressure occurs gradually from an overdistended, hypotonic bladder. When the bladder pressure exceeds the urethral pressure, involuntary urine loss occurs but only until the bladder pressure equals urethral pressure. **The bladder never empties.** Then the process begins all over. This may be caused by denervated bladder (e.g., diabetic neuropathy, multiple sclerosis) or systemic medications (e.g., ganglionic blockers, anticholinergics).

- **History.** Loss of urine occurs intermittently in small amounts. This can take place **both day and night**. The patient may complain of pelvic fullness.

- **Examination.** Pelvic examination may show normal anatomy; however, the neurologic examination will show decreased pudendal nerve sensation.

- **Investigative studies.** Urinalysis and culture are usually normal, but may show an infection. Cystometric studies show **markedly increased residual volume**, but involuntary detrusor contractions do not occur.

- **Management.** Possible intermittent self-catheterization, discontinuation of the offending systemic medications, cholinergic medications to stimulate bladder contractions, and α-adrenergic blocker to relax the bladder neck.

With **fistula**, the normal urethral-bladder mechanism is intact but is bypassed by urine leaking out through a fistula from the urinary tract.

- **History.** The patient usually has a history of radical pelvic surgery or pelvic radiation therapy. Loss of urine **occurs continually** in small amounts. This can take place **both day and night**.

- **Examination.** Pelvic examination may show normal anatomy and normal neurologic findings.

- **Investigative studies.** Urinalysis and culture are normal. An intravenous pyelogram (IVP) will demonstrate dye leakage from a urinary tract fistula. With a urinary tract-vaginal fistula, intravenous indigo carmine dye will leak onto a vaginal tampon.

- **Management.** Surgical repair of the fistula.

GYN Triad

Hypotonic Bladder
- Involuntary loss of urine
- Detrusor muscle not contracted
- Urine loss day and night

Bypass Incontinence
- Involuntary loss of urine
- History: radical pelvic surgery or radiation
- Urine loss day and night continuously
Learning Objectives

- Describe the common causes, diagnosis, and treatment of vaginal discharge
- List the most common vulvar diseases

VAGINAL DISCHARGE

A 25-year-old woman complains of a whitish vaginal discharge. She states that this is the first time she has this complaint, and it is associated with vaginal and vulvar pruritus. There is no significant medical history, and she is not on oral contraception.

Diagnostic Tests

- **Visual inspection:** The vulva and vagina should be examined for evidence of an inflammatory response as well as the gross characteristics of the vaginal discharge seen on speculum examination.
- **Vaginal pH:** Normal vaginal pH is an acidic <4.5. Identification of the pH is easily performed using pH-dependent Nitrazine paper. Normal vaginal discharge leaves the paper yellow, whereas an elevated pH turns the paper dark.
- **Microscopic examination:** Two drops of the vaginal discharge are placed on a glass slide with a drop of normal saline placed on one, and a drop of KOH placed on the other. The two sites are covered with cover slips and examined under the microscope for WBC, pseudohyphae, trichomonads, and clue cells.

Bacterial Vaginosis

Bacterial vaginosis is the most common (50%) cause of vaginal complaints in the United States. It is not a true infection, but rather an alteration in concentrations of normal vaginal bacteria. The normal predominant lactobacilli are replaced by massive increases in concentrations of anaerobic species and facultative aerobes. It is frequently seen postmenopausally because of low levels of estrogen.

Bacterial vaginosis is not sexually transmitted, but rather is associated with sexual activity. The most common patient complaint is a fishy odor. Itching and burning are not present.

Speculum examination: The vaginal discharge is typically thin, grayish-white. No vaginal inflammation is noted. Vaginal pH is elevated >4.5. A positive “whiff” test is elicited when KOH is placed on the discharge, releasing a fishy odor.

Wet mount: Microscopic examination reveals “clue cells” on a saline preparation. These are normal vaginal epithelial cells with the normally sharp cell borders obscured by increased numbers of anaerobic bacteria. WBCs are rarely seen.

Management. Oral or vaginal metronidazole or clindamycin; metronidazole is safe during pregnancy (including first trimester).
Trichomonas Vaginitis

Trichomonas vaginitis is the most common cause of vaginal complaints worldwide and the second most common sexually transmitted disease (STD) in the United States. It is caused by a flagellated pear-shaped protozoan that can reside asymptptomatically in male seminal fluid.

The most common patient complaint is vaginal discharge associated with itching, burning, and pain with intercourse.

Speculum Examination: Vaginal discharge is typically frothy and green. The vaginal epithelium is frequently edematous and inflamed. The erythematous cervix may demonstrate the characteristic “strawberry” appearance. Vaginal pH is elevated >4.5.
Wet Mount: Microscopic examination reveals actively motile “trichomonads” on a saline preparation. WBCs are seen.

Management: Oral metronidazole for both the patient and her sexual partner. Vaginal metronidazole gel has a 50% failure rate. Metronidazole is safe during pregnancy (including first trimester).

Candida (Yeast) Vaginitis

Candida (yeast) vaginitis is the second most common vaginal complaint in the United States. The most common organism is *Candida albicans*. It is not transmitted sexually.

Risk factors include diabetes mellitus, systemic antibiotics, pregnancy, obesity, and decreased immunity.

The most common patient complaint is itching, burning, and pain with intercourse. *Candida* vaginitis is seen in non-sexually active patients as well.

Speculum Examination: Vaginal discharge is typically curdy and white. The vaginal epithelium is frequently edematous and inflamed. Vaginal pH is normal <4.5.

Wet Mount: Microscopic examination reveals pseudohyphae on a KOH prep. WBCs are frequently seen.

Management: Either a single oral dose of fluconazole or a vaginal “azole” cream. An asymptomatic sexual partner does not need to be treated.

Figure II-3-3. Vaginal Discharge

GYN Triad

Candida (Yeast) Vaginitis

- Vaginal discharge pH <4.5
- Itching and burning
- Pseudohyphae

Trichomonas Vaginitis

#1 in world protozoa, STD

- Discharge: frothy & green, “strawberry cervix”
- Wet Mount: WBC & motile trichomonads (saline)
- Rx: Metronidazole (treat sex partner)

Bacterial Vaginosis

#1 in US: anaerobes > lactobacillus

- Discharge: thin, gray, + whiff test
- Wet Mount: no WBC, yeast but + “clue” cells
- Rx: Metronidazole or clindamycin (not STD)

Yeast Vaginitis

#2 in US: Candida species common, not STD

- Discharge: “cottage cheese”
- Wet Mount: WBC (saline) hyphae (KOH)
- Rx: PO fluconazole or “azole” creams (not STD)
Physiologic Discharge

Physiologic discharge is the result of the thin, watery cervical mucus discharge seen with estrogen dominance. It is a normal phenomenon and becomes a complaint with prolonged anovulation, particularly in patients with wide eversion of columnar epithelium.

Risk factors include chronic anovulatory conditions such as polycystic ovarian syndrome (PCOS).

The most common patient complaint is increased watery vaginal discharge. There is no burning or itching.

Speculum Exam: The columnar epithelium of the endocervical canal extends over a wide area of the ectocervix, producing abundant mucus discharge. Vaginal discharge is typically thin and watery. The vaginal epithelium is normal, appearing with no inflammation. Vaginal pH is normal (<4.5).

Wet Mount: Microscopic examination reveals an absence of WBCs, “clue cells,” trichomonads, or pseudohyphae.

Management: Steroid contraception with progestins, which will convert the thin, watery, estrogen-dominant cervical discharge to a thick, sticky progestin-dominant mucus.

VULVAR DISEASES

Benign Vulvar Lesions

- **Molluscum contagiosum.** A common benign, viral skin infection. Most commonly seen in children, sexually active adults, and immunodeficient patients. The molluscipox virus causes spontaneously regressing, umbilicated tumors of the skin rather than pox-like vesicular lesions. Molluscum contagiosum is transmitted primarily through direct skin contact with an infected individual. Management includes observation, curettage, and cryotherapy.

- **Condylomata acuminata.** These are benign cauliflower-like vulvar lesions due to HPV types 6 & 11. They have no malignant predisposition. Condylomata are discussed in detail in chapter 7. Management is treatment of the clinical lesions only.

- **Bartholin cyst.** If the orifice of the Bartholin duct becomes obstructed, mucous produced by the gland accumulates, leading to cystic dilation proximal to the obstruction. Obstruction is often caused by local or diffuse vulvar edema. Bartholin cysts are usually sterile. Management is conservative unless pressure symptoms occur due to size.

- **Bartholin abscess.** An abscess of the Bartholin gland may occur due to infection (mostly caused by *E. coli* and anaerobic *Bacteroides* species, and seldom due to gonococcus). Management. Outpatient treatment is I&D with placement of a Word catheter under local anesthesia. The balloon is inflated and left in place for a month to allow a drainage tract to form. Antibiotic treatment is usually not needed.
Vulvar Lesion with Pruritus/Neoplasia

A 70-year-old woman complains of vulvar itching for a year. She has been treated with multiple steroid medications with no relief. On pelvic examination there is a well-defined, 1 cm white lesion of the left labia minora. No other lesions in the vulva are noted; however, there is a clinical enlargement of a left inguinal node.
The most common symptom of both benign and malignant lesions is vulvar itching, resulting in scratching. Differential diagnosis includes sexually transmitted diseases, benign vulvar dermatosis, or cancers.

Premalignant vulvar dermatosis

These are benign lesions with malignant predisposition. The most common symptom is vulvar itching, but most lesions are asymptomatic.

- **Squamous hyperplasia.** These lesions appear as whitish focal or diffuse areas that are firm and cartilaginous on palpation. Histologically, they show thickened keratin and epithelial proliferation. Management is fluorinated corticosteroid cream.

- **Lichen sclerosus.** This appears as bluish-white papula that can coalesce into white plaques. On palpation they feel thin and parchment-like. Histologically, they show epithelial thinning. Management is clobetasol cream.

- **Squamous dysplasia.** These lesions appear as white, red, or pigmented and are often multifocal in location. Histologically, they show cellular atypia restricted to the epithelium without breaking through the basement membrane. The appearance is almost identical to cervical dysplasia. Management is surgical excision.

- **CIS.** The appearance is indistinguishable from vulvar dysplasia. Histologically, the cellular atypia is full thickness but does not penetrate the basement membrane. Management is laser vaporization and vulvar wide local excision.

Malignant vulvar lesions

Vulvar carcinoma is an uncommon gynecologic malignancy, with mean age at diagnosis age 65. It is the fourth most common gynecologic malignancy. Risk factors include older age, cigarette smoking, HIV, and premalignant vulvar dermatosis.

- **Squamous cell** (90%). The most common type of invasive vulvar cancer is squamous cell carcinoma, which has been associated with HPV. Pathogenesis is chronic inflammation (for older women) and HPV infection (for younger women). The most common stage at diagnosis is stage 1.

- **Melanoma** (5%). The second most common histologic type of vulvar cancer is melanoma of the vulva, and the most important prognostic factor for this type of tumor is the depth of invasion. Any dark or black lesion in the vulva should be biopsied and considered for melanoma.

- **Paget’s disease.** An uncommon histologic lesion is Paget’s disease of the vulva. Paget’s disease is characteristically a red lesion, which is most common in postmenopausal white women. Any patient with a red vulvar lesion must be considered for the possibility of Paget’s disease. Most of the time Paget’s disease is an intraepithelial process; however, in approximately 18–20% of cases invasion of the basement membrane has been identified. Patients with Paget’s disease of the vulva have a higher association of other cancers mainly from the GI tract, the genitourinary system, and breast.

There is no screening test.

Diagnosis. All vulvar lesions of uncertain etiology should be biopsied. Patients with vulvar pruritus should be considered for the possibility of preinvasive or invasive vulvar carcinomas if there is a vulvar lesion. A biopsy of this patient’s lesion reveals invasive squamous cell carcinoma of the vulva.

Pattern of spread starts with local growth and extension that embolizes to inguinal lymph nodes, and then sees hematogenous spread to distant sites.
Staging. Staging is surgical and utilizes the TNM (tumor, nodes, metastasis) classification. Stage I is the most common stage.

Management.

- **Wide local excision only**: used only for stage IA; risk of metastasis is negligible so no lymphadenectomy is needed
- **Modified radical vulvectomy**: involves radical local excision
 - Ipsilateral inguinal dissection is used only if stage is IB & unifocal, lesion >1 cm from midline, AND no palpable nodes
 - Bilateral inguinal dissection is used if at least stage IB or a centrally located lesion OR palpable inguinal nodes or positive ipsilateral nodes
- **Radical vulvectomy**: involves removal of labia minora & majora, clitoris, perineum, perineal body, mons pubis; seldom performed due to high morbidity
- **Pelvic exenteration.** In addition to radical vulvectomy, it involves removal of cervix, vagina, and ovaries in addition to lower colon, rectum, and bladder (with creation of appropriate stomas); seldom indicated or performed due to high morbidity.
- **Radiation therapy**: used for patients who cannot undergo surgery

Table II-3-1. Management of Vulvar Carcinoma

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical vulvectomy</td>
<td>Removes entire vulva (subcutaneous and fatty tissue, labia minora and majora, perineal skin, clitoris)</td>
<td>Sexual dysfunction</td>
</tr>
<tr>
<td>Modified radical vulvectomy</td>
<td>Wide local excision (for unilateral labial lesions that do not cross the midline)</td>
<td>Less sexual morbidity</td>
</tr>
<tr>
<td>Lymphadenectomy</td>
<td>Inguinal node dissection (bilateral if midline lesions >1 mm invasion; unilateral selectively)</td>
<td>Lower-extremity edema</td>
</tr>
</tbody>
</table>
Learning Objectives

- Explain the use of vaccination to prevent cervical dysplasia
- List the common findings and their significance when diagnosing cervical lesions
- Give an overview of the epidemiology and management of cervical neoplasia
- Describe Müllerian anomalies
- Give a differential diagnosis for enlarged uterus and describe the treatment and prognosis of endometrial neoplasia

CERVICAL LESIONS

Cervical Polyps

Cervical polyps are finger-like growths that start on the surface of the cervix or endocervical canal. These small, fragile growths hang from a stalk and push through the cervical opening. Their cause is not completely understood; they may be associated with chronic inflammation, an abnormal response to increased levels of estrogen, or thrombosed cervical blood vessels.

Cervical polyps are relatively common, especially in older multiparous women. In most cases only a single polyp is present, but sometimes two or three are found.

- History is usually positive for vaginal bleeding, often after intercourse; this bleeding occurs between normal menstrual periods.
- Speculum examination reveals smooth, red or purple finger-like projections from cervical canal.
- Cervical biopsy typically reveals mildly atypical cells and signs of infection.
Management. Remove with gentle twisting or by tying a surgical string around the base and cutting it off (the base is removed by electrocautery or laser). Post-removal, give antibiotics even in the absence of infection because many polyps are infected. Although most cervical polyps are benign, the removed tissue should be sent to pathology. Regrowth of polyps is uncommon.

Nabothian Cysts

Nabothian cysts are mucus-filled cysts on the surface of the uterine cervix. The cervical canal is lined by glandular cells that normally secrete mucus. These endocervical glands can become covered by squamous epithelium through metaplasia.

This is a benign condition. Rarely, cysts may become so numerous or enlarged that the cervix becomes clinically enlarged.

- These nests of glandular cells (nabothian glands) on the cervix may become filled with secretions. As secretions accumulate, a smooth, rounded lump may form just under the surface of the cervix and become large enough to be seen or felt upon examination.
- Each cyst appears as a small, white, pimple-like elevation. The cysts can occur singly or in groups, and they are not a threat to health. The cysts are more common in women of reproductive age, especially women who have already had children. There are no observable symptoms.

Pelvic examination reveals a small, smooth, rounded lump (or collection of lumps) on the surface of the cervix. Rarely, a colposcopic exam is necessary to distinguish nabothian cysts from other types of cervical lesions.

Management. No treatment necessary; however, nabothian cysts do not clear spontaneously. They can be easily cured through electrocautery or cryotherapy, either of which can be done in the doctor's office.
Cervicitis

Often with cervicitis, there are no symptoms except vaginal discharge. The most common findings are mucopurulent cervical discharge and a friable cervix. This diagnostic finding is confirmed by endocervical bleeding easily induced by passage of a cotton swab through the cervical os. No pelvic tenderness is noted. Patient is afebrile.

Routine cervical cultures are positive for chlamydia or gonorrhea. WBC and ESR are normal.

Management. Oral azithromycin in a single dose or oral doxycycline BID for 7 days

CERVICAL NEOPLASIA

Abnormal Pap Smear

A 24-year-old woman is referred because of a Pap smear showing HSIL (high-grade squamous intraepithelial lesion). The patient states that her Pap smear three years ago was negative. She has been on combination steroid vaginal ring contraception for the past four years. Her cervix appears unremarkable on gross visual inspection.

Premalignant lesions of the cervix are usually asymptomatic. The progression from premalignant to invasive cancer has been reported to be approximately 8–10 years. Most lesions will spontaneously regress; others remain static, with only a minority progressing to cancer.

The most common etiology of cervical cancer is the human papilloma virus (HPV). More than 75 subtypes of HPV have been identified.

- HPV 16, 18, 31, 33, and 35 are the most common HPV types associated with premalignant and cancerous lesions of the cervix.
- HPV 6 and 11 are the most common HPV types associated with benign condyloma acuminata.

Figure II-4-2. Natural History of Cervical Dysplasia: Response to HPV Types

Risk factors include early age of intercourse, multiple sexual partners, cigarette smoking, and immunosuppression. The mediating factor for all these conditions is probably HPV.
Screening and performing of a Pap smear

The best screening test for premalignant lesions is **cytology**. Cytologic screening uses the **Pap test**. The **most common site** for cervical dysplasia is the transformation zone (T-zone).

- **How is it performed?** Two specimens are obtained with the Pap smear: an ectocervical sample performed by scraping the T-zone with a spatula and an endocervical sample obtained with a cytobrush in a nonpregnant woman or a cotton-tip applicator in a pregnant woman.

- **What cytologic screening methods can be used?**
 - With the **conventional method**, the specimens are smeared onto a glass slide, which is placed in fixative and then microscopically examined.
 - With the **thin-layer, liquid-based cytology**, the specimens are rinsed into a preserving solution and then deposited on a slide as a thin layer of processed cells.
 - Both methods are equivalent for cancer screening but the liquid-based method has the advantage of doing reflex HPV-DNA typing.

Pap smear should be started at the following ages:

- **Age <21**: no Pap test or screening for HPV, regardless of sexual activity
- **Age 21**: Start Pap test with cytology alone without HPV testing; the recommendation is the same whether HPV vaccinated or not

The frequency of recommended Pap smear is as follows:

- **Age 21–29**: repeat Pap every three years with cytology alone; do not perform HPV testing in this age group
- **Age 30–65**: repeat Pap every three years with cytology but no HPV testing OR repeat Pap every five years if both cytology and HPV testing (the recommended option in this age group)

Pap smears should be discontinued:

- **After age 65** if negative cytology and/or HPV tests for past 10 years AND no history of CIN 2, CIN 3, or cervical carcinoma
- **Any age** if total hysterectomy AND no history of cervical neoplasia

Classification of a Pap smear

The **Bethesda system** is the current classification used in the United States.

- **Negative** for intraepithelial lesion or malignancy; comments may report trichomoniasis, candida, BV, HSV, or atrophy

- **Abnormal squamous cells** (99% of abnormal Pap smears)
 - **ASC-US** (**atypical squamous cells of undetermined significance**): changes suggestive of but not adequate to label LSIL
 - **LSIL** (**low-grade squamous intraepithelial lesion**): biopsy is expected to show histologic findings of HPV, mild dysplasia, or CIN 1
 - **ASC-H** (**atypical squamous cells can’t rule out HSIL**): changes suggestive of but not adequate to label HSIL
 - **HSIL** (**high-grade squamous intraepithelial lesion**): biopsy is expected to show histologic findings of moderate–severe dysplasia, CIN 2, CIN 3, or CIS
 - **Squamous cell carcinoma**: biopsy is expected to show histologic findings of invasive cancer
Chapter 4 • Disorders of the Cervix and Uterus

Figure II-4-3. Classification of Cervical Dysplasias

<table>
<thead>
<tr>
<th>Cytology</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC</td>
<td>CIN 1</td>
</tr>
<tr>
<td>LSIL</td>
<td>Mild dysplastic changes</td>
</tr>
<tr>
<td>HSIL</td>
<td>CIN 2, CIN 3</td>
</tr>
<tr>
<td>Cancer</td>
<td>Moderate/severe dysplastic changes</td>
</tr>
<tr>
<td></td>
<td>Invasive cancer</td>
</tr>
</tbody>
</table>

Figure II-4-4. Histologic Appearance of Cervical Dysplasia with Progressive Severity

Diagnostic approach to an abnormal Pap smear

- **Accelerated repeat Pap**: an option for findings of ASC-US in patients of any age, and the preferred option with either ASC-US or LSIL in patients age 21–24. Repeat the Pap in 12 months.
- If repeat cytology is negative, repeat Pap in another 12 months.
- If repeat cytology is anything other than negative, proceed to colposcopy and biopsies.

• **HPV DNA testing**: the preferred option for findings of ASC-US in patients age ≥25. It is acceptable but not preferred in patients ages 21–24.
 - If liquid-based cytology was used on the initial Pap, one can use this specimen for DNA testing.
 - If conventional methods were used, repeat a second Pap. Perform colposcopy only if high-risk HPV DNA is identified.

• **Colposcopy**: indicated for evaluation of LSIL in patients age ≥25 and all patients with ASC-H and HSIL. Colposcopy is a magnification of the cervix (10–12x); it is aided by acetic acid, which makes the vascular patterns more visible.
 - **Satisfactory or adequate** colposcopy is diagnosed if the entire T-zone is visualized and no lesions disappear into the endocervical canal.
 - **Unsatisfactory or inadequate** colposcopy is diagnosed if the entire T-zone cannot be fully visualized.

• **Endocervical curettage (ECC)**: All nonpregnant patients undergoing colposcopy that shows metaplastic epithelium entering the endocervical canal will undergo an ECC to rule out endocervical lesions.

• **Ectocervical biopsy**: Lesions identified on the ectocervix by colposcopy (e.g., mosaicism, punctation, white lesions, abnormal vessels) are biopsied and sent for histology.

• **Compare Pap smear and biopsy**: When the biopsy histology is complete, it is compared with the level of Pap smear abnormality to ensure the level of severity is comparable.

• **Cone biopsy**: If the Pap smear is worse than the histology (suggesting the site of abnormal Pap smear cells was not biopsied), then a cone biopsy is performed. Other indications for conization of the cervix include abnormal ECC histology, a lesion seen entering the endocervical canal, and a biopsy showing microinvasive carcinoma of the cervix. Deep cone biopsies can result in an **incompetent cervix**. Another risk of cone biopsy is **cervical stenosis**.

Figure II-4-5. Diagnostic Options for Abnormal Pap Smear (2013)
Management according to histology

- Observation and follow-up without treatment are appropriate for CIN 1 and include any of the following: repeat Pap in 6 and 12 months; colposcopy and repeat Pap in 12 months; or HPV DNA testing in 12 months.
- Ablative modalities can be used for CIN 1, 2, and 3. These include cryotherapy (freezing), laser vaporization, and electrofulguration.
- Excisional procedures can be used for CIN 1, 2, and 3. These include LEEP (loop electrosurgical excision procedure) or cold-knife conization.
- Hysterectomy is only acceptable with biopsy-confirmed, recurrent CIN 2 or 3.

Follow-Up. Patients treated with either ablative or excisional procedures require follow-up repeat Pap smears, colposcopy and Pap smear, or HPV DNA testing every four to six months for two years.
Invasive Cervical Cancer

A 43-year-old woman complains of intermenstrual postcoital bleeding for the past six months between regular menstrual cycles that occur every 28 days. On pelvic examination a 3 cm exophytic mass is seen from the anterior lip of the cervix. The rest of the pelvic examination, including a rectovaginal examination, is normal.

Invasive cervical cancer is cervical neoplasia that has penetrated through the basement membrane. Patients can present with postcoital vaginal bleeding. Other symptoms include irregular vaginal bleeding and, in advanced stages, lower extremity pain and edema.

Cervical carcinoma is the third most common gynecologic malignancy; 45 is the mean age at diagnosis.

Diagnostic Tests/Findings

- **Cervical biopsy.** The initial diagnostic test should be a cervical biopsy; the most common diagnosis is squamous cell carcinoma.
- **Metastatic workup.** Once a tissue diagnosis of invasive carcinoma is made, a metastatic workup should be done that includes pelvic examination, chest x-ray, intravenous pyelogram, cystoscopy, and sigmoidoscopy.
- **Imaging studies.** Invasive cervical cancer is the only gynecologic cancer that is staged clinically; an abdominal pelvic CT scan or MRI cannot be used for clinical staging.

Staging is clinical based on pelvic examination and may include an intravenous pyelogram (IVP), cystoscopy, or proctoscopy. It does not require surgical procedure other than a biopsy. **Stage I** is the most common stage.

Management. Patients treated surgically are evaluated for risk factors for metastatic disease and tumor recurrence. These include metastatic disease to the lymph nodes, tumor size > 4 cm, poorly differentiated lesions, or positive margins. Patients with these findings are offered adjuvant therapy (radiation therapy and chemotherapy).

Specific by stage:

- **Stage Ia1:** total simple hysterectomy, either vaginal or abdominal
- **Stage Ia2:** modified radical hysterectomy
- **Stage IB or IIA:** either radical hysterectomy with pelvic and paraaortic lymphadenectomy (if premenopausal) and peritoneal washings OR pelvic radiation (if postmenopausal); in those who can tolerate surgery, a radical hysterectomy is preferred, although studies have demonstrated equal cure rates with radiation or surgical treatment
- **Stage IIB, III, or IV:** radiation therapy and chemotherapy for all ages

Table II-4-1. Stage I—Most Common (Spread Limited to Cervix)

| Stage | Description | Treatment
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia1</td>
<td>≤ 3 mm</td>
<td>Minimal invasion</td>
</tr>
<tr>
<td>Ia2</td>
<td>> 3 mm but ≤ 5 mm</td>
<td>Microinvasion</td>
</tr>
<tr>
<td>IB</td>
<td>> 5 mm</td>
<td>Frank invasion</td>
</tr>
</tbody>
</table>
All patients with invasive cervical cancer should be followed up with Pap smear every three months for two years after treatment, and then every six months for the subsequent three years.

- Patients who have a local recurrence can be treated with radiation therapy; if they had received radiation previously, they might be considered candidates for a pelvic exenteration.

- Patients with distant metastases should be considered for chemotherapy treatment. The most active chemotherapeutic agent for cervical cancer is cisplatinum.

Cervical Neoplasia in Pregnancy

A 25-year-old woman with intrauterine pregnancy at 14 weeks by dates is referred because of a Pap smear showing as HSIL (high-grade squamous intraepithelial lesion). On pelvic examination there is a gravid uterus consistent with 14 weeks size, and the cervix is grossly normal to visual inspection.

Diagnostic Tests/Findings

- **Effect of pregnancy.** Pregnancy per se does not predispose to abnormal cytology and does not accelerate precancerous lesion progression into invasive carcinoma.

- **Colposcopy and biopsy.** A patient who is pregnant with an abnormal Pap smear should be evaluated in the same fashion as when in a nonpregnant state. An abnormal Pap smear is followed with colposcopy with the aid of acetic acid for better visualization of the cervix. Any abnormal lesions of the ectocervix are biopsied.

- **Perform an ECC?** Owing to increased cervical vascularity, ECC is not performed during pregnancy.

Management.

- **CIN.** Patients with intraepithelial neoplasia or dysplasia should be followed with Pap smear and colposcopy every three months during the pregnancy. At 6–8 weeks postpartum the patient should be reevaluated with repeat colposcopy and Pap smear. Any persistent lesions can be definitively treated postpartum.

- **Microinvasion.** Patients with microinvasive cervical cancer on biopsy during pregnancy should be evaluated with cone biopsy to ensure no frank invasion. If the cone biopsy specimen shows microinvasive carcinoma during pregnancy, these patients can also be followed conservatively, delivered vaginally, reevaluated, and treated two months postpartum.

- **Invasive cancer.** If the punch biopsy of the cervix reveals frankly invasive carcinoma, then treatment is based on the gestational age.

 - In general, if a diagnosis of invasive carcinoma is made **before 24 weeks** of pregnancy, the patient should receive definitive treatment (e.g., radical hysterectomy or radiation therapy).

 - If the diagnosis is made **after 24 weeks** of pregnancy, then conservative management up to about 32–33 weeks can be done to allow for fetal maturity to be achieved, at which time cesarean delivery is performed and definite treatment begun.
Prevention of Cervical Dysplasia by Vaccination

The 9 valent HPV recombinant vaccine [Gardasil-9] is recommended for all females age 9–45, with target age 11–12.

- The vaccine uses noninfectious particles to protect against 9 HPV types (6, 11, 16, 18, 31, 33, 45, 52, 58).
- Three doses are given: initial, then two months later, then six months later, for an approximate cost of $300.

Recommendations

- Administer to all females age 9–45, with target age 11–12. Efficacy is highest before the patient’s immune system has been presented with HPV.
- Testing for HPV is not recommended before vaccination. No easy method of identifying all HPV types is currently available.
- Continue regular Pap smears according to current guidelines because the vaccine does not prevent against all HPV types that can cause genital warts or cervical cancer.
- Sexually active women can receive the vaccine. Women with previous abnormal cervical cytology or genital warts also can receive the vaccine, but it may be less effective. It can be given to patients with previous CIN, but benefits may be limited.
- The vaccine is not recommended for pregnant or immunosuppressed women.

MÜLLERIAN ANOMALIES

Uterine anomalies (3% of fertile women, with normal reproductive outcomes) are classified into 7 types (per American Fertility Society 1988) based on the developmental problem responsible for the irregular shape.

Uterine anomalies may result from 3 mechanisms:

- **Stage 1:** failure of one or both of the 2 Müllerian ducts to form
- **Stage 2:** failure of the 2 ducts to fuse completely
- **Stage 3:** failure of the 2 fused Müllerian ducts to dissolve the septum that results from fusion

Failure to Form

Hypoplasia/Agenesis

A woman may lack a vagina, a cervix (the bottom one-third of the uterus that opens into the vagina), the fallopian tubes, or the entire vagina and body of the uterus (except for the fundus). This occurs from a developmental problem with a section of both of the Müllerian ducts.

These anomalies are commonly associated with urinary tract anomalies because the structures that give rise to the urinary tract lie close to the Müllerian ducts and are affected by the same injurious insult.

Unicornuate uterus

When one of the Müllerian ducts fails to form, a single-horn (banana-shaped) uterus develops from the healthy Müllerian duct. This single-horn uterus may stand alone. However, in 65% of women with a unicornuate uterus, the remaining Müllerian duct may form an incomplete (rudimentary) horn.
There may be no cavity in this rudimentary horn or it may have a small space within it, but there is no opening that communicates with the unicorunate uterus and vagina.

- In the latter case, a girl may have monthly pain during adolescence because there is no outlet for the menses from this rudimentary horn. That pain would lead to identification of this problem.
- In some cases, the rudimentary horn contains a cavity that is continuous with the healthy single-horn uterus but is much smaller than the cavity within the healthy uterus.
- There is a risk that a pregnancy will implant in this rudimentary horn, but because of space limitations 90% of such pregnancies rupture.

Failure to Fuse

Didelphys uterus

A double uterus results from the complete failure of the 2 Müllerian ducts to fuse together (stage 1 of development). So each duct develops into a separate uterus, each narrower than a normal uterus and with only a single horn.

These 2 uteri may each have a cervix or they may share a cervix. In 67% of cases, a didelphys uterus is associated with 2 vaginas separated by a thin wall. Preterm delivery is common if pregnancy occurs in these patients.

Bicornuate uterus

Bicornuate uterus (most common congenital uterine anomaly [45%]) results from failure of fusion between the Müllerian ducts at the “top.” This failure may be “complete,” resulting in 2 separate single-horn uterine bodies sharing one cervix.

Alternatively, in a “partial” bicornuate uterus, fusion between the Müllerian ducts occurs at the “bottom” but not the “top.” Thus, there is a single uterine cavity at the bottom with a single cervix, but it branches into 2 distinct horns at the top. Because the ducts never fuse at the top, these 2 horns are separate structures when seen from the outside of the uterus.

Preterm delivery and malpresentation are common with pregnancy.

Failure to Dissolve Septum

Septate uterus

A septate uterus results from a problem in stage 2 or 3 of uterine development. The two Müllerian ducts fuse normally; however, there is a failure in degeneration of the median septum.

- If the failure is “complete,” a median septum persists in the entire uterus, separating the uterine cavity into 2 single-horned uteri that share one cervix.
- If the failure is “partial,” resorption of the lower part of the median septum occurs in stage 2 but the top of the septum fails to dissolve in stage 3. Thus, there is a single cervix and uterine cavity at the bottom, but at the top that cavity divides into 2 distinct horns.

Because this uterine anomaly occurs later in uterine development after complete duct fusion, the external shape of the uterus is a normal-appearing single unit. This is distinct from the bicornuate uterus, which can be seen branching into 2 distinct horns when viewed from the outside.

Preterm delivery and malpresentation are common with pregnancy.
Arcuate uterus
This type of uterus is essentially normal in shape with a small midline indentation in the uterine fundus, which results from failure to dissolve the median septum completely. It is given a distinct classification because it seems to have no negative effects on pregnancy with regard to preterm labor or malpresentation.

DES uterus
The daughters of mothers exposed to diethylstilbestrol (DES) during pregnancy are predisposed to uterine abnormalities and clear cell carcinoma of the vagina.

- >70% have abnormalities, including a small, incompletely formed uterus (“hypoplastic”) and/or a T-shaped cavity.
- 50% have cervical defects (e.g., an incompletely formed cervix that predisposes to cervical insufficiency).

The mechanism by which DES disrupts normal uterine development is not known.

ENLARGED UTERUS

Leiomyoma Uteri
Leiomyoma uteri is a benign smooth muscle growth of the myometrium (most common benign uterine tumor). It is 5 times more common in black women than white women.

Leiomyoma uteri can develop in a number of anatomic locations.

- **Intramural:** The most common location of a leiomyoma is within the wall of the uterus. When small it is usually asymptomatic and cannot be felt on examination, unless it enlarges to where the normal uterine external contour is altered.

- **Submucosal:** These myomas are located beneath the endometrium and can distort the uterine cavity. The distorted overlying endometrium may not respond appropriately to the normal hormonal fluctuations, resulting in unpredictable, often intermenstrual bleeding. Abnormal vaginal bleeding is the most common symptom of a submucosal myoma and can result in anemia. Menorrhagia is defined as heavy menses and metrorrhagia is defined as irregular bleeding in between menses. Menometrorrhagia consists of both heavy menses and bleeding in between the menses.

- **Subserosal:** These are located beneath the uterine serosa. As they grow they distort the external contour of the uterus causing the firm, nontender asymmetry. Depending on their location they can put pressure on the bladder, rectum, or ureters. If they are pedunculated, or attached to the uterus by a stalk, they can become parasitic fibroids. They break away from the uterus and receive their blood supply from another abdominal organ (such as the omentum or the mesentery of the intestine).
Changes in size are dependent on the reproductive life stage of the woman.

- **Slow growth:** Most leiomyomas are small, grow slowly, and cause no symptoms. Only when massive in size do they cause pelvic pressure symptoms.

- **Rapid growth:** Estrogen receptors are increased in leiomyomas, causing rapid enlargement during times of high estrogen levels, such as pregnancy.

- **Degeneration:** During times of rapid growth, myomas may outgrow their blood supply, resulting in ischemic degeneration of a fibroid. Common degenerations that are seen include hyaline, calcific, and red degeneration. The latter, also known as carneous degeneration, can cause such extreme, acute pain that the patient requires hospitalization and narcotics. This is most common during pregnancy.

- **Shrinkage:** When estrogen levels fall, with estrogen receptors no longer stimulated, leiomyomas will typically decrease in size. This predictably occurs after menopause but can also occur when estrogen levels are medically reduced through gonadotropin releasing hormone (GnRH) agonist suppression of follicle-stimulating hormone (FSH).

Diagnosis.

- **Pelvic examination:** In most cases the diagnosis is made clinically by identifying an enlarged, asymmetric, nontender uterus in the absence of pregnancy. The size of the fibroid is compared with the size of a pregnant uterus. A pregnant uterus that reaches the umbilicus is approximately 20 weeks in gestation; if the pregnant uterus reaches the symphysis pubis, it is approximately 12 weeks in gestation.

- **Sonography:** Traditional abdominal or vaginal ultrasound can image large intramural or subserosal myomas. Saline infusion sonography is helpful for identifying submucosal myomas by instilling 5–10 mL of saline into the uterine cavity before visualizing the uterine cavity with an endovaginal sonogram probe.

- **Hysteroscopy:** Submucosal myomas may be identified by visualizing them directly with hysteroscopy.

- **Histology:** The only definitive diagnosis is by surgical confirmation of excised tissue.
Management. Most leiomyomas can be managed conservatively and followed expectantly with regular pelvic examinations.

- **Presurgical shrinkage:** After 3–6 months of GnRH analog therapy, with resultant hypoestrogenic state, a 60–70% reduction in size of the fibroids can be expected. However, once the leuprolide (Lupron) is terminated, there will be a regrowth of the fibroid within 6 months. Thus, GnRH analogs cannot be used for definitive cure, but they can be used in the adjuvant setting with surgical therapy. If a myomectomy is done, a decrease in size will be associated with a decrease in blood loss, and if a hysterectomy is planned, then perhaps a vaginal instead of an abdominal hysterectomy can be performed.

- **Myomectomy** if patient wishes to maintain fertility. The uterus is incised and the myoma removed through either a laparoscopic or laparotomy approach. If the myomectomy incision entered the endometrial cavity, delivery of any subsequent pregnancy should be by cesarean section because of increased risk of scar rupture in labor.

- **Embolization:** an invasive radiology procedure in which a catheter is placed into the vessels supplying the myoma. Microspheres are injected, causing ischemia and necrosis of the myoma.

- **Hysterectomy:** If patient has completed her childbearing, definitive therapy is an abdominal or vaginal hysterectomy.

Figure II-4-10. Saline Ultrasonography Demonstrating an Intracavitary Leiomyoma
Table II-4-2. Management of Leiomyomas

<table>
<thead>
<tr>
<th>Management</th>
<th>Clinical effect/Method of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>Most Serial pelvic exams</td>
</tr>
<tr>
<td>Presurgical shrinkage</td>
<td>↓ size by 70% GnRH analog 3–6 months; regrowth after stopping</td>
</tr>
<tr>
<td>Myomectomy</td>
<td>Preserves fertility Laparotomy, laparoscopy</td>
</tr>
<tr>
<td>Embolization</td>
<td>Preserves uterus Invasive radiology</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>Fertility completed Total abdominal hysterectomy; total vaginal hysterectomy</td>
</tr>
</tbody>
</table>

Adenomyosis

A 42-year-old woman complains of increasing pain with her menstrual periods for the past 8 months. She also states her periods are getting heavier, leaving her tired and weak. She underwent a postpartum tubal ligation after her last child 10 years ago. She has been treated for chronic hypertension for the past 3 years. On pelvic examination her uterus is 12-week size, globular, soft, and tender. Rectovaginal examination is unremarkable.

Adenomyosis is the presence of ectopic endometrial glands and stroma located within the myometrium of the uterine wall. The most common presentation is diffuse involvement of the myometrium. The lesion is known as an adenomyoma if the involvement is focal, surrounded by a pseudocapsule.

In most cases the diagnosis is made clinically by identifying an enlarged, symmetric, tender uterus in the absence of pregnancy. The only definitive diagnosis is by histologic confirmation of the surgically excised tissue.

Table II-4-3. Differential Diagnosis for Enlarged Nonpregnant Uterus

<table>
<thead>
<tr>
<th>Leiomyoma</th>
<th>Adenomyosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric</td>
<td>Symmetric</td>
</tr>
<tr>
<td>Firm</td>
<td>Soft</td>
</tr>
<tr>
<td>Nontender</td>
<td>Tender</td>
</tr>
</tbody>
</table>

The majority of women are asymptomatic. The most common symptoms are secondary dysmenorrhea and menorrhagia.

Examination reveals a uterus that is globular and diffusely up to 2–3 times the normal size. Tenderness is most common immediately before and during menses.
U/S study or MRI imaging shows a diffusely symmetrically enlarged uterus with cystic areas found within the myometrial wall.

Management. Medical treatment includes the levonorgestrel (LNG) intrauterine system (IUS), which may decrease heavy menstrual bleeding. Surgery in the form of hysterectomy is the definitive treatment.

ENDOMETRIAL NEOPLASIA

Postmenopausal Bleeding

A 65-year-old patient complains of vaginal bleeding for three months. Her last menstrual period was at age 52. She has not taken any hormone replacement. She was diagnosed with type 2 diabetes 20 years ago and was treated with oral hypoglycemic agents. She has chronic hypertension, for which she is treated with oral antihypertensives. Her height is 62 inches and weight 200 lb. Physical examination is normal with a normal-sized uterus and no vulvar, vaginal, or cervical lesions.

Postmenopausal bleeding is any bleeding that occurs after menopause. A patient is considered to be in menopause after 3 continuous months of cessation of menses and elevated gonadotropins. Menopause usually occurs at around age 52.

Endometrial carcinoma is the most common gynecologic malignancy (1% of women), with age 61 the mean age at diagnosis. **Lynch syndrome**, an autosomally dominant disease, accounts for 2–5% of all endometrial carcinoma (mean age at diagnosis age 50). In women with Lynch, lifetime risk of endometrial cancer is 10–20 times the general population.

There is no screening test.

The differential diagnosis of postmenopausal bleeding includes endometrial carcinoma, vaginal or endometrial atrophy, and postmenopausal hormonal replacement therapy. Although the most common cause of postmenopausal bleeding is vaginal or endometrial atrophy, the most important diagnosis to rule out is endometrial carcinoma.

The mediating factor for most endometrial carcinomas appears to be unopposed estrogen. This results from excessive hyperstimulation of the endometrium without the stabilizing effect of progesterone.

Risk factors include obesity, hypertension, and diabetes mellitus. Other risk factors include tamoxifen, nulliparity, late menopause, and chronic anovulation conditions, such as PCO disease.

Diagnostic Tests: Endometrial biopsy or transvaginal ultrasound can be used as an initial test for evaluating the endometrium.

- **Endometrial sampling.** This office procedure has historically been the initial diagnostic test for postmenopausal bleeding, due to its high sensitivity, low complication rate, and low cost. It is ideal for global lesions but not very sensitive for diagnosing localized structural lesions such as polyps or submucous leiomyomas.
Transvaginal sonogram. This is an acceptable alternative initial test for non-persistent minimal bleeding in women who are not on hormone replacement. A thin, homogeneous endometrial stripe < 5 mm can reasonably exclude endometrial carcinoma. A thicker endometrial stripe warrants further assessment with an endometrial sampling.

Hysteroscopy. This procedure allows direct visualization of the endocervical canal and endometrial cavity. Endocervical or endometrial polyps, or submucous leiomyomas, can be removed at the time of the hysteroscopy.

Figure II-4-11. Ultrasonography Demonstrating Normal Endometrial Stripe (< 5 mm)

Staging

Staging is surgical and utilizes the TNM (tumor, nodes, metastasis) classification. Stage 1 is the most common stage.

Management. If the endometrial histology sampling reveals atrophy and no evidence of cancer, it can be assumed the patient is bleeding from atrophy and can be treated with hormone replacement therapy. With hormone replacement therapy, estrogen and progesterone should be given to the patient. If estrogen is given alone, the risk of endometrial cancer increases.

If the endometrial sampling reveals adenocarcinoma, the patient should be treated surgically.

- **Surgical therapy.** The mainstay of treatment of endometrial carcinoma is a total abdominal hysterectomy (TAH) and bilateral salpingo-oophorectomy (BSO), pelvic and para-aortic lymphadenectomy, and peritoneal washings.

- **Radiation therapy.** An evaluation of the postoperative pathology report will classify patients into poor or good prognosis. Patients with poor prognosis should be considered for radiation therapy. Poor prognostic factors include metastasis to lymph nodes, $> 50\%$ myometrial invasion, positive surgical margins, or poorly differentiated histology.

- **Chemotherapy.** Medical treatment is used for metastatic disease and involves progestins and cytotoxic agents.
Table II-4-4. Management of Endometrial Carcinoma

<table>
<thead>
<tr>
<th>Stage</th>
<th>TAH-BSO: Basic Treatment for All Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>TAH BSO Lymph node dissection</td>
</tr>
<tr>
<td>Stage II</td>
<td>Radiation</td>
</tr>
<tr>
<td>Stage III</td>
<td>Radiation, chemotherapy</td>
</tr>
<tr>
<td>Stage IV</td>
<td></td>
</tr>
</tbody>
</table>

Natural History

- **Simple** hyperplasia, no atypia
 - Treatment: Progestin

- **Complex** hyperplasia, no atypia
 - Treatment: Progestin

- **Complex** hyperplasia with atypia
 - Treatment: Hysterectomy or progestin

- **Endometrial carcinoma**
 - Treatment: TAH, BSO

Figure II-4-12. Management of Endometrial Hyperplasia

Postmenopausal women taking estrogen replacement therapy must also be treated with progestins to prevent unopposed estrogen stimulation, which may lead to endometrial cancer. Reproductive age women with chronic anovulation (e.g., PCO syndrome) should also be treated with progestins to avoid endometrial hyperplasia from unopposed estrogen.
Learning Objectives

- Differentiate between physiologic enlargement of the adnexa and abnormal enlargement or painful adnexal mass
- List the causes of pelvic mass found prepubertal, premenopausal, and postmenopausal

PHYSIOLOGIC ENLARGEMENT

Functional Cysts

A 22-year-old woman comes for an annual examination and requests oral contraceptive pills. On pelvic examination a 6 cm mobile, smooth, soft, left adnexal mass is palpable. Endovaginal pelvic ultrasound shows a 6 cm, round, fluid-filled, simple ovarian cyst without septations or calcifications. She has no other significant personal or family history.

In the reproductive age years, the most common cause of a simple cystic mass is a physiologic cyst (luteal or follicular cyst). During those years the ovaries are functionally active, producing a dominant follicle (in the first half of the cycle) and a corpus luteum after ovulation (in the second half of the menstrual cycle). Either of these structures can become fluid-filled and enlarged, producing a functional cyst.

Differential Diagnosis.

- Pregnancy: most common cause of a pelvic mass in the reproductive years
- Complex mass: most common complex adnexal mass in young women is a dermoid cyst or benign cystic teratoma; other diagnoses include endometrioma, tubo-ovarian abscess, and ovarian cancer

Diagnosis.

- Qualitative \(\beta \)-human chorionic gonadotropin (\(\beta \)-hCG) test. If negative, this will rule out pregnancy.
- Sonogram. A complex mass on ultrasound appearance is incompatible with a functional cyst.

GYN Triad

Functional Ovarian Cyst

- Pelvic mass in reproductive years
- \(\beta \)-hCG (–)
- Sonogram: fluid-filled ovarian simple cyst
Management. Most functional cysts can be managed expectantly, but surgery is indicated if certain characteristics are present.

- **Observation.** If the sonogram shows a simple cyst it is probably benign, but careful follow-up is needed. Follow-up exam should be in 6–8 weeks, at which time the functional cyst should have spontaneously resolved. During this period of observation the patient should be alerted to the possibility of acute onset of pain, which may be indicative of torsion of the adnexal cyst. Oral contraceptive medication can be used to help prevent further functional cysts from forming.

- **Laparoscopy.** Even if the cyst is simple in appearance, surgical evaluation should be performed if the cyst >7 cm or if patient had been on prior steroid contraception. Physiologic cysts do not usually get >7 cm in diameter. Functional cysts should not form if the patient has been on oral contraception for at least two months because gonadotropins should have been suppressed.

Polycystic Ovarian Syndrome

The ovaries are bilaterally enlarged with multiple peripheral cysts (20–100 in each ovary). This is due to high circulating androgens and high circulating insulin levels causing arrest of follicular development in various stages. This, along with stromal hyperplasia and a thickened ovarian capsule, results in enlarged ovaries bilaterally. PCOS is associated with valproic acid use. Management is conservative regarding ovaries.

For further discussion of PCOS pathophysiology and treatment, refer to Chapter 12, Hormonal Disorders.
Ovarian Hyperthecosis

In ovarian hyperthecosis, nests of luteinized theca cells are scattered in the ovarian stroma, rather than being confined to areas around cystic follicles (as in PCOS). Large amounts of androgens are produced, leading to increased peripheral estrone production and markedly increased risk of endometrial hyperplasia and carcinoma.

The clinical features are similar to those of PCOS; however, hirsutism is more severe and virilization is frequent.

- Patients present with anovulation, amenorrhea, or oligomenorrhea. Most patients will have severe insulin-resistance, with type 2 diabetes mellitus and cardiovascular disease.
- Unlike PCOS, which occurs only during the reproductive years, hyperthecosis of the ovaries can occur in postmenopausal women.

Management. Treatment is similar to that for hirsutism. Use oral contraceptive pills both to suppress androgen production (by reducing LH stimulation of the theca cells) and to decrease free androgens (by stimulating sex hormone-binding globulin).

Luteoma of Pregnancy

Luteoma of pregnancy is a rare, non-neoplastic tumor-like mass of the ovary that emerges during pregnancy and regresses spontaneously after delivery. It is usually asymptomatic and is found incidentally during a cesarean section or postpartum tubal ligation. It can be hormonally active and produce androgens resulting in maternal and fetal hirsutism and virilization.

Theca Lutein Cysts

These are benign neoplasms stimulated by high levels of FSH and \(\beta \)-hCG. They are associated with twins and molar pregnancies but they are only rarely associated with a normal singleton pregnancy. The natural course of these tumors is postpartum spontaneous regression and require only conservative management.

PREPUBERTAL PELVIC MASS

An 8-year-old girl is evaluated in the emergency department for sudden onset of severe lower abdominal pain. A general surgery consult is obtained and appendicitis is ruled out. Pelvic ultrasound reveals a 7 cm solid and irregular right adnexal mass. Pelvic examination is consistent with a 7 cm right adnexal mass, and there is lower abdominal tenderness but no rebound present.

An adnexal mass in the prepubertal age group is abnormal. During the prepubertal and the postmenopausal years, functional ovarian cysts are not possible because ovarian follicles are not functioning. Therefore any ovarian enlargement is suspicious for neoplasm.

Sudden onset of acute abdominal pain is a typical presentation of germ cell tumors of the ovary. These tumors characteristically grow rapidly and give early symptomatology, as opposed to the epithelial cancers of the ovary that are diagnosed in advanced stages. Germ cell tumors of the ovary are most common in young women and present in early stage disease.
Differential Diagnosis. If sonography shows a complex adnexal mass in a girl or teenager, the possibility of germ cell tumors of the ovary has to be considered. The following serum tumor markers should be obtained: lactate dehydrogenase (LDH) for dysgerminoma, β-hCG for choriocarcinoma, and α-fetoprotein for endodermal sinus tumor.

Diagnosis. In a prepubertal patient who is symptomatic and has U/S evidence of an adnexal mass, a surgical evaluation is recommended.

- **Simple mass**: If the U/S shows the consistency of the mass to be simple (no septations or solid components), this mass can be evaluated through a laparoscopic approach.
- **Complex mass**: If the mass has septations or solid components, a laparoscopy or laparotomy should be performed, depending on the experience of the surgeon.

Table II-5-1. Prepubertal Pelvic Mass

<table>
<thead>
<tr>
<th>Surgical diagnosis</th>
<th>Simple cyst</th>
<th>Laparoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex mass</td>
<td></td>
<td>Laparotomy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management</th>
<th>Benign</th>
<th>Cystectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Annual follow-up</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management</th>
<th>Malignant</th>
<th>Unilateral S&O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Staging, chemotherapy</td>
</tr>
</tbody>
</table>

| Prognosis | 95% survival with chemotherapy |

Management.

- **Benign histology**: A cystectomy should be performed instead of a salpingo-oophorectomy. Because of the patient’s age the surgical goal should be toward conservation of both ovaries. If the frozen section pathology analysis is benign, no further surgery is needed. Follow-up is on an annual basis.

- **Germ cell tumor**: A unilateral salpingo-oophorectomy and surgical staging (peritoneal and diaphragmatic biopsies, peritoneal cytology, pelvic and para-aortic lymphadenectomy, and omentectomy) should be done. All patients with germ cell tumors require postoperative chemotherapy. The most active regimens used are vinblastine, bleomycin, and cisplatin. Follow-up after conservative surgery is every three months with pelvic examination and tumor marker measurements.

The current survival rate is >95% in patients with germ cell tumors managed with conservative management and chemotherapy. Before the chemotherapy era, most patients succumbed to their disease.
PREMENOPAUSAL PELVIC MASS

Complex Mass

A 28-year-old woman is in the emergency department complaining of lower abdominal discomfort the last five days. She has no history of steroid contraceptive use. A year ago, her pelvic exam and Pap smear were negative. Pelvic exam today shows a 7 cm, mobile, painless right adnexal mass. An endovaginal sonogram in the emergency department confirms a 7 cm, mobile, irregular complex mass with prominent calcifications.

In young women, the most common complex adnexal mass is a dermoid cyst or benign cystic teratoma (discussed below). Other diagnoses include endometrioma, tubo-ovarian abscess, and ovarian cancer.

Differential diagnosis includes pregnancy and functional cysts.

Diagnosis. Qualitative β-human chorionic gonadotropin (β-hCG) test to rule out pregnancy; the appearance of a complex mass on U/S will rule out a functional cyst.

Management. Patients of reproductive age with a complex adnexal mass should be treated surgically (laparoscopy or laparotomy, depending on experience of the surgeon).

- **Cystectomy.** At the time of surgery an ovarian cystectomy should be attempted to preserve ovarian function in the reproductive age. Careful evaluation of the opposite adnexa should be performed, as dermoid cysts can occur bilaterally in 10–15% of cases.

- **Oophorectomy.** If an ovarian cystectomy cannot be done because of the size of the dermoid cyst, then an oophorectomy is performed, but conservative management should always be attempted before an oophorectomy is done.

Benign cystic teratoma

Dermoid cysts are benign tumors. They can contain cellular tissue from all 3 germ layers. The most common histology seen is ectodermal skin appendages (hair, sebaceous glands), thus the name “dermoid.” Gastrointestinal histology can be identified, and carcinoid syndrome has been described originating from a dermoid cyst. Thyroid tissue can also be identified, and if it comprises $>50\%$ of the dermoid, then the condition of struma ovarii is identified.

Rarely, a malignancy can originate from a dermoid cyst, in which case the most common histology would be squamous cell carcinoma, which can metastasize.

GYN Triad

Dysgerminoma

- Solid pelvic mass in reproductive years
- β-hCG (−)
- ↑ LDH level

GYN Triad

Benign Cystic Teratoma

- Pelvic mass: reproductive years
- β-hCG (−)
- Sonogram: complex mass, calcifications
PAINFUL ADNEXAL MASS

A 31-year-old woman is taken to the emergency department complaining of severe sudden lower abdominal pain for approximately three hours. She was at work when she suddenly developed lower abdominal discomfort and pain, which got progressively worse. On examination the abdomen is tender, although no rebound tenderness is present, and there is a suggestion of an adnexal mass in the cul-de-sac area. Ultrasound shows an 8 cm left adnexal mass with a suggestion of torsion of the ovary.

Sudden onset of severe lower abdominal pain in the presence of an adnexal mass is presumptive evidence of ovarian torsion.

Management. Untwist the ovary (with laparoscopy or laparotomy) and observe the ovary for a few minutes in the operating room to ensure revitalization. If revitalization occurs, an ovarian cystectomy can be performed with preservation of the ovary. If the ovary is necrotic, a unilateral salpingo-oophorectomy is performed.

Patients should have routine examination 4 weeks post-operation and then yearly. The pathology report should be checked carefully to confirm it is benign; if that is the case, go to routine follow-up.
POSTMENOPAUSAL PELVIC MASS

A 70-year-old woman comes for annual examination. She complains of lower abdominal discomfort; however, there is no weight loss or abdominal distention. On pelvic examination a nontender, 6 cm, solid, irregular, fixed, left adnexal mass is found. Her last examination one year ago was normal.

Postmenopausal pelvic mass is a pelvic mass identified after menopause. Ovaries in the postmenopausal age group should be atrophic; anytime they are enlarged the suspicion of ovarian cancer arises.

Ovarian carcinoma is the second most common gynecologic malignancy, with age 69 the mean age at diagnosis. It is the most common gynecologic cancer leading to death (1% of women die of ovarian cancer).

Diagnostic Tests.

- **GI tract lesions.** Abdominal pelvic CT scan or a pelvic U/S and GI studies (barium enema) to rule out any intestinal pathology such as diverticular disease
- **Urinary tract lesions.** IVP to identify any impingement of the urinary tract

There is currently no screening test for ovarian cancer. Pelvic U/S is excellent for finding pelvic masses, but is not specific for identifying which of these are benign. Only 3% of patients undergoing laparotomy for sonographically detected pelvic masses actually have ovarian cancer.

The most compelling theory of epithelial ovarian carcinogenesis suggests that serous, endometrioid, and clear cell carcinomas are derived from the fallopian tube and endometrium—not directly from the ovary.

Risk factors include BRCA1 gene, positive family history, high number of lifetime ovulations, infertility, and use of perineal talc powder. Protective factors include conditions that decrease the total number of lifetime ovulations.

- Removal or occlusion of the fallopian tubes: bilateral salpingectomy or tubal ligation
- Decreased lifetime ovulations: combination steroid contraception, chronic anovulation, breastfeeding, and short reproductive life

Classification of Ovarian Cancer

- **Epithelial tumors** (80%) (most common type of histologic ovarian carcinoma) occur predominantly in postmenopausal women. These include serous, mucinous, Brenner, endometrioid, and clear cell tumors. The most common malignant epithelial cell type is **serous**.

- **Germ cell tumors** (15%) occur predominantly in teenagers. These include dysgerminoma, endodermal sinus tumors, teratomas, and choriocarcinoma. The most common malignant germ cell type is **dysgerminoma**. It is uniquely x-ray sensitive.

- **Stromal tumors** (5%) are functionally active. These include granulosa-theca cell tumors (which secrete estrogen and can cause bleeding from endometrial hyperplasia) and Sertoli-Leydig cell tumors (which secrete testosterone and can produce masculinization syndromes). Patients usually present with early stage disease and are treated either with removal of the involved adnexa (for those who desire further fertility) or a TAH and BSO (for those whose families have been completed). They metastasize infrequently and then require chemotherapy (vincristine, actinomycin, and Cytoxan).
Table II-5-2. Classic Histology Types of Ovarian Cancer

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial</td>
<td>80%</td>
<td>Older</td>
</tr>
<tr>
<td>Germ cell</td>
<td>15%</td>
<td>Young</td>
</tr>
<tr>
<td>Stromal</td>
<td>5%</td>
<td>All</td>
</tr>
</tbody>
</table>

Metastatic tumors are cancers from a primary site other than the ovary. The most common sources are the endometrium, GI tract, and breast. Krukenberg tumors are mucin-producing tumors from the stomach or breast metastatic to the ovary.

GYN Triad

Endometrial Carcinoma Metastatic to Ovaries
- Postmenopausal woman with bilateral pelvic masses
- Postmenopausal bleeding
- Enlarged uterus

Tumor Markers.
- **CA-125** (cancer antigen 125) and **CEA** (carcinoembryonic antigen) should be drawn for the possibility of ovarian epithelial cancer.
- **LDH, hCG, and α-fetoprotein** should be drawn for the possibility of germ cell tumors.
- **Estrogen** and **testosterone** should be drawn for the possibility of stromal tumors.

Staging. Staging is surgical.

Stage I: Spread limited to the ovaries
- IA. Limited to one ovary, capsule intact, negative cytology
- IB. Limited to both ovaries, capsules intact, negative cytology
- IC. One or both ovaries but ruptured capsule, positive cytology

Stage II: Extension to the pelvis
- IIA. Extension to uterus or tubes
- IIB. Extension to other pelvic structures
Chapter 5 Disorders of the Ovaries and Oviducts

IIC. Extension to pelvis with positive cytology

Stage III: Peritoneal metases or positive nodes. This is the most common stage at diagnosis.

IIIA. Microscopic peritoneal metastases

IIIB. Macroscopic peritoneal metastases ≤ 2 cm

IIIC. Macroscopic peritoneal metastases > 2 cm

Stage IV: Distant metastases

IVA. Involves bladder or rectum

IVB. Distant metastasis

Management. Surgical exploration should follow preoperative studies and medical evaluation. If abdominal or pelvic CT scan shows no evidence of ascites or spread to the abdominal cavity and if the surgeon is an experienced laparoscopist, then the evaluation could be performed laparoscopically. At the time of surgery, a unilateral salpingo-oophorectomy (USO) is done and sent for frozen section.

- **Benign histology:** If the patient is not a good surgical candidate or the patient desires to maintain her uterus and contralateral ovary, a USO is sufficient treatment. If the USO by frozen section is benign and the patient is a good surgical candidate, then a TAH and BSO may be performed even though it is benign disease because the uterus and ovaries are not unusual sites of pathology in a woman.

- **Malignant histology:** In this case, a debulking procedure (cytoreduction) should be performed. This procedure consists of a TAH and BSO, omentectomy, and bowel resection, if necessary. Postoperative chemotherapy (carboplatin and Taxol) should be administered.

If the final pathology report of the enlarged adnexa was benign, the patient can be followed up in the office on a yearly basis for regular examination. If the pathology report was carcinoma, the patient can be followed up every three months for the first two years and then every six months for the next two years with follow-up of the CA-125 tumor marker.

Borderline Cancers. Another entity of ovarian cancer is the borderline tumors also known as tumors of low malignant potential. These are characterized by no invasion of the basement membrane and can also be treated conservatively.

- **Conservative surgery.** A patient who desires further fertility with a unilateral borderline cancer of the ovary can be treated with a USO with preservation of the uterus and the opposite adnexa.

- **Aggressive surgery.** If the patient has completed her family then the most acceptable treatment would be a TAH and BSO.

- **Chemotherapy.** Patients with borderline cancer of the ovary do not require chemotherapy unless they have metastasis; this is a rare occurrence.

Adnexal Mass With Ascites

A 65-year-old woman is referred for evaluation of abdominal distention and ascites and an adnexal mass. The patient has noted abdominal distention for the past six months, and on pelvic examination there is a 7 cm irregular and solid mass in the cul-de-sac, which is palpable by rectovaginal examination.

GYN Triad

Ovarian Carcinoma with Peritoneal Metastasis

- Postmenopausal bilateral pelvic masses
- Weight gain, anorexia
- Abdominal “shifting dullness”
Ascites is an abdominal accumulation of fluid in the peritoneal cavity, which usually causes abdominal distention. The etiology of ascites can be multifactorial and includes heart/kidney/liver disease and ovarian cancer.

In a female patient with ascites, ovarian carcinoma must always be considered. Although the etiology of ovarian carcinoma is not known, ovulation inhibition, as occurs with OCPs or pregnancy, does decrease the risk of epithelial ovarian cancer. **Meigs syndrome** is the triad of ascites, pleural effusion, and benign ovarian fibroma.

Lab abnormalities/diagnostic criteria. In a patient with an adnexal mass and ascites, an abdominal pelvic CT scan should be ordered for evaluation of the upper abdomen. The **most common method of ovarian carcinoma spread** is by peritoneal dissemination (exfoliation) and is commonly seen metastatic to the omentum and to the GI tract. The cause of death of patients with advanced ovarian carcinoma is bowel obstruction.

Management.

- **Surgical staging.** After an abdominal pelvic CT scan confirms the presence of ascites and the adnexal mass, an exploratory laparotomy and surgical staging should be performed. A salpingo-oophorectomy of the enlarged ovary should be done and sent for frozen section evaluation.

- **Debulking surgery.** If ovarian carcinoma is confirmed, then a debulking (cytoreductive) surgical procedure should be performed. This procedure usually includes a TAH, BSO, omentectomy, and, frequently, bowel resection.

- **Chemotherapy.** Postoperatively patients should be treated with six courses of a standard chemotherapy regimen, which includes Taxol and carboplatin. Patients are followed with the tumor marker CA-125.
Learning Objective

- Explain origin of gestational trophoblastic neoplasia

GESTATIONAL TROPHOBLASTIC NEOPLASIA

A 24-year-old Filipino nurse is 14 weeks pregnant by dates. She complains of vaginal bleeding as well as severe nausea and vomiting. Her uterus extends to her umbilicus but no fetal heart tones can be heard. Her blood pressure is 150/95 mm Hg. A dipstick urine shows 2+ proteinuria.

Gestational trophoblastic neoplasia (GTN), or molar pregnancy, is an abnormal proliferation of placental tissue involving both the cytotrophoblast and/or syncytiotrophoblast. Classification of GTN is done as follows:

- **Benign GTN** is the classic hydatidiform mole (H-mole). Incidence is 1:1200 in the U.S., but 1:120 in the Far East.
 - **Complete mole** (most common benign GTN) results from fertilization of an empty egg with a single X sperm resulting in paternally derived (androgenetic) normal 46,XX karyotype. No fetus, umbilical cord, or amniotic fluid is seen. The uterus is filled with grape-like vesicles composed of edematous avascular villi. Progression to malignancy is 20%.
 - **Incomplete mole** (less common) results from fertilization of a normal egg with 2 sperm resulting in triploid 69,XXY karyotype. A fetus, umbilical cord, and amniotic fluid is seen, which results ultimately in fetal demise. Progression to malignancy is 10%.

- **Malignant GTN** is the gestational trophoblastic tumor (GTT) which can develop in 3 categories.
 - **Non-metastatic disease** is localized only to the uterus.
 - **Good prognosis metastatic disease** has distant metastasis; the most common location is the pelvis or lung. Cure rate is >95%.
 - **Poor prognosis metastatic disease** has distant metastasis (most commonly brain or liver). Other poor prognosis factors are serum β-hCG levels >40,000, >4 months from the antecedent pregnancy, and following a term pregnancy. Cure rate is 65%.

GYN Triad

Molar Pregnancy
- Pregnancy <20 weeks
- HTN and proteinuria
- No fetal heart tones (FHT)
Table II-6-1. Benign Gestational Trophoblastic Neoplasia—H Mole

<table>
<thead>
<tr>
<th>Complete</th>
<th>Incomplete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty egg</td>
<td>Normal egg</td>
</tr>
<tr>
<td>Paternal X’s only</td>
<td>Maternal and paternal X’s</td>
</tr>
<tr>
<td>46,XX (diploidy)</td>
<td>69,XXY (triploidy)</td>
</tr>
<tr>
<td>Fetus absent</td>
<td>Fetus nonviable</td>
</tr>
<tr>
<td>20% → malignancy</td>
<td>10% → malignancy</td>
</tr>
</tbody>
</table>

No chemotherapy; serial β-hCG titers until (–); follow-up 1 year on oral contraceptive pill

Table II-6-2. Malignant Gestational Trophoblastic Neoplasia

<table>
<thead>
<tr>
<th>Nonmetastatic</th>
<th>Good Prognosis</th>
<th>Poor Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterus only</td>
<td>Pelvis or lung</td>
<td>Brain or liver</td>
</tr>
<tr>
<td>100% cure</td>
<td>>95% cure</td>
<td>65% cure</td>
</tr>
<tr>
<td>Single-agent chemotherapy</td>
<td></td>
<td>Multiple agent chemotherapy</td>
</tr>
<tr>
<td>1 year follow-up on oral contraceptive pill after β-hCG (–)</td>
<td>5 year follow-up on oral contraceptive pill</td>
<td></td>
</tr>
</tbody>
</table>

Risk factors. Increased prevalence **geographically** is most common in Taiwan and the Philippines. Other risk factors are maternal age extremes (age <20, age >35) and folate deficiency.

Clinical Findings.

- The most common symptom is bleeding prior to 16 weeks’ gestation and passage of vesicles from the vagina. Other symptoms of a molar pregnancy include hypertension, hyperthyroidism, hyperemesis gravidarum, and no fetal heart tones appreciated.

- The most common signs are fundus larger than dates, absence of fetal heart tones, and bilateral cystic enlargements of the ovary known as theca-lutein cysts.

- The most common site of distant metastasis is the lungs.

Diagnosis. “Snowstorm” ultrasound. The diagnosis is confirmed with sonogram showing homogenous intrauterine echoes without a gestational sac or fetal parts.

Management. Baseline quantitative β-hCG titer; chest x-ray to rule out lung metastasis; and suction D&C to evacuate the uterine contents.

Place the patient on effective contraception (oral contraceptive pills) for the duration of the follow-up period to ensure no confusion between rising β-hCG titers from recurrent disease and normal pregnancy.

Note
Malignant GTN is characterized as localized or metastatic, and is classified as good prognosis or poor prognosis.
Table II-6-3. Gestational Trophoblastic Neoplasia—Basic Approach

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-hCG titer</td>
<td>Baseline for future comparison</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>Lung metastasis is ruled out</td>
</tr>
<tr>
<td>Suction D&C</td>
<td>Empty uterus contents</td>
</tr>
<tr>
<td>Oral contraceptive pills</td>
<td>Prevent confusion: recurrent disease and normal pregnancy</td>
</tr>
<tr>
<td>for 1 year</td>
<td></td>
</tr>
</tbody>
</table>

Treatment is then based on histology and location of metastasis.

- **Benign GTN**: Weekly serial β-hCG titers until negative for 3 weeks, then monthly titers until negative for 12 months. **Follow-up is for 1 year.** If serial β-hCG titers plateau or rise and normal intrauterine pregnancy is ruled out by vaginal sonogram, patient is diagnosed with persistent gestational trophoblastic disease. Proceed with a metastatic workup (CT scan of the brain, thorax, abdomen, and pelvis) and manage as indicated below.

- **Non-metastatic or good prognosis metastatic disease**: single agent (methotrexate or actinomycin D) until weekly β-hCG titers become negative for 3 weeks, then monthly titers until negative for 12 months. **Follow-up is for 1 year.**

- **Poor prognosis metastatic disease**: multiple agent chemotherapy (which includes methotrexate, actinomycin-D, and cyclophosphamide until weekly β-hCG titers become negative for 3 weeks, then monthly titers for 2 years, then every 3 months for another 3 years. **Follow-up is for 5 years.**

Table II-6-4. Gynecologic Malignancy

<table>
<thead>
<tr>
<th>Stage Type</th>
<th>Cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical staging</td>
<td>Cervical cancer</td>
</tr>
<tr>
<td>Surgical staging</td>
<td>Endometrial, ovarian, vulvar, and trophoblastic cancer</td>
</tr>
</tbody>
</table>
Learning Objectives

- Give an overview of the organisms involved in STDs
- Differentiate between STDs with and without ulcers
- Describe what is known about the sexual transmission of hepatitis B and HIV

SPECTRUM OF ORGANISMS

Bacterial organisms include chancroid, lymphogranuloma venereum, granuloma inguinale, chlamydia, gonorrhea, and syphilis.

Viral organisms include condyloma acuminatum, herpes simplex, hepatitis B virus, and human immunodeficiency virus.

Protozoan organisms include trichomoniasis.

STDs WITH ULCERS

Herpes Simplex Virus (HSV)
Refer to Obstetrics, Chapter 7, Perinatal Infections.

Syphilis
Refer to Obstetrics, Chapter 7, Perinatal Infections.

Chancroid
Chancroid is caused by *Haemophilus ducreyi*, a gram-negative bacterium. It is uncommon in the United States. It is a cofactor for HIV transmission.

Chancroid is one of two STDs which present with a **painful ulcer**. A pustule, usually on the vulva, becomes a painful ulcer within 72 hours, with a typically “ragged edge.”

Diagnosis. A positive culture confirms the diagnosis, although a diagnosis is often made clinically after excluding syphilis and genital herpes.

Management. Single oral dose of azithromycin, single IM dose of ceftriaxone, or oral erythromycin base for seven days (CDC-recommended treatment).
Lymphogranuloma Venereum
Lymphogranuloma venereum (LGV) is caused by the L serotype of *Chlamydia trachomatis*. It is uncommon in the United States. The initial lesion is a **painless** ulcer.

A painless vesiculopustular eruption, usually on the vulva, spontaneously heals. This is replaced within a few weeks by perirectal adenopathy that can lead to abscesses and fistula formation.

The classic clinical lesion is a double genitocrural fold, the “groove sign.”

Diagnosis. A positive culture of pus aspirated from a lymph node confirms the diagnosis.

Management. Oral doxycycline or erythromycin for three weeks (CDC-recommended treatment).

Granuloma Inguinale (Donovanosis)
This disease is caused by *Calymmatobacterium granulomatis*, a gram-negative intracellular bacterium. It is uncommon in the United States. The initial lesion is a **painless** ulcer.

A vulvar nodule breaks down, forming a painless, beefy red, highly vascular ulcer with fresh granulation tissue without regional lymphadenopathy. Lymphatic obstruction can result in marked vulvar enlargement. Chronic scarring can lead to lymphatic obstruction.

Diagnosis. Culture of the organism is difficult, but microscopic examination of an ulcer smear will reveal Donovan bodies.

Management. Oral doxycycline or azithromycin for three weeks (CDC-recommended treatment)

Table II-7-1. Comparison of STDs

<table>
<thead>
<tr>
<th>With Ulcers</th>
<th>No Ulcers</th>
<th>Painful Ulcers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancroid</td>
<td>Chlamydia</td>
<td>Chancroid</td>
</tr>
<tr>
<td>Granuloma inguinale</td>
<td>HPV</td>
<td></td>
</tr>
<tr>
<td>Genital herpes</td>
<td>Gonorrhea</td>
<td>Genital herpes</td>
</tr>
<tr>
<td>LGV</td>
<td>Hepatitis B</td>
<td></td>
</tr>
<tr>
<td>Syphilis</td>
<td>HIV</td>
<td></td>
</tr>
</tbody>
</table>
Table II-7-2. Comparison of STDs with Ulcers

<table>
<thead>
<tr>
<th>STD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancroid (painful)</td>
<td>Ragged, soft edge inflamed</td>
</tr>
<tr>
<td>LGV</td>
<td>Groove sign</td>
</tr>
<tr>
<td>Granuloma inguinale</td>
<td>Beefy red; Donovan bodies</td>
</tr>
<tr>
<td>Syphilis</td>
<td>Rolled, hard edge</td>
</tr>
<tr>
<td>Herpes (painful)</td>
<td>Smooth edge inflamed</td>
</tr>
</tbody>
</table>

STDs WITHOUT ULCERS

Condyloma Acuminatum

Condyloma acuminatum is caused by the human papilloma virus (HPV). It is the most common overall STD in women, as well as the most common viral STD. Transmission can occur with subclinical lesions. HPV subtypes 16 and 18 are associated with cervical and vulvar carcinoma, whereas condyloma is associated with HPV types 6 and 11. Predisposing factors include immunosuppression, diabetes, and pregnancy.

HPV is subclinical in most infected women. Symptoms of pain, odor, or bleeding occur only when lesions become large or infected. Clinical lesions are found in only 30% of infected women.

The characteristic appearance of a condyloma is a pedunculated, soft papule that progresses into a cauliflower-like mass. The most common site of lesions is the cervix.

Diagnosis. The lesions have an appearance so characteristic that biopsy is seldom necessary.

Management. Topical or local. Systemic therapy is not available.

- **Patient-applied topical treatment:** podofilox [Condylox] solution or gel (antimitotic drug), imiquimod [Aldara] cream (topically active immune-enhancer), or sinecat-echins ointment (green-tea extract)
- **Provider-administered local treatment:** cryotherapy (liquid nitrogen or CryoProbe), podophyllin resin (not used in pregnancy), trichloroacetic acid [TCA] or bichloroacetic acid [BCA] (caustic agents), or surgical removal

Trichomonas Vaginitis

Refer to Gynecology, Chapter 3, Disorders of the Vagina and Vulva.

Chlamydia

Chlamydia is caused by Chlamydia trachomatis, an obligatory intracellular bacterium. It is the most common bacterial STD in women, occurring up to five times more frequently than gonorrhea. The long-term sequelae arise from pelvic adhesions, causing chronic pain and infertility. When the active infection ascends to the upper genital tract and becomes symptomatic, it is known as acute pelvic inflammatory disease (acute PID). Transmission from an infected gravida to her newborn may take place at delivery, causing conjunctivitis and otitis media.
Most chlamydial cervical infections, and even salpingo-oophoritis, are asymptomatic.

The classic cervical finding is mucopurulent cervical discharge. Urethral and cervical motion tenderness may or may not be noted.

Diagnosis. Nucleic acid amplification test (NAAT) of either cervical discharge or urine is used.

Management. Single oral dose of azithromycin or oral doxycycline for seven days (CDC-recommended treatment). Patients should avoid coitus for seven days after therapy. A test-of-cure (repeat testing 3–4 weeks after completing therapy) is recommended for pregnant women.

Gonorrhea

Gonorrhea is caused by *Neisseria gonorrhoeae*, a gram-negative diplococcus. The long-term sequelae arise from pelvic adhesions, causing chronic pain and infertility. When the active infection becomes symptomatic, it is known as acute pelvic inflammatory disease (acute PID). Systemic infection can occur.

Lower genital tract infection may lead to vulvovaginal discharge, itching, and burning with dysuria or rectal discomfort. **Upper genital tract infection** leads to bilateral abdominal-pelvic pain. Disseminated gonorrhea is characterized by dermatitis, polyarthralgia, and tenosynovitis.

Vulvovaginitis is seen on inspection. Mucopurulent cervical discharge is seen on speculum exam. Cervical motion tenderness is common with bimanual pelvic exam. Petechial skin lesions, septic arthritis, and, rarely, endocarditis or meningitis, may demonstrate with disseminated gonorrhea.

Diagnosis. Nucleic acid amplification test (NAAT) of either cervical discharge or urine is used.

Management. Single dose of IM ceftriaxone plus a single oral dose of azithromycin (CDC recommends dual therapy for gonococcus and chlamydia because of the frequency of coinfection). A Bartholin abscess needs to undergo incision and drainage with a Word catheter.

HEPATITIS B VIRUS (HBV)

Refer to Obstetrics, Chapter 7, Perinatal Infections.

HUMAN IMMUNODEFICIENCY VIRUS (HIV)

Refer to Obstetrics, Chapter 7, Perinatal Infections.
Learning Objectives

- Differentiate primary and secondary dysmenorrhea
- Provide an overview of the diagnosis and treatment of pelvic inflammatory disease

PELVIC INFLAMMATORY DISEASE

A 19-year-old nulligravida presents to the emergency department with bilateral lower abdominal pelvic pain. The onset was 24 hours ago after she had just finished her menstrual period. She is sexually active but using no contraception. Speculum examination reveals mucopurulent cervical discharge. Bimanual pelvic examination shows bilateral adnexal tenderness and cervical motion tenderness. She is afebrile. Qualitative urinary β-hCG test is negative. Complete blood cell count shows WBC 14,000. ESR is elevated.

Pelvic inflammatory disease (PID) is a nonspecific term for a spectrum of upper genital tract conditions ranging from acute bacterial infection to massive adhesions from old inflammatory scarring.

The most common initial organisms are chlamydia and gonorrhea. With persistent infection, secondary bacterial invaders include anaerobes and gram-negative organisms.

PID is an ascending infection that starts within the cervix and moves up to involve the oviducts and ovaries.

- **Cervicitis**: The initial infection starts with invasion of endocervical glands with chlamydia and gonorrhea. A mucopurulent cervical discharge or friable cervix may be noted. Cervical cultures will be positive, but symptoms are usually absent.
- **Acute salpingo-oophoritis**: Usually after a menstrual period with breakdown of the cervical mucus barrier, the pathogenic organisms ascend through the uterus causing an endometritis; then the bacteria enter the oviduct where acute salpingo-oophoritis develops.
- **Chronic PID**: If the salpingo-oophoritis is not appropriately treated, the body’s immune defenses will often overcome the infection but at the expense of persistent adhesions and scarring.
- **Tubo-ovarian abscess (TOA)**: If the body’s immune defenses cannot overcome the infection, the process worsens, producing an inflammatory mass involving the oviducts, ovaries, uterus, bowel, and omentum.

Risk Factors. The most common risk factor is female sexual activity in adolescence, with multiple partners. PID is increased in the month after insertion of an IUD, but this is probably exacerbation of preexisting subclinical infection.
Cervicitis

Often there are no symptoms except vaginal discharge. The most common finding is mucopurulent cervical discharge or a friable cervix. No pelvic tenderness is noted. The patient is afebrile.

Investigative findings can be a lab diagnosis or a clinical diagnosis. See Diagnosis section for chlamydia. WBC and ESR are normal.

Management. Single dose orally of cefixime and azithromycin.

Acute Salpingo-Oophoritis

Bilateral lower abdominal-pelvic pain may be variable, ranging from minimal to severe. Onset may be gradual to sudden, often after menses. Nausea and vomiting may be found if abdominal involvement is present.

On examination, mucopurulent cervical discharge, cervical-motion tenderness, and bilateral adnexal tenderness are present. Fever, tachycardia, abdominal tenderness, peritoneal signs, and guarding may be found depending on the extent of infection progression.

Investigative findings include elevated WBC and ESR. Pelvic sonography is usually unremarkable. Laparoscopy will show erythematous, edematous, purulent oviducts. Cervical cultures will come back positive for chlamydia or gonorrhea.

Differential diagnosis includes adnexal torsion, ectopic pregnancy, endometriosis, appendicitis, diverticulitis, Crohn disease, and ulcerative colitis.

Diagnosis. This is a made on clinical grounds using the following:

- Minimal criteria:
 - Sexually active young woman
 - Pelvic or lower abdominal pain
 - Tenderness: cervical motion or uterine or adnexal

- Supportive criteria (but not necessary for diagnosis):
 - Oral temperature >38.3 C (>101 F)
 - Abnormal cervical or vaginal mucopurulent discharge
 - Presence of abundant WBC on vaginal fluid saline microscopy
 - Elevated erythrocyte sedimentation rate
 - Positive lab findings of cervical *N. gonorrhoeae* or *C. trachomatis*

- Most specific criteria for diagnosis:
 - Endometrial biopsy showing endometritis
 - Vaginal sono or MRI imaging showing abnormal adnexa
 - Laparoscopic abnormalities consistent with PID

Management is often based on a presumptive diagnosis. Empiric broad spectrum coverage need to include *N. gonorrhoeae* or *C. trachomatis* as well as anaerobes (e.g., *B. fragilis*).

- Outpatient treatment is equivalent to inpatient in mild to moderate cases.
 - Criteria: absence of inpatient criteria
 - Antibiotics: ceftriaxone IM x 1 plus doxycycline po bid for 14 days with/without metronidazole po bid for 14 days
• **Inpatient treatment** is essential with severe cases.
 - **Criteria:** cannot rule out; failed outpatient therapy; unable to tolerate oral medications; severe illness, high fever, nausea/vomiting; tubo-ovarian abscess or pregnancy
 - **Antibiotics:** (1) cefotetan IV 12 h plus doxycycline po or IV q 12 h or (2) clindamycin plus gentamicin IV q 8 h

Figure II-8-1. Pelvic Inflammatory Disease

Tubo-Ovarian Abscess

Tubo-ovarian abscess (TOA) is the accumulation of pus in the adnexa forming an inflammatory mass involving the oviducts, ovaries, uterus, or omentum. The typical clinical presentation is similar to severe acute PID with acute pain, fever, chills, and vaginal discharge; some patients present with chronic pain and are afibrile.

The patient will look septic. Lower abdominal-pelvic pain is severe. Often there is severe back pain, rectal pain, and pain with bowel movements. Nausea and vomiting are present.

On examination the patient appears gravely sick. She has high fever with tachycardia. She may be in septic shock with hypotension. Abdominal examination shows peritoneal signs, guarding, and rigidity. Pelvic examination may show such severe pain that a rectal examination must be performed. Bilateral adnexal masses may be palpated.

Investigative findings include positive cervical cultures for chlamydia or gonorrhea. Blood cultures may be positive for gram-negative bacteria and anaerobic organisms such as *Bacteroides fragilis*. Culdocentesis may yield pus. WBC and ESR are markedly elevated. Sonography or CT scan will show bilateral complex pelvic masses.

Differential diagnosis includes septic abortion, diverticular or appendiceal abscess, and adnexal torsion.
Management. Inpatient IV clindamycin and gentamicin should result in fever defervescence within 72 hours. If there is no response or there is rupture of the abscess exposing free pus into the peritoneal cavity, significant mortality can occur. Exploratory laparotomy with possible TAH and BSO or percutaneous drainage through a colpotomy incision may be required.

Chronic PID

Chronic bilateral lower abdominal-pelvic pain is present, varying from minimal to severe. Other symptoms may include history of infertility, dyspareunia, ectopic pregnancy, and abnormal vaginal bleeding. Nausea and vomiting are absent.

On examination, bilateral adnexal tenderness and cervical-motion tenderness is present, but mucopurulent cervical discharge is absent. Fever and tachycardia are absent.

Investigative findings include negative cervical cultures with normal WBC and ESR. Sonography may show bilateral cystic pelvic masses consistent with hydrosalpinges.

Diagnosis. Diagnosis is based on laparoscopic visualization of pelvic adhesions.

Management. Outpatient mild analgesics for pain. Lysis of tubal adhesions may be helpful for infertility. Severe unremitting pelvic pain may require a pelvic clean-out (TAH, BSO). If the ovaries are removed, estrogen replacement therapy is indicated.

PRIMARY DYSMENORRHEA

A 15-year-old girl comes to the outpatient office complaining of severe menstrual-period pain that started six months ago. Onset of menarche was age 13. The pain can be so severe that she is unable to attend school or carry on normal activities. She describes it as cramping in nature, and it is associated with nausea, vomiting, and diarrhea. When her menses are completed, the pain is gone. She is not sexually active. General exam is normal for age. Pelvic exam is unremarkable.

Primary dysmenorrhea refers to recurrent, crampy lower abdominal pain, along with nausea, vomiting, and diarrhea that occurs during menstruation in the absence of pelvic pathology. It is the most common gynecologic complaint among adolescent girls.

- Onset of pain generally does not occur until ovulatory menstrual cycles are established. Maturation of the hypothalamic-pituitary-gonadal axis leading to ovulation occurs in half of teenagers within 2 years postmenarche, and the majority of the remainder by 5 years postmenarche.
- Symptoms typically begin several hours prior to the onset of menstruation and continue for 1–3 days.
- Severity can be categorized by a grading system based on the degree of menstrual pain, presence of systemic symptoms, and impact on daily activities.
Pathogenesis.

- Symptoms appear to be caused by excess production of endometrial prostaglandin $F_{2\alpha}$ resulting from the spiral arteriolar constriction and necrosis that follow progesterone withdrawal as the corpus luteum involutes. The prostaglandins cause dysrhythmic uterine contractions, hypercontractility, and increased uterine muscle tone, leading to uterine ischemia that causes severe crampy lower abdominal pain.

- The effect of the prostaglandins on the gastrointestinal smooth muscle also can account for nausea, vomiting, and diarrhea via stimulation of the gastrointestinal tract.

Management. Suppression of prostaglandins is the objective of treatment, with NSAIDs (e.g., prostaglandin synthetase inhibitors) the first choice and continuous combination estrogen-progesterone steroid agents (e.g., oral contraceptives) the second choice.

SECONDARY DYSMENORRHEA

Endometriosis

A 34-year-old woman complains of painful periods, painful sex, painful bowel movements, and infertility for 2 years. She had used combination oral contraceptive pills from age 25–30. Pelvic examination reveals a tender, 5 cm cul-de-sac mass, along with tenderness and nodularity of the uterosacral ligaments.

Endometriosis is a benign condition in which endometrial glands and stroma are seen outside the endometrial cavity. While it is associated with increased risks of epithelial ovarian carcinoma, it is not a premalignant condition. Although the etiology is not known, the most accepted theory of explanation is that of Sampson, which is retrograde menstruation.

- The most common site of endometriosis is the ovary; because this is functioning endometrium, it bleeds on a monthly basis and can create adnexal enlargements known as endometriomas, also known as a chocolate cyst.

- The second most common site of endometriosis is the cul-de-sac, and in this area the endometriotic nodules grow on the uterosacral ligaments, giving the characteristic uterosacral ligament nodularity and tenderness appreciated by rectovaginal examination. Menstruation into the cul-de-sac creates fibrosis and adhesions of bowel to the pelvic organs and a rigid cul-de-sac, which accounts for dyspareunia.

Pelvic-abdominal pain is not necessarily related to the extent of disease. Painful intercourse (dyspareunia) is often experienced along with painful bowel movements (dyschezia). Infertility of endometriosis is not necessarily related to the extent of disease.

On examination, pelvic tenderness is common. A fixed, retroverted uterus is often caused by cul-de-sac adhesions. Uterosacral ligament nodularity is characteristic. Enlarged adnexa may be found if an endometrioma is present.

WBC and erythrocyte sedimentation rate (ESR) are normal. CA-125 may be elevated. Sonogram will show an endometrioma if present.

Diagnosis. Diagnosis of endometriosis is made by laparoscopy. There is a suspicion of the disease based on history and physical exam; however, laparoscopic identification of endometriotic nodules or endometriomas is definitive.

GYN Triad

Endometriosis

- Chronic pelvic pain
- Painful intercourse
- Painful bowel movements
Management seeks to prevent shedding of the ectopic endometrial tissue, thus decreasing adhesion formation and pain.

- **Pregnancy** can be helpful to endometriosis because during this time there is no menstruation; also, the dominant hormone throughout pregnancy is progesterone, which causes atrophic changes in the endometrium. However, infertility may make this impossible.

- **Pseudopregnancy** achieves this goal through preventing progesterone withdrawal bleeding. Continuous oral medroxyprogesterone acetate (MPA [Provera]), subcutaneous medroxyprogesterone acetate (SQ-DMPA [Depo-Provera]), or combination oral contraceptive pills (OCPs) can mimic the atrophic changes of pregnancy.

- **Pseudomenopause** achieves this goal by making the ectopic endometrium atrophic. The treatment is based on inhibition of the hypothalamic–pituitary–ovarian axis to decrease the estrogen stimulation of the ectopic endometrium. Testosterone derivative (danazol) and gonadotropin-releasing hormone (GnRH) analog (leuprolide) can be used to achieve inhibition of the axis.

Although regression of the endometriotic nodules can be achieved, the patient can become symptomatic with menopausal complaints. Patients on leuprolide therapy for >3–6 months can complain of menopausal symptoms such as hot flashes, sweats, vaginal dryness, and personality changes. Leuprolide is continued for 3–6 months and then a more acceptable medication for the inhibition of the axis can be used, e.g., birth control pill medication. An alternative to leuprolide is depot medroxyprogesterone acetate (DMPA), which also suppresses FSH and LH but does not result in vasomotor symptoms.

Surgical management can be conservative or aggressive.

- **Conservative.** If preservation of fertility is desired, the procedures can be performed in many cases through laparoscopic approach. Lysis of paratubal adhesions may allow adherent fimbria to function and achieve pregnancy. Ovarian cystectomies as well as oophorectomies can be treatment for endometriomas. Laser vaporization of visible lesions is also performed laparoscopically.

- **Aggressive.** If fertility is not desired, particularly if severe pain is present because of diffuse adhesions, definitive surgical therapy may be carried out through a total abdominal hysterectomy (TAH) and bilateral salpingo-oophorectomy (BSO). Estrogen replacement therapy is then necessary.

Endometriosis is not a malignant condition, but is associated with higher risk of ovarian carcinoma; mechanism unclear.

Adenomyosis
Refer to Chapter 4, Disorders of the Cervix and Uterus.

Ectopic Pregnancy
Refer to Obstetrics, Chapter 2, Failed Pregnancy.
Learning Objective

- List the advantages and disadvantages of different forms of contraception including barrier-spermicidal methods, steroid contraception, intrauterine contraception, coitus interruptus, natural family planning, lactation, vaginal douche, and sterilization.

FERTILITY CONTROL

<table>
<thead>
<tr>
<th>Extremely Effective</th>
<th>Very Effective</th>
<th>Less Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUDs</td>
<td>Oral contraceptives</td>
<td>Male condom</td>
</tr>
<tr>
<td>DMPA</td>
<td>Patch</td>
<td>Female condom</td>
</tr>
<tr>
<td>Implants</td>
<td>Ring</td>
<td>Cervical cap</td>
</tr>
<tr>
<td>Sterilization</td>
<td></td>
<td>Diaphragm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Withdrawal</td>
</tr>
</tbody>
</table>

Figure II-9-1. Contraception

BARRIER-SPERMICIDAL METHODS

A 16-year-old adolescent comes to the family planning clinic requesting contraception. She has heard about the diaphragm and wonders if it would be appropriate for her.

Barrier-spermicidal methods of fertility control are locally active devices preventing entry of sperm into the cervix, thus preventing pregnancy.

- **Advantages**: become increasingly effective with advancing age and the associated natural decline in fertility; protect against some STDs; have no systemic side effects
- **Disadvantages**: failure rate near 20%; are coitally dependent, requiring a decision for each use and thus decreasing spontaneity; have no impact on excessive menstrual flow or excessively painful menses
There are several types of barrier-spermicidal methods.

- **Condoms (most common):** penile sheaths that must be placed on the erect penis; no individual fitting is required
- **Vaginal diaphragm:** dome-shaped device placed in the anterior and posterior vaginal fornices holding spermicidal jelly against the cervix; can be placed an hour before intercourse; individual fitting is required (if too large a size is used, can result in urinary retention)
- **Spermicides:** active ingredient is nonoxynol-9, a surface-active agent that disrupts cell membranes (and thus may cause side effect of genital membrane irritation); can take the form of jellies or foams placed into the vagina

STEROID CONTRACEPTION

A 44-year-old woman, gravida 4 para 4, presents with questions about oral steroid contraception. She uses a diaphragm but is worried about contraceptive failure. She also expresses concern that her menses have become slightly heavier and more painful. She does not smoke and has no other medical problems.

Steroid contraception inhibits the midcycle luteinizing hormone (LH) surge, thus preventing ovulation; alters cervical mucus making it thick and viscid, thus retarding sperm penetration; and alters endometrium, thus inhibiting blastocyst implantation.

Table II-9-1. Mechanism of Action of Steroid Contraception

<table>
<thead>
<tr>
<th>Pituitary</th>
<th>Suppressed LH surge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>Suppressed ovulation</td>
</tr>
<tr>
<td>Endometrium</td>
<td>Atrophy</td>
</tr>
<tr>
<td>Cervix</td>
<td>Hostile mucus</td>
</tr>
</tbody>
</table>

Estrogen-mediated metabolic effects include fluid retention from decreased sodium excretion, accelerated development of cholelithiasis, increase in hepatic protein production (e.g., coagulation factors, carrier proteins, angiotensinogen), healthy lipid profile changes (increased HDL, decreased LDL), and increased venous and arterial thrombosis.

Progestin-mediated metabolic effects include mood changes and depression from decreased serotonin levels, androgenic effects (e.g., weight gain, acne), and unhealthy lipid profile changes (decreased HDL, increased LDL).

Absolute contraindications include pregnancy, acute liver disease, history of vascular disease (e.g., thromboembolism, deep venous thrombosis [DVT], cerebrovascular accident [CVA], systemic lupus erythematosus [SLE]), hormonally dependent cancer (e.g., breast), smoker age ≥35, uncontrolled hypertension, migraines with aura, diabetes mellitus with vascular disease, and known thrombophilia.

Relative contraindications include migraine headaches, depression, diabetes mellitus, chronic hypertension, and hyperlipidemia.

Noncontraceptive benefits include decreased ovarian and endometrial cancer, decreased dysmenorrhea and dysfunctional uterine bleeding, and decreased PID and ectopic pregnancy.
Table II-9-2. Noncontraceptive Benefits of Steroid Contraception

<table>
<thead>
<tr>
<th>Mostly Progestin Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased dysmenorrhea</td>
</tr>
<tr>
<td>Decreased dysfunctional uterine bleeding</td>
</tr>
<tr>
<td>Decreased pelvic inflammatory disease</td>
</tr>
<tr>
<td>Decreased ectopic pregnancy</td>
</tr>
</tbody>
</table>

Combination Modalities

Combination OCPs contain both an estrogen and a progestin. They are administered most commonly in one of two ways:

- Daily with 21 days on and 7 days off
- Daily 24 days on and 4 days off

When one is “off” the hormones, withdrawal bleeding will occur. Failure rate is 2% with ideal use.

A newer combination is with daily hormones for 12 weeks followed by 1 week of placebo, which results in 4 periods a year rather than 13 with the traditional schedule.

Oral contraceptives: A unique combination of OCP (YAZ) reduces severe PMDD symptoms by 50%. It contains *ethinyl estradiol* and a new progestin, *drospirenone*. The dosing is 24 days of active pills then 4 days of placebo, rather than the traditional 21 days, followed by 7 days of placebo.

Combination vaginal ring, marketed under the trade name of NuvaRing, contains both an estrogen and a progestin. It is inserted into the vagina and then removed after 3 weeks for 1 week to allow for a withdrawal bleed. A major advantage is relatively stable and constant blood levels of hormones. Failure rate is similar to combination OCPs.

Transdermal skin patch, marketed under the trade name of Ortho Evra, contains both an estrogen and a progestin. A patch is replaced every week for 3 weeks then removed for 1 week to allow for a withdrawal bleed. Levels of steroids are 60% higher than combination OCPs.

Progestin-Only Modalities

Progestin-only OCPs contain only progestins and are sometimes called the “minipill.” They need to be taken daily and continuously. A frequent side effect is breakthrough bleeding. Failure rate is 3% with ideal use.

Progestin-only injectable is an IM injection of *depo-medroxyprogesterone acetate* (DMPA) marketed under the trade name of Depo-Provera. The slow release allows administration only every 3 months. A frequent side effect is breakthrough bleeding. Other side effects are prolonged time for fertility return and decreased bone mineral density. Failure rate is <1%.

Progestin-only subcutaneous implant uses *etonogestrel* as the active ingredient and is marketed under the trade name of Nexplanon. The core contains a small amount of barium, making it visible on x-ray. The continuous release continues for 4 years. A frequent side effect is breakthrough bleeding. Failure rate is <1%.

Note

Of all the steroid contraceptives, combination OCPs are the only one to have regular, predictable menses.
“Morning-after” pill uses levonorgestrel tablets and is marketed under the trade name of “Plan B.” This postcoital contraception is administered as one tablet, immediately followed by one additional tablet in 12 h. Failure rate is 1%.

General. A recent evaluation of women’s views regarding contraceptive health benefits demonstrated that most women are unaware of the protective effects of OCPs against endometrial and ovarian cancer, PID, ectopic pregnancy, benign breast disease, anemia, and dysmenorrhea.

Risks and Benefits. In nonsmoking women age >40, currently available OCPs are extremely safe. Low-dose contraceptive pills do not significantly increase the risk of cancer, heart disease, or thromboembolic events in women with no associated risk factors (hypertension, diabetes, or smoking). The combination estrogen/progestin pill tends to reduce menstrual flow and dysmenorrhea and regulates the menses, all excellent benefits for the patient.

INTRAUTERINE CONTRACEPTION

A 30-year-old woman with Crohn’s disease who periodically requires steroid therapy seeks advice regarding long-term contraception. She has had 3 pregnancies. A subserosal, fundal fibroid was noted at the time of her previous cesarean section delivery. She states that she is in a mutually monogamous relationship. She was treated for a chlamydia infection 2 months ago but does not like the idea of hormonal contraception and is asking about the risks associated with an IUS.

Intrauterine system (IUS) contraception is a long-acting reversible contraceptive method that involves placement of a small T-shaped object inside the uterus. Failure rate is <1%. Continuation rates at 1 year are almost 80%.

Mechanisms of action include the following:

- Decreased sperm transport
- Increased tubal motility (causing failure of implantation of immature zygote)
- Decreased implantation secondary to endometrial inflammation
- Phagocytic destruction of sperm and blastocyst
- Alteration of cervical mucus (only progesterone IUSs)

Absolute contraindications include a confirmed or suspected pregnancy, known or suspected pelvic malignancy, undiagnosed vaginal bleeding, and known or suspected salpingitis. **Relative contraindications** include abnormal uterine size or shape, medical condition (e.g., corticosteroid therapy, valvular heart disease, or any instance of immune suppression increasing the risk of infection), nulligravidity, abnormal Pap smears, and history of ectopic pregnancy.

Side effects of IUS include increased menstrual bleeding and menstrual pain (with copper IUS but not progesterone IUS).

Potential complications include:

- **Expulsion** is higher in young, low parity women.
- **Ectopic pregnancy.** The IUS does not increase ectopic pregnancies. However, with pregnancy from failed IUS, the likelihood of it being ectopic is higher because primarily, intrauterine pregnancies are prevented.
- **Septic abortion** occurs in 50% of patients with concurrent pregnancy.
Chapter 9 • Fertility Control

• **Uterine perforation**, although rare, occurs more likely at time of insertion.
• **PID** may occur within the first 2 months after placement if pathogenic organisms are present in the reproductive tract.

Four types of IUD are available in the United States. Failure rate for all is <1%.

- Copper IUD: “**Paragard**” contains 380 mm2 copper, approved for 10 years (abbrev TCu380A)
- Levonorgestrel (LNg) IUD: “**Mirena**” contains 52 mg LNg, approved for 5 years (abbrev LNg52/5)
- Levonorgestrel (LNg) IUD: “**Liletta**” contains 52 mg LNg, approved for 3 years (abbrev LNg52/3)
- Levonorgestrel (LNg) IUD: “**Skyla**” contains 13.5 mg LNg, approved for 3 years

LONG-ACTING REVERSIBLE CONTRACEPTION

Long-acting reversible contraceptives (LARCs) provide effective contraception for an extended period without requiring user action. Methods used include intramuscular injection (e.g. DMPA), IUD (Mirena, Paragard), and subdermal contraceptive implant (Nexplanon).

- **Advantages:** considered the most effective reversible method of contraception because patient compliance is not required; “typical use” failure rates (<1% per year) are about the same as “perfect use” failure rates (similar to sterilization procedures); long-lasting, convenient, well-liked by users, and very cost-effective
- **Disadvantages:** higher up-front cost ($800–900 in United States) as compared with other methods such as oral contraceptive pills, the patch, and vaginal ring

NATURAL FAMILY PLANNING—PERIODIC ABSTINENCE

This method is based on avoiding sexual intercourse around the time of predicted ovulation. It assumes the egg is fertilizable for 12–24 hours and sperm is capable of fertilizing the egg for 24–48 hours. It requires a high degree of discipline from both sexual partners. Methods include prediction or identification of ovulation inferred from menstrual records, basal body temperature charting (temperature rise from thermogenic effect of progesterone), and change in cervical mucus from thin and watery to thick and sticky (reflects the change from estrogen dominance preovulation to progesterone dominance postovulation).

- **Advantages:** inexpensive, readily available, no steroid hormonal side-effects, may be preferred for religious reasons
- **Disadvantages:** inaccurate prediction of ovulation, high failure rate because of human frailties and the passions of the moment

COITUS INTERRUPTUS

In this practice, also known as withdrawal or pull-out method, the man withdraws his penis from the woman’s vagina prior to orgasm and ejaculation. It is one of the oldest contraceptive methods described.

- **Advantages:** readily available, inexpensive, free of systemic side effects
- **Disadvantages:** high failure rate, no protection against STDs, high degree of discipline required, semen can enter vagina and cervical mucus prior to ejaculation
VAGINAL DOUCHE

With vaginal douche, plain water, vinegar, and other products are used immediately after orgasm to theoretically flush semen out of the vagina. It has a long history of use in the United States.

- **Advantages**: none
- **Disadvantages**: high failure rate, no protection against STDs; sperm can enter the cervical mucus within 90 seconds of ejaculation

LACTATION

With lactation, elevated prolactin levels with exclusive breastfeeding inhibit pulsatile secretion of GnRH from the hypothalamus. Effectiveness is dependent on the frequency (at least every 4-6 hours day and night) and intensity (infant suckling rather than pumping) of milk removal.

- **Advantages**: enhanced maternal/infant health, bonding, and nutrition; readily available and inexpensive; needs no supplies; free of systemic side effects; acceptable to all religious groups
- **Disadvantages**: high failure rate if not exclusively breastfeeding; only reliable for up to six months, no protection against STDs

STERILIZATION

A 38-year-old multipara has completed her childbearing and is requesting sterilization. All three of her children were delivered vaginally. She has no medical problems and is in good health. General and pelvic examination is unremarkable.

Sterilization is a surgical procedure usually involving ligation of the female oviduct or male vas deferens. After the procedure is performed, there is nothing to forget and nothing to remember. This method is considered permanent and irreversible.

- **Tubal ligation** (most common modality of pregnancy prevention in the United States). Destruction or removal of a segment of the oviduct is performed in an operating room through a transabdominal approach usually using a laparoscopy or minilaparotomy. Failure rate is 1 in 200; if the procedure fails and pregnancy results, an ectopic pregnancy should be ruled out.
- **Vasectomy**: Destruction or removal of a segment of vas deferens is performed as an outpatient procedure using local anesthesia. Failure rate is 1 in 500. A successful procedure can be confirmed by absence of sperm on a semen specimen obtained 12 ejaculations after the surgery. Sperm antibodies can be found in 50% of vasectomized patients.
Learning Objectives

- Take a sexual history
- Outline the human sexual response cycle
- List common sexual dysfunctions and their possible causes and treatments
- Explain the responsibilities of a health professional when examining a sexual assault victim

HUMAN SEXUAL RESPONSE CYCLE

A 31-year-old woman, mother of four children, comes to the office stating she has little interest in sexual intercourse with her husband for the past year. She says sex is painful, but she is able to experience orgasm occasionally. She has had no other sexual partners than her husband. These problems are affecting her marriage. She had a tubal sterilization procedure performed after her last delivery two years ago. Medications include thyroid replacement and fluoxetine.

Linear Model

Desire. In both women and men the desire for sexual activity is also known as libido. Desire is maintained by a balance between dopamine stimulation and serotonin inhibition. The threshold of response is determined by androgens, especially testosterone. This is true for women as well as men.

Excitement. This phase is also known as arousal. It is mediated by parasympathetic connections to the pelvic organs and results in vascular engorgement. Arousal in women is generally slower, responds more to touch and psychic stimuli, and is manifested by vaginal lubrication. Arousal in men is generally faster, responds more to visual stimuli, and is manifested by penile erection.

Plateau. This phase entails progression and intensification of the excitement phase. The length of this phase is variable. The neural pathway and physiologic mechanism are the same as excitement.
Orgasm. This phase is mediated by sympathetic connections resulting in reflex tonic-clonic muscle contractions of the pelvic floor followed by contractions of the uterus. Women have more individual orgasmic variability than men. A unique characteristic of women is the potential for consecutive multiple orgasms.

Resolution. This phase is marked by a return to basal physiologic state with reversal of vasocongestion and muscle tension. Resolution tends to be faster for men and slower for women.

Refractory Phase. This is a unique characteristic of men and is the period of inability to be aroused before another orgasm. It frequently varies directly with the age of the man.

Circular Relational Model

Masters and Johnson's linear, four-stage biologic model of sexual response for both men and women assumes that men and women have similar sexual responses. Many women, however, do not move progressively and sequentially through the phases as described. Women may not even experience all of the phases—for example, they may move from sexual arousal to orgasm and satisfaction without experiencing sexual desire, or they can experience desire, arousal, and satisfaction but not orgasm.

The biologic model may be limited because it does not take into account nonbiologic experiences such as pleasure and satisfaction. It also does not place sexuality into the context of the relationship.

Much of female sexual desire is actually a reaction to a partner’s sexual interest rather than a spontaneous stirring of the woman's own libido. Women have many reasons for engaging in sexual activity other than sexual hunger or drive, as the traditional model suggests.

The circular, variable-stage relationship model of female sexual response acknowledges how emotional intimacy, sexual stimuli, and relationship satisfaction affect the female sexual response.

- Female sexual functioning proceeds in a more complex and circuitous manner than does male sexual functioning. Also, female functioning is dramatically and significantly affected by numerous psychosocial issues.
- Many women start from a point of sexual neutrality—where a woman is receptive to being sexual but does not initiate sexual activity—and the desire for intimacy prompts her to seek ways to become sexually aroused via conversation, music, reading or viewing erotic materials, or direct stimulation. Once she is aroused, sexual desire emerges and motivates.
- The goal of sexual activity for women is not necessarily orgasm, but rather personal satisfaction, which may be orgasm and/or feelings of intimacy and connection.
SEXUAL HISTORY-TAKING
The following questions should be asked of all new patients in developing a medical database and problem list.

- **Sexual activity.** Start out with the following initial question: Is the patient currently sexually active? If not now, has she been in past?
- **Current history.** If she is currently sexually active, ask the following: Is the relationship with men or women or both? Is the relationship satisfying? Does she have any difficulty lubricating? Does she have pain with intercourse?
- **Previous history.** What was her age at first intercourse? What is the number of lifetime and current sexual partners? Does she have a history of sexual abuse or rape?

SEXUAL DYSFUNCTION
Each phase of the sexual response cycle can be dysfunctional.

- **Desire disorders.** Decreased sexual desire is the most common female sexual complaint. It may be organic (e.g., low androgens), medication related (e.g., selective serotonin reuptake inhibitors [SSRIs]), or psychological (e.g., poor partner relationship). **Treatment** can be difficult if it is relational in etiology. **Flibanserin** (Addyi), a serotonin 5-HT receptor agonist, is approved for premenopausal women with hypoactive sexual desire disorder that causes distress. Alcohol is contraindicated due to risk of severe hypotension and syncope.

- **Excitement disorders.** This usually results in difficulty in vaginal lubrication. The most common cause is estrogen deficiency. **Treatment** is highly successful.
• **Anorgasmia.** This can be primary or secondary. Inadequate clitoral stimulation is the most common cause. **Treatment** is highly successful using initially self-stimulation then partner education.

• **Dyspareunia.** Since pain with intercourse may arise from both psychological or physical causes, a thorough history and physical examination is essential. **Treatment** is directed at the specific cause found.

• **Vaginismus.** This occurs with painful reflex spasm of the paravaginal thigh adductor muscles. It is the only sexual dysfunction that can be diagnosed on physical examination. **Treatment** is highly successful using vaginal dilators.

SEXUAL ASSAULT

A 21-year-old university student presents to the emergency department stating she was walking home after an evening class when she was assaulted by a male stranger and was raped. She is not crying or upset, but rather looks almost without emotions. She is accompanied by her female roommate.

Definition. Rape is defined as sexual activity without the individual’s consent occurring under coercion.

Management.

- **Stabilization.** The first step is to determine the patient’s vital signs and take whatever is needed to stabilize them. An informed consent needs to be obtained.

- **History-taking.** Record the events that happened in the patient’s own words. Also obtain a reproductive, obstetric, sexual, and contraceptive history.

- **Examination.** A thorough general and pelvic examination should be performed with photographic or drawing documentation of any injuries or trauma.

- **Specimens.** A rape kit should be used to obtain biologic specimens (e.g., vaginal, oral, or anal specimens) for DNA or other evidence for use in potential legal proceedings. These must be appropriately labeled and documented, including signatures of receiving authorities. Also obtain baseline laboratory tests: VDRL, HIV screen, pregnancy test, urine drug screen, and blood alcohol level.

- **Prophylaxis.** Antibiotic therapy should be administered prophylactically for gonorrhea (ceftriaxone 125 mg IM × 1), chlamydia (azithromycin 1 g PO × 1), and trichomoniasis (metronidazole 2 g PO × 1). Antiviral HIV prophylaxis should be administered within 24 hours after exposure, but no medication should be given after 36 hours. Active and passive immunization for hepatitis B is appropriate.

- **Pregnancy prevention.** Administer two tablets of high progestin OCPs immediately, repeating two tablets in 12 h. A newly released formulation of levonorgestrel tablets (Plan B) is available specifically for postcoital pregnancy prevention.
Learning Objectives

- Describe the menstrual cycle
- Give a differential diagnosis and management of disorders of the menstrual cycle, including premenarchal menstrual bleeding, abnormal vaginal bleeding, and primary/secondary amenorrhea

MENSTRUAL PHYSIOLOGY

The menstrual cycle is the cyclic pattern of activity of hypothalamus, pituitary, ovary, and uterus that produces a rhythm of bleeding every month for 30 years or more during the active reproductive phase of a woman's life.

Menarche is the first flow that signifies potential reproductivity. **Menopause** is the termination of the menstrual flow, which signifies diminished ovarian function.

Menstrual cycle occurs with the maturation of the hypothalamic–pituitary–ovarian axis. The hormones produced include gonadotropin-releasing hormone (GnRH) from the hypothalamus, which stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary, which stimulate estrogen and progesterone from the ovarian follicle.

Layers of the Endometrium

Functionalis zone is the superficial layer that undergoes cyclic changes during the menstrual cycle and is sloughed off during menstruation. It contains the spiral arterioles that undergo spasm with progesterone withdrawal.

Basalis zone is the deeper layer that remains relatively unchanged during the menstrual cycle and contains stem cells that function to renew the functionalis. It contains the basal arteries.

Phases of the Endometrium

Menstrual phase is defined as the first four days of the menstrual cycle, with the first day of menses taken as day 1. It is characterized by disintegration of the endometrial glands and stroma, leukocyte infiltration, and red blood cell (RBC) extravasation. Sloughing of the functionalis and compression of the basalis occurs.
Proliferative phase follows the menstrual phase and is characterized by endometrial growth secondary to estrogen stimulation, including division of stem cells that migrate through the stroma to form new epithelial lining of the endometrium and new endometrial glands. The length of the spiral arteries also increases. An estrogen-dominant endometrium is unstable and, in the presence of prolonged anovulation, will undergo hyperplasia with irregular shedding over time.

Secretory phase follows the proliferative phase and is characterized by glandular secretion of glycogen and mucus stimulated by progesterone from the corpus luteum. Endometrial stroma becomes edematous, and spiral arteries become convoluted. A progesterone-dominant endometrium is stable and will not undergo irregular shedding. Regression of the corpus luteum occurs by day 23 if there is no pregnancy, causing decreased levels of progesterone and estradiol and endometrial involution. Constriction of the spiral arteries occurs one day before menstruation, causing endometrial ischemia and release of prostaglandins, followed by leukocyte infiltration and RBC extravasation. The resulting necrosis leads to painful cramps and menstruation. When a pregnancy occurs, the serum β-human chorionic gonadotropin (β-hCG) becomes positive at day 22–23 of the cycle. The β-hCG becomes positive when the zygote implants into the endometrium, usually 7–8 days after ovulation. Therefore, the serum β-hCG becomes positive before the missed period.

Menstrual Cycle Hormones

FSH stimulates the growth of granulosa cells and induces the aromatase enzyme that converts androgens to estrogens. It raises the concentration of its own receptors on the granulosa cells. It stimulates the secretion of inhibin from the granulosa cells and is suppressed by inhibin.

LH stimulates the production of androgens by the theca cells, which then get converted to estrogens in the granulosa cells by the aromatase enzyme (two-cell theory). It raises the concentration of its own receptors in FSH-primed granulosa cells. The LH surge, which is dependent on a rapid rise in estrogen levels, stimulates synthesis of prostaglandins to enhance follicle rupture and ovulation. The LH surge also promotes luteinization of the granulosa cells in the dominant follicle, resulting in progesterone production as early as the 10th day of the cycle.

Estrogen is produced in the granulosa cells in response to even low FSH concentrations and stimulates proliferative changes in the endometrium. It has a negative feedback to FSH at the hypothalamic–pituitary level, but has a positive feedback to increase GnRH receptor concentrations. At low estrogen levels there is negative inhibitory feedback for LH release, but as the level of estradiol increase is sustained for 50 hours, there is a transition to a positive stimulatory feedback, leading to the LH surge.

Androgens include androstenedione and testosterone. They are precursors of estrogen and are produced in the theca cells. In lower concentrations they stimulate aromatase enzyme activity, whereas at high levels they inhibit it. Androgens inhibit FSH induction of LH receptors.

Progesterone is produced by the corpus luteum and stimulates secretory changes in the endometrium in preparation for blastocyst implantation.
Figure II-11-1. Menstrual Cycle: Pituitary, Ovarian, and Endometrial Correlations
PREMENARCHAL VAGINAL BLEEDING

An 8-year-old girl is brought by her mother to the gynecologist’s office because of vaginal bleeding for two weeks. The girl states that she has not taken any medication and gives no history suggestive of sexual abuse. She does not complain of headache or visual disturbance and has been doing well in school. On physical examination she is normal for her age without pubertal changes, and pelvic examination under sedation reveals a vaginal foreign body.

Premenarchal bleeding is bleeding that occurs before menarche (the average age at menarche is age 12). Possible causes include ingestion of estrogen medication, a foreign body that irritates the vaginal lining, a cancer of the vagina or of the cervix (sarcoma botryoides), a tumor of the pituitary or adrenal gland, an ovarian tumor, sexual abuse, or idiopathic precocious puberty. The most common cause of premenarchal bleeding is a foreign body.

Diagnosis and Management.

- **Pelvic examination.** The patient who complains of premenarchal bleeding should have a pelvic examination under sedation. In this examination, evidence of a foreign body, sexual abuse, or tumor is looked for. Sarcoma botryoides typically looks like grapes arising from the vaginal lining or from the cervix.

- **Imaging study.** CT scan or MRI scan of the pituitary, abdomen, and pelvis should be done. The scans are looking for evidence of a pituitary, ovarian, or adrenal tumor, which may cause early estrogen production.

ABNORMAL VAGINAL BLEEDING

A 31-year-old woman complains of six months of menometrorrhagia. The patient states that she started having menstruation at age 13 and that she has had regular menses until the past six months. The pelvic examination, including a Pap smear, is normal. She has no other significant personal or family history.

Pregnancy

In a patient who has abnormal bleeding during the reproductive age group, pregnancy or a complication must first be considered. Complications of early pregnancy that are associated with bleeding include incomplete abortion, threatened abortion, ectopic pregnancy, and hydatidiform mole.

Diagnosis. Urine or serum β-hCG test is required to confirm pregnancy. If pregnancy is identified vaginal ultrasound will help sort out which pregnancy complication is operative.

Management. Varies with the individual diagnosis.

Anatomic lesion

If the pregnancy test is negative, then an anatomic cause of vaginal bleeding should be considered. The classic history is that of unpredictable bleeding (without cramping) occurring between normal, predictable menstrual periods (with cramping).
Various lower and upper reproductive tract factors can cause bleeding:

- Vaginal lesions: lacerations, varicosities, or tumors
- Cervical lesions: polyps, cervicitis, or tumors
- Endometrial lesions: submucous leiomyomas, polyps, hyperplasia, or cancer
- Myometrial lesions: adenomyosis

Diagnosis. A number of tests can be used to for anatomic diagnosis.

- Lower genital tract: pelvic and speculum exam
- Upper genital tract: saline sonogram, endometrial biopsy, or hysteroscopy

Management. Varies according to the individual diagnosis.

Inherited coagulopathy

Up to 15% of patients with abnormal vaginal bleeding (especially in the adolescent age group) have coagulopathies. Review of systems may be positive for other bleeding symptoms including epistaxis, gingival bleeding, and ecchymoses. Von Willebrand disease is the most common hereditary coagulation abnormality. The three types can vary in severity.

Coagulopathies can be due to vessel wall disorders, platelet disorders, coagulation disorders, and fibrinolytic disorders. Von Willebrand disease arises from a deficiency of von Willebrand factor (vWF), a protein required for platelet adhesion.

Diagnosis. Positive family history and review of systems are helpful for screening. Initial lab tests include CBC with platelet count, PT, and PTT. The best screening test for Von Willebrand disease is a vWF antigen.

Management. Consultation with a hematology specialist for managing patients with inherited coagulopathies.

Dysfunctional uterine bleeding (DUB)

If the pregnancy test is negative, there are no anatomic causes for bleeding, and coagulopathy has been ruled out, then the diagnosis of hormonal imbalance should be considered. The classic history is that of bleeding which is unpredictable in amount, duration, and frequency (without cramping).

The most common cause of DUB is anovulation, which results in unopposed estrogen. With unopposed estrogen, there is continuous stimulation of the endometrium with no secretory phase.

An estrogen-dominant endometrium is structurally unstable as it increasingly thickens. With inadequate structural support, it eventually undergoes random, disorderly, and unpredictable breakdown resulting in estrogen breakthrough bleeding.

Diagnosis. Anovulatory cycles can usually be diagnosed from a history of irregular, unpredictable bleeding.

- Bleeding is usually without cramping since there is no PG release to cause myometrial contractions.
- Cervical mucus will be clear, thin, and watery, reflecting the estrogen dominant environment.
- Basal-body temperature (BBT) chart will not show a midcycle temperature rise due to the absence of the thermogenic effect of progesterone.
- Endometrial biopsy will show a proliferative endometrium.
Progestosterone trial involves administering progestin to stabilize the endometrium, stop the bleeding, and prevent random breakdown. When the progestin is stopped, spiral arteriolar spasm results in PG release, necrosis, and an orderly shedding of the endometrium.

- A positive progesterone trial confirms a clinical diagnosis of anovulation.
- A negative progesterone trial rules out anovulation.

Anovulation can be secondary to other medical conditions. It is important to identify and correct a reversible cause of anovulation if present.

- Hypothyroidism is a common cause of anovulation, diagnosed by a high TSH and treated with thyroid replacement.
- In hyperprolactinemia, diagnosed by a serum prolactin test, an elevated prolactin inhibits GnRH by increasing dopamine. Treatment depends on the cause of the elevated prolactin.

Progestin management. Replacement of the hormone that is lacking (progesterone or progestin). These methods help regulate the menstrual flow and prevent endometrial hyperplasia, but do not reestablish normal ovulation.

- Cyclic MPA. Medroxyprogesterone acetate can be administered for the last 7–10 days of each cycle.
- Oral contraceptive pills (OCs). Estrogen-progestin oral contraceptives are often used for convenience. The important ingredient, however, is the progestin—not the estrogen.
- Progestin intrauterine system (LNG-IUS). The levonorgestrel IUS (Mirena or Skyla) delivers the progestin directly to the endometrium. This treatment can significantly decreasing menstrual blood loss.

Other management. If progestin management is not successful at controlling blood loss, the following generic methods have been successful:

- NSAIDs can decrease dysmenorrhea, improve clotting, and reduce menstrual blood loss. They are administered for only five days of the cycle and can be used and can be combined with OCs.
- Tranexamic acid (Lysteda) works by inhibiting fibrinolysis by plasmin. It is contraindicated with history of DVT, PE, or CVA, and not recommended with E+P steroids.
- Endometrial ablation procedure destroys the endometrium by heat, cold, or micro-waves. It leads to an iatrogenic Asherman syndrome and minimal or no menstrual blood loss. Fertility will be affected.
- Hysterectomy (removal of the uterus) is a last resort and performed only after all other therapies have been unsuccessful.

PRIMARY AMENORRHEA

A 16-year-old girl presents with her mother, complaining she has never had a menstrual period. All of her friends have menstruated, and the mother is concerned about her daughter’s lack of menstruation. On examination she seems to be well-nourished, with adult breast development and pubic hair present. Pelvic examination reveals a rudimentary vagina. No uterus is palpable on rectal examination.
Amenorrhea means an absence of menstrual bleeding. *Primary* means that menstrual bleeding has never occurred. Primary amenorrhea is diagnosed with an absence of menses at age 14 without secondary sexual development or at age 16 with secondary sexual development.

The origins of primary amenorrhea can be multiple; the two main categories are anatomic (e.g., vaginal agenesis/septum, imperforate hymen, or Müllerian agenesis) and hormonal (e.g., complete androgen insensitivity, gonadal dysgenesis [Turner syndrome], or hypothalamic-pituitary insufficiency).

Clinical Approach—Preliminary Evaluation

- **Are breasts present or absent?** A physical examination will evaluate secondary sexual characteristics (breast development, axillary and pubic hair, growth). **Breasts are an endogenous assay of estrogen.** Presence of breasts indicates adequate estrogen production. Absence of breasts indicates inadequate estrogen exposure.
- **Is a uterus present or absent?** An ultrasound of the pelvis should be performed to assess presence of a normal uterus.

Table II-11-1. Müllerian Agenesis versus Androgen Insensitivity

<table>
<thead>
<tr>
<th>Breasts Present/Uterus Absent</th>
<th>Müllerian Agenesis (46,XX)</th>
<th>Androgen Insensitivity (46,XY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterus absent?</td>
<td>Idiopathic</td>
<td>MIF</td>
</tr>
<tr>
<td>Estrogen from?</td>
<td>Ovaries</td>
<td>Testes</td>
</tr>
<tr>
<td>Pubic hair?</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Testosterone level?</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Treatment</td>
<td>No hormones</td>
<td>Estrogen</td>
</tr>
<tr>
<td></td>
<td>Create vagina</td>
<td>Create vagina</td>
</tr>
<tr>
<td></td>
<td>IVF—surrogate</td>
<td>Remove testes</td>
</tr>
</tbody>
</table>

Definition of abbreviations: MIF, Müllerian inhibitory factor.

Table II-11-2. Gonadal Dysgenesis versus HP Axis Failure

<table>
<thead>
<tr>
<th>Breasts Absent/Uterus Present</th>
<th>Gonadal Dysgenesis (45,X)</th>
<th>HP Axis Failure (46,XX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Why no estrogen?</td>
<td>No ovarian follicles</td>
<td>Follicles not stimulated</td>
</tr>
<tr>
<td>Ovaries?</td>
<td>“Streak”</td>
<td>Normal</td>
</tr>
<tr>
<td>Treatment pregnancy</td>
<td>E + P</td>
<td>E + P</td>
</tr>
<tr>
<td></td>
<td>Egg donor</td>
<td>Induce ovulation (HMG)</td>
</tr>
<tr>
<td>Diagnostic test?</td>
<td>—</td>
<td>CNS imaging</td>
</tr>
</tbody>
</table>

Definition of abbreviations: E + P, estrogen and progestin; HMG, human menopausal gonadotropin.
GYN Triad
Müllerian Agenesis
- Primary amenorrhea
- (+) breasts but (−) uterus
- (+) pubic and axillary hair

GYN Triad
Androgen Insensitivity
- Primary amenorrhea
- (+) breasts but (−) uterus
- (−) pubic and axillary hair

GYN Triad
Gonadal Dysgenesis
- Primary amenorrhea
- (−) breasts but (+) uterus
- ↑ FSH levels

GYN Triad
Hypothalamic–Pituitary Failure
- Primary amenorrhea
- (−) breasts but (+) uterus
- ↓ FSH levels

Clinical Approach—Based on Findings Regarding Breasts and Uterus
- **Breasts present, uterus present.** Differential diagnosis includes an imperforate hymen, vaginal septum, anorexia nervosa, excessive exercise, and possible pregnancy before first menses.
 - History and physical examination will identify the majority of specific diagnoses.
 - Otherwise the workup should proceed as if for secondary amenorrhea.
- **Breasts present, uterus absent.** Differential diagnosis is Müllerian agenesis (Mayer-Rokitansky-Kuster-Hauser syndrome) and complete androgen insensitivity (testicular feminization). Testosterone levels and karyotype help make the diagnosis.
 - **Müllerian agenesis.** These are genetically normal females (46,XX) with idiopathic absence of the Müllerian duct derivatives: fallopian tubes, uterus, cervix, and upper vagina; the lower vagina originates from the urogenital sinus.
 - Patients develop secondary sexual characteristics because ovarian function is intact; Müllerian ducts do not give rise to the ovaries.
 - Normal pubic and axillary hair is present. Testosterone levels are normal female.
 - **Management.** Surgical elongation of the vagina for satisfactory sexual intercourse.
 - **Androgen insensitivity.** In these genetically male (46,XY) individuals with complete lack of androgen receptor function, their bodies do not respond to the high levels of androgens present.
 - Without androgen stimulation, internal Wolffian duct structures atrophy. With testicular Müllerian inhibitory factor present, the Müllerian duct derivatives involute.
 - Without body recognition of dihydrotestosterone, external genitalia differentiate in a female direction. Patients function psychologically and physically as females and are brought up as girls. At puberty, when primary amenorrhea is noted, the diagnosis is made.
 - Female secondary sexual characteristics are present because the testes do secrete estrogens without competition from androgens. No pubic or axillary hair is noted. Testosterone levels are normal male.
 - **Management.** Testes removal at age 20 because the higher temperatures associated with the intra-abdominal position of the testes may lead to testicular cancer. Estrogen replacement is then needed.
- **Breasts absent, uterus present.** Differential diagnosis is gonadal dysgenesis (Turner syndrome) and hypothalamic–pituitary failure. FSH level and karyotype help make the diagnosis.
 - **Gonadal dysgenesis.** Turner syndrome (45,X) is caused by the lack of one X chromosome, essential for the presence of normal ovarian follicles. Instead of developing ovaries, patients develop streak gonads. FSH is elevated because of lack of estrogen feedback to the hypothalamus and pituitary. No secondary sexual characteristics are noted.
 - **Management.** Estrogen and progesterone replacement for development of the secondary sexual characteristics.
Hypothalamic–pituitary failure. In the patient without secondary sexual characteristic but uterus present by ultrasound, another possibility is the hypothalamic causes of amenorrhea (stress, anxiety, anorexia nervosa, excessive exercise). FSH will be low. Kallmann syndrome is the inability of the hypothalamus to produce GnRH and also anosmia. The defect is in the area of the brain that produces GnRH, but it’s also close to the olfactory center. CNS imaging will rule out a brain tumor.

Management. Estrogen and progesterone replacement for development of the secondary sexual characteristics.

SECONDARY AMENORRHEA

A 32-year-old woman states that her last menstrual period was one year ago. She started menses at age 12 and was irregular for the first couple of years, but since age 14 or 15 she has menstruated every 28–29 days. She has not been pregnant and is concerned about the amenorrhea. She has not been sexually active and has not used contraception. She has no other significant personal or family history. Physical examination, including a pelvic exam, is normal.

Amenorrhea means an absence of menstrual bleeding. Secondary means that menstrual bleeding had previously occurred. Secondary amenorrhea is diagnosed with absence of menses for three months if previously regular menses or six months if previously irregular menses.

There are multiple etiologies for secondary amenorrhea, which can be classified by alterations in FSH and LH levels. They include hypogonadotropic (suggesting hypothalamic or pituitary dysfunction), hypergonadotropic (suggesting ovarian follicular failure), and eugonadotropic (suggesting pregnancy, anovulation, or uterine or outflow tract pathology).

Specific etiology.

- **Pregnancy.** The first step is a β-hCG to diagnose pregnancy. This is the most common cause of secondary amenorrhea.

- **Anovulation.** If no corpus luteum is present to produce progesterone, there can be no progesterone-withdrawal bleeding. Therefore, anovulation is associated with unopposed estrogen stimulation of the endometrium. Initially the anovulatory patient will demonstrate amenorrhea, but as endometrial hyperplasia develops, irregular, unpredictable bleeding will occur. The causes of anovulation are multiple, including PCOS, hypothyroidism, pituitary adenoma, elevated prolactin, and medications (e.g., antidepressants).

- **Estrogen Deficiency.** Without adequate estrogen priming the endometrium will be atrophic with no proliferative changes taking place. The causes of hypoestrogenic states are multiple, including absence of functional ovarian follicles or hypothalamic–pituitary insufficiency.

- **Outflow Tract Obstruction.** Even with adequate estrogen stimulation and progesterone withdrawal, menstrual flow will not occur if the endometrial cavity is obliterated or stenosis of the lower reproductive tract is present.

GYN Triad

Kallmann Syndrome
- Primary amenorrhea
- (−) breasts but (+) uterus
- Anosmia

Anovulatory Bleeding

(Physiologic)
- Irregular, unpredictable vaginal bleeding
- 13-year-old adolescent
- Normal height and weight

Anovulatory Bleeding

(Chronic)
- Irregular, unpredictable vaginal bleeding
- 33-year-old woman
- Obese, hypertensive
Management.

- **Pregnancy Test.** The first step in management of secondary amenorrhea is to obtain a qualitative \(\beta \)-hCG test to rule out pregnancy.

- **Thyrotropin (TSH) Level.** If the \(\beta \)-hCG test is negative, hypothyroidism should be ruled out (TSH level). The elevated thyrotropin-releasing hormone (TRH) in primary hypothyroidism can lead to an elevated prolactin. If hypothyroidism is found, treatment is thyroid replacement with rapid restoration of menstruation.

- **Prolactin Level.**
 - **Medications.** An elevated prolactin level may be secondary to antipsychotic medications or antidepressants, which have an anti-dopamine side effect (it is known that the hypothalamic prolactin-inhibiting factor is dopamine).
 - **Tumor.** A pituitary tumor should be ruled out with CT scan or MRI of the brain. If a pituitary tumor is found and is <1 cm in its greatest dimension, treat medically with bromocriptine (Parlodel), a dopamine agonist. If >1 cm, treat surgically.
 - **Idiopathic.** If the cause of elevated prolactin is idiopathic, treatment is medical with bromocriptine.

- **Progesterone Challenge Test (PCT).** If the \(\beta \)-hCG is negative, and TSH and prolactin levels are normal, administer either a single IM dose of progesterone or seven days of oral medroxyprogesterone acetate (MPA).
 - **Positive PCT.** Any degree of withdrawal bleeding is diagnostic of anovulation. Cyclic MPA is required to prevent endometrial hyperplasia. Clomiphene ovulation induction will be required if pregnancy is desired.
 - **Negative PCT.** Absence of withdrawal bleeding is caused by either inadequate estrogen priming of the endometrium or outflow tract obstruction.

- **Estrogen–Progesterone Challenge Test (EPCT).** If the PCT is negative, administer 21 days of oral estrogen followed by 7 days of MPA.
 - **Positive EPCT.** Any degree of withdrawal bleeding is diagnostic of inadequate estrogen. An FSH level will help identify the etiology.
 - **Elevated FSH suggests ovarian failure.** If this occurs age <25, the cause could be Y chromosome mosaicism associated with malignancy, so order a karyotype. **Savage syndrome** or resistant ovary syndrome is a condition in which follicles are seen in the ovary by sonogram, though they do not respond to gonadotropins.
 - **Low FSH suggests hypothalamic–pituitary insufficiency.** Order a CNS imaging study to rule out a brain tumor. Whatever the result, women with a positive EPCT will need estrogen-replacement therapy to prevent osteoporosis and estrogen-deficiency morbidity. Cyclic progestins are also required to prevent endometrial hyperplasia.
 - **Negative EPCT.** Absence of withdrawal bleeding is diagnostic of either an outflow tract obstruction or endometrial scarring (e.g., **Asherman syndrome**). A hysterosalpingogram (HSG) will identify where the lesion is. Asherman is the result of extensive uterine curettage and infection-produced adhesions. It is treated by hysteroscopic adhesion lysis followed by estrogen stimulation of the endometrium. An inflatable stent is then placed into the uterine cavity to prevent re-adhesion of the uterine walls.
Learning Objectives

- Describe the causes of premenstrual disorders including precocious puberty
- Describe normal menopause and approaches to treating symptoms
- Outline the causes of hirsutism
- Provide epidemiology, diagnosis, and management information about polycystic ovarian syndrome
- List the steps for diagnosing infertility and treatment options available

PRECOCIOUS PUBERTY

A 6-year-old girl is brought to the office by her mother who has noticed breast budding and pubic hair development on her daughter. She has also experienced menstrual bleeding. Her childhood history is unremarkable until three months ago when these changes began.

The criteria for diagnosis of precocious puberty include development of female secondary sexual characteristics and accelerated growth before age 8 in girls and age 9 in boys. Precocious puberty is more common in girls than boys.

Normal Pubertal Landmarks. Complete puberty is characterized by the occurrence of all pubertal changes.

- The most common initial change is thelarche (breast development at age 9–10).
- This is followed by adrenarche (pubic and axillary hair at age 10–11).
- Maximal growth rate occurs at age 11 and 12.
- Finally, the last change is menarche (onset of menses at age 12–13).
Table II-12-1. Precocious Puberty

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Female secondary sexual characteristics</th>
<th>Accelerated growth <8 years of age in girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal pubertal landmarks</td>
<td>Parental history</td>
<td>9–10 years</td>
</tr>
<tr>
<td>Thelarche</td>
<td>Breast development</td>
<td></td>
</tr>
<tr>
<td>Adrenarche</td>
<td>Pubic and axillary hair</td>
<td>10–11 years</td>
</tr>
<tr>
<td>Maximal growth</td>
<td>Growth spurt</td>
<td></td>
</tr>
<tr>
<td>Menarche</td>
<td>Onset of first menses</td>
<td>12–13 years</td>
</tr>
</tbody>
</table>

Incomplete isosexual precocious puberty

Incomplete isosexual precocious puberty involves only one change: thelarche, adrenarche, or menarche. It is the result of either transient hormone elevation or unusual end-organ sensitivity. Management is conservative.

Complete isosexual precocious puberty

Complete isosexual precocious puberty involves all changes of puberty, including breast development, growth spurt, and menstrual bleeding. The primary concern is premature closure of the distal epiphyses of the long bones, resulting in short stature. Fertility and sexual response are not impaired.

- **Gonadotropin-dependent** occurs because of increased secretion of estrogens that are dependent on premature release of gonadotropins from the hypothalamus and pituitary.
 - **Idiopathic** (80% of cases): The most common explanation is constitutional without a pathologic process present. Patient typically age 6–7. The diagnosis is usually one of exclusion after CNS imaging is shown to be normal. **Management:** GnRH agonist suppression (leuprolide or Lupron) of gonadotropins until appropriate maturity or height has been reached.
Hormonal Disorders

Chapter 12

CNS pathology (rare): A CNS pathologic process stimulates hypothalamic release of GnRH, which leads to FSH release and ovarian follicle stimulation of estrogen production. This may include hydrocephalus, von Recklinghausen disease, meningitis, sarcoid, and encephalitis. CNS imaging is abnormal. Patient typically age <6. Management: Directed at the specific pathologic process.

- Gonadotropin-independent occurs when estrogen production is independent of gonadotropin secretion from the hypothalamus and pituitary.
 - McCune-Albright syndrome (or polyostotic fibrous dysplasia) (5% of cases) is characterized by autonomous stimulation of aromatase enzyme production of estrogen by the ovaries. The syndrome includes multiple cystic bone lesions and café au lait skin spots. Management: Aromatase enzyme inhibitor.
 - Granulosa cell tumor (rare) is a gonadal-stromal cell ovarian tumor that autonomously produces estrogen. A pelvic mass will be identified on examination or pelvic imaging. Management: Surgical removal of the tumor.

Patients with idiopathic precocious puberty should be maintained with inhibition of the hypothalamic-pituitary-ovarian axis until the chronologic age catches up with the bone age.

Table II-12.2. Management of Precocious Puberty

<table>
<thead>
<tr>
<th>Condition</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>GnRH agonist</td>
</tr>
<tr>
<td>CNS lesions</td>
<td>Medical or surgical treatment</td>
</tr>
<tr>
<td>Ovarian tumor</td>
<td>Surgical excision</td>
</tr>
<tr>
<td>McCune-Albright</td>
<td>Aromatase inhibitors</td>
</tr>
</tbody>
</table>

PREMENSTRUAL DISORDERS

Premenstrual Syndrome

A 36-year-old patient complains of depression, anxiety, irritability, and breast tenderness, which occur on a monthly basis. On further questioning, the symptoms most commonly occur two weeks before her menstruation and disappear with menses.

Premenstrual syndrome (PMS) (5% of adult women) includes a wide range of physical and emotional difficulties, as well as the more severe affective changes included in premenstrual dysphoric disorder (PMDD). The basis for diagnosis is a symptom diary that the patient keeps throughout three menstrual cycles. The specific symptoms are less important than their temporal relationship to the menstrual cycle. All of the following must be present:

- Must be recurrent in at least three consecutive cycles
- Must be absent in the preovulatory phase of the menstrual cycle
- Must be present in the two postovulatory weeks
- Must interfere with normal functioning
- Must resolve with onset of menses
Premenstrual symptoms

![Premenstrual Syndrome Diagnosis by Symptoms](image)

Figure II-12-2. Premenstrual Syndrome Diagnosis by Symptoms

Symptoms may vary, but they include fluid retention (bloating, edema, breast tenderness), autonomic changes (insomnia, fatigue, heart pounding), emotional symptoms (crying, anxiety, depression, mood swings), and musculoskeletal complaints (headache, muscle aches, joint aches). The most common affective symptom is **mood swings**, and the most common physical symptom is **abdominal bloating**.
Management. **Proven treatments** include the following:

- **Selective serotonin reuptake inhibitors (SSRIs).** Fluoxetine hydrochloride, natural progesterone vaginal suppositories, medroxyprogesterone acetate, spironolactone, and vitamin B6 (pyridoxine). All of these options have been proposed for the treatment of PMS, but only fluoxetine, alprazolam, and GnRH agonists have been shown in controlled, double-blind trials to be superior to placebo for the more severe symptoms of PDD. Recently reported double-blind trials of fluoxetine have shown reductions of 40–75% in troublesome behavioral and emotional symptoms. Similar outcomes have been reported for buspirone hydrochloride and meclofenamate sodium in descriptive studies. SSRIs are the treatment of choice for emotional symptoms of PMS.

- **Drospirenone/ethinyl estradiol** (Yaz), with the unique progestin drospirenone (DRSP), has been approved by the FDA for the treatment of PMS. It is a low-dose, monophasic combination oral contraceptive with 24 hormone days and only a four-day hormone-free interval. Studies show that PMS symptoms are decreased with a shorter hormone-free time period. DRSP is an analogue of spironolactone, which differs from other OCP progestins by exhibiting both antimineralocorticoid and antiandrogenic effects.

Unproven treatments include the following:

- **Progesterone therapy** has a long history in the treatment of PMS, but neither natural progesterone (vaginal suppositories) nor progestin therapy has been shown to be any more effective than placebo. Because of both a lack of efficacy and the possibility of inducing menstrual irregularities, these agents should not be used.

- **Diuretics.** Because of the common complaint of “bloating” voiced by many patients with PMS, diuretics such as spironolactone have been advocated. Spironolactone has been studied in double-blind, randomized trials, and the results have been mixed. Although spironolactone may relieve some symptoms for some patients, the lack of consistent response across the studies in the literature suggests that other therapy is more effective.
Pyridoxine. Vitamin B6 in doses of 50–200 mg/d has been suggested as a treatment for PMS. A number of randomized, blinded studies have been performed, but no conclusive findings have emerged. Because of the lack of demonstrated efficacy and the possibility of permanent sensory neuropathy associated with high-dose vitamin B6 consumptions, the use of vitamin B6 should be discouraged.

<table>
<thead>
<tr>
<th>Nutritional</th>
<th>Lifestyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Balanced diet</td>
<td>• Relaxation techniques</td>
</tr>
<tr>
<td>• ↓ caffeine</td>
<td>• Regular exercise</td>
</tr>
<tr>
<td>• ↓ sugar</td>
<td>• Support groups</td>
</tr>
<tr>
<td>• ↓ salt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medications</th>
<th>SSRIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Progesterone</td>
<td>• Fluoxetine</td>
</tr>
<tr>
<td>• Spironolactone</td>
<td>• OCPs</td>
</tr>
<tr>
<td>• Pyridoxine (B6)</td>
<td>• Yaz</td>
</tr>
</tbody>
</table>

Figure II-12-5. PMS Treatment

HIRSUTISM

A 28-year-old woman complains of increased hair growth on the face and on the chest. She states that this has been going on for the past 10 years; however, she is more conscious of it at the present time. Her menses are irregular and unpredictable. Even though she has been married for 8 years and never used contraception, she has never been pregnant. On pelvic examination the ovaries bilaterally are slightly enlarged but no other abnormalities are noted.

Hirsutism (5–10% of adult women) is excessive male-pattern hair growth in a woman on the upper lip, chin, chest, abdomen, back, and proximal extremities. It involves the conversion of **vellus hair** (fine, nonpigmented hair) to **terminal hair** (coarse, dark hair) within the hair follicle. This conversion is under the influence of androgens.

In women, androgens are generally produced in only three body locations: the ovaries, the adrenal glands, and within the hair follicle. The workup of hirsutism will seek to identify which of these body locations is producing the androgens that are responsible for the excess terminal hair.

Note

Virilization is excessive male-pattern hair growth in a woman plus other masculinizing signs such as clitoromegaly, baldness, lowering of voice, increasing muscle mass, and loss of female body contours.
Clinical Approach.

- **History.** Is there a positive family history? What was the age of onset? Was onset gradual or abrupt? Have menstrual periods been irregular or regular? Is medication history positive for androgenic steroids?

- **Examination.** What is body-mass index? Location of excess hair? Evidence of virilization (frontal balding, loss of female body contour, clitoromegaly)? Presence of adnexal masses?

Lab tests will help to identify the elevated free androgens.

- **Dehydroepiandrosterone sulfate (DHEAS)** is produced only in the adrenal glands. A markedly elevated DHEAS is consistent with an adrenal tumor.

- **17-OH progesterone** is a precursor in the biosynthesis pathway of cortisol. It is elevated in late-onset congenital adrenal hyperplasia (CAH), with 21-hydroxylase deficiency. It is converted peripherally into androgens.

- **Testosterone** is produced by both the ovary and the adrenal glands. A mildly elevated level is suggestive of polycystic ovarian syndrome (PCOS). A markedly elevated level is consistent with an ovarian tumor.

Clinical entities

Adrenal tumor: typically the onset has been **rapid** without positive family history.

- **Examination.** Physical examination will show evidence of **virilization.** Pelvic examination is unremarkable.

- **Laboratory tests.** DHEAS level is markedly elevated.

- **Imaging.** CT or MRI scan will show an abdominal-flank mass.

- **Management.** Surgical removal of tumor.

Ovarian tumor: typically the onset has been **rapid** without positive family history.

- **Examination.** Physical examination will show evidence of **virilization.** An adnexal mass will be palpated on pelvic examination.

- **Laboratory tests.** Testosterone level is markedly elevated.

- **Imaging.** Pelvic U/S will show an adnexal mass.

- **Management.** Surgical removal of the mass, usually a Sertoli-Leydig or hilus cell tumor.

Congenital adrenal hyperplasia (21-hydroxylase deficiency): typically the onset has been **gradual** in the second or early third decade of life and is associated with menstrual irregularities and anovulation. Precocious puberty with short stature is common. Family history may be positive. Late-onset CAH is one of the most common autosomal recessive genetic disorders.

- **Examination.** Physical examination will show evidence of **hirsutism** without virilization. Pelvic examination is unremarkable.

- **Laboratory tests.** Serum 17-OH progesterone level is markedly elevated.

- **Management.** Continuous corticosteroid replacement to arrest the signs of androgenicity and restore ovulatory cycles.

GYN Triad

Adrenal Tumor

- Abrupt-onset virilization
- Abdominal/flank mass
- ↑↑ DHEAS levels

GYN Triad

Ovarian Tumor (Sertoli-Leydig)

- Abrupt-onset virilization
- Pelvic mass
- ↑↑ testosterone levels

GYN Triad

Congenital Adrenal Hyperplasia 21-OH Deficiency

- Gradual-onset hirsutism
- Normal exam
- ↑ 17-OH progesterone
Polycystic Ovarian Syndrome (PCOS): typically the onset has been gradual, frequently with a positive family history. In addition, the history is positive for irregular bleeding and infertility.

- **Examination.** Physical examination usually reveals hirsutism, often with obesity and increased acne. Bilaterally enlarged, smooth, mobile ovaries will be palpated on pelvic examination. Acanthosis nigricans may be seen.

- **Laboratory tests.** Testosterone level is mildly elevated. LH to FSH ratio is elevated (3:1). Sex hormone binding globulin (SHBG) is decreased.

- **Imaging.** Pelvic U/S will show bilaterally enlarged ovaries with multiple subcapsular small follicles and increased stromal echogenicity.

- **Management.** Combination OCPs, which will lower free testosterone levels in two ways: by suppressing LH stimulation of the ovarian follicle theca cells and by increasing SHBG (thus decreasing free testosterone). Metformin can decrease insulin resistance and lower testosterone levels.

Idiopathic: typically the onset has been gradual, frequently with a positive family history. Menses and fertility are normal. This is the most common cause of androgen excess in women.

- **Examination.** Physical examination reveals hirsutism without virilization. Pelvic examination is normal.

- **Laboratory tests.** Normal levels of testosterone, DHEAS, and 17-OH progesterone are identified.

- **Management.** Spironolactone, a potassium-sparing diuretic whose mechanism of action as an antiandrogen is twofold: it is an androgen-receptor blocker and it also suppresses hair follicle 5-α reductase enzyme conversion of androstenedione and testosterone to the more potent dihydrotestosterone. Efornithine is the first topical drug for the treatment of unwanted facial and chin hair. It blocks ornithine decarboxylase (ODC), which slows the growth and differentation of the cells within the hair follicles.
Chapter 12 • Hormonal Disorders

POLYCYSTIC OVARIAN SYNDROME

A 32-year-old woman visits the gynecologist’s office complaining of vaginal bleeding, facial hair growth, and obesity. She states that she has noted the facial hair growth for many years and the irregular bleeding has been progressively getting worse during the past six months. She has no other significant personal or family history, and on pelvic examination she has slightly enlarged bilateral ovaries. A rectovaginal examination is confirmatory.

Polycystic ovarian syndrome (PCOS), historically called Stein-Leventhal syndrome, is a condition of chronic anovulation with resultant infertility. The patient presents typically with irregular vaginal bleeding. Other symptoms include obesity and hirsutism.

- Chronic anovulation. Instead of showing the characteristic hormone fluctuation of the normal menstrual cycle, PCOS gonadotropins and sex steroids are in a steady state, resulting in anovulation and infertility. Without ovulation, there is no corpus luteum to produce progesterone. Without progesterone, there is unopposed estrogen. Endometrium, which is chronically stimulated by estrogen, without progesterone ripening and cyclic shedding becomes hyperplastic with irregular bleeding. With time endometrial hyperplasia can result, which could progress to endometrial cancer.

- Increased testosterone. Increased LH levels cause increased ovarian follicular theca cell production of androgens. The increased levels of androstenedione and testosterone suppress hepatic production of SHBG by 50%. The combined effect of increased total testosterone and decreased SHBG leads to mildly elevated levels of free testosterone. This results in hirsutism. PCOS is one of the most common causes of hirsutism in women.

- Ovarian enlargement. On ultrasound the ovaries demonstrate the presence of the necklace-like pattern of multiple peripheral cysts (20–100 cystic follicles in each ovary). The increased androgens prevent normal follicular development, inducing premature follicle atresia. These multiple follicles, in various stages of development and atresia, along with stromal hyperplasia and a thickened ovarian capsule result in ovaries that are bilaterally enlarged.

Table II-12-3. “HA-IR-AN” Syndrome (Polycystic Ovarian Syndrome)

<table>
<thead>
<tr>
<th>HA</th>
<th>HyperAndrogenism</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>Insulin Resistance</td>
</tr>
<tr>
<td>AN</td>
<td>Acanthosis Nigricans</td>
</tr>
</tbody>
</table>

Figure II-12-8. Polycystic Ovarian Syndrome
Diagnosis is based on the Rotterdam criteria, which requires two of the following three findings:

- **Oligomenorrhea** or menstrual dysfunction
- **Hyperandrogenism**, clinically or biochemically
- **Polycystic ovaries** on TV sonogram (≥12 peripheral cysts)

Management. Directed toward the primary problem and the patient’s desires.

- **With irregular bleeding**, OCPs will normalize the bleeding. The progestin component will prevent endometrial hyperplasia.
- **Hirsutism** can be suppressed two ways: OCPs will (a) lower testosterone production by suppressing LH stimulation of the ovarian follicle theca cells, and (b) increase SHBG (thus decreasing free testosterone). Spironolactone suppresses hair follicle 5-α reductase enzyme conversion of androstenedione and testosterone to the more potent dihydrotestosterone.
- **Infertility.** If patient desires pregnancy, ovulation induction can be achieved through clomiphene citrate or human menopausal gonadotropin. Metformin, a hypoglycemic agent that increases insulin sensitivity, can enhance the likelihood of ovulation both with and without clomiphene.

INFERTILITY

A 30-year-old woman comes to the gynecologist’s office complaining of infertility for one year. She and her husband have been trying to achieve pregnancy for more than a year and have been unsuccessful. There is no previous history of pelvic inflammatory disease and she used oral contraception medication for six years. Pelvic examination is normal, and a Pap smear is done.

Infertility (affected by 15% of couples in United States) is defined as the inability to achieve pregnancy with frequent and unprotected sexual intercourse for 12 months if woman age <35 or 6 months if woman age ≥35. Both male and female factors have to be evaluated in the patient with infertility.

Fecundability is the likelihood of conception occurring with one cycle of appropriately timed mid-cycle intercourse. With the female partner age 20, the fecundity rate is 20%. By age 35, the rate drops to 10%.

Initial Noninvasive Tests

Semen analysis

- **Normal values.** Expected findings are volume >2 ml; pH 7.2–7.8; sperm density >20 million/ml; sperm motility >50%; and sperm morphology >50% normal. If values are abnormal, repeat the semen analysis in 4–6 weeks because semen quality varies with time.

- **Timing.** The first step in the infertility evaluation is a semen analysis, which should be obtained after 2–3 days of abstinence and examined within 2 h.
• **Minimally abnormal.** If sperm density is mild to moderately lower than normal, intrauterine insemination may be used. Washed sperm are directly injected into the uterine cavity. Idiopathic oligozoospermia is the most common male infertility factor.

• **Severely abnormal.** If semen analysis shows severe abnormalities, intracytoplasmic sperm injection may be used in conjunction with in vitro fertilization and embryo transfer.

• **No viable sperm.** With azoospermia or failed ICSI, artificial insemination by donor (AID) may be used.

Anovulation

Of all causes of infertility, treatment of anovulation results in the greatest success.

• **History.** Typically history is irregular, unpredictable menstrual bleeding, most often associated with minimal or no uterine cramping.

• **Objective data.** A basal body temperature (BBT) chart will not show the typical mid-cycle temperature elevation. A serum progesterone level will be low. An endometrial biopsy shows proliferative histology.

• **Correctible causes.** Hypothyroidism or hyperprolactinemia

• **Ovulation induction.** The agent of choice is clomiphene citrate administered orally for five days beginning on day five of the menstrual cycle. The biochemical structure of clomiphene is very similar to estrogen, and clomiphene fits into the estrogen receptors at the level of the pituitary. The pituitary does not interpret clomiphene as estrogen and perceives a low estrogen state, thus producing high levels of gonadotropins. HMG is administered parenterally and is used to induce ovulation if clomiphene fails. Careful monitoring of ovarian size is important because ovarian hyperstimulation is the most common major side effect of ovulation induction. When a patient is given clomiphene, her own pituitary is being stimulated to secrete her own gonadotropins, whereas when a patient is administered HMG, the patient is being stimulated by exogenous gonadotropins.

Follow-Up Invasive Tests

Hysterosalpingogram and Laparoscopy

Tubal disease. Assessment of fallopian tube abnormalities is the next step if the semen analysis is normal and ovulation is confirmed.

• **Hysterosalpingogram (HSG).** In this imaging procedure, a catheter is placed inside the uterine cavity, and contrast material is injected. The contrast material should be seen on x-ray images spilling bilaterally into the peritoneal cavity. It should be scheduled during the week after the end of menses after prophylactic antibiotics to prevent causing a recurrent acute salpingitis. No further testing is performed if the HSG shows normal anatomy. If abnormal findings are seen, the extent and site of the pathology are noted and laparoscopy considered.

• **Chlamydia antibody.** A negative IgG Antibody test for chlamydia virtually rules out infection induced tubal adhesions.

• **Laparoscopy.** If potentially correctible tubal disease is suggested by the HSG, the next step in management is to visualize the oviducts and attempt reconstruction if possible (tuboplasty). If tubal damage is so severe surgical therapy is futile, then IVF should be planned.
Unexplained Infertility

A diagnosis of unexplained fertility is reserved for couples in which the semen analysis is normal, ovulation is confirmed, and patent oviducts are noted. Approximately 60% of patients with unexplained infertility will achieve a spontaneous pregnancy within the next three years.

Management. Controlled ovarian hyperstimulation (COH) with clomiphene, and appropriately timed preovulatory intrauterine insemination (IUI). The fecundity rates for six months are comparable with IVF with a significantly lower cost and risk.

With IVF, eggs are aspirated from the ovarian follicles using a transvaginal approach with the aid of an ultrasound. They are fertilized with sperm in the laboratory, resulting in the formation of embryos. Single embryo transfer is recommended for most patients to avoid iatrogenic high-order multiple pregnancy.

Ovarian Reserve Testing

Ovarian reserve testing (ORT) (mostly reserved for infertile women age ≥35) refers to assessment of the capacity of the ovary to provide eggs that are capable of fertilization. It is a function of (a) the number of follicles available for recruitment, and (b) the health and quality of the eggs in the ovaries.

The most significant factor affecting ORT is a woman's chronological age, with a major decrease around age 35. The ORT tests help predict whether a woman will respond to ovarian stimulation or whether it would be best to proceed directly to in vitro fertilization (IVF).

- **Day 3 FSH level** (most commonly used) is expected to be low due to the feedback of estrogen from the stimulated follicles. An increased FSH occurs if there is follicle depletion.
- **Anti-Müllerian hormone** (AMH): This glycoprotein is produced exclusively by small antral ovarian follicles and is therefore a direct measure of the follicular pool. As the number of ovarian follicles declines with age, AMH concentrations will decline.
- **Antral follicle count** (AFC) is the total number of follicles measuring 2–10 mm in diameter that is observed during an early follicular phase transvaginal sonogram. The number of AF correlates with the size of the remaining follicle pool retrieved by ovarian stimulation. AFC typically declines with age.

MENOPAUSE

A 53-year-old woman visits the gynecologist's office complaining of hot flashes, vaginal dryness, and irritability. She states that her symptoms started one year ago and have progressively been getting worse. Her last gynecologic examination was two years ago, at which time her mammogram was normal.
Menopause is a retrospective diagnosis and is defined as 12 months of amenorrhea. It is associated with the elevation of gonadotropins (FSH and LH). The mean age of 51 years is genetically determined and unaffected by pregnancies or use of steroid contraception. Smokers experience menopause up to two years earlier.

- **Premature menopause** occurs age 30–40 and is mostly idiopathic, but can also occur after radiation therapy or surgical oophorectomy.
- **Premature ovarian failure** occurs age <30 and may be associated with autoimmune disease or Y chromosome mosaicism.

The etiology of menopausal symptoms is lack of estrogen.

Diagnosis. The laboratory diagnosis of menopause is made through serial identification of elevated gonadotropins.

Clinical Findings. The majority of menopausal symptoms and signs are caused by a lack of estrogen.

- **Amenorrhea** *(most common symptom)* is secondary amenorrhea: menses typically become anovulatory and decrease during a period of 3–5 years known as perimenopause.
- **Hot flashes** *(75% of menopausal women)*: unpredictable profuse sweating and sensation of heat, probably mediated through the hypothalamic thermoregulatory center. Obese women are less likely to undergo hot flashes, owing to peripheral conversion of androgens to estrone in their peripheral adipose tissues.
- **Reproductive tract.** Low estrogen leads to decreased vaginal lubrication, increased vaginal pH, and increased vaginal infections.
- **Urinary tract.** Low estrogen leads to increased urgency, frequency, nocturia, and urge incontinence.
- **Psychic.** Low estrogen leads to mood alteration, emotional lability, sleep disorders, and depression.
- **Cardiovascular disease** *(most common cause of mortality)* (50%) in postmenopausal women. Prevalence rises rapidly after menopause.
- **Osteoporosis,** a disorder of decreased bone density, leads to pathologic fractures when density falls below fracture threshold

Osteoporosis

The most common bone type of osteoporosis is trabecular bone. The **most common anatomic site** is in the vertebral bodies, leading to crush fractures, kyphosis, and decreased height. Hip and wrist fractures are the next most frequent sites.

Diagnosis. The **most common** method of assessing bone density is with a DEXA scan (dual-energy x-ray absorptiometry). The **most common** method of assessing calcium loss is 24-h urine hydroxyproline or NTX (N-telopeptide, a bone breakdown product).

The **most common risk factor** is positive family history in a thin, white female. Other risk factors are steroid use, low calcium intake, sedentary lifestyle, smoking, and alcohol.

Prevention. Maximum bone density is found in the mid-20s. Maintenance of bone density is assisted by both lifestyle and medications.
Table II-12-4. Osteoporosis

<table>
<thead>
<tr>
<th>Lifestyle</th>
<th>Ca<sup>2+</sup> and vitamin D intake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight-bearing exercise</td>
</tr>
<tr>
<td></td>
<td>Stop cigarettes and alcohol</td>
</tr>
<tr>
<td>Medical</td>
<td>Historic gold standard for comparing therapies: estrogen replacement</td>
</tr>
<tr>
<td></td>
<td>Inhibit osteoclasts: bisphosphonates (alendronate, risedronate)</td>
</tr>
<tr>
<td></td>
<td>Increase bone density: SERMs (raloxifene)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: SERMs, selective estrogen receptor modulators.

- **Lifestyle.** Calcium and vitamin D intake, weight-bearing exercise, and elimination of cigarettes and alcohol.
- **Medications.** Bisphosphonates (e.g., alendronate, risedronate) inhibit osteoclastic activity. Selective estrogen receptor modulators (SERMs; e.g., raloxifene) increase bone density. Bisphosphonates and SERMs are the first choices for osteoporosis treatment. Calcitonin and fluoride have also been used. While estrogen is a highly effective therapy, it should not be primarily used to treat osteoporosis because of concerns detailed in the next paragraph.

Hormone Replacement Therapy

There are both **benefits** and **risks** associated with hormone replacement therapy.

- Estrogen therapy continues to be the most effective and FDA-approved method for relief of menopausal vasomotor symptoms (hot flashes), as well as genitourinary atrophy and dyspareunia.
- The Women’s Health Initiative (WHI) study of the National Institutes of Health (NIH) studied 27,000 postmenopausal women with mean age 63. These included women with a uterus on hormone therapy (HT), both estrogen and progestin, and hysterectomized women on estrogen therapy (ET) only.

Table II-12-5. Critique of Women’s Health Initiative Study

<table>
<thead>
<tr>
<th>Excludes patients with vasomotor symptoms</th>
<th>Primary indication for hormone replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean patient age was 63 years</td>
<td>Missed the 10-year “window of opportunity”</td>
</tr>
<tr>
<td>Same dose of hormone for all ages</td>
<td>Older women don’t need as a high dose as do younger women</td>
</tr>
<tr>
<td>Patients were not all healthy</td>
<td>Hypertension (40%), ↑ cholesterol (15%), diabetes mellitus (7%), myocardial infarction (3%)</td>
</tr>
</tbody>
</table>

GYN Triad

Limitations of WHI

- Women with prominent vasomotor symptoms, the most common reason for initiating HT, were excluded from the study.
- The mean age of 63 was 10 years past the age that most women begin HT, thus missing the “window of opportunity” immediately after menopause.
- The same hormone dose was used in both older and younger women.
• **Benefits:** Both HT and ET groups in WHI had decreased osteoporotic fractures and lower rates of colorectal cancer.

• **Risks:** Both HT and ET groups in WHI were found to have small increases in deep vein thrombosis (DVT). The HT group also had increased heart attacks and breast cancer, but these were not increased in the ET group.

Table II-12-6. WHI–Benefit and Risk (Mean Age of 63 Years)

<table>
<thead>
<tr>
<th></th>
<th>Estrogen and Progestin</th>
<th>Estrogen Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal dryness</td>
<td>Benefit</td>
<td>Benefit</td>
</tr>
<tr>
<td>Hot flashes</td>
<td>Benefit</td>
<td>Benefit</td>
</tr>
<tr>
<td>Vasomotor symptoms</td>
<td>Benefit</td>
<td>Benefit</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>Benefit</td>
<td>Benefit</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Risk</td>
<td>No change</td>
</tr>
<tr>
<td>Heart disease</td>
<td>Risk</td>
<td>No change</td>
</tr>
<tr>
<td>Stroke</td>
<td>Risk</td>
<td>Risk</td>
</tr>
</tbody>
</table>

Estrogen can be administered by oral, transdermal, vaginal, or parenteral routes. All routes will yield the benefits described.

• The **most common current regimen** is oral estrogen and progestin given continuously.

• Women without a uterus can be given continuous estrogen.

• All women with a uterus should also be given progestin therapy to prevent endometrial hyperplasia.

Contraindications for hormone replacement therapy include personal history of an estrogen-sensitive cancer (breast or endometrium), active liver disease, active thrombosis, or unexplained vaginal bleeding.

In 2013, the **Global Consensus Statement on Menopausal Hormonal Therapy (MHT)** by the International Menopause Society made the following recommendations.

Proven Benefits of MHT and Only Indications For Use.

• **Vasomotor symptoms.** MHT is the most effective treatment for vasomotor symptoms associated with menopause at any age, but benefits are more likely to outweigh risks for symptomatic women age <60 or within 10 years after menopause.

• **Vaginal dryness.** Local low-dose estrogen therapy is preferred for women whose symptoms are limited to vaginal dryness or associated discomfort with intercourse.

• **Premature menopause.** In women with premature ovarian insufficiency, systemic MHT is recommended at least until the average age of the natural menopause.
Benefits of MHT but Not Indications For Use.

- **Osteoporosis.** MHT is effective and appropriate for the prevention of osteoporosis-related fractures in at-risk women age <60 or within 10 years after menopause.

- **Coronary heart disease.** Findings depend on the kind of MHT used.
 - **Estrogen-alone** (ET) may decrease coronary heart disease and all-cause mortality in women age <60 and within 10 years of menopause.
 - **Estrogen plus progestogen** (HT) in this age group shows a similar trend for decreased mortality but no significant increase or decrease in coronary heart disease has been found.

Risks of MHT.

- The **risk of venous thromboembolism (VTE) and ischemic stroke** increases with oral MHT but the absolute risk is rare age <60. Observational studies point to a lower risk with transdermal therapy.

- The **risk of breast cancer** in women age >50 associated with MHT is a complex one. The increased risk of breast cancer is primarily associated with the addition of a progestogen to estrogen therapy (HT) and related to the duration of use. The risk of breast cancer attributable to HT is small and decreases after treatment is stopped. Current safety data do not support the use of MHT in breast cancer survivors.

Administration of Menopausal Hormone Therapy (MHT).

- **Uterus present or absent.** Estrogen as a single systemic agent (ET) is appropriate in women after hysterectomy, but additional progestogen (HT) is required in the presence of a uterus.

- **Individualized management.** The option of MHT is an individual decision in terms of quality of life and health priorities, as well as personal risk factors such as age, time since menopause, and risk of venous thromboembolism, stroke, ischemic heart disease, and breast cancer.

- **Dose and duration.** Dose and duration of MHT should be consistent with treatment goals and safety issues, and thus should be individualized.

- **Bioidentical hormones.** The use of custom-compounded bioidentical hormone therapy is not recommended.

Estrogen alternatives

In patients with contraindications to estrogen-replacement therapy, **SERMs** can be used. These are medications with estrogen agonist effects in some tissues and estrogen antagonist effects on others. Although protective against the heart as well as bone, these medications do not have much effect on hot flashes and sweats.

- **Tamoxifen** is a SERM with endometrial and bone agonist effects, but breast antagonist effects.

- **Raloxifene** has bone agonist effects, but endometrial antagonist effects.
Learning Objectives

- Describe normal breast development
- Differentiate between benign breast disorders and breast cancer, in terms of diagnosis and treatment

NORMAL BREAST DEVELOPMENT

Embryology
Breasts begin developing in the embryo about 7–8 weeks after conception, consisting only of a thickening or ridge of tissue.

- From weeks 12–16, tiny groupings of cells begin to branch out, laying the foundation for future ducts and milk-producing glands. Other tissues develop into muscle cells that will form the nipple (the protruding point of the breast) and areola (the darkened tissue surrounding the nipple).
- In the later stages of pregnancy, maternal hormones cause fetal breast cells to organize into branching, tube-like structures, thus forming the milk ducts. In the final 8 weeks, lobules (milk-producing glands) mature and actually begin to secrete a liquid substance called colostrum.
- In both female and male newborns, swellings underneath the nipples and areolae can easily be felt, and a clear liquid discharge (colostrum) can be seen.

Puberty
From infancy to just before puberty, there is no difference between female and male breasts.

- With the beginning of female puberty, however, the release of estrogen—at first alone, and then in combination with progesterone when the ovaries are functionally mature—causes the breasts to undergo dramatic changes that culminate in the fully mature form.
- This process, on average, takes 3–4 years and is usually complete by age 16.

Anatomy
The breast is made of lobes of glandular tissue with associated ducts for transfer of milk to the exterior and supportive fibrous and fatty tissue. On average, there are 15–20 lobes in each breast, arranged roughly in a wheel-spoke pattern emanating from the nipple area. The distribution of the lobes, however, is not even.

- There is a preponderance of glandular tissue in the upper outer portion of the breast. This is responsible for the tenderness in this region that many women experience prior to their menstrual cycle.

Note
Refer to chapter 1 for a discussion of Tanner stages.
• About 80–85% of normal breast tissue is fat during the reproductive years. The 15–20 lobes are further divided into lobules containing alveoli (small sac-like features) of secretory cells with smaller ducts that conduct milk, to larger ducts, and finally to a reservoir that lies just under the nipple. In the nonpregnant, nonlactating breast, the alveoli are small.

• During pregnancy, the alveoli enlarge. During lactation, the cells secrete milk substances (proteins and lipids). With the release of oxytocin, the muscular cells surrounding the alveoli contract to express the milk during lactation.

• Ligaments called Cooper’s ligaments, which keep the breasts in their characteristic shape and position, support breast tissue. In the elderly or during pregnancy, these ligaments become loose or stretched, respectively, and the breasts sag.

• The lymphatic system drains excess fluid from the tissues of the breast into the axillary nodes. Lymph nodes along the pathway of drainage screen for foreign bodies such as bacteria or viruses.
Hormones
Reproductive hormones are important in the development of the breast in puberty and in lactation.

- **Estrogen**, released from the ovarian follicle, promotes the growth ducts.
- **Progesterone**, released from the corpus luteum, stimulates the development of milk-producing alveolar cells.
- **Prolactin**, released from the anterior pituitary gland, stimulates milk production.
- **Oxytocin**, released from the posterior pituitary in response to suckling, causes milk ejection from the lactating breast.

Lactation
The breasts become fully developed under the influence of estrogen, progesterone, and prolactin during pregnancy. Prolactin causes the production of milk, and oxytocin release (via the suckling reflex) causes the contraction of smooth-muscle cells in the ducts to eject the milk from the nipple.

- The first secretion of the mammary gland after delivery is colostrum. It contains more protein and less fat than subsequent milk, and contains IgA antibodies that impart some passive immunity to the infant. Most of the time it takes 1–3 days after delivery for milk production to reach appreciable levels.
- The expulsion of the placenta at delivery initiates milk production and causes the drop in circulating estrogens and progesterone. Estrogen antagonizes the positive effect of prolactin on milk production.
- The physical stimulation of suckling causes the release of oxytocin and stimulates prolactin secretion, causing more milk production.

Mammography
Mammography is an outpatient office radiologic procedure.

- Mammography may be a screening test for breast cancer when performed on asymptomatic women. Screening typically uses 2 views of each breast: craniocaudal and lateral. The patient is encouraged to lean in toward the device to image as much of the breast tissue as possible.
- Recommended age to start mammograms varies among medical organizations, ranging from age 40–50.
 - Start screening at age 40 gives potentially earlier cancer diagnosis (benefit) but at the cost of higher false-positives with unnecessary follow-up testing and anxiety (harms). False-negatives occur more in younger women and those with denser breasts.
 - Start screening at age 50 gives fewer false-negatives (benefit) but at a cost of potentially later diagnosis (harm).
 - The best strategy is for doctors to assess individual patient risk and engage in shared decision-making with the patient.
- Mammography may also be performed because of a breast complaint (e.g., breast mass, nipple discharge, abnormal screening mammogram); in those cases many images are taken, some under higher magnification to better visualize the target area.
- **Risks:** ionizing radiation exposure 0.7 mSv (about the same that the average person receives from background radiation in three months [1 Rad = 10 mSv])
BENIGN BREAST DISORDERS

Cystic Breast Mass

A 40-year-old menstruating woman had a 2 cm cystic breast mass confirmed by breast ultrasonography.

Diagnosis. Cyst aspiration and fine-needle aspiration are important components in the preliminary diagnosis of breast disorders. Fine-needle aspiration of a palpable macrocyst, the appropriate procedure for this patient, can be performed in an office setting. Interpretation of fine-needle aspiration requires the availability of a trained cytopathologist.

Management. Preaspiration mammography should be obtained. If the cyst disappears and the cytology is benign, no further workup is required.

Fibrocystic Breast Changes

A 30-year-old woman experiences bilateral breast enlargement and tenderness, which fluctuates with her menstrual cycle. On physical examination the breast feels lumpy, and the patient indicates a sensitive area with a discrete 1.5 cm nodule, which she says is consistently painful. A fine-needle aspiration is performed, and clear fluid is withdrawn. Clinically the cysts resolved.

Diagnosis. Cyclic premenstrual mastalgia is often associated with fibrocystic changes of the breast, a condition that is no longer considered a disease but a heterogeneous group of disorders. Breast discomfort may be accompanied by a palpable mass. Fine-needle aspiration can easily distinguish whether a mass is solid or cystic. The procedure requires no special skill other than stabilizing the mass so that needle aspiration can be done with precision. The goal of cyst aspiration is complete drainage of the cyst with collapse of the cyst wall.

Management.

- Mass disappears. If the cyst fluid is clear, it may be discarded. If the cyst fluid is grossly bloody, it should be sent for cytologic examination to rule out the possibility of intracystic carcinoma. After aspiration, the affected area must be palpated to determine whether there is a residual mass. If there is no residual mass, the patient may be reexamined in 4–6 weeks for the reaccumulation of fluid. If fluid reaccumulates, it may be aspirated again.

- Mass persists. A mass that persists requires further workup. A persistent accumulation is managed by mammography and excision. Because changes such as hematoma related to aspiration may affect mammographic appearances, it is recommended that mammography not be performed until two weeks after aspiration. Definitive evaluation of a persistent mass requires excisional biopsy.

- Conservative. Ultrasonography is useful in distinguishing cysts from solid masses. If ultrasonography has been performed before aspiration and has shown a cyst with distinct smooth contours, an alternative management plan would be conservative follow-up with serial ultrasound scans. If the cyst disappears on aspiration and the fluid is clear, no further workup is required.

Note

Mammograms are discussed in detail in Gynecology, chapter 1.
Breast Fibroadenoma

A 25-year-old woman visits the gynecologist for routine annual examination. During the examination she has a palpable, rubbery breast mass, which has been present and stable for the past two years. The pathology report of fine-needle aspiration was consistent with fibroadenoma.

Diagnosis. Fibroadenomas are the most common breast tumors found in adolescents and young women. In approximately 15% of patients they occur as multiple lesions. Clinically, fibroadenomas are discrete, smoothly contoured, rubbery, nontender, freely moveable masses. The most distinctive gross feature of fibroadenomas that allows them to be distinguished from other breast lumps is their mobility. Fibroadenomas arise from the epithelium and stroma of the terminal duct lobular unit, most frequently in the upper outer quadrant of the breast. An association of fibroadenomas with the development of breast cancer has not been well established. Any associated increases in breast cancer risk depends on the presence of proliferative changes in the fibroadenoma itself or in the surrounding breast and on a family history of breast carcinoma.

Although cysts and fibroadenomas may be indistinguishable on palpation, ultrasound examination easily distinguishes cystic from solid lesions. On fine-needle aspiration, cysts typically collapse, whereas samples from a fibroadenoma present a characteristic combination of epithelial and stromal elements.

Management.

- **Conservative.** Some clinicians advocate conservative management of fibroadenomas, especially in young women, because they can be diagnosed by ultrasonography and core-needle biopsy or fine-needle aspiration with a high degree of confidence, and in some cases they will resolve. A survey of patient preferences, however, has revealed that many women choose excisional biopsy even when they are assured that the lesion is benign by fine-needle aspiration.

- **Excision.** Typically, the lesion is “shelled out” with a surrounding thin rim of breast tissue to avoid the necessity of re-excision in the rare instances when the tumor proves to be a **phyllodes tumor.** This is a mixed epithelial and stromal tumor that has benign, borderline, and malignant variants. The biology of the phyllodes tumor is determined by its stromal elements; in its fully malignant form, it behaves as a sarcoma.

Mammography Microcalcifications

A 45-year-old woman visits her gynecologist after having her yearly mammogram done. The mammogram reveals a “cluster” of microcalcifications.

Diagnosis. A geographic cluster of microcalcifications is nonpalpable. Although most of these lesions are benign, approximately 15–20% represent early cancer. An occult lesion requires stereotactic needle localization and biopsy under mammographic guidance. The coordinates of the lesion are calculated by the computer according to the basic principles of stereotaxis. The radiologist selects the length of the biopsy needle, and a core biopsy is obtained. The procedure is performed in an outpatient setting.

Management. Treatment is based on the established histologic diagnosis.
Persistent Breast Mass

A 35-year-old woman has a persistent breast mass after a fine-needle aspiration has been performed. The breast mass is confirmed by ultrasonography.

Diagnosis. With the combination of physical examination, fine-needle aspiration or core biopsy, and mammography, open biopsies are being performed less frequently. Excisional biopsy has the advantage of a complete evaluation of the size and histologic characteristics of the tumor before definitive therapy is selected. An excisional biopsy is usually recommended in the following circumstances:

- Cellular bloody cyst fluid on aspiration
- Failure of a suspicious mass to disappear completely upon fluid aspiration
- Bloody nipple discharge, with or without a palpable mass
- Skin edema and erythema suggestive of inflammatory breast carcinoma, and a needle core biopsy cannot be performed

In the past, recurrent or persistent simple breast cysts were routinely excised. Because of improvement in ultrasonographic technology, these cysts may now be followed conservatively. This patient, who has had a fine-needle aspiration before, is a candidate for an excisional biopsy.

Management. Treatment is based on the established histologic diagnosis.

Bloody Nipple Discharge

A 60-year-old woman comes to the gynecologist’s office complaining of a left breast bloody nipple discharge.

Diagnosis. A bloody nipple discharge usually results from an intraductal papilloma. The treatment is total excision of the duct and papilloma through a circumareolar incision. Modern ductography does not reliably exclude intraductal pathology and is not a substitute for surgery in patients with pathologic discharge. Its utility is in identifying multiple lesions or lesions in the periphery of the breast.

Management. Treatment is based on the established histologic diagnosis.

BREAST CANCER

A 65-year-old woman visits the gynecologist with a solid 2 cm mass in the upper outer quadrant of the left breast. A biopsy of the lesion is done, which is consistent with “infiltrating ductal breast cancer.”

Breast cancer continues to be the most common cancer diagnosed in women of western industrialized countries. In 2018, an estimated 266,00 new cases of invasive breast cancer are expected to be diagnosed in women in the United States, along with 64,000 new cases of non-invasive (in situ) breast cancer.
Management. The preferred treatment for most patients with stage I or II breast cancer is considered to be breast-conserving therapy with a wide excision, axillary lymph node dissection or sentinel lymph node biopsy, and radiotherapy. Lymphatic mapping and sentinel lymph node biopsy are new procedures that offer the ability to avoid axillary lymph node dissection and its associated morbidity in patients with small primary tumors who are at low risk of axillary node involvement, while still offering nodal staging information.

Prognostic Factors. Some of the key decisions in the current management of primary breast cancer involve the need for prognostication. Prognostic factors serve to identify those patients who might benefit from adjuvant therapy.

- **Lymph node status.** This is important in determining cancer staging and treatment options. Axillary lymph node status is the most important factor in the prognosis of patients with breast cancer. As the number of positive axillary lymph nodes increases, survival rate decreases and relapse rate increases. An adequate dissection usually contains at least 10 lymph nodes; however, because these tumors in 25–30% of patients with negative nodes eventually recur, other biologic prognostic factors also are needed.

- **Tumor size.** This correlates with the number of histologically involved lymph nodes; however, it is also an independent prognostic factor, particularly in node-negative women. The use of size of the tumor as the most significant prognostic factor is problematic because 15% of patients with small tumors have positive nodal involvement.

- **Receptor status.** It is standard practice to determine both estrogen and progesterone receptor status at the time of diagnosis for definitive surgical therapy. Although hormone receptor status correlates with the prognosis, it does so to a lesser degree than nodal status. Hormone receptor determination is, however, of critical importance as a predictive factor. A predictive factor is any measurement associated with response or lack of response of a particular therapy.
 - Estrogen receptor status has clearly shown to be a predictive factor for hormone therapy, either in the adjuvant therapy or the metastatic disease setting. HER-2 (also known as HER-2.neu and c-erbB-2) is an epidermal growth factor receptor on the surface of a cell that transmits growth signals to the cell nucleus.
 - Approximately 25–30% of breast cancers overexpress HER-2, and overexpression of the receptor is associated with poor prognosis. This may be more of a reflection of the biologic correlates of HER-2 overexpression, e.g., rapid tumor cell proliferation, larger tumor size, and loss of hormone receptors, than an independent prognostic indicator.

- **DNA ploidy status.** DNA ploidy status of tumors is determined by flow cytometry. It measures the average DNA per cell. Tumors can be classified as diploid with normal DNA content or aneuploid. Disease-free survival rates are significantly worse in patients with aneuploid tumors than in those with diploid tumors; however, it is unclear whether ploidy has an independent prognostic value.

Infiltrating Ductal Carcinoma

This is the most common breast malignancy, accounting for 80% of breast cancers. Most are unilateral and start as atypical ductal hyperplasia, which may progress to ductal carcinoma in situ (DCIS), which then may break through the basement membrane and progress to invasive ductal carcinoma. Over time the tumor will become a stony hard mass as it increases in size and undergoes a fibrotic response.
Infiltrating Lobular Carcinoma

This is the second most common breast malignancy, accounting for 10% of breast cancers. Most are unilateral and start as lobular carcinoma in situ (LCIS), which then may break through the basement membrane and progress to invasive lobular carcinoma. The prognosis is better with lobular than with ductal carcinoma.

Inflammatory Breast Cancer

This is an uncommon breast malignancy that can mimic mastitis. Usually, there is no single lump or tumor. It is characterized by rapid growth with early metastasis. As the lymphatics get blocked, the breast becomes erythematous, swollen, and warm to examination. The edematous skin of the breast appears pitted, like the skin of an orange, giving the classic peau d’orange appearance.

Paget Disease of the Breast/Nipple

This is an uncommon breast malignancy with a generally better prognosis than infiltrating ductal carcinoma. The lesion is pruritic and appears red and scaly; it is often located in the nipple spreading to the areola. The skin appearance can mimic dermatosis like eczema or psoriasis. The nipple may become inverted and discharge may occur. It is almost always associated with DCIS or infiltrating ductal carcinoma.

Breast Cancer Risk Factors

- BRCA 1 or 2 gene mutation: RR 15
- Ductal or Lobular CIS: RR 15
- Atypical hyperplasia: RR 4
- Breast irradiation age < 20: RR 3
- Positive family history: RR 3

Sentinel Node Biopsy

A sentinel node (SLN) is the first lymph node(s) to which cancer cells are likely to spread from the primary tumor. Cancer cells may appear in the sentinel node before spreading to other lymph nodes. A dye is injected near the tumor to allow flow to the SLN. A biopsy of the dye-stained node is performed to help determine the extent or stage of cancer. Because SLN biopsy involves the removal of fewer lymph nodes than standard lymph node removal procedures, the potential for side effects is lower.

Node-Positive Early Breast Cancer

A healthy 55-year-old woman had a lumpectomy (negative margins) and axillary node dissection for a 2.5 cm tumor in the upper outer quadrant of the left breast, with three positive lymph nodes. The tumor was positive for both estrogen and progesterone receptors. She comes to the gynecologist’s office wanting an opinion about further therapy.
Breast-conserving therapy with a wide excision (lumpectomy), axillary dissection (or sentinel node biopsy), and radiation therapy are considered the preferred treatment for most patients with stage I or II breast cancer.

In patients at moderate or high risk of developing systemic metastasis, it is preferable to give adjuvant therapy, beginning with chemotherapy followed by radiation therapy.

This patient has a high risk of recurrence because of the presence of lymph node metastasis, and it would be inappropriate to withhold further therapy. Another high risk factor here is that her tumor is larger than 1 cm.

A large number of prospective randomized trials, as well as recent overviews and meta-analysis of adjuvant systemic therapy, have determined that both chemotherapy and tamoxifen therapy reduce the odds of recurrence in breast cancer patients. A few randomized clinical trials and the overview of meta-analysis of randomized clinical trials have suggested that the combination of chemotherapy and tamoxifen is superior to chemotherapy alone or tamoxifen alone in postmenopausal patients with node-positive breast cancer. Women with estrogen receptor-negative breast cancer appear to have no improvement in recurrence or survival from tamoxifen use.

It has been established that combination chemotherapy is superior to single-agent therapy, and that 4–6 cycles of combination therapy are as effective as >6 cycles of treatment.
A
Abdominal bloating, in PMS/PMDD, 242
Abdominal circumference (AC), 31, 32
Ablation
 endometrial, 234
 thyroid, contraindicated, 96
Abnormal bleeding
 in GTN, 206
 uterine, 233–234
 vaginal, 232–234
Abnormal labor, 125–126
Abnormal placental invasion, 52–53
Abnormal vessels, biopsy of, 153
Abortion
 clinical entities, 25–26
 complete, 26
 defined, 14
 incomplete, 25, 26
 induced. See Induced abortion
 inevitable, 25, 26
 missed, 25, 26
 septic, as IUD complication, 222
 spontaneous. See Spontaneous abortion (miscarriage)
 threatened, 3, 25, 26
Abruptio placenta, 49–51
Absence type seizures, 97
Absent diastolic flow, umbilical artery Doppler, 115
Acanthosis nigricans, 246
Accelerated growth, pubertal, 239, 240
Accelerated repeat Pap smear, 181–182
Acceleration, in FHR, 133
Accessory placental lobes, vasa previa and, 54
Accutane, 13
Acetylcholinesterase, in prenatal diagnostic testing, 34
Acquired immunodeficiency syndrome (AIDS).
 See Human immunodeficiency virus (HIV)
 Acquired thrombophilias, test for, 105
 Acrocentric chromosomes, 17
 Actinomycin-D, in chemotherapy for GTN, 207
 Active phase of labor
 arrested, in abnormal labor, 123, 125–126
 in normal labor, 122
 Acute fatty liver, 103
 Acute hepatitis, maternal, 67
 Acute pelvic inflammatory disease, 211, 212
 Acute salpingo-oophoritis, 213, 214–215
 Acute tubular necrosis
 as abruptio placenta complication, 51
 as placenta previa complication, 52
 Acyclovir
 for HSV infection, 63
 for VZV infection, 59
 Addyi (flibanserin), 226–227
 Adenomyosis, 191–192
 in leiomyoma differential diagnosis, 191
 Adenosis, vaginal, 13
 Adnexal mass
 with ascites, 203–204
 differential diagnosis, 195, 198
 painful, 200
 surgical staging of, 204
 Adrenal glands, 7
 normal function, 246
 Adrenal hyperplasia, 245, 246
 Adrenal tumors, hirsutism and, 245
 Adrenarche, 239, 240
 AFP. See Alpha-fetoprotein (AFP)
 AGC-NOS/AGC-neoplastic, Pap smear classification, 180
 Agenesis. See Müllerian agenesis
 AIDS. See Human immunodeficiency virus (HIV)
 Alcohol, as teratogen, 12
 fetal alcohol syndrome and, 13
Alloimmunization, 73–74
Alpha-adrenergic receptors, urinary incontinence and, 163, 164
Alpha-fetoprotein (AFP)
maternal serum, 45–47
in prenatal diagnostic testing, 34, 35
as tumor marker, 198, 202
Amenorrhea
menopause diagnosis and, 251
primary, 234–237
secondary, 237–238
American Academy of Pediatrics (AAP), MAS prevention recommendations, 83
American Diabetes Association diet, 99
American Fertility Society, uterine anomaly classification, 186
American Heart Association (AHA), MAS prevention recommendations, 83
Ammonia, serum, in acute fatty liver, 103
Amniocentesis, 34, 35
Amniinfusion
in intrauterine resuscitation, 136
for MAS prevention, 82, 83
Amniotic fluid (AF)
antepartum assessment of, 112
ferning pattern of, 79
MS-AFP screening and, 46
Amniotic fluid (AF) acetylcholinesterase, 46
Amniotic fluid bilirubin, 74
Amniotic fluid index (AFI), 110, 112
Amniotomy, 124
Anatomic lesion, abnormal vaginal bleeding and, 232–233
Anatomy
of breast, 255–256
of female reproductive tract, 151
in osteoporosis, 251
Androgen insensitivity, 236
Müllerian agenesis vs., 235
in primary amenorrhea differential diagnosis, 236
Androgens, 230
hirsutism and, 244
luteoma of pregnancy and, 197
PCOS and, 196
stimulation of, Wolffian duct and, 10
Anemia, 48
fetal, 74
pregnancy and, 101–102
Anencephaly, 22
Anesthesia, during labor, 129–130
Aneuploidy, 16
common forms, 16
miscarriage in, 17
Angiotensin-converting enzyme (ACE) inhibitors, contraindicated in pregnancy, 90
Anomaly management, preconception, in diabetic patients, 100
Anomaly screening
in diabetic patients, 100
seizure disorders and, 97
Anorgasmia, 228
Anovulation
correctable causes of, 234
dysfunctional uterine bleeding and, 233–234
hypothyroidism and, 96
infertility and, 249
in PCOS, 247
secondary amenorrhea and, 237
Anovulatory bleeding, 237
Antenatal demise, 26
Antepartum death, defined, 14
Antepartum fetal testing, 111–116
amniotic fluid assessment, 112
assessment in diabetes mellitus, 100
biophysical profile, 112–113
contraction stress test, 114
nonstress test, 111–112
overview, 111
umbilical artery Doppler, 115–116
Antepartum management
in antiphospholipid syndrome, 107
in diabetes mellitus, 99–100
in heart disease, 94
in multiple gestation, 72
in thrombophilias, 106
Anterior pituitary necrosis (Sheehan syndrome), 52
Antibiotic prophylaxis
GBS infection prevention, 58
for rape victims, 228
Antibody screening
hepatitis B virus, 44
rubella IgG, 43
Anticoagulants, for thrombophilias, 106
Anticonvulsants, use in pregnancy
effect on fetus and infant, 97
metabolism of, 97
Anti-Müllerian hormone (AMH), 250
Antiphospholipid syndrome (APS), 107–108
 as early pregnancy bleeding cause, 25
Antithyroid medications, 96
Antiviral prophylaxis
 for HIV-infected patients, 64
 for rape victims, 228
Antral follicle count (AFC), 250
Arcuate uterus, 188
Aromatase enzyme, 230
Arousal, 225
Arrested active phase, abnormal labor, 125–126
Arterial blood gas (ABG), pulmonary embolus and, 108
Arterial blood pressure, 4
Artificial insemination by donor (AID), 249
ASC-H, Pap smear classification, 180, 182
Ascites, adnexal mass with, 203–204
ASC-US, Pap smear classification, 180, 182
Asherman syndrome, 238
Asymptomatic bacteriuria (ASB), 45, 104
Asymptomatic HBV, maternal, 67
Atelectasis, postpartum, 146, 148
Atrial septal defect (ASD), 93, 95
Atypical antibody test (AAT), 74
 alloimmunization and, 73
 in first trimester, 44
 in third trimester, 48
Atypical squamous cells can't rule out HSIL (ASC-H), 180, 182
Atypical squamous cells of undetermined significance (ASC-US), 180, 182
Autopsy, in fetal demise, 27
Autosomal genetic disorders
 dominant, 19, 20, 21
 recessive, 19, 20, 21
Azidothymidine (AZT) prophylaxis, for HIV-infected patients, 64
Azithromycin
 for cervicitis, 179, 214
 for chlamydia, 212, 228
 for gonorrhea, 212
 for granuloma inguinale, 210

B
Backache, 41
Bacterial vaginosis (BV), 169–170, 171
Bacteriuria, asymptomatic, 45, 104
Balanced reciprocal translocations, 16
Barrier-spermicidal methods, 219–220
Bartholin abscess/cyst, 172
 in gonorrhea, 212
Basal body temperature (BBT), 38, 233, 249
Basalis zone, endometrial, 229
Baseline fetal heart rate, 132
 variability in, 133
Benign cystic teratoma, pelvic, 199
Benign gestational trophoblastic neoplasia, 205–207
Beta-adrenergic agonists, for preterm delivery delay, 77
Beta-adrenergic receptors, urinary incontinence and, 163, 164
Betamethasone, for pulmonary surfactant stimulation, 76
Bethesda system, Pap smear classification, 180
Bicornuate uterus, 187
Bilaminar germ disk, 10
Bilateral salpingo-oophorectomy (BSO), 218
 endometrial carcinoma and, 193
Bilirubin, amniotic fluid, 74
Biologic model (linear) of sexual response, 226
Biophysical profile (BPP), 112–113
Biopsy. See also Cone biopsy
 abnormal-appearing ectocervical tissue and, 153
cervical, 184
core-needle, in breast fibroadenoma, 259
ectocervical, 182, 185
endocervical, 182
endometrial, 158
fetal skin, 34
sentinel node, 262
vulvar, 159, 175
Biparietal diameter (BPD), 31, 32
Birth rate, defined, 15
Bishop scoring method, in postterm pregnancy, 81–82, 83
Bisphosphonates, for osteoporosis, 252
Bladder. See Urinary bladder
Blastocyst implantation, 9
Bleeding. See also Hemorrhage
 abnormal. See Abnormal bleeding
 anovulatory, 237
Bleeding (Continued)
break-through, 221
in early pregnancy, 25–26
in first trimester, 40
irregular, in PCOS, 247, 248
in late pregnancy, overview of, 49. See also Late pregnancy bleeding
menstrual, lack of. See Amenorrhea
postmenopausal, endometrial neoplasia and, 192–194
premenarchal vaginal, 232
Bleeding gums, 41
Bloating, abdominal, in PMS/PMDD, 242
Blood gases, 6
Blood glucose monitoring, in antepartum diabetes management, 99, 100
Blood pressure, in pregnancy, 41
Blood sugar, fasting, in diabetic testing, 48
Blood type, 44
fetal, alloimmunization and, 73–74
Bloody discharge, from nipple, 260
Bloody show, in third trimester, 40
Blues, postpartum, 144
Blunt trauma, maternal, as abruptio placentae risk factor, 50
Bonding, maternal-infant, impaired, 143, 144
Braxton-Hicks contractions, in second trimester, 40
Brow attitude, fetal delivery, 119
Breech presentations, 118
forcps use in, 139
Bredin, 268
menstrual, lack of. See Amenorrhea
postmenopausal, endometrial neoplasia and, 192–194
premenarchal vaginal, 232
Bleeding gums, 41
Bloating, abdominal, in PMS/PMDD, 242
Blood gases, 6
Blood glucose monitoring, in antepartum diabetes management, 99, 100
Blood pressure, in pregnancy, 41
Blood sugar, fasting, in diabetic testing, 48
Blood type, 44
fetal, alloimmunization and, 73–74
Bloody discharge, from nipple, 260
Bloody show, in third trimester, 40
Blues, postpartum, 144
Blunt trauma, maternal, as abruptio placentae risk factor, 50
Bonding, maternal-infant, impaired, 143, 144
Brady cardia, FHR baseline, 132
Braxton-Hicks contractions, in second trimester, 40
BRCA1 gene, as ovarian cancer risk factor, 201
Break-through bleeding, 221
Breast(s)
anatomy of, 8, 255–256
benign disorders of, 258–260
development of, 255
embryology of, 255
enlargement of, 41
fibroadenoma of, 259
fibrocystic changes in, 258
hormonal effects on, 9, 255, 257
Paget disease of, 262
puberty and, 9, 255
Breast cancer
forms of, 261–262
as MHT risk, 254
node-positive early, 262–263
prevalence of, 260
prognosis for, 261
risk factors for, 262
sentinel node biopsy in, 262
WHI study findings, 253
Breast feeding
contraindicated, maternal HIV and, 64
maternal HBV infection and, 68
postpartum contraception and, 144
Breast mass
cystic, 258
persistent, 258, 260
Breech presentations, 118
forcps use in, 139
Brow attitude, fetal delivery, 119
Bypass incontinence, 167
C
Café au lait skin spots, 241
Calcifications
intracranial vs. periventricular, 58
microcalcifications in mammography, 259
Calcium-channel blockers, for preterm delivery delay, 77
Calyrnmatobacterium granulomatis, 210
Candida vaginitis, 171
Capillary injury, in preeclampsia, 87
Carcinoma in situ (CIS), vulvar, 174
Cardiac disease
in pregnancy, 93–95
signs of, 94
WHI study findings, 253
Cardiac output (CO), 5
Cardinal movements, of labor, 121, 123
Cardiomyopathy, peripartum, 94, 95
Cardiovascular system, changes during pregnancy, 3
Carpal tunnel syndrome, 41
Cat feces, 58
Cataracts, congenital, 59, 60
Caudal regression syndrome, 100
CEA (carcinoembryonic antigen) tumor marker, 202
Centers for Disease Control and Prevention (CDC), HIV screening recommendations, 45
Central venous pressure (CVP), 5
Cephalic presentation, 118
Cephalohematoma, 140
Cephalic presentation, 118
Cephalopelvic disproportion (CPD), cesarean section and, 142
Cerclage, cervical placement of, 69, 70
removal of, 70
types of, 70
Cerebral vasospasm, severe diffuse, in eclampsia, 88
Cervical cancer, in pregnancy, 185
invasive. See Invasive cervical cancer
Cervical cultures, in STD screening, 44
Cervical dysplasia
classification of, 181
colposcopy for, 182, 183
histologic appearance of, 181
HPV vaccination for, 186
management of, 183
natural history of, 179
Cervical insufficiency/incompetency, 69–70, 182
cervical surgical procedures risk, 154, 155
Cervical intraepithelial neoplasia (CIN)
classification, 180–181
histologic appearance, 181
histology of, 183
management of, 183, 185
Cervical neoplasia, in pregnancy, 185
intraepithelial. See Cervical intraepithelial neoplasia (CIN)
invasive cancer, 185. See also Invasive cervical cancer
microinvasive, 185
Cervical stenosis, 182
cervical surgical procedures risk, 154, 155
Cervicitis, 179, 213, 214
Cervix
Bishop scoring method for, 81–82
cerclage placement/removal, 69–70
changes in, preterm labor and, 76
classification, in postterm pregnancy, 82
dilation/effacement during labor, 121, 122, 123, 124
disorders of, 177–186. See also Cervical insufficiency/incompetency
ineptent. See Cervical insufficiency/incompetency
neoplasia of, 179–186. See also Cervical intraepithelial
neoplasia (CIN)
Pap smear. See Pap smear
polyps, 177–178
Cesarean delivery on maternal request (CDMR), 142
Cesarean hysterectomy, placenta previa and, 52
Cesarean section
in abruptio placentae management, 51
defined, 140
in diabetic patient, 101
elective, 142
indications for, 142
perinatal infections and, 68
in placenta previa management, 52
postpartum wound infection and, 147, 148
postterm pregnancy and, 81
primary, indications for, 142
risks pregnancy associated with, 141
uterine incisions for, 141
vaginal birth after, 142
in vasa previa management, 54
Chadwick sign, 4
Chancroid, 209–210
pathophysiology of, 210
Chemotherapy, 12
adnexal mass, 204
for endometrial neoplasia, 193
for GTN, 207
ovarian cancer, 203
Chest x-ray
in GTN, 206, 207
pulmonary embolus, 108
in tuberculosis screening, 45
Chills, as pregnancy danger sign, 42
Chlamydia, 44, 211–212
antibody for, 249
pelvic inflammatory disease and, 213
Chlamydia trachomatis, 210, 211
Chloasma, 5, 41
Chocolate cyst, 217
Cholestasis of pregnancy, intrahepatic, 102–103
Cholinergic receptors, urinary incontinence and, 163, 164
Chondrodysplasia, 13
Chorioamnionitis, PROM and, 79
Choriocarcinoma, 201
Chorionic villus sampling (CVS), 33, 35
Chorioretinitis, in neonate, 59, 68
Chromosomes
aberration/abnormalities of, 16
structural alterations to, 16
Y chromosome mosaicism, 251
Chronic hepatitis, maternal, 67
Chronic hypertension
pregnancy prognosis with, 90
with/without superimposed preeclampsia, 89–91
Chronic pelvic inflammatory disease, 213, 216
Circular relational model, sexual response cycle, 226–227
Classical uterine incision
for cesarean delivery, 141
as uterine rupture risk factor, 55
Cleft lip and palate, 22
Clomiphene, 70, 238, 248, 249, 250
Clostridium sordellii, 23
Clue cells, 169, 170
absence of, 172
CNS pathology
perinatal Zika virus infection and, 61
in precocious puberty, 240, 241
Coagulation factors, 6
Coagulopathy, inherited, abnormal vaginal bleeding and, 233
Cocaine, as teratogen, 12
Coitus interruptus, 223
Cold knife cone biopsy, 154–155
Colonic motility/transit time, 6
Colporrhaphy, anterior and posterior, in vaginal prolapse repair, 163
Colposcopy
cervical cancer in pregnancy and, 185
in cervical dysplasia, 182, 183
purpose and method, 153–154
Combination contraceptive modalities, 221
postpartum, 144
Complete blood count
in first trimester, 43
in third trimester, 48
Complete breech presentation, 118
Complete isosexual precocious puberty, 240–241
Complete mole, in benign GTN, 205
Completed abortion, 26
Complex mass, pelvic, 199
Complex partial seizures, 97
Complexion changes, 5, 41
Compound presentation, 118
Conception dating, 37
Condoms, 220
Condyloma acuminatum, 172, 211
Condyloma lata, 65, 66
Cone biopsy
cold knife, 154–155
following abnormal Pap smear, 182
Congenital adrenal hyperplasia, 245
Congenital deafness, 59, 60
Congenital heart disease (CHD), 22, 59, 60, 68, 93
as fetal defect in diabetic patient, 100
Congenital rubella, 59–60
Congenital toxoplasmosis, 58–59
Congenital varicella, 59
Conjoined twins, 71, 72
Constipation, postpartum, 143
Constitutional (idiopathic) precocious puberty, 240, 241
Continence
and micturition, 163
physiology of, 163
Continuous ultrasound transducer, for FHR monitoring, 131
Contraception
barrier-spermicidal methods, 219–220
intrauterine, 222–223
long-acting reversible, 223
steroid, 220–222. See also Steroid contraception
Contraction stress test (CST), 114
in biophysical profile, 113
Contractions
involuntary bladder, 165
uterine. See Uterine contractions
Controlled ovarian hyperstimulation (COH), 250
Coombs test, direct and indirect, 44
Cooper ligaments, 8, 256
Copper IUD, 222, 223
Core-needle biopsy, in breast fibroadenoma, 259
Coronary heart disease, 93
MHT benefit and, 254
WHI study findings, 253
Corpus luteum, progesterone production and, 3, 4
Corticosteroid therapy, antenatal, 76
Coumadin, 106
Couvraile uterus, as abruptio placentae complication, 51
Coxsackie virus infection, 60
Crying, postpartum, 143
Craniotomy, fetal, from obstetric forceps use, 139
Crown-rump length (CRL), 31, 32
Cryotherapy, 155
Cul-de-sac, as endometriosis site, 217
Cyanotic CHD, 93
Cyclic premenstrual mastalgia, 258
Cystectomy, 199
Cystic breast mass, 258
Cystic teratoma, benign pelvic, 199
Cystitis, acute, 104
Cystocele, 161, 162
Cystometric studies, in urinary incontinence, 164, 166, 167
Cytobrush, 153
Cytogenetic disorders, 17–18
Cytogenetic etiology, of early pregnancy loss, 25
Cytology, Pap smear, 179, 182
Cytomegalovirus (CMV) infection, perinatal, 62, 68
seropositivity prevalence in, 57

D
Dalkon Shield, 222
Darkfield microscopy, 65, 66
Dating errors
 elevated MS-AFP and, 46
 low MS-AFP and, 46
D-dimer test, 49
Deafness, congenital, 13, 59, 60, 68
Debulking procedure, adnexal mass, 204
Decelerations, in FHR
 early, 134
 electronic tracings, 136
 late, 134
 variable, 134
Deep venous thrombosis (DVT), 105, 108
 as cesarean section risk, 141
Definitive signs, of pregnancy, 37
Degeneration, leiomyoma uteri, 189
Dehydroepiandrosterone sulfate (DHEAS), 4, 245, 246
Delivery
 in diabetic patients, 100–101
 in eclampsia, 88
 in preeclampsia with severe features, 88
 preterm categories, 75
 recommendations for HIV-infected patients, 64
 uterine rupture and, 55
Depo-medroxyprogesterone acetate (DMPA), 221
Depression, postpartum, 144
Dermatosis, premalignant vulvar, 174
DES uterus, 188
Descent, fetal
 in abnormal labor, 126
 in stages of labor, 122, 123, 124
 station of, 120
Desire, 225
Desire disorders, 227
DEXA scan, in osteoporosis, 251
Dexamethasone, for pulmonary surfactant stimulation, 76
Diabetes mellitus
 antepartum management of, 99–100
 classification by pathophysiology, 98
 as endometrial neoplasia risk factor, 192
 gestational, 48
 in pregnancy, 97–101
 screening for, 98
 types of, 98
 White classification of, 98
Diabetic testing, in third trimester, 48
Diaphragm
 pelvic, 161
 postpartum use, 144
Diastolic flow
 inadequate, 93
 umbilical artery, Doppler waveform patterns, 115–116
Diastolic flow, normal, on umbilical artery Doppler, 115, 116
Diastolic murmurs, 5
Dichorionic-diamnionic twin gestation, 71, 72
Didelphys uterus, 187
Diethylstilbestrol (DES)
 syndrome, 13
 uterine abnormalities and, 188
Diffuse vasospasm
 in preeclampsia, 86, 87
 severe, in eclampsia, 88
Digital examination, contraindicated, 49
Dihydropregesterone (DHT) stimulation, 10, 11
Dilantin, 13
Dilation and curettage (D&C), 23, 157
Dilation and evacuation (D&E), 24
Dilation and curettage (D&C), 23, 157
 early pregnancy bleeding and, 25
 suction, in GTN, 206, 207
Dilation and evacuation (D&E), 24
 fetal demise and, 27
Dilation of cervix, 121, 122, 123, 124
 rate of, 122–123
Direct Coombs test, 44
Direct scalp electrode, fetal, 132
Disseminated intravascular coagulation (DIC)
 as abruptio placentae complication, 51
 fetal demise and, 27
 postpartum, 145, 146
 in preeclampsia, 86
 workup in late pregnancy bleeding, 49
Disulfide linkages, labor and, 121
Diuretics
- contraindicated in pregnancy, 90
 in PMS/PMDD management, 243
Dizygotic twins, 71
- risk factors, 70
Dizziness, 41
DNA ploidy status, breast cancer prognosis and, 261
DNA testing, HPV, 182
Donovanosis, 210
Dopamine, in sexual response cycle, 225
Doppler ultrasound studies, 32
- middle cerebral artery, fetal, 74
Douglas, pouch of, 162
Down syndrome. See Trisomy 21 (Down syndrome)
Doxycycline
- for cervicitis, 179
- for chlamydia, 212
- for ulcerative STDs, 210
Drospirenone/ethinyl estradiol (Yaz), in PMS/PMDD management, 221, 243
Ductal development, embryology, 10–11
Ductus arteriosus, 7
Ductus venosus, 7
Duodenal atresia, 17
Dysfunctional uterine bleeding (DUB), 233–234
Dysgerminoma, 199, 201
Dysmaturity syndrome, 81
Dysmenorrhea
- primary, 216–217
- secondary, 216, 217–218
Dysmorphism
- craniofacial, 13
- facial, 13
Dyspareunia, 217, 228
Dysplasia
- cervical. See Cervical dysplasia
- squamous vulvar, 174
Dystocia, shoulder, 127
Dystrophy, vulvar, 174
Dysuria, postpartum, 143

E
E antigen, hepatitis B virus, 44
Early deceleration, in FHR
defined, 134
electronic tracings, 136
Ebstein's anomaly, 13
Eclampsia, 88–89
Ectocervix
- biopsy of, 182, 185
- colposcopy and, 153
- specimen from, 152
Ectoderm
- formation, 10
- layers, trilaminar germ disk with, 10
Ectopic pregnancy, 3, 25, 28–30
- approach to, 30
- intrauterine system contraception and, 123
- risk factors for, 29
Edema, in preeclampsia, 87
Edward syndrome. See Trisomy 18 (Edward syndrome)
Effacement of cervix, 121, 122, 123, 124
Eflornithine, 246
Eisenmenger syndrome, 94, 95
Elective cesarean section, 142
Electrocardiogram (EKG), pulmonary embolus and, 108
Electronic fetal monitoring (EFM). See also Fetal heart rate (FHR) monitoring
- abnormal tracings, approach to, 137, 139, 140, 142
- antepartum tracings, 113
- definitions, 133–134
- FHR tracing categories, 135
- intrapartum tracings, 133, 134, 136
ELISA test, in HIV screening, 44, 45
Embolization, of leiomyoma uteri, 190, 191
Embryo, serum glycoprotein of, 45–46
Embryology, 9–12
- female breast, 255
Endocardial cushion defects, 17
Endocervical biopsy, 182
Endocervical curettage (ECC), 154, 182
Endocervix specimen, 152
Endocrine system, changes during pregnancy, 7
Endoderm
- formation, 10
- layers, trilaminar germ disk with, 10
Endometrial carcinoma/neoplasia, 192–194
- management, 193–194
- metastatic to ovaries, 202
- staging of, 193, 194
Endometrial hyperplasia
management of, 194
in PCOS, 247
Endometrioma, 217, 218
Endometriosis, 217–218
Endometritis, postpartum, 147, 148
Endometrium
ablation of, in dysfunctional uterine bleeding, 234
biopsy of, 158
estrogen-dominant, 230
layers of, 229
phases of, 229–230
polyps, 233
progesterone-dominant, 230
sampling from, 192
scarring, 238
End-organ perfusion, in chronic HTN with/without superimposed preeclampsia, 89
Engagement, in labor, 121
Engorgement, vascular, 225
Enterocoele, 161, 162
Enterovirus infection, perinatal and maternal, 60
Environmental teratogens, 12
Epiblast layers, bilaminar germ disk with, 10
Epidural block, 130
Epigastric pain, as pregnancy danger sign, 42
Episiotomy, 128
Epithelial tumors, ovarian, 201, 202
Erection, 225
Erythrocyte sedimentation rate (ESR), 6
Esure (hysteroscopic sterilization), 224
Estimated fetal weight (EFW), IUGR and, 109
Estradiol, 4
Estriol, 4
in trisomy screening, 47
Estrogen, 4, 230
effects on breast, 9, 257
gonadal-stromal cell tumors and, 241
lactation and, 9, 257
for osteoporosis, 252
plus progestogen, 254
receptor status for, 261
replacement of, 162
SERMs as therapeutic alternative to, 254
as tumor marker, 202
Estrogen deficiency
excitement disorders and, 227
secondary amenorrhea and, 237
Estrogen-alone therapy, 254
Estrogen-dominant endometrium, 230
Estrogen-mediated metabolic effects, steroid contraception, 220
Estrogen-progesterone challenge test (EPCT), 238
Estrone, 4
Ethinyl estradiol/drospirenone (Yaz), in PMS/PMDD management, 221, 243
Etonogestrel, 221
Euglycemia, 100
Excision, breast fibroadenoma, 259
Excitement phase, 225
disorders, 227
Exenteration, pelvic, in vulvar carcinoma, 175
Expanded X-AFP testing, 35
Expulsion
fetal, 121, 122
of IUD, 223
Extension, fetal chin, 121
External cephalic version, 142
External devices, FHR monitoring, 132
External genitalia
embryology, 11
female, 10
male, 10–11
External rotation, fetal head, 121
F
Face attitude, fetal delivery, 119
Fallopian tube abnormalities, assessment of, 249
Family history
as GDM risk factor, 97
in prenatal risk factor identification, 39
Family planning, natural, 223
Fasting blood sugar (FBS), in diabetic testing, 48, 98
Fatigue, 41
Fatty liver, acute, 103
FDA (Food and Drug Administration) drug categories,
pregnancy and post-2015, 13
pre-2015, 12–13
Fecundability, 248
Female external genitalia, 11
Female sexual arousal, circular (relationship) model of, 226–227
Femoral venous pressure (FVP), 5
Femur length (FL), 31, 32
Fern positive, PROM diagnosis criteria, 78, 79
Fertility control, 219. See also Contraception; Oral contraceptive pills (OCPs)
Fertility rate, defined, 15
Fetal alcohol syndrome, 13
Fetal circulation shunts, 7
Fetal death/demise, 26–28
 - antiphospholipid syndrome and, 107
 - approach to, 28
 - chronic maternal HTN and, 90
 - defined, 14
 - definitions, 26
 - gestational diabetes and, 99
 - in syphilis, 65
Fetal development, 9–11
Fetal fibronectin (fFN), 76
Fetal growth
 - in diabetic patients, 100
 - disproportionate, 81, 109–110. See also Intrauterine growth restriction (IUGR); Macrosomia/Macrosomia syndrome
Fetal head
 - circumference, 31, 32
 - compression of, FHR and, 134
Fetal heart rate (FHR) monitoring. See also Electronic fetal monitoring (EFM)
 - contraction stress test and, 114
 - external devices for, 131
 - internal devices for, 132
 - intrapartum, 132–136
Fetal heart rate (FHR) tracings
 - abnormal, approach to, 137, 139, 140, 142
 - categories of, 135
 - decelerations, 136
Fetal heart tones, 37
Fetal hydantoin syndrome, 13
Fetal hydrops, 61, 68
Fetal mortality rate, defined, 15
Fetal movements, decrease/absence of, 27, 42
Fetal pH assessment, 137
Fetal skin biopsy, as fetoscopy indication, 34
Fetal surveillance, in diabetic patients, 100
Fetology, 9–12
Fetoscopy, 34, 35

Fetus
 - alloimmunization risk to, 73–74
 - antepartum testing. See Antepartum fetal testing
 - anticonvulsant effect on, 97
 - infections and. See Perinatal infections
 - IUGR and, 109
 - macrosomia and, 110
 - malpresentation of, cesarean section and, 142
 - neuroprotection in, 76
 - orientation in utero, 117–120
 - PROM hazards and, 80
 - sonographic visualization of, 37
Fever, as pregnancy danger sign, 42
Fever, postpartum, 146–148
Fibroadenoma, of breast, 259
Fibrocystic changes, in breast, 258
Fifth disease, 60–61
Fine-needle aspiration, in benign breast disorders, 258–260
First trimester
 - laboratory tests in, 43–45
 - normal events in, 40
Fistula, urinary, 167
Flexion, fetal chin, 121
Flibanserin (Addyi), 226–227
Fluid retention, 41
Folate antagonist, 30
Folate deficiency anemia, 102
Folic acid supplementation
 - in diabetic patient, 100
 - multifactorial inheritance and, 22
 - seizure disorders and, 97
Follicle-stimulating hormone (FSH), 230, 241, 250
 - secondary amenorrhea and, 237, 238
 - theca lutein cysts and, 197
Footling breech presentation, 118
Foramen ovale, 7
Forceps. See Obstetric forceps
Frank breech presentation, 118
Frankenhauser’s ganglion, 129
Free T3/T4, 95–96
FTA (fluorescent treponema antibody absorption), 44
FTA–ABS (fluorescent titer antibody absorption), 65, 66
Functional incontinence, 166
Functional ovarian cysts, 195–196
Functionalis zone, endometrial, 229
Ganciclovir, for CMV infection, 62
Gap junctions, labor and, 121
Gardasil, 186
Gastric motility/emptying, 6
Gastrointestinal (GI) tract
 changes during pregnancy, 6
 lesions in, pelvic mass and, 202
 postpartum changes, 143
General anesthesia, 130
Generalized seizures, 97
Genetic counseling, indications for, 16
Genetic disorders, 15–22
 chromosomal aberrations, 16
 cytogenetic, 17–18
 Mendelian, 19–21
 multifactorial inheritance, 22
 risk factors, 16
 translocations, 16–17
 X-linked, 20, 21
Genetic sonogram, 32
Genetics
 counseling indications, 16
 disorders. See Genetic disorders
 familial transmission patterns of inheritance, 21
Genital herpes, maternal, 63
Germ cell tumors, 197, 198
 ovarian, 201, 202
Gestational age
 accuracy in, 32
 errors in. See Dating errors
IUGR and, 109
macrosomia and, 110
methods for establishing, 37–39
postterm pregnancy management and, 81–82
preterm labor and, 76
PROM management and, 79
sonogram dating for, 31–32
Gestational diabetes mellitus (GDM), 48, 98, 99
 risk factors, 97
Gestational hypertension, 85–86
Gestational trophoblastic neoplasia (GTN), 205–207
Gestational trophoblastic tumor (GTT), 205
Global Consensus Statement on Menopausal Hormonal Therapy, 253–254
Glomerular filtration rate (GFR), 7, 95
Glucose tolerance, impaired, 97, 98
Glucose tolerance test (GTT), oral, 48, 98
Glyburide, 99
Glycemic control, 101
Gonadal development, embryology, 11
Gonadal dysgenesis (Turner syndrome), 17, 18, 236
 HP axis failure vs., 235
 in primary amenorrhea differential diagnosis, 236
Gonadal mosaicism, 16
Gonadotropin releasing hormone (GnRH), precocious puberty and, 240
Gonadotropin-dependent precocious puberty, 240–241
Gonadotropin-independent precocious puberty, 241
Gonorrhea, 44, 212
 pelvic inflammatory disease and, 213
Gram-negative enteric bacteria, 104
Granuloma inguinale, 210
Granulosa cell tumor, ovarian, 241
Graves’ disease, 95, 96
Gravidity, defined, 14
Group B β-hemolytic streptococci (GBS) infection, in neonate, 57–58, 68
Growth spurt, precocious puberty and, 239, 240
Gummas, 65
Gynecologic malignancy, clinical and surgical staging for, 207
Gynecologic ultrasound, 152
HAART therapy, for HIV-infected patients, 64
Haemophilus ducreyi, 209
Hair shedding, 41
“HA-IR-AN” syndrome, 247. See also Polycystic ovarian syndrome (PCOS)
Hand, foot and mouth disease (HFMD), 60
Head circumference (HC), 31, 32
Headaches
 as normal pregnancy complaint, 41
 as pregnancy danger sign, 42
Heart disease. See Cardiac disease
HELLP syndrome, 91
Hematocrit, 43
Hematologic changes, during pregnancy, 6
Hematoma, from vacuum extraction, 140
Hemoconcentration, 86, 87
Hemoglobin, 43
Hemoglobin A1c, in antepartum overt diabetes management, 100
Hemolytic disease of newborn (HDN), 73
Hemorrhage
as cesarean section risk, 141
intracranial fetal, as vacuum extractor risk, 140
postpartum, 101, 145–146
Hemorrhoids, postpartum, 143
Heparin, 106
Hepatitis B virus (HBV), 44
in perinatal period, 67–68
screening in first trimester, 44
Herpes simplex virus (HSV) infection, perinatal, 62–63, 68
seropositivity prevalence in, 57
High spinal (intrathecal) anesthesia, 130
High-flow oxygen, in intrauterine resuscitation, 136
High-grade squamous intraepithelial lesion (HSIL), 180, 181, 182
Hirsutism, 244–246
in PCOS, 246, 247, 248
Hormonal disorders
hirsutism, 244–246
infertility, 248–250
menopause, 250–254
polycystic ovarian syndrome, 247–248
precocious puberty, 239–241
premenstrual, 241–244
Hormone replacement therapy (HRT), 252–254. See also Menopausal hormone therapy (MHT)
administration routes, 253
benefits and risks, 252–253
contraindications, 253
for postmenopausal bleeding, 193
Hormones
effect on breast and lactation, 9, 257
for genital development, 11
placental, 3–4
as tumor markers, 202
Hot flashes, 251
WHI study findings, 253
HSIL, Pap smear classification, 180, 181, 182
Human chorionic gonadotropin (hCG), 3. See also Serum β-hCG testing
morning sickness and, 41
as ovarian cancer marker, 202
theca lutein cysts and, 197
in trisomy screening, 47
Human immunodeficiency virus (HIV)
perinatal infection, 63–64, 68
progression to AIDS, 63, 64
screening for, 44, 45
Human papilloma virus (HPV)
cervical dysplasia and, 179–180, 186
condyloma acuminatum and, 211
DNA testing, 182
Human placental lactogen (hPL), 3, 98
Human sexual response cycle, 225–227
circular relational models, 226–227
linear model, 225–226
Hydatidiform mole, 3
Hydralazine
chronic hypertension and, 88, 91
for preeclampsia/eclampsia, 88
21-Hydroxylase deficiency, hirsutism and, 245
17-Hydroxylase progesterone, hirsutism and, 245, 246
Hymen, imperforate, 235, 236
Hyperbilirubinemia, in neonate, 101
Hyperemesis gravidarum, 72
Hyperpigmentation, 41
Hyperplasia
adrenal, in hirsutism, 245, 246
endometrial, 194, 247
squamous vulvar, 174
Hyperprolactinemia, as correctable anovulation cause, 234
Hyperstimulation, ovarian, 249
Hypertension
as abruptio placenta risk factor, 50
chronic, with/without superimposed preeclampsia, 89–91
as endometrial neoplasia risk factor, 192
in preeclampsia diagnosis, 86
in pregnancy, 85
Hyperthecosis, ovarian, 197
Hyperthyroidism, 95–96
Hypertonic bladder/incontinence, 166
Hypoblast layers, bilaminar germ disk with, 10
Hypocalcemia, in neonate, 101
Hypoglycemia
in acute fatty liver, 103
in neonate, 101
postpartum, in diabetic patient, 101
Hypoplasia
midfacial, 13
Müllerian, 186
Hypothalamic-pituitary (HP) axis failure, 236
gonadal dysgenesis vs., 235
in primary amenorrhea differential diagnosis, 237
Hypothyroidism, 96
as correctable anovulation cause, 234
Hypotonic bladder
overflow incontinence and, 167
postpartum, 143
Hypotonic incontinence, 167
Hysterectomy
cesarean, placenta previa and, 52
in dysfunctional uterine bleeding, 234
in endometrial carcinoma, 193
in endometriosis, 218
for leiomyoma uteri, 190, 191
MHT administration after, 254
types of, 156
uterine rupture and, 55
vaginal, in prolapse repair, 163
Hysterosalpingogram (HSG), 157, 249
in secondary amenorrhea, 238
Hysteroscopy, 156
leiomyoma uteri, 189
postmenopausal bleeding and, 193

I
Idiopathic hirsutism, 246
Idiopathic (constitutional) precocious puberty, 240, 241
IgG antibody screening
for parvovirus B–19, 61
for rubella, 60
IgG seropositivity, prevalence in pregnant women, 57
IgM antibody screening
for parvovirus B–19, 61
for Zika virus, 61
Imaging studies
in premenarchal vaginal bleeding, 232
snowstorm ultrasound, in GTN diagnosis, 206
imaging studies, in invasive cervical cancer, 184
Immunity, passive, 9, 257
Immunizations
for cervical dysplasia prevention, 186
postpartum, 60, 144
safe/unsafe during pregnancy, 42
Imperforate hymen, 235, 236
In vitro fertilization (IVF), 249, 250
Incisions, uterine, for cesarean delivery, 141
Incompetent cervix, 182
Incomplete abortion, 25, 26
Incomplete isosexual precocious puberty, 240
Incomplete mole, in benign GTN, 205
Incontinence. See Urinary incontinence
Indirect Coombs test, 44
alloimmunization and, 73
Indomethacin, for preterm delivery delay, 77, 78
Induced abortion
first-trimester methods for, 23, 24
prevalence, 23
second-trimester methods, 24
Inevitable abortion, 25, 26
Infant death, defined, 14
Infant mortality rate, defined, 15
Infants. See also Neonates
anticonvulsant effect on, 97
Infection
ascending, as PROM risk factor, 78
bacterial/parasitic. See specific organisms by name
as cesarean section risk, 141
perinatal. See Perinatal infections
viral. See specific viruses by name
Infectious agents, as teratogens, 12
Infectious mastitis, postpartum, 148
Infertility, 248–250
anovulation and, 249
defined, 248
hypothyroidism and, 96
invasive tests, 249
noninvasive tests, 248–249
ovarian reserve testing in, 250
PCOS and, 247
unexplained, 250
Infiltrating breast cancer
ductal, 261
lobular, 262
Inflammatory breast cancer, 262
Informed Consent/Refusal, HIV screening and, 45
Inherited coagulopathy, abnormal vaginal bleeding and, 233
Inherited thrombophilias, test for, 105
Inhibin-A, 47
In-hospital observation
 in abruptio placentae management, 51
 in placenta previa management, 52
Insulin, hPL and, 3
Insulin therapy, in antepartum glucose management, 99
Intellectual disability, 13, 17, 18
Intermittent auscultation, fetal outcome prediction and, 131
Internal devices, FHR monitoring, 132
Internal rotation, fetal head, 121
International Menopause Society, on MHT, 253–254
Intracranial calcifications, fetal, 59
Intracranial hemorrhage, fetal, as vacuum extractor risk, 140
Intrahepatic cholestasis, of pregnancy, 102–103
Intramural leiomyoma uteri, 188
Intramuscular (IM) administration, progestin-only contraceptive, 221
Intrapartum issues, fetal
death/demise, 26
pH assessment, 137
Intrapartum management
 in antiphospholipid syndrome, 107
 in diabetes mellitus, 100–101
 in heart disease, 95
 in multiple gestation, 73
 thrombophilies, 106
Intrathecal (high spinal) anesthesia, 130
Intratubal phase, postconception week 1, 9
Intrauterine contraceptive devices (IUDs), 222–223
 complications, 222–223
 contraindications, 222
 popularity of, 222
 postpartum placement, 144
Intrauterine growth restriction (IUGR), 3, 13
 antihypertensive drug therapy and, 90
 asymmetric, 110
 Doppler imaging in, 32
 in hyperthyroidism, 95
 preeclampsia and, 88
 symmetric, 109
 symmetrical, perinatal infections and, 58, 60, 68
Intrauterine insemination (IUI), 250
Intrauterine phase, postconception week 1, 10
Intrauterine pregnancy (IUP)
 early pregnancy bleeding and, 26
 ectopic pregnancy and, 29
Intrauterine pressure catheter (IUPC), 132
Intrauterine resuscitation, 136–137
Intrauterine surgery, as fetoscopy indication, 34
Intravenous (IV) administration
 of anesthetics during labor, 129
 fluid volume augmentation, in intrauterine resuscitation, 136
 magnesium sulfate. See Magnesium sulfate (MgSO₄)
Invasive cervical cancer, 184–185
 management by stage, 184
 microinvasive, 185
 staging of, 184
Inversion, uterine, 146
Involuntary bladder contractions, 165
Ionizing radiation, 12
Iron deficiency anemia, 101–102
Ischemia, uterine, in primary dysmenorrhea, 217
Ischemic stroke
 as MHT risk, 254
 WHI study findings, 253
Isotretinoin, 13
Itching, vulvar, 174
J
Jarisch-Herxheimer reaction, 67
K
Kallmann syndrome, 237
Karyotype/Karyotyping
 chorionic villous sampling and, 33
 fetal demise and, 27
 low MS-AFP and, 46
 in trisomy screening, 47
Kegel exercises, 162
Kidneys, 7. See also Renal entries
Kleihauer-Betke test, 27, 74
Klinefelter syndrome (47,XXY), 17, 18
Krukenberg tumors, 202
L
Labetalol
 chronic hypertension and, 88, 90, 91
 for preeclampsia/eclampsia, 88
Labor
abnormal, 125–126
anesthesia options during, 129–130
cardinal movements of, 121, 123
fetal monitoring modalities in, 131–132
induction methods for, 24
monitoring modalities in. See Electronic fetal monitoring (EFM); Fetal heart rate (FHR) monitoring
normal spontaneous, 124–125
obstetric complications during, 127–128
overview, 121
pain relief during, 129–130
prolonged. See Prolongation of labor
stages of, 122–124. See also Stages of labor
uterine contractions in. See Contraction
Labor curves, new vs. old data on, 122, 124
Laboratory tests
first trimester, 43–45
in second trimester, 45–47
in third trimester, 47–48
Lacerations
maternal, as obstetrics forceps use risk, 139
obstetrical, degrees of, 128
postpartum hemorrhage from, 145, 146
Lactate dehydrogenase (LDH), as tumor marker, 198, 202
Lactation, 9, 257
breast anatomy and, 8–9, 256
physiology of, 8–9
postpartum contraception and, 144, 224
Laminaria, 23
Landmarks, fetal head, 119
Laparoscopy, 157, 249
in ectopic pregnancy, 30
functional ovarian cyst and, 196
Large bowel, 6
Laryngoscopic visualization, of neonatal vocal cords, 83
AHA/AAP recommendations, 82, 83
Last menstrual period (LMP), 37
Late decelerations, in FHR, 114
defined, 134
electronic tracings, 136
Late pregnancy bleeding
abruptio placentae as cause of, 49–51
morbidly adherent placenta in, 52–53
overview of, 49
placenta previa as cause of, 51–52
uterine rupture and, 55
vasa previa in, 53–54
Latent phase of labor
in normal labor, 122–123
prolonged, in abnormal labor, 125
Latent syphilis, maternal, 65, 66
Lecithin/sphingomyelin (L/S) ratio, 100
Left ventricular filling, obstructed, 93
Left ventricular hypertrophy, chronic HTN and, 90
Leg cramps, 41
Leiomyomas
in adenomyosis differential diagnosis, 191
submucosal, 233
uterine, 188–191
Leukocyte count, 43
Levonorgestrol (LNG)
IUDs containing, 222, 223
“morning-after” pill, 222
Líbido, 225
Lichen sclerosis, vulvar, 174
Lie, fetal orientation in utero, 117
Lifestyle
osteoporosis management and, 252
in prenatal risk factor identification, 39
Lightening, in third trimester, 40
Liletta IUD, 223
Liley graph, 74
Limb reduction defects, 13
Linea nigra, 5, 41
Linear model, sexual response cycle, 225–226
Lithium, 13
Liver disease, pregnancy and, 102–103
Lochia, postpartum changes in, 143
Long-acting reversible contraception (LARCs), 223
Longitudinal fetal lie, 117
Loop electrosurgical excision procedure (LEEP), 155
Low molecular weight heparin (LMWH), 106
Low segment transverse uterine incision, for cesarean delivery, 141
Low-grade squamous intraepithelial lesion (LSIL), 180, 181, 182
LSIL, Pap smear classification, 180, 181, 182
Lungs. See Pulmonary system
Luteinizing hormone (LH), 230
secondary amenorrhea and, 237
Luteoma of pregnancy, 197
Lymph node status, breast cancer prognosis and, 261
Lymphadenectomy, for vulvar carcinoma, 175
Lymphatic drainage, 151
from breast, 256
Lymphogranuloma venereum (LGV), 210
Lynch syndrome, 192
Lysteda (tranexamic acid), for dysfunctional uterine bleeding, 234

M
Macrosomia/Macrosomia syndrome, 81, 110
Magnesium sulfate (MgSO₄)
for chronic HTN with superimposed preeclampsia, 91
in eclampsia/preeclampsia management, 88
for fetal neuroprotection, 76
for preeclampsia/eclampsia, 88
as tocolytic agent, 77
Magnesium toxicity, 74
Male external genitalia, 11
Malignant gestational trophoblastic neoplasia, 205–207
Malignant vulvar lesions, 174–175
Mammography
age at which to begin screening, 257
microcalcifications in, 259
Marfan syndrome, 94, 95
Marijuana, as teratogen, 12
Marsupialization, 173
Masculinization, signs of, 244
“Mask of pregnancy,” 41
Mastalgia, cyclic premenstrual, 258
Mastitis
infectious, postpartum, 148
inflammatory breast cancer mimicking, 262
Maternal age
chromosomal abnormalities and, 16
Down syndrome and, 17, 18
Maternal conditions
IUGR and, 109
macrosomia and, 110
PROM hazards and, 80
Maternal death, defined, 14
Maternal jeopardy, chronic HTN with superimposed preeclampsia and, 90
Maternal mortality/mortality ratio
cesarean section and, 141
defined, 15
in induced abortion, 23, 24
risk in cardiac disease, 94
Maternal position
cardiac output and, 5
intrauterine resuscitation and, 136
during labor, 124
Maternal pushing efforts, 123, 125
in abnormal labor, 126
contraindicated, approach to, 139, 140
Maternal-infant bonding, impaired, 143, 144
Maximum vertical pocket (MVP), amniotic fluid, 112
McCune-Albright syndrome, 241
McDonald cerclage, 70
Mean corpuscular volume (MCV), 43
Meconium, management in postterm pregnancy, 82
Meconium aspiration syndrome (MAS), preventing, 82–83
Median nerve, carpal tunnel syndrome and, 41
Medical abortion, 23
Medical history, in prenatal risk factor identification, 39
Medications, as teratogens, 12
Meigs syndrome, 204
Melanoma, vulvar, 174
Menarche, 229, 239, 240
Mendelian genetics, 20
 disorders associated with, 19–21
etiology of early pregnancy loss, 25
Menopausal hormone therapy (MHT), 253–254
administration, 254
benefits of, but not indications for use, 254
indications for use, 253
risks of, 254
Menopause, 4, 250–254. See also Postmenopausal period
clinical findings, 251
defined, 229, 251
hormone replacement/menopausal hormone therapy and, 252–254
osteoporosis and, 251–252
Menstrual cycle, 229
hormones in, 230–231
length of, calculated due date and, 37, 39
variations in, 38
Menstrual dating, 37
menstrual history and, 38
postterm pregnancy and, 81, 82, 83
Menstrual history, 38
Menstrual phase, endometrial, 229, 231
Menstruation
disorders of, 232–238
iron deficiency anemia and, 101
physiology of, 229–231
retrograde, 217
Mentum (chin) position, fetal delivery, 119
Mesoderm
formation, 10
layers, trilaminar germ disk with, 10
Mesonephric duct, 10
Metastasis, peritoneal, ovarian cancer with, 203, 204
Metastatic disease, in malignant GTN, 205, 206, 207
Metastatic tumors, ovarian, 202
Metastatic workup
in benign GTN, 207
in invasive cervical cancer, 184
Methotrexate (MTX)
in chemotherapy for GTN, 207
in ectopic pregnancy, 30
Methyl-dopa, chronic hypertension and, 88, 90, 91
MHA-TP (microhemagglutination assay for antibodies to T. pallidum), 44, 65, 66
Microcalcifications, in mammography, 259
Microcephaly, 13
Microinvasive cervical cancer, 185
Microscopic examination, vaginal discharge, 169
Microtia, 13
Micturition, continence and, 163
Middle cerebral artery (MCA), fetal, Doppler ultrasound studies, 74
Mifepristone, for medical abortion, 23
Migraine headaches, 41
Military attitude, fetal delivery, 119
Milk production. See Lactation
“Minipill,” 221
Minute ventilation (ve), 6
Mirena IUD, 223
Miscarriage. See Spontaneous abortion (miscarriage)
Misoprostol, for medical abortion, 23
Missed abortion, 25, 26
Mitrail stenosis, rheumatic, 93, 95
Mixed incontinence, 166
Modified biophysical profile, 113
Modified radical vulvectomy, 175
Molar pregnancy, 25, 205
incomplete, 16
theca lutein cysts and, 197
Molluscum contagiosum, 172
Monochorionic-diamnionic twin gestation, 71, 72
Monochorionic-monoamnionic twin gestation, 71, 72
Monosomy, 16
Monosomy X (Turner syndrome), 17, 18
Monozygotic twins, 71
risk factors, 70
Mood swings, in PMS/PMDD, 242
Morbidly, perinatal, interventions to decrease, 76–77
Morbidly adherent placenta, 52–53
“Morning after” pill, 222
Morning sickness, 41
Mortality risk/rates
maternal. See Maternal mortality/mortality ratio
perinatal, interventions to decrease, 76–77
postterm pregnancy, 81
termination for, 15
Mosaicism, 16
tissue biopsy and, 153
Motor urge bladder/incontinence, 166
Müllerian agenesis, 186, 236
androgen insensitivity vs., 235
in primary amenorrhea differential diagnosis, 236
Müllerian anomalies, 186–188
failure to dissolve septum, 187–188
failure to form, 186–187
failure to fuse, 187
staging of, 186
Müllerian duct, 10
Müllerian ducts, anomalies of, 186. See also Müllerian anomalies
Müllerian hypoplasia, 186
Müllerian inhibitory factor (MIF), 10
Multifactorial inheritance, 22
Multigravida, defined, 14
Multipara, defined, 14
Multiple gestation. See also Twin pregnancy
as placenta previa risk factor, 52
as vasa previa risk factor, 54
Multiple-agent chemotherapy. for GTN, 207
Multiples of the medium (MoM), MS-AFP and, 46
Murmurs, 5
Myomectomy
for leiomyoma uteri, 190, 191
as uterine rupture risk factor, 55

N
Nabothian cysts, 178
Naegle's rule, 38
Nail brittleness, 41
Naloxone, 129
Narrow-deep cone technique, 154
National Institutes of Health (NIH)
on elective cesarean delivery, 142
Women's Health Initiative, 252–253
Natural family planning, 223
Nausea, 41
Negative CST, 114
Neisseria gonorrhoeae, 212
Neonatal death, defined, 14
Neonatal mortality rate, defined, 15
Neonates
diabetic-associated problem management in, 101
hemolytic disease of, 73
infections and. See Perinatal infections
macrosomia and, 110
PROM-associated hazards and, 80
Neoplasia
cervical. See Cervical intraepithelial neoplasia (CIN);
Cervical neoplasia, in pregnancy
endometrial, 192–194
gestational trophoblastic, 205–207
vulvar, 174–175
Neural tube defects (NTD), 13, 22
as fetal defect in diabetic patient, 100
of fetus in diabetic patient, 100
MS-AFP screening for, 45–47
screening for, 34
Neuroprotection, fetal, 76
New York Heart Association (NYHA), functional classification
of heart disease in pregnancy, 94
Newborns. See Neonates
Nexplanon, 144, 221, 223
Nipple
bloody discharge from, 260
Paget disease of, 262
Nitrazine positive, PROM diagnosis criteria, 78, 79
Node-positive early breast cancer, 262–263
Nondisjunction, aneuploidy and, 16
Non-linear (relationship) model, sexual response cycle, 226–227
Nonoxynol-9, 220
Nonreactive NST, 111, 112
in biophysical profile, 113
Nonstress test (NST), 111–112
Normal 46,XX karyotype, benign GTN and, 205
Nosebleeds, 41
NSAIDs, for dysfunctional uterine bleeding, 234
Nuchal translucency (NT) measurement, 32, 35
Nucleic acid amplification test (NAAT), 212
Nulligravida, defined, 14
Nullipara, defined, 14
NuvaRing, 221

O
Obesity
as endometrial neoplasia risk factor, 192
as GDM risk factor, 97
Oblique fetal lie, 117
Observation
functional ovarian cyst and, 196
hospitalization for. See In-hospital observation
leiomyoma uteri and, 191
Obstetric forceps
classification, 139
indications for use, 139
vacuum extractor vs., 140
Obstetric history, in prenatal risk factor identification, 39
Obstetric lacerations, degrees of, 128
Obstetric procedures
invasive, 33–35
non-invasive, 31–33. See also Obstetric ultrasound
Obstetric ultrasound, 31–33, 35
genetic, 32
for gestational age, accuracy of, 31–32
indications for, 32
Occiput anterior position, fetal delivery, 119
Oligohydramnios, 71
Oophorectomy, 199
Operative obstetrics
cesarean section. See Cesarean section
defined, 139
external cephalic version, 142
forceps, 139
vacuum extractor, 140
Opt In/Out, HIV screening and, 45
Oral contraceptive pills (OCPs)
 combination forms, 221
 in GTN, 207
 in PCOS, 248
 progestin-only, 221–222
Oral glucose tolerance test (OGTT), 48, 98
Oral hypoglycemic agents, 99
Orgasm, 226
Orientation in utero, fetal, 117–120
Ornithine decarboxylase (ODC), 246
Ortho Evra, 221
Osteoporosis, 251–252
 MHT benefit and, 254
 WHI study findings, 253
Outflow tract obstruction, secondary amenorrhea, 237
Ovarian cancer
 classification of, 201–202
 overview of, 202
 with peritoneal metastasis, 203, 204
 staging of, 202–203
Ovarian failure, mosaicism and, 16
Ovarian hyperstimulation, 249
 controlled, 250
Ovarian hyperthecosis, 197
Ovarian reserve testing (ORT), 250
Ovarian tumors, hirsutism and, 245
Ovaries, 151
 endometrial carcinoma metastatic to, 202
 enlarged, in PCOS, 246, 247
 physiologic enlargement of, 195–197
 resistant ovary syndrome, 238
 torsion of, 200
Overflow incontinence, 167
Oviducts, 151
Ovulation
 day of, 38
 induction of, 249
 natural family planning and, 223
Oxygen, high-flow, in intrauterine resuscitation, 136
Oxytocin, 121, 123
 effect on breast, 9, 257
 lactation and, 9, 257
 in preeclampsia/eclampsia, 88

P
Paget disease
 of breast/nipple, 262
 malignant vulvar lesion in, 174
Pain
 epigastric, as pregnancy danger sign, 42
 pelvic. See Pelvic pain
 with urination, as pregnancy danger sign, 42
Pain relief, from contractions during labor, 129–130
Painful adnexal mass, 200
Palmar erythema, 4
PALM-COEIN classification, 234
Pap smear
 abnormal, 179–180
 diagnostic approach to, 181–183
 management, 183
 accelerated repeat, 181–182
 classification of, 180–181
 liquid-based, 153
 screening/performing of, recommendations for, 180
 specimen collection methods, 153
 specimens required for, 152–153
 traditional, 153
Paracervical block, 129
Paragard IUD, 223
Paramesonephric duct, 10
Parasympathetic connections, in sexual response cycle, 225
Parenteral agents, preterm delivery delay, 77
Parity, defined, 14
Partial seizures, 97
Parturient, defined, 14
Parvovirus B-19, 60–61
Passive immunity, 9, 257
Patau syndrome (trisomy 13), 18
Patient history
 family GDM and, 97
 in pregnancy risk factor identification, 39
 rape victims and, 228
 sexual history-taking in, 227
Peau d’orange, 262
Pelvic diaphragm, 161
Pelvic examination
 leiomyoma uteri and, 189
 in premenarchal vaginal bleeding, 232
Pelvic exenteration, for vulvar carcinoma, 175
Pelvic inflammatory disease (PID), 213–216
 acute, STDs causing, 211, 212
 chronic, 213, 216
 ectopic pregnancy and, 28, 29
 as IUD complication, 223
Pelvic mass
 differential diagnosis, 195, 198
 postmenopausal, 201–204
 postpartum, 148
 in precocious puberty, 241
 premenopausal, 199–200
 prepubertal, 197–198
Pelvic organ prolapse (POP), 161
Pelvic pain
 pelvic inflammatory disease, 213–216
 primary dysmenorrhea, 216–217
 secondary dysmenorrhea, 216, 217–218
Pelvis
 mass in. See Pelvic mass
 pain in. See Pelvic pain
 postpartum abscess in, 148
 relaxation of, 161–167. See also Urinary incontinence
Penicillin, in perinatal syphilis management, 66
Percutaneous umbilical blood sample (PUBS), 34, 35
 fetal blood type, 74
Perinatal death/loss, defined, 14
Perinatal infections
 coxsackie virus, 60
 cytomegalovirus, 62
 group B β-hemolytic streptococci, 57–58
 hepatitis B virus, 67–68
 herpes simplex virus, 62–63
 HIV, 64
 parvovirus B−19, 60–61
 rubella, 59–60
 syphilis, 64–67
 toxoplasmosis, 58–59
 varicella zoster, 59
 Zika virus, 61
Perinatal mortality/mortality rate, 15
Perinatal statistics, terminology for, 14
Perineal membrane, 161
Perineum
 lacerations to, degrees of, 128
 postpartum pain in, 143
 Periodic abstinence, 223
 Peripheral vascular resistance, 5
 Peritoneal metastasis, ovarian cancer with, 203, 204
 Persistent breast mass, 258, 260
 Pessaries, estrogen replacement, 162
 Petechiae, in neonatal CMV infection, 62, 68
 pH assessment
 fetal, 137
 vaginal, 169, 171
 Philtrum, long, 13
 Phocomelia, 13
 Phosphatidyl glycerol, 100
 Phyllodes tumor, 259
 Physiologic discharge, vaginal, 172
 Pituitary gland, 7
 Pituitary tumor, 238
 Placenta
 abnormally implanted, 51
 failure to deliver, 126
 function in postterm pregnancy, 81, 82
 IUGR and, 109, 110
 migration of, 51
 morbidly adherent, 52–53
 retained, 145, 146
 Placenta accreta, 52–53, 126
 Placenta increta, 52–53, 126
 Placenta percreta, 52–53, 126
 Placenta perfusion, asymmetric IUGR and, 110
 Placenta previa, 51–52
 Placental hormones, 3–4
 Placental insufficiency, FHR and, 134
 Placental invasion, 52–53
 Plasma volume, 5
 Plateau phase, 225
 Platelet count, 6, 43
 in third trimester, 48
 Pneumonia
 in neonate, GBS-induced, 58
 varicella, maternal, 59
 Polycystic ovarian syndrome (PCOS), 196, 247–248
 diagnostic criteria, 248
 hirsutism in, 246, 247, 248
 Polycythemia, in neonate, 101
 Polyhydramnios, 17, 22, 71
 Polyploidy, 16
 Polyps
cervical, 177–178
endometrial, 233
Pooling
positive, PROM diagnosis criteria, 79
posterior fornix, 78
Position
fetal, 119
maternal, during labor, 124
Positive CST, 114
Positive signs, of pregnancy, 37
Postconception period
teratogenesis in, 12
week 1, 9
week 2, 10
week 3, 10
weeks 4–8, 10
Postdates. See Postterm pregnancy
Posterior fornix pooling, 78
Postmenopausal period
bleeding in, endometrial neoplasia and, 192–194
clinical findings in, 251
HRT in, 252
pelvic mass in, 201–204
Postpartum issues
contraception planning, 144
fever, 146–148
gastrointestinal tract changes, 143
hemorrhage, 101, 145–146
immunizations, 60, 144
psychosocial problems, 144
reproductive tract changes, 143
urinary tract changes, 143
Postpartum management
in antiphospholipid syndrome, 107
in diabetes mellitus, 101
in heart disease, 95
in multiple gestation, 73
thrombophilies, 106
Postpartum period, fetal pH assessment in, 137
Postterm pregnancy, 80–83
defined, 81
management, 81–83
mortality rates, 81
Postural hypotension, 41
Pouch of Douglas, 162
PPD test, 45
Precocious puberty, 239–241
classification of, 240–241
complete isosexual, 240–241
incomplete isosexual, 240
management of, 241
Preeclampsia, 86–87, 89
with severe features, 87–88, 89
spectrum, 89
superimposed, chronic hypertension with/without, 89–91
Preeclampsia–Eclampsia spectrum, 89
Pregnancy
abnormal vaginal bleeding in, 232
anemia and, 101–102
cardiac disease in, 93
cervical neoplasia in, 185. See also Invasive cervical cancer
danger signs during, 42
diabetes mellitus in, 97–101
diagnosis, 37
eye, bleeding in, 25–26
ectopic. See Ectopic pregnancy
in endometriosis, 218
enlarged uterus as probable sign of, 37
FDA drug risk categories/information, 12–13
first trimester events in, 40
human genetics in, 15–16. See also Genetic disorders
IgG seropositivity prevalence in, 57
infections in. See Perinatal infections
late, bleeding in, 49. See also Late pregnancy bleeding
liver disease and, 102–103
luteoma of, 197
molar, 197, 205
normal complaints/events during, 40–41
physiologic changes in, 4–7
postterm, 80–83
prenatal risk factors and, identifying, 39
preterm delivery in, 78–80
safe/unsafe immunizations during, 42
second trimester events in, 40
secondary amenorrhea and, 237
signs of, 37
term categories, 81
test for, 238
third trimester events in, 40
urinary tract infection in, 104–105
Pregnancy loss, early, 25
Pregnancy prevention. See also Contraception; Oral contraceptive pills (OCPs)
 natural methods for, 223
 for rape victims, 228
 surgical techniques for, 224
Premalignant vulvar dermatosis, 174
Premature menopause
 defined, 251
 MHT benefit and, 253
Premature ovarian failure, 251
Premature rupture of membranes (PROM), 78–80
 as abruptio placentae risk, 50
 hazards associated with, 80
Premenarchal vaginal bleeding, 232
Premenopausal pelvic mass, 199–200
Premenstrual disorders, 241–244
Premenstrual dysmorphic disorder (PMDD), 241–242
 diagnosis of, 241–242
 management of, 243–244
Premenstrual mastalgia, cyclic, 258
Premenstrual syndrome (PMS), 241–242
 diagnosis of, 241–242
 management of, 243–244
Prenatal diagnostic testing, 35
Prepubertal pelvic mass, 197–198
Presentation, fetal orientation in utero, 118
 malpresentation, cesarean section and, 142
 operative obstetric classification, 139
Presumptive signs, of pregnancy, 37
Preterm birth (PTB)
 delivery categories, 75
 diagnosis and management for, 78
 hazards of, 75
 prevention of, 75
Preterm delivery
 categories, 75
 PROM hazards associated with, 80
Preterm labor, 74–78
 delivery and birth. See Preterm birth (PTB); Preterm delivery
 delivery categories, 75
 diagnosis, 76
 management of, 77
Primary amenorrhea, 234–237
Primary dysmenorrhea, 216–217
Primary herpes, maternal, 63
Primary syphilis, maternal, 65, 66
Primigravida, defined, 14
Primipara
 defined, 14
 preeclampsia in, 86
Probable signs, of pregnancy, 37
Products of conception (POC), 25, 26
Progesterone, 230
 antagonist, for medical abortion, 23
 corpus luteum and, 3, 4
 effect on breast, 9, 257
 function in pregnancy, 4
 hirsutism and, 245, 246
 lactation and, 9, 257
 in PMS/PMDD management, 243
 receptor status for, 261
Progesterone challenge test (PCT), 238
Progesterone trial, dysfunctional uterine bleeding and, 234
Progesterone-dominant endometrium, 230
Progestin-only contraception
 modalities, 221–222
 postpartum, 144
Progestins
 in management of dysfunctional uterine bleeding, 234
 metabolic effects mediated by, steroid contraception and, 220
Progestogen, estrogen plus, 254
Prolactin
 effect on breast, 9, 257
 lactation and, 9, 257
Prolapse
 pelvic organ, 161
 umbilical cord, 127
 uterine, 161, 162
 vaginal, 162–163
Proliferative phase, endometrial, 230, 231
Prolongation of labor
 in abnormal labor, 125, 126
 forceps use and, 139
 in normal labor, 123
 vacuum extractor use and, 140
Prophylaxis, for rape victims, 228
Prostaglandin(s)
 diffuse vasospasm and, 86
 diffuse vasospasm and, 86
Index

for induced labor, 24
labor and, 121
primary dysmenorrhea and, 217
Prostaglandin synthetase inhibitors, for preterm delivery delay, 77
Proteinuria
in chronic HTN with/without superimposed preeclampsia, 89
in preeclampsia diagnosis, 86, 87
Pseudohyphae, 171
Pseudomenopause, in endometriosis, 218
Pseudopregnancy, in endometriosis, 218
Psyche, menopausal symptoms and, 251
Psychic stimuli, in sexual response cycle, 225
Psychosis, postpartum, 144
Psychosocial issues/problems
following fetal demise, 27
postpartum, 144
Puberty
hormonal effects on breast during, 9
hormonal effects on female breast during, 255
normal landmarks in, 239
overview of, 239, 240
precocious. See Precocious puberty
Pudendal block, 129
Puerpera, defined, 14
Pulmonary angiography, 108
Pulmonary embolus (PE), 108
Pulmonary surfactant, enhancement in fetus, 76
Pulmonary system
changes during pregnancy, 6–7
metastasis from GTN and, 206
Punctuation tissues, 153
Pushing efforts, maternal, 123, 125
Pyelonephritis
acute, 104–105
postpartum, 148
Pyridoxine, in PMS/PMDD management, 244
Q
Quadruple-marker screen, 47, 100
Quickening, in second trimester, 40
R
Radiation therapy

for endometrial neoplasia, 193
for vulvar carcinoma, 175
Radical hysterectomy, 156
Radical vulvectomy, 175
Raloxifene, 254
Rape, 228
Rapid plasma reagin (RPR) test, 44, 65
Reactive NST, 111, 112
in biophysical profile, 113
Receptors
labor and, 121
status in breast cancer prognosis and, 261
Recipient twin, 71
Reciprocal translocations, 16
Recovery period, postpartum, 123, 125
Recreational drugs, as teratogens, 12
Rectocele, 161, 162
Recurrent herpes, maternal, 63
Red blood cells (RBCs), 6
fetal, maternal antibodies to, 73
Refractory phase, in sexual response cycle, 226
Renal changes/status
in antepartum overt diabetes management, 100
during pregnancy, 7
Renal disease
chronic HTN and, 90
screening for, in first trimester, 45
Reproductive cycle, hormone roles in, 3–4
Reproductive tract
anatomy, 151
postpartum changes in, 143
Reproductive tract, menopausal symptoms and, 251
Reserve volume, inspiratory and expiratory, 7
Residual volume
pulmonary, 6, 7
urine, 165
Resistant ovary syndrome, 238
Resolution phase, in sexual response cycle, 226
Respiratory alkalosis, 6
Respiratory distress syndrome, in neonate, 101
Respiratory droplets
rubella spread by, 60
VZV spread by, 59
Resuscitation, intrauterine, 136–137
Retained placenta, 145, 146
Retinal status, in antepartum overt diabetes management, 100
Retinopathy, chronic HTN and, 90
Retrograde menstruation, 217
Reversed diastolic flow, umbilical artery Doppler, 115
Rh factor, 44
alloimmunization and, 73–74
Rheumatic heart disease, 93
pregnancy management in, 95
RhoGAM
alloimmunization and, 74
in early pregnancy bleeding, 25
in ectopic pregnancy, 30
postpartum, 144
prophylactic administration of, 48
Robertsonian translocations, 17
Rosette test, 74
Rotation, fetal
in abnormal labor, 126
external, 121
Rotation, fetal head, during labor, 121
Rotterdam criteria, for PCOS diagnosis, 248
Rubella
congenital, 59–60, 68
eradication of, 60
postpartum immunization, 60, 144
Rubella IgG antibody, 43
seropositivity prevalence in, 57
Rupture, uterine, 55
Rupture of membrane (ROM)
as pregnancy danger sign, 42
premature, 78–80
Ruptured ectopic pregnancy, 29

S
Sacrum position, fetal delivery, 119
Safe immunizations, in pregnancy, 42
Salpingectomy, 30
Salpingo-oophorectomy, bilateral, 218
endometrial carcinoma and, 193
Salpingo-oophoritis, acute, 213, 214–215
Savage syndrome, 238
Scalp blood pH, fetal, 137
Scalp electrode, fetal, 132
Scalp stimulation, fetal
FHR acceleration and, 133
in intrauterine resuscitation, 137
Screening tests
cervical cultures, 44
for diabetes mellitus, 98
for inherited coagulopathy, 233
mammography, age at which to begin, 257
ovarian cancer and, 201
urine cultures, 45
Second trimester
laboratory tests in, 45–47
normal events in, 40
Secondary amenorrhea, 237–238
Secondary dysmenorrhea, 216, 217–218
Secondary sex characteristics, precocious puberty and, 239–241
Secondary syphilis, maternal, 65, 66
Second-stage arrest. abnormal labor, 126
Secretory phase, endometrial, 230, 231
Seizures/Seizure disorders
in eclampsia, 88
in pregnancy, 96–97
Selective estrogen receptor modulators (SERMs)
as estrogen alternative in MHT, 254
for osteoporosis, 252
Selective serotonin reuptake inhibitors (SSRIs)
for decreased sexual desire, 227
in PMS/PMDD management, 243
Semen analysis, 248–249
Sensation-of fullness volume, urinary bladder and, 165
Sentinel node (SLN) biopsy, 262
Sepsis, in neonate, GBS-induced, 57–58
Septate uterus, 187
Septic abortion, as IUD complication, 222
Septic thrombophlebitis, postpartum, 147, 148
Serotonin inhibition, in sexual response cycle, 225
Serous carcinoma, 201
Sertoli-Leydig tumor, 201
hirsutism and, 245
Serum ammonia, in acute fatty liver, 103
Serum glycoprotein, of embryo, 45–46
Serum β-hCG testing
in ectopic pregnancy, 29–30
in functional ovarian cyst diagnosis, 195
in GTN, 206, 207
in pregnancy diagnosis, 37
premenopausal pelvic mass and, 199
prepubertal pelvic mass and, 198
Sexual activity
in patient history-taking, 227
periodic abstinence from, as family planning method, 223
without consent (rape), 228
Sexual assault, 228
Sexual dysfunction, 227–228
Sexual history
in patient history, 227
in prenatal risk factor identification, 39
Sexually transmitted diseases (STDs). See also specific diseases
screening for, 44
spectrum of organisms in, 209
with ulcers, 209–210, 211
without ulcers, 210, 211–212
Sexually transmitted infections, perinatal, 62–68. See also specific infections
Sheehan syndrome, 52
Shirodkar cerclage, 70
Shoulder dystocia, 127
Shoulder presentation, 118
Shrinkage, of leiomyoma uteri
estrogen levels and, 189
presurgical, 190
Shunts, in utero, 7
Sickle cell anemia, 102
Simple partial seizures, 97
Single deepest pocket (SDP), amniotic fluid, 112
Single-agent chemotherapy, for GTN, 207
Singleton pregnancy, preterm delivery interventions, 75
Sinusoidal pattern, FHR, 134
Skin, changes during pregnancy, 4–5
Skin biopsy, fetal, 34
Skin patch, transdermal combination contraceptive, 221
Skyla IUD, 223
Snowstorm ultrasound, in GTN diagnosis, 206
Sonography. See Ultrasonography
Spatula, Pap smear specimen collection, 153
Specimens, from rape victims, 228
Speculum examination
contraindicated, 49
in early pregnancy bleeding, 25
in PROM diagnosis, 79
Spermicides, 220
Spider angioma, 4
Spina bifida, 22
Spinal block, 130
Spironolactone, in hirsutism management, 246
Spontaneous abortion (miscarriage), 16, 17, 20
completed, 25, 26
Spotting, in first trimester, 40
Squamous cell carcinoma
cervical, 180
vulvar, 174
Squamous cells, abnormal, in Pap smear classification, 180
Squamous dysplasia, vulvar, 174
Squamous hyperplasia, vulvar, 174
Stages of labor, 122–124
in abnormal labor, 125–126
in normal labor, 124–125
Staging
in adnexal mass with ascites, 204
in gynecologic malignancy, 207
in invasive cervical cancer, 184
in vulvar carcinoma, 175
Station, fetal head descent, 120
Stein-Leventhal syndrome. See Polycystic ovarian syndrome (PCOS)
Stenosis, cervical, 182
Sterilization, 224
Steroid contraception, 220–222
combination modalities, 221
contraindications, 220
noncontraceptive benefits, 220–221
progestin-only modalities, 221–222
Steroid synthesis, regulation of, 3
Stomach, 6
Streptomycin, 13
Stress incontinence, 41, 165
Stretch marks, 4, 41
Striae gravidarum (stretch marks), 4, 41
Stroke. See Ischemic stroke
Stromal tumors, ovarian, 201, 202
Subcutaneous implant, progestin-only contraceptive, 221
Subgaleal hematoma, 140
Submucosal leiomyoma
abnormal vaginal bleeding and, 233
uterine, 188, 189
Subserosal leiomyoma uteri, 188
Subtotal hysterectomy, 156
Subtotal thyroideotomy, 96
Suckling, physical stimulation of, 9, 257
Suctioning, of fetal nose and pharynx, 83
AHA/AAP recommendations, 82, 83
Superficial thrombophlebitis, 107
Superimposed preeclampsia, chronic hypertension with/without, 89–91
Surface antigen, hepatitis B virus (HBsAg), 44
Surfactant, pulmonary, enhancement in fetus, 76
Surgical history, in prenatal risk factor identification, 39
Surgical therapy, for endometrial neoplasia, 193
Sympathetic connections, in sexual response cycle, 226
Symptom diary, in PMS/PMDD, 241
Syphilis, 44
perinatal, 64–67
Systemic vascular resistance (SVR), 5

T
Tachycardia, 93
 FHR baseline, 132
Tamoxifen, 254
Tdap (tetanus, diphtheria, pertussis) immunization, 42
Telogen effluvium, 41
Teratogenesis, 12
Teratogens
 defined, 12
 exposure to, 39
 forms of, 12
Teratology, 12
Teratoma, benign cystic, 199
Terbutaline, for preterm delivery delay, 77, 78
Term pregnancy categories, 81
Terminal hair, 244
Tertiary syphilis, maternal, 65, 66
Testosterone
 hirsutism and, 245
 in PCOS, 246
 production of, 3
 in sexual response cycle, 225
 stimulation of, Wolffian duct and, 10
 as tumor marker, 202
Tetanus, diphtheria, pertussis (Tdap) immunization, 42
Tetracycline, 13
Tetralogy of Fallot, 93, 95
Tetraploidy, 16
Thalidomide, 13
Theca lutein cysts, 197
in GTN, 206
Thelarche, 239, 240
Third trimester
 laboratory tests in, 47–48
 normal events in, 40
Threatened abortion, 25, 26
Thromboembolism, 107
Thrombophilias, 105–106
Thrombophlebitis
 septic, postpartum, 147, 148
superficial, 107
Thyroid ablation, contraindicated, 96
Thyroid binding globulin (TBG), 95
Thyroid disease, in pregnancy, 95–96
Thyroid gland, 7
Thyroid storm, 96
Thyroidectomy, subtotal, 96
Thyrotropin (TSH) level, 238
Thyrotropin-releasing hormone (TRH), 238
Tidal volume (Vt), 6, 7
Tine test, 45
Tobacco, as teratogen, 12
Tocographic transducer, for contraction monitoring, 131
Tocolytic agents, 77
 contraindications for use, 76, 77, 78
Tonic-clonic seizures, 97
Torsion, ovarian, 200
Total body x-ray, fetal demise and, 27
Total hysterectomy/Total abdominal hysterectomy (TAH), 156
endometrial carcinoma and, 193
Touch, in sexual response cycle, 225
Toxoplasma gondii infection, congenital, 58
Toxoplasmosis, 58–59, 68
 seropositivity prevalence in, 57
Tranexamic acid (Lysteda), for dysfunctional uterine bleeding, 234
Transabdominal sonography, 32, 152
Transdermal skin patch, combination contraceptive, 221
Transformation zone (TZ)
 development of, 152
Pap smear of, 152
Transitory fetal bradycardia, 129
Translocations, 16–17
Transvaginal sonography, 32, 152, 193
Transverse fetal lie, 117
Treponema pallidum infection
perinatal, 64–67
screening for, 44
Trichomonas vaginitis, 170–171
Trilaminar germ disk, 10
Trimethadione, 13
Triploid 69,XXY karyotype, benign GTN and, 205
Triploidy, 16
Triploidy, 16
screening for, 47
Trisomy 13 (Patau syndrome), 18
Trisomy 18 (Edward syndrome), 18
screening for, 47
Trisomy 21 (Down syndrome), 17, 18
maternal age and, 16, 17
screening for, 47
Tubal disease, 249
Tubal ligation, 224
Tuberculosis (TB) screening, 45
Tubo-ovarian abscess (TOA), 213, 215–216
Tumor markers, for pelvic masses, 198, 202
Tumor size, breast cancer prognosis and, 261
Turner syndrome (45,X). See Gonadal dysgenesis (Turner syndrome)
Twin pregnancy, 3, 70–73
complications of, 70
management of, 72–73
preterm delivery interventions, 75
risk factors for, 70
theca lutein cysts and, 197
Twin-twin transfusion, 71
Twin-twin transfusion syndrome (TTTS), fetoscopy and, 34
Type 1 diabetes mellitus, 98
Type 2 diabetes mellitus, 98

U
Ulcers
painful, 210
STDs with, 209–210, 211
STDs without, 210, 211–212
Ultrasonography. See also Doppler ultrasound studies
cystic breast mass, 258
endometrial neoplasia, 193
functional ovarian cyst, 195–196
gynecologic, 152
submucosal leiomyoma uteri, 189
transabdominal, 32, 152
transvaginal, 32, 152, 193
visualization of fetus with, 37
Umbilical artery
blood pH in postpartum period, 137
Doppler studies, 115–116
Umbilical cord
compression of, FHR and, 134
entanglement, in multiple gestation, 72
prolapsed, 128
velamentous insertion of, vasa previa and, 54
Unexplained infertility, 250
Unexplained uterine hemorrhage, postpartum, 146
Unfractionated heparin (UFH), 106
Unicornuate uterus, 186–187
Universal precautions
in CMV-infected patients, 62
in HIV-infected patients, 64
Unruptured ectopic pregnancy, 30
Unsafe immunizations, in pregnancy, 42
Ureters, 7
Urge-to-void volume, urinary bladder and, 165
Urinalysis, 45
and culture, in urinary incontinence, 164
Urinary bladder
cystometric studies and, 164, 166, 167
normal voiding, 163
Urinary fistula, 167
Urinary incontinence, 163–167
classification, 175–177
evaluation, 164–165
pharmacology, 163–164
Urinary tract
menopausal symptoms and, 251
postpartum changes in, 143
Urinary tract infection (UTI)
postpartum, 147, 148
in pregnancy, 104–105
Urination, pain with, 42
Urine culture, 45
Urine culture, in urinary incontinence, 164
Urine screening, in first trimester, 45
Uterine contractions
Braxton-Hicks, 40
devices monitoring, 131, 132
during labor stages, 122, 123
Uterine contractions (Continued)
- pain relief from, 129–130
- preterm, 74
- in preterm labor diagnosis, 76
- stimulation of, 24

Uterine cramping, as pregnancy danger sign, 42

Uterine rupture, late pregnancy bleeding and, 55

Uterosacral ligament nodularity, in endometriosis, 217

Uterus
- abnormal bleeding from, 233–234
- anatomy, 151
- anomalies of. See Müllerian anomalies
- arcuate, 188
- atony of, 145, 146
- bicornuate, 187
- changes during labor, 121
- contraceptive devices for. See Intrauterine contraceptive devices (IUDs)
- contractions. See Uterine contractions
- DES, 188
- didelphys, 187
- disorders involving, 186–192
- enlarged, as probable sign of pregnancy, 37
- enlarged nonpregnant, 191
- incisions for cesarean delivery, 141
- inversion of, 146
- ischemic, in primary dysmenorrhea, 217
- perforation of, as IUD complication, 223
- prolapse of, 161, 162
- removal of. See Hysterectomy
- rupture of, 55
- septate, 187
- support for, 161
- T-shaped, 13
- tumors in, 188–192
- unicornuate, 186–187

V

Vaccinations. See Immunizations

Vacuum curettage, 23

Vacuum extractor, 140

Vagina
- anatomy, 151
- clear cell carcinoma of, 13
- discharge from, 169–172
- examination in intrauterine resuscitation, 137
- GBS colonization of, 58, 68
- prolapse of, 162–163
- Vaginal birth after cesarean (VBAC), 142
- Vaginal bleeding
 - abnormal, 232–234
 - as pregnancy danger sign, 42
 - premenarchal, 232
- Vaginal delivery
 - in abruptio placentae management, 51
 - after cesarean section, 142
 - for HIV-infected patients, 64
 - perinatal infections and, 68
- Vaginal diaphragm, 220
- Vaginal douche, 224
- Vaginal dryness
 - MHT benefit and, 253
 - WHI study findings, 253
- Vaginal fluid leakage, as pregnancy danger sign, 42
- Vaginal ring, combination contraceptive, 221
- Vaginismus, 228
- Vaginitis, yeast, 171
- Vaginosis, bacterial, 169–170, 171
- Valproic acid
 - PCOS and, 196
 - risk in pregnancy, 13
- Variable deceleration, in FHR
 - defined, 134
 - electronic tracings, 136
- Varicella zoster (VZV) infection
 - congenital, 59, 68
 - IgG seropositivity prevalence in, 57
 - maternal pneumonia and, 59
- Varicose veins, 41
- Vasa previa, 53–54
- Vascular engorgement, 225
- Vascular thrombosis, antiphospholipid syndrome and, 107
- Vasectomy, 224
- Vasomotor symptoms
 - MHT benefit and, 253
 - WHI study findings, 253
- Vasospasm
 - chronic HTN with/without superimposed preeclampsia and, 89
 - in eclampsia, 88
 - in preeclampsia, 86, 87
VDRL (venereal disease research laboratory) test, 44, 65, 66
Vellus hair, 244
Venereal disease research laboratory (VDRL) test, 44, 65, 66
Venous blood pressure, 5
Venous thromboembolism (VTE), 105
 as MHT risk, 253
Ventricular septal defect (VSD), 93, 95
Vertex attitude, fetal delivery, 119
Vertical transmission
 GBS infection, 58
 HBV infection, 44
 HIV infection, 64
 parvovirus B-19, 60–61
 rubella infection, 60
 syphilis, 65
 toxoplasmosis, 58
 Zika virus, 61
Virilization, 244, 245
Visceral injury, as cesarean section risk, 141
Visual changes, as pregnancy danger sign, 42
Vocal cords, neonatal, laryngoscopic visualization of, 83
 AHA/AAP recommendations, 83
Voiding, urinary incontinence and, 163
Voiding diary, 164
Vomiting
 as normal pregnancy event, 40
 persistent, as pregnancy danger sign, 42
Von Willebrand disease, 233
Vulva
 biopsy of, 159
 carcinoma of, 174–175
 diseases of, 172–175
Vulvar lesions
 benign, 172–173
 malignant, 174–175
 with pruritis/neoplasia, 173–174
Vulvectomy, 175
VZIG (varicella zoster immune globulin), 59
W
Warfarin, 106
 risk in pregnancy, 13
Waveform patterns, umbilical artery Doppler, 115–116
Western blot test, in HIV screening, 44, 45
 “Whiff” test, 169
White blood cells (WBC), 6
White diabetes classification, 98
White epithelium, 153
Wide-shallow cone technique, 154
Withdrawal method, family planning, 223
Wolffian duct, 10
Women's Health Initiative (WHI) study, 252–253
 limitations, 252
Word catheter, 172, 173, 212
Wound infection, post-cesarean, 147, 148
X
X-linked genetic disorders
 dominant, 20, 21
 recessive, 20, 21
X-ray, total body, fetal demise and, 27
Y
Y chromosome mosaicism, 251
Yaz (drospirenone/ethinyl estradiol), in PMS/PMDD management, 221, 243
Yeast vaginitis, 171
Z
Zidovudine (ZDV), for HIV-infected patients, 64
Zika virus, 61
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME), neither of which sponsors or endorses this product.

This publication is designed to provide accurate information in regard to the subject matter covered as of its publication date, with the understanding that knowledge and best practice constantly evolve. The publisher is not engaged in rendering medical, legal, accounting, or other professional service. If medical or legal advice or other expert assistance is required, the services of a competent professional should be sought. This publication is not intended for use in clinical practice or the delivery of medical care. To the fullest extent of the law, neither the Publisher nor the Editors assume any liability for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this book.

© 2019 by Kaplan, Inc.
Published by Kaplan Medical, a division of Kaplan, Inc.
750 Third Avenue
New York, NY 10017

All rights reserved. The text of this publication, or any part thereof, may not be reproduced in any manner whatsoever without written permission from the publisher.

10 9 8 7 6 5 4 3 2 1

Course ISBN: 978-1-5062-5510-1
Retail Kit ISBN: 978-1-5062-5508-8
This item comes as a set and should not be broken out and sold separately.

Kaplan Publishing print books are available at special quantity discounts to use for sales promotions, employee premiums, or educational purposes. For more information or to purchase books, please call the Simon & Schuster special sales department at 866-506-1949.
Editors

William G. Cvetnic, MD, MBA
Fellow of the American Academy of Pediatrics
Board Certified in Pediatrics and Neonatal-Perinatal Medicine
Jacksonville, Florida

Eduardo Pino, MD
Associate Professor, Department of Pediatrics
Marshall University School of Medicine
Medical Director, Hoops Family Children's Hospital
Cabell Huntington Hospital
Huntington, West Virginia
We want to hear what you think. What do you like or not like about the Notes?
Please email us at medfeedback@kaplan.com.
Table of Contents

Chapter 1: The Newborn ... 1
Chapter 2: Genetics/Dysmorphology 21
Chapter 3: Growth and Nutrition 31
Chapter 4: Development .. 43
Chapter 5: Behavioral/Psychological Disorders 49
Chapter 6: Immunizations .. 53
Chapter 7: Child Abuse and Neglect 63
Chapter 8: Respiratory Disease ... 69
Chapter 9: Allergy and Asthma .. 83
Chapter 10: Immune-Mediated Disease 93
Chapter 11: Disorders of the Eye 101
Chapter 12: Disorders of the Ear, Nose, and Throat 107
Chapter 13: Cardiology .. 115
Chapter 14: Gastrointestinal Disease 137
Chapter 15: Renal and Urologic Disorders 153
Chapter 16: Endocrine Disorders 165
Chapter 17: Orthopedic Disorders 177
USMLE Step 2 CK ● Pediatrics

Chapter 18: Rheumatic and Vasculitic Disorders 185
Chapter 19: Hematology ... 195
Chapter 20: Oncology ... 211
Chapter 21: Neurology ... 219
Chapter 22: Infectious Disease .. 237
Chapter 23: Adolescence ... 261
Index .. 267

Additional resources available at
www.kaptest.com/usmlebookresources
Learning Objectives

- Calculate an Apgar score
- Use knowledge of birth injuries to predict symptomology
- Demonstrate understanding of newborn screening, fetal growth/maturity, and neonatal infections

APGAR SCORE

A newborn infant at birth is noted to have acrocyanosis, heart rate 140/min, and grimaces to stimulation. She is active and has a lusty cry. What is her Apgar score?

Table 1-1. Apgar Scoring System

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>0 Points</th>
<th>1 Point</th>
<th>2 Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>0</td>
<td><100/min</td>
<td>>100/min</td>
</tr>
<tr>
<td>Respiration</td>
<td>None</td>
<td>Irregular, shallow, gasps</td>
<td>Crying</td>
</tr>
<tr>
<td>Color</td>
<td>Blue</td>
<td>Pale, blue extremities</td>
<td>Pink</td>
</tr>
<tr>
<td>Tone</td>
<td>None</td>
<td>Weak, passive</td>
<td>Active</td>
</tr>
<tr>
<td>Reflex irritability</td>
<td>None</td>
<td>Facial grimace</td>
<td>Active withdrawal</td>
</tr>
</tbody>
</table>

Apgar scores are routinely assessed at 1 and 5 minutes, and every 5 minutes thereafter as long as resuscitation is continuing.

- The 1-minute score gives an idea of what was going on during labor and delivery.
- The 5-minute score gives an idea of response to therapy (resuscitation).

In general, the Apgar score is not predictive of outcome; however, infants with score 0–3 at ≥5 minutes compared to infants with score 7–10 have a worse neurologic outcome.
Newborn Care
- Vitamin K IM
- Prophylactic eye erythromycin
- Umbilical cord care
- Hearing test
- Newborn screening tests

BIRTH INJURIES
On physical exam, a 12-hour-old newborn is noted to have nontender swelling of the head that does not cross the suture line. What is the most likely diagnosis?

Table 1-2. Common Injuries During Deliveries

<table>
<thead>
<tr>
<th>Injury</th>
<th>Specifics</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull fractures</td>
<td>In utero from pressure against bones or forceps; linear: most common</td>
<td>• Linear: no symptoms and no treatment needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Depressed: elevate to prevent cortical injury</td>
</tr>
<tr>
<td>Brachial palsy</td>
<td>Erb-Duchenne: C5–C6; cannot abduct shoulder; externally rotate and supinate forearm; Klumpke: C7–C8 ± T1; paralyzed hand ± Horner syndrome</td>
<td>Most with full recovery (months); depends on whether nerve was injured or lacerated; Rx: proper positioning and partial immobilization; massage and range of motion exercises; if no recovery in 3–6 mo, then neuroplasty</td>
</tr>
<tr>
<td>Clavicular fracture</td>
<td>Especially with shoulder dystocia in vertex position and arm extension in breech</td>
<td>Palpable callus within a week; Rx: with immobilization of arm and shoulder</td>
</tr>
<tr>
<td>Facial nerve palsy</td>
<td>Entire side of face with forehead; forceps delivery or in utero pressure over facial nerve</td>
<td>Improvement over weeks (as long as fibers were not torn); need eye care; neuroplasty if no improvement (torn fibers)</td>
</tr>
<tr>
<td>Caput succedaneum</td>
<td>Diffuse edematous swelling of soft tissues of scalp; crosses suture lines</td>
<td>Disappears in first few days; may lead to molding for weeks</td>
</tr>
<tr>
<td>Cephalohematoma</td>
<td>Subperiosteal hemorrhage: does not cross suture lines</td>
<td>May have underlying linear fracture; resolve in 2 wk to 3 mo; may calcify; jaundice</td>
</tr>
</tbody>
</table>
PHYSICAL EXAMINATION

A newborn infant has a blue-gray pigmented lesion on the sacral area. It is clearly demarcated and does not fade into the surrounding skin. What is the most likely diagnosis?

A newborn has a flat, salmon-colored lesion on the glabella, which becomes darker red when he cries. What is the best course of management?

<table>
<thead>
<tr>
<th>Table 1-3. Physical Examination—Common Findings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding/Diagnosis</td>
<td>Description/Comments</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
</tr>
<tr>
<td>Cutis marmorata</td>
<td>Lacy, reticulated vascular pattern over most of body when baby is cooled; improves over first month; abnormal if persists</td>
</tr>
<tr>
<td>Salmon patch (nevus simplex)</td>
<td>Pale, pink vascular macules; found in nuchal area, glabella, eyelids; usually disappears</td>
</tr>
<tr>
<td>Mongolian spots</td>
<td>Blue to slate-gray macules; seen on presacral, back, posterior thighs; > in nonwhite infants; arrested melanocytes; usually fade over first few years; differential: child abuse</td>
</tr>
<tr>
<td>Erythema toxicum, neonatorum</td>
<td>Firm, yellow-white papules/pustules with erythematous base; peaks on second day of life; contain eosinophils; benign</td>
</tr>
<tr>
<td>Hemangioma</td>
<td>Superficial: bright red, protuberant, sharply demarcated; most often appear in first 2 months; most on face, scalp, back, anterior chest; rapid expansion, then stationary, then involution (most by 5–9 years of age); Rx: beta blockers, embolization; deeper: bluish hue, firm, cystic, less likely to regress; Rx: (steroids, pulse laser) only if large and interfering with function</td>
</tr>
<tr>
<td>Head</td>
<td></td>
</tr>
<tr>
<td>Preauricular tags/pits</td>
<td>Look for hearing loss and genitourinary anomalies.</td>
</tr>
<tr>
<td>Coloboma of iris</td>
<td>Cleft at “six o’clock” position; most with other eye abnormalities; CHARGE association</td>
</tr>
<tr>
<td>Aniridia</td>
<td>Hypoplasia of iris; defect may go through to retina; association with Wilms tumor</td>
</tr>
<tr>
<td>Extremities</td>
<td></td>
</tr>
<tr>
<td>Polydactyly</td>
<td>>5 number of fingers or toes. No treatment needed if good blood supply.</td>
</tr>
</tbody>
</table>
NEWBORN SCREENING

A 1-month-old fair-haired, fair-skinned baby presents with projectile vomiting of 4 days’ duration. Physical exam reveals a baby with eczema and a musty odor. Which screening test would most likely be abnormal?

As per the American College of Medical Genetics, every newborn is screened for a core panel of 29 disorders, with an additional 25 recommended (Expanded Newborn Screening Program; varies per state).

- All states now use tandem mass spectrometry; typically done after 24–48 hrs of feedings prior to baby leaving the birth hospital
- With early discharge, may be performed at first postnatal visit (3–5 days) for improved accuracy
- In addition to a heel stick blood sample, current program also includes a hearing test and pulse oximetry for critical congenital heart disease.

Examples of the more common disorders in the expanded program include:
- Phenylketonuria, tyrosinemia type I, 21-hydroxylase deficiency, classic galactosemia
- HbS/β-thal, Hb SS, HbS/HbC
- Congenital hypothyroidism
- Cystic fibrosis

Table 1-4. Two Newborn Screening Diseases*

<table>
<thead>
<tr>
<th></th>
<th>Phenylketonuria (PKU)</th>
<th>Classic Galactosemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect</td>
<td>Phenylalanine hydroxylase; accumulation of PHE in body fluids and central nervous system</td>
<td>Gal-1-P uridylyltransferase deficiency; accumulation of gal-1-P with injury to kidney, liver, and brain</td>
</tr>
<tr>
<td>Presentation</td>
<td>Intellectual disability vomiting, growth retardation, purposeless movements, athetosis, seizures</td>
<td>Jaundice (often direct), hepatomegaly, vomiting, hypoglycemia, cataracts, seizures, poor feeding, poor weight gain, intellectual disability</td>
</tr>
<tr>
<td>Associations</td>
<td>Fair hair, fair skin, blue eyes, tooth abnormalities, microcephaly</td>
<td>Predisposition to E. coli sepsis; developmental delay, speech disorders, learning disabilities</td>
</tr>
<tr>
<td>Other comments</td>
<td>Normal at birth; gradual MR over first few months</td>
<td>May begin prenatally—transplacental galactose from mother</td>
</tr>
<tr>
<td>Treatment</td>
<td>Low PHE diet for life</td>
<td>No lactose—reverses growth failure, kidney and liver abnormalities and cataracts, but not neurodevelopmental problems</td>
</tr>
</tbody>
</table>

G-1-P, galactose-1-phosphate; PHE, phenylalanine

*Items in bold have a greater likelihood of appearing on the exam.
Hearing Loss

Pediatric hearing loss is more prevalent than diabetes mellitus and all childhood cancers. A universal newborn hearing screening is recommended prior to newborn discharge, with the goal of evaluating all hearing loss by age 3 months. Usually the otoacoustic emissions test (OAE) is used, where a small earphone/microphone is placed in the ear and sounds are played.

- If hearing is normal, an echo is reflected back into the ear canal and is measured by the microphone.
- If hearing is not normal (patient does not pass), newborns are given the auditory brainstem response test (ABR) (most accurate hearing measure through age 6 months). Sounds are presented through a small earphone, measured with head electrodes, and analyzed by a computer.
- Normal OAE: intact hearing through the cochlea
- Normal ABR: also establishes the integrity of the auditory nerve

As for the causes of hearing loss, up to 60% prelingual is genetic (>60 gene loci, >500 syndromes with hearing loss); 70-80% is autosomal recessive, with 50% having a defect in connexin 26 (a gap junction protein). Examples include Waardenburg syndrome (most common autosomal dominant condition with hearing loss), neurofibromatosis-2 (AD), Alport syndrome (AR).

Up to 25% are nongenetic and up to 25% are idiopathic. Examples include CMV (most common congenital cause; then other congenital infections); otitis media with effusion (OME) (most common childhood cause); bacterial meningitis, especially pneumococcus (occurs early and in >30%); trauma, especially to temporal bone; medication (aminoglycosides, loop diuretics, cisplatin); acoustic (loud music, especially with ear buds/phones; audiograms show high-frequency loss at 4,000 Hz).

FETAL GROWTH AND MATURITY

Table 1-5. Intrauterine Growth Restriction (IUGR)

<table>
<thead>
<tr>
<th>Type</th>
<th>Reason</th>
<th>Main Etiologies</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td>Early, in utero insult that affects growth of most organs</td>
<td>Genetic syndromes, chromosomal abnormalities, congenital infections, teratogens, toxins</td>
<td>Etiology dependent; delivery of oxygen and nutrients to vital organs usually normal</td>
</tr>
<tr>
<td>Asymmetric (head sparing)</td>
<td>Relatively late onset after fetal organ development; abnormal delivery of nutritional substances and oxygen to the fetus</td>
<td>Uteroplacental insufficiency secondary to maternal diseases (malnutrition, cardiac, renal, anemia) and/or placental dysfunction (hypertension, autoimmune disease, abruption)</td>
<td>Neurologic (asphyxia) if significant decreased delivery of oxygen to brain</td>
</tr>
</tbody>
</table>
Gestational Age and Size at Birth

<table>
<thead>
<tr>
<th>Preterm</th>
<th>Large for Gestational Age (LGA)—Fetal Macrosomia</th>
<th>Post-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Premature—liveborn infants delivered prior to 37 weeks as measured from the first day of the last menstrual period</td>
<td>• Birth weight >4,500 grams at term</td>
<td>• Infants born after 42 weeks’ gestation from last menstrual period</td>
</tr>
<tr>
<td>• Low birth weight (<2,500 grams), possibly due to prematurity, IUGR, or both</td>
<td>• Predisposing factors: obesity, diabetes</td>
<td>• When delivery is delayed ≥3 weeks past term, significant increase in mortality.</td>
</tr>
<tr>
<td></td>
<td>• Higher incidence of birth injuries and congenital anomalies</td>
<td></td>
</tr>
</tbody>
</table>

ENDOCRINE DISORDERS

Infants of Diabetic Mothers

You are called to see a 9.5-pound newborn infant who is jittery. Physical exam reveals a large plethoric infant who is tremulous. A murmur is heard. Blood sugar is low.

• Maternal hyperglycemia (types I and II DM) → fetal hyperinsulinemia
• Insulin is the major fetal growth hormone → increase in size of all organs except the brain
• Major metabolic effect is at birth with sudden placental separation → hypoglycemia
• Infants may be large for gestational age and plethoric (ruddy).
• Other metabolic findings: hypoglycemia and hypomagnesemia (felt to be a result of delayed action of parathyroid hormone)
• Common findings
 – Birth trauma (macrosomia)
 – Tachypnea (transient tachypnea, respiratory distress syndrome, cardiac failure, hypoglycemia)
 – Cardiomegaly—asymmetric septal hypertrophy (insulin effect, reversible)
 – Polycythemia (and hyperviscosity) → hyperbilirubinemia → jaundice
Renal vein thrombosis (flank mass, hematuria, thrombocytopenia) from polycythemia

Increased incidence of congenital anomalies
 - Cardiac—especially VSD, ASD, transposition
 - Small left colon syndrome (transient delay in development of left side of colon; presents with abdominal distention)
 - Caudal regression syndrome: spectrum of structural neurologic defects of the caudal region of spinal cord which may result in neurologic impairment (hypo, aplasia of pelvis & LE)

• Prognosis—Infants of diabetic mothers are more predisposed to diabetes and LGA infants are at increased risk of childhood obesity.
• Treatment—careful monitoring and glucose control during pregnancy + close monitoring of infant after delivery; early frequent feeds (oral, NG if hypoglycemia continues) followed by IV dextrose if euglycemia has not resulted

Clinical Recall

Which of the following is commonly seen in infants of diabetic mothers?

A. Microsomia
B. Small heart size
C. Polycythemia
D. Renal artery thrombosis
E. Slow respiratory rate

Answer: C

RESPIRATORY DISORDERS

Respiratory Distress

Respiratory

Respiratory distress syndrome

Nonrespiratory

Transient tachypnea of the newborn

Meconium aspiration syndrome

Cardiac: cyanotic CHD
Heme: anemia, polycythemia
Other: infectious, metabolic, neurologic

Pneumonia
Diaphragmatic hernia
Choanal atresia

Figure 1-1. Respiratory Distress
Respiratory Distress Syndrome (RDS)

Shortly after birth, a 33-week gestation infant develops tachypnea, nasal flaring, and grunting and requires intubation. Chest radiograph shows a hazy, ground-glass appearance of the lungs.

- Deficiency of mature surfactant (surfactant matures biochemically over gestation; therefore, the incidence of surfactant deficiency diminishes toward term.)
- Inability to maintain alveolar volume at end expiration → decreased FRC (functional residual capacity) and atelectasis
- Primary initial pulmonary hallmark is hypoxemia. Then, hypercarbia and respiratory acidosis ensue.

Diagnosis
- **Best initial diagnostic test**—chest radiograph
 - Findings: ground-glass appearance, atelectasis, air bronchograms
- **Most accurate diagnostic test**—L/S ratio (part of complete lung profile; lecithin-to-sphingomyelin ratio)
 - Done on amniotic fluid prior to birth
- **Best initial treatment**—oxygen
- **Most effective treatment**—intubation and exogenous surfactant administration
- **Primary prevention**
 - Avoid prematurity (tocolytics)
 - Antenatal betamethasone

Transient Tachypnea of the Newborn (TTN)

- Slow absorption of fetal lung fluid → decreased pulmonary compliance and tidal volume with increased dead space
- Tachypnea after birth
- Generally minimal oxygen requirement
- Common in term infant delivered by Cesarean section or rapid second stage of labor
- **Chest x-ray (best test)**—air-trapping, fluid in fissures, perihilar streaking
- Rapid improvement generally within hours to a few days

Meconium Aspiration

- Meconium passed as a result of hypoxia and fetal distress; may be aspirated in utero or with the first postnatal breath → airway obstruction and pneumonitis → failure and pulmonary hypertension
- **Chest x-ray (best test)**—patchy infiltrates, increased AP diameter, flattening of diaphragm
- Other complications—air leak (pneumothorax, pneumomediastinum)
Chapter 1 • The Newborn

- Prevention—endotracheal intubation and airway suction of depressed infants with thick meconium
- Treatment—positive pressure ventilation and other complex NICU therapies

Diaphragmatic Hernia
- Failure of the diaphragm to close → abdominal contents enter into chest, causing pulmonary hypoplasia.
- Born with respiratory distress and scaphoid abdomen
- Bowel sounds may be heard in chest
- Diagnosis—prenatal ultrasound; postnatal x-ray (best test) reveals bowel in chest
- Best initial treatment—immediate intubation in delivery room for known or suspected CDH, followed by surgical correction when stable (usually days)

GASTROINTESTINAL AND HEPATOBILIARY DISORDERS

See also GI chapter on this topic.

Umbilical Hernia
- Failure of the umbilical ring closure, weakness of abdominal muscles
- Most are small and resolve in 1-2 years without any treatment
- Surgery if getting larger after 1-2 years, symptoms (strangulation, incarceration), and/or persistent after age 4

Omphalocele
- Failure of intestines to return to abdominal cavity with gut through umbilicus
- Covered in a sac (protection)
- Associated with other major malformations and possible genetic disorders (trisomy)
- Large defects need a staged reduction (use of a surgical Silo), otherwise respiratory failure and ischemia

Gastroschisis
- Defect in abdominal wall lateral to umbilicus (vascular accident)
- Any part of the GI tract may protrude
- Not covered by a sac
- Major problem with the intestines: atresia, stenosis, ischemia, short gut
- Surgery based on condition of gut; if no ischemia, large lesions need a staged reduction as with omphalocele
Necrotizing Enterocolitis (NEC)
- Transmural intestinal necrosis
- Greatest risk factor is prematurity; rare in term infants
- Symptoms usually related to introduction of feeds: bloody stools, apnea, lethargy, and abdominal distention once perforation has occurred
- Pneumatosis intestinalis on plain abdominal film is pathognomonic (air in bowel wall)
- Treatment: cessation of feeds, gut decompression, systemic antibiotics, and supportive care; surgical resection of necrotic bowel may be necessary

Imperforate Anus
- Failure to pass stool after birth
- No anal opening visible
- Treatment is surgical correction.
- May be part of VACTERL association.

Jaundice
A 2-day-old infant is noticed to be jaundiced. He is nursing and stooling well. Indirect bilirubin is 11.2 mg/dL; direct is 0.4 mg/dL. Physical exam is unremarkable except for visible jaundice.

- Pathophysiology
 - Increased production of bilirubin from breakdown of fetal red blood cells plus immaturity of hepatic conjugation of bilirubin and elimination in first week of life
 - Rapidly increasing unconjugated (indirect reacting) bilirubin can cross the blood-brain barrier and lead to kernicterus (unconjugated bilirubin in the basal ganglia and brain stem nuclei). Hypotonia, seizures, opisthotonos, delayed motor skills, choreoathetosis, and sensorineural hearing loss are features of kernicterus.

<table>
<thead>
<tr>
<th>Table 1-6. Physiologic Jaundice Versus Pathologic Jaundice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiologic Jaundice</td>
</tr>
<tr>
<td>Appears on second to third day of life (term)</td>
</tr>
<tr>
<td>Disappears by fifth day of life (term)—7th</td>
</tr>
<tr>
<td>Peaks at second to third day of life</td>
</tr>
<tr>
<td>Peak bilirubin <13 mg/dL (term)</td>
</tr>
<tr>
<td>Rate of bilirubin rise <5 mg/dL/d</td>
</tr>
</tbody>
</table>

Note
Work up for pathologic hyperbilirubinemia when:
- It appears on day 1 of life
- Bilirubin rises >5 mg/dL/day
- Bilirubin >13 mg/dL in term infant
- Direct bilirubin >2 mg/dL at any time
The causes of hyperbilirubinemia with respect to bilirubin metabolism are as follows:

- **RBC metabolism**
 - Increased RBCs
 - Physiologic jaundice (healthy newborn [normal Hct 42–65])
 - Polycythemia (Hct >65)
 - **Increased RBC production**: Chronic hypoxia, IUGR, post-mature; IODM, Beckwith-Wiedemann syndrome (insulin effect); maternal Graves disease (transplacental antibodies); trisomies (unknown mechanism)
 - **Extra RBCs entering the circulation**: delayed cord clamping, twin-twin transfusion
 - **Treatment**: partial exchange transfusion with normal saline (dilutional)
 - Increased hemolysis
 - **Immune-mediated** (labs: high unconjugated bilirubin, may be anemia, increased reticulocyte count, **positive direct Coombs test**)
 - Rh negative mother/Rh positive baby: classic hemolytic disease of the newborn (erythroblastosis fetalis)
 - ABO incompatibility (almost all are type O mother and either type A or B baby): most common reason for hemolysis in the newborn
 - Minor blood group incompatibility (Kell is very antigenic; Kell negative mother), uncommon
 - **Non-immune mediated**: same as above but Coombs is negative; need to see blood smear
 - Smear shows **characteristic-looking RBCs**: membrane defect (most are either spherocytosis or elliptocytosis)
 - Smear shows **normal-looking RBCs**: enzyme defect (most are G6PD deficiency then pyruvate kinase deficiency)
 - Extravascular: excessive bruising, cephalohematoma

- Bilirubin is then bound to albumin and carried in the blood; bilirubin may be uncoupled from albumin in the bloodstream to yield free bilirubin, e.g. neonatal sepsis, certain drugs (ceftriaxone), hypoxia, acidosis.

- Bilirubin is transported to the hepatocytes: within the hepatocytes is the conversion of unconjugated (laboratory indirect-acting) fat-soluble bilirubin to conjugated (glucuronide) water-soluble bilirubin (laboratory direct-acting) by the action of **hepatic glucuronyl transferase (GT)**.
 - Decreased enzymatic activity of GT
 - Normal newborn first week of life
 - Primary liver disease of systemic disease affecting the liver (sepsis, TORCH, metabolic diseases)
 - No GT activity: Crigler-Najjar syndrome (type I)
Transport through the intrahepatic biliary system to the porta hepatis for excretion into
the duodenum; abnormalities of transport and excretion cause a conjugated (direct)
hyperbilirubinemia (>2 mg/dL direct-acting bilirubin in the blood in the newborn).

- Biliary atresia (progressive obliterative cholangiopathy): obstruction at birth due to
fibrosis and atresia of the extrahepatic ducts (and so no gall bladder); then variable
severity and speed of inflammation and fibrosis of the intrahepatic system which
ultimately leads to cirrhosis
 - Most present in first 2 weeks of life with jaundice (conjugated hyperbilirubinemia),
 poor feeding, vomiting, lethargy, hepatosplenomegaly, persistent acholic stools and
dark urine
 - Best initial test: U/S (triangular fibrotic cord at porta hepatis; no evidence of normal
ductal anatomy; no gallbladder
 - Most accurate test (next step): percutaneous liver biopsy (is pathognomonic for this
process)
 - Best initial treatment (palliative): hepatic portojejunostomy (Kasai procedure)
 - Best long-term management: liver transplant

- Liver disease (primary or secondary to systemic disease): cholestasis (sepsis, perinatal
infections, metabolic disease, neonatal hepatitis, severe hypothyroidism and others

- Intestinal transport and excretion: most bilirubin is eliminated in the stool with final
products synthesized with help of colonic bacteria; some bilirubin is eliminated in the
urine, some is reprocessed in the liver due to enterohepatic circulation (along with bile
acids); intestinal beta-glucuronidase hydrolyzes glucuronide-bilirubin bonds to yield
some unconjugated bilirubin, which is absorbed into the portal circulation and trans-
ported back to the liver to be acted upon by hepatic glucuronyl transferase

- Increased enterohepatic circulation
 - Intestinal obstruction
 - Decreased colonic bacteria (first week of life, prolonged antibiotics, severe diarrhea)

Clinical Recall
Which of the following is not a cause of hyperbilirubinemia?

A. Increased red blood cell production
B. ABO incompatibility
C. Biliary atresia
D. Increased activity of hepatic glucuronyl transferase
E. Decreased enterohepatic circulation

Answer: D
Breastfeeding Jaundice versus Breast-Milk Jaundice

Breastfeeding jaundice means a baby is not nursing well and so not getting many calories. This is common in first-time breastfeeding mothers. The infant may become dehydrated; however, it is lack of calories that causes the jaundice. Treatment is to obtain a lactation consultation and rehydrate the baby. The jaundice occurs in the first days of life.

Breast-milk jaundice occurs due to a glucuronidase present in some breast milk. Infants become jaundiced in week 2 of life. Treatment is phototherapy if needed. Although the bilirubin may rise again, it will not rise to the previous level. The baby may then be safely breast fed. The jaundice will be gone by 2–3 months.

- Treatment of hyperbilirubinemia
 - Phototherapy
 - Complications: loose stools, erythematous macular rash, overheating leading to dehydration, and bronze baby syndrome (occurs with direct hyperbilirubinemia; dark, grayish-brown discoloration of the skin [photo-induced change in porphyrins, which are present in cholestatic jaundice])
 - Double volume exchange transfusion—if bilirubin continues to rise despite intensive phototherapy and/or kernicterus is a concern
<table>
<thead>
<tr>
<th>Etiology</th>
<th>Reason for increased bilirubin</th>
<th>Hyperbilirubinemia</th>
<th>Hgb, Hct/ Reticulocytes</th>
<th>Other labs</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive bruising/ cephalohematoma</td>
<td>RBCs \rightarrow Hgb \rightarrow Bilirubin</td>
<td>Indirect</td>
<td>Normal to slightly low Hgb/Hct</td>
<td>Normal to slight increase in reticulocytes</td>
<td>Phototherapy</td>
</tr>
<tr>
<td>Immune hemolysis</td>
<td>Anti-Rh, anti-A, anti-B, anti-minor blood groups</td>
<td>Indirect</td>
<td>Low Hgb/Hct (anemia)</td>
<td>Increased reticulocytes</td>
<td>Rh negative mother and Rh positive baby</td>
</tr>
<tr>
<td>Polycythemia</td>
<td>High Hct, Hgb \rightarrow high bilirubin</td>
<td>Indirect</td>
<td>High (Hct >65)/ normal</td>
<td>Increased RBCs</td>
<td>Phototherapy + partial exchange transfusion</td>
</tr>
<tr>
<td>Non-immune hemolysis</td>
<td>Abnormal RBC \rightarrow splenic removal</td>
<td>Indirect</td>
<td>Low (anemia)/ increased</td>
<td>If no membrane defect \rightarrow G6PD, PK activity \rightarrow Characteristic RBCs if membrane defect \rightarrow Decreased RBCs</td>
<td>Phototherapy + transfusion</td>
</tr>
<tr>
<td>Displacement of bound bilirubin from albumin</td>
<td>Free bilirubin in circulation</td>
<td>Indirect</td>
<td>Normal</td>
<td>Treat underlying problem</td>
<td></td>
</tr>
<tr>
<td>Familial nonhemolytic hyperbilirubinemia</td>
<td>Absence of glucuronyl transferase (type I) vs. small amount of inducible GT (type II)</td>
<td>Indirect</td>
<td>Normal</td>
<td>GT activity</td>
<td>Phototherapy + exchange transfusion</td>
</tr>
<tr>
<td>Extrahepatic obstruction— biliary atresia</td>
<td>Bilirubin cannot leave the biliary system</td>
<td>Direct</td>
<td>Normal</td>
<td>Ultrasound, liver biopsy</td>
<td>Portojejunostomy, then later liver transplant</td>
</tr>
<tr>
<td>Cholestasis (TORCH, sepsis, metabolic, endocrine)</td>
<td>Abnormal hepatic function \rightarrow decrease bilirubin excretion</td>
<td>Direct</td>
<td>Normal</td>
<td>With H and P, other select labs suggestive of underlying etiology</td>
<td>Treat underlying problem</td>
</tr>
<tr>
<td>Bowel obstruction</td>
<td>Increased enterohepatic recirculation</td>
<td>Indirect</td>
<td>Normal</td>
<td>Relieve obstruction + phototherapy</td>
<td></td>
</tr>
<tr>
<td>Breastfeeding jaundice</td>
<td>Increased enterohepatic recirculation</td>
<td>Indirect</td>
<td>Normal</td>
<td>Phototherapy + hydration + teach breastfeeding</td>
<td></td>
</tr>
<tr>
<td>Breast milk jaundice</td>
<td>Increased enterohepatic recirculation</td>
<td>Indirect</td>
<td>Normal</td>
<td>Phototherapy + continued breastfeeding</td>
<td></td>
</tr>
</tbody>
</table>
INFECTIONS

Neonatal Sepsis

A 3-week-old infant presents with irritability, poor feeding, temperature of 38.9°C (102°F), and grunting. Physical examination reveals a bulging fontanel, delayed capillary refill, and grunting.

- Signs and symptoms are very nonspecific.
- Risk factors
 - Prematurity
 - Chorioamnionitis
 - Intrapartum fever
 - Prolonged rupture of membranes
- Most common organisms: group B Streptococcus, E. coli, and Listeria monocytogenes.
- Diagnosis—sepsis workup: CBC, differential and platelets, blood culture, urine analysis and culture, chest x-ray; lumbar puncture only for neonates with severe signs (lethargy, hypothermia, hypotonia, poor perfusion, apnea, abnormal neurological findings, or clinical deterioration from birth)
- Treatment
 - If no evidence of meningitis: ampicillin and aminoglycoside until 48–72-hour cultures are negative
 - If meningitis or diagnosis is possible: ampicillin and third-generation cephalosporin (not ceftriaxone)

Transplacental Intrauterine Infections (TORCH)

TORCH infections are typically acquired in first or second trimester. Most infants have IUGR.

Toxoplasmosis

Toxoplasmosis is a maternal infection worldwide, due primarily to ingestion of undercooked or raw meat containing tissue cysts. Ingestion of water or food with oocysts that have been excreted by infected cats (fecal contamination) is the most common form of transmission in the United States. Advise pregnant women not to change/clean cat litter while pregnant.

- Findings
 - Jaundice, hepatosplenomegaly
 - Thrombocytopenia, anemia
 - Microcephaly
 - Chorioretinitis
 - Hydrocephalus
 - Intracranial calcifications
 - Seizures

Note

In recent years studies have proven that in the first year of life, lumbar puncture reveals almost no cases of meningitis. Therefore, lumbar puncture should be reserved only for neonates with severe signs.

Note

Toxoplasmosis
Other (syphilis, varicella, HIV, and parvovirus B19)
Rubella
Cytomegalovirus (CMV)
Herpes
• Outcomes
 – Psychomotor retardation
 – Seizure disorder
 – Visual impairments
• Treatment—maternal treatment during pregnancy reduces the likelihood of transmission significantly (spiramycin)
 – Infants are treated with pyrimethamine, sulfadiazine, and leucovorin.

![Figure 1-3. Congenital Cataract Secondary to Maternal Rubella Infection](phil.cdc.gov)

Congenital rubella

• Classic findings when maternal infection occurs in first 8 weeks’ gestation.
• Findings
 – **Blueberry muffin spots** (extramedullary hematopoiesis), thrombocytopenia
 – Cardiac—PDA, **peripheral pulmonary artery stenosis**
 – Eye—**cataracts**
 – **Congenital hearing loss**
 – Thrombocytopenia
 – Hepatosplenomegaly
• Outcomes
 – Hearing loss
 – Persistent growth retardation
 – Microcephaly
 – Mental and motor retardation
Cytomegalovirus (CMV)
- Primary infection (higher risk of severe disease) or reactivation of CMV
- Findings
 - Hepatosplenomegaly, jaundice
 - Periventricular calcifications
 - Intrauterine growth retardation
 - Chorioretinitis
 - Microcephaly
 - Thrombocytopenia, hemolytic anemia
- Outcomes
 - Sensorineural hearing loss
 - Neuromuscular abnormalities
 - Intellectual disability

Herpes simplex
- Keratoconjunctivitis, skin (5–14 days), CNS (3–4 weeks), disseminated (5–7 days)
- Best diagnosis: PCR, any body fluid
- Best treatment: IV acyclovir ASAP
- Outcomes
 - Microcephaly, spasticity
 - Deafness
 - Blindness
 - Seizure disorder
 - Psychomotor retardation
 - Death
- Prevention is elective Cesarean section when active disease or visible lesions are identified; however, this is not 100% effective.
- Treatment—acyclovir

Congenital syphilis
- Transplacental transmission usually during second half of gestation
- At-risk infants must undergo serologic testing at the time of delivery.
- Findings
 - Early (birth–2 yrs): snuffles, maculopapular rash (including palms of soles, desquamates), jaundice, periostitis, osteochondritis, chorioretinitis, congenital nephrosis
 - Late (>2 years of age): Hutchinson teeth, Clutton joints, saber shins, saddle nose, osteochondritis, rhabades (thickening and fissures of corners of mouth)
- Diagnosis—Treponema in scrapings (most accurate test) from any lesion or fluid, serologic tests
 - Infant with positive VDRL plus pathognomonic signs; if not, perform serial determinations—increasing titer in infection
 - Most helpful specific test is IgM-FTA-ABS (immunoglobulin fluorescent treponemal antibody absorption) but it is not always positive immediately.
- Treatment—penicillin
Varicella

- Neonatal
 - Seen when delivery occurs <1 week before/after maternal infection
 - Treat with VZIG (varicella zoster immune globulin), if mother develops varicella 5 days before to 2 days after delivery.
- Congenital
 - Associated with limb malformations and deformations, cutaneous scars, microcephaly, chorioretinitis, cataracts, and cortical atrophy
 - Associated with infection during 1st or 2nd trimester

Many of the findings of the TORCH infections are very similar, so note the most likely presentations:

- Toxoplasmosis: hydrocephalus with generalized calcifications and chorioretinitis
- Rubella: the classic findings of cataracts, deafness, and heart defects
- CMV: microcephaly with periventricular calcifications; petechiae with thrombocytopenia; hepatosplenomegaly; sensorineural hearing loss
- Herpes: skin vesicles, keratoconjunctivitis, acute meningoencephalitis
- Syphilis: osteochondritis and periostitis; skin rash involving palms and soles and is desquamating; snuffles (mucopurulent rhinitis)

Clinical Recall

Which of the following TORCH infections is correctly matched to an associated finding?

A. Rubella: patent ductus arteriosus
B. CMV: maculopapular rash
C. Herpes simplex: chorioretinitis
D. Congenital syphilis: periventricular calcifications
E. Varicella: snuffles

Answer: A
SUBSTANCE ABUSE AND NEONATAL WITHDRAWAL

A 2-day-old infant is noticed to have coarse jitters and is very irritable with a high-pitched cry. A low-grade fever is reported, as well as diarrhea. Maternal history is positive for heroin use.

Table 1-8. Neonatal Features of Maternal Major Illicit Drug Use

<table>
<thead>
<tr>
<th>Opiates</th>
<th>Cocaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>High incidence low birth weight, most with intrauterine growth restriction</td>
<td>No classic withdrawal symptoms</td>
</tr>
<tr>
<td>Increased rate of stillborns</td>
<td>Preterm labor, abruption, asphyxia</td>
</tr>
<tr>
<td>No increase in congenital abnormalities</td>
<td>Intrauterine growth restriction</td>
</tr>
<tr>
<td>Early withdrawal symptoms, within 48 hours</td>
<td>Impaired auditory processing, developmental delay, learning disabilities</td>
</tr>
<tr>
<td>Tremors and hyperirritability</td>
<td>High degree of polysubstance abuse</td>
</tr>
<tr>
<td>Diarrhea, apnea, poor feeding, high-pitched cry, weak suck, weight loss, tachypnea, hyperacusis, seizures, others</td>
<td>Central nervous system ischemic and hemorrhagic lesions</td>
</tr>
<tr>
<td>Increased risk of sudden infant death syndrome</td>
<td>Vasoconstriction (\rightarrow) other malformations</td>
</tr>
</tbody>
</table>

- Diagnostic tests: a good history and the clinical presentation usually are sufficient to make the diagnosis. Meconium toxicology can detect opioid and cocaine exposure after the first trimester. Urine drug screening provides maternal drug use data for only a few days prior to delivery. Cord blood sample has become the best test for diagnosis.
- Treatment: narcotics, sedatives, and hypnotics, as well as swaddling and reducing noxious stimulation
- Complications: infants of addicted mothers are at higher risk for low birth weight, IUGR, congenital anomalies (alcohol, cocaine), and sudden infant death syndrome, as well as of mother’s complications, such as sexually transmitted diseases, toxemia, breech, abruption, and intraventricular hemorrhage (cocaine).
Learning Objectives

- Demonstrate understanding of chromosome abnormalities
- Solve problems concerning early overgrowth with associated defects, defects with facial features as the major defect, osteochondrodysplasias, and disorders of connective tissue
- Explain information related to unusual brain and/or neuromuscular findings with associated defects

ABNORMALITIES OF CHROMOSOMES

Trisomy 21 (Down Syndrome)

Down syndrome is the most common pattern of human malformation.

- Genetics
 - 94% full trisomy 21 (nondisjunction); risk of recurrence 1–2% and then increases with advancing maternal age
 - 4–6% with translocation; most are new mutations but must obtain parental karyotypes for possible balanced translocation carrier

- Findings
 - Upward slanting palpebral fissures; speckling of iris (Brushfield spots); inner epicanthal folds
 - Small stature, mouth open with tongue protrusion; mild microcephaly, short neck, flat occiput, short metacarpals and phalanges; single palmar crease
 - Hypotonia
 - Hearing loss (sensorineural, conductive, and mixed)
 - Primary gonadal deficiency
 - Cardiac anomaly—ECD > VSD > PDA, ASD; also MVP
 - GI anomalies: duodenal atresia, Hirschsprung
 - Atlanto-axial instability
 - Hypothyroidism
 - Acute lymphocytic leukemia (but acute myeloblastic leukemia if in first 3 years of life)
 - Intellectual disability, variable

Cardiac Abbreviations

ASD: atrial septal defect
ECD: endocardial cushion defect
MVP: mitral valve prolapse
PDA: patent ductus arteriosus
VSD: ventricular septal defect
• Natural history
 – Major cause for early mortality is congenital heart disease
 – Muscle tone improves with age
 – Rate of development slows with age
 – Early onset of Alzheimer disease

Trisomy 18 (Edwards Syndrome)
Edwards syndrome is the second most common pattern of human malformation.

• Genetics—older maternal age; nondisjunction
• Findings
 – Growth deficiency
 – Intellectual disability
 – Low-set, malformed ears; microcephaly, micrognathia; prominent occiput
 – Clenched hand—index over third; fifth over fourth
 – Short sternum
 – VSD, ASD, PDA, cyanotic lesions,
 – Rocker-bottom feet, hammer toe
 – Omphalocele

• Natural history
 – Many spontaneous abortions
 – Feeble from birth
 – Most do not survive first year

Trisomy 13 (Patau Syndrome)
Patau syndrome is a defect of midface, eye, and forebrain development → single defect in first 3 weeks’ development of prechordal mesoderm. It involves older maternal age.

• Findings
 – Holoprosencephaly and other CNS defects
 – Severe intellectual disability
 – Microcephaly; microphthalmia
 – Severe cleft lip, palate, or both
 – Scalp defects in parietal-occipital area (cutis aplasia)
 – Postaxial polydactyly
 – VSD, PDA, ASD, cyanotic lesions
 – Single umbilical artery

Aniridia–Wilms Tumor Association (WAGR Syndrome)

• Genetics
 – 1/70 with aniridia also has Wilms
 – WAGR syndrome: deletion of 11p13; Wilms + Aniridia + GU anomalies + MR
 – Have 45–60% chance of developing Wilms tumor
Klinefelter Syndrome (XXY)

- Genetics; most common findings manifested at puberty
- Findings
 - Decreased IQ (average IQ 85–90)
 - Behavioral/psychiatric problems
 - Long limbs (decreased upper:lower segment ratio)
 - Slim (weight/height ratio low)
 - Hypogonadism and hypogenitalism (testosterone replacement at age 11–12 years) = hypergonadotropic hypogonadism (increased FSH and LH, and decreased testosterone)
 - Infertility in almost all
 - Gynecomastia

Turner Syndrome (XO)

- Genetics
 - Generally sporadic; no older maternal age seen
 - Paternal chromosome more likely to be missing
 - Many mosaic patterns (including Y-chromatin)
- Findings
 - Small-stature female
 - Absence of one SHOX gene (short stature homeobox; embryonic regulation of skeletal system, especially arms and legs)
 - Abnormal GH–IGF receptor axis
 - Gonadal dysgenesis–streak ovaries in XO
 - Average IQ 90
 - Congenital lymphedema, residual puffiness over dorsum of fingers and toes
 - Broad chest, wide-spaced nipples
 - Low posterior hairline; webbed posterior neck
 - Cubitus valgus (elbow) and other joint problems
 - Horseshoe kidney and other renal defects
 - Cardiac:
 - Bicuspid aortic valve (number 1 cardiac anomaly)
 - Coarctation (Turner syndrome is the condition in which this is seen most often, but it is not the most common cardiac condition in Turner syndrome)
 - Aortic stenosis, mitral valve prolapse
 - Hypertension common, even without cardiac or renal disease
 - Primary hypothyroidism, mostly autoimmune, and other autoimmune diseases (celiac disease)
- Natural history
 - Decreased height velocity with delayed bone age
 - Estrogen treatment indicated
 - May increase height by 3–4 cm with growth hormone (GH)

Note
Gonadal dysgenesis is not evident in childhood, so chromosomes are warranted in any short-stature female whose phenotype is compatible with Turner syndrome.
Also consider in any adolescent with absent breast development by age 13, pubertal arrest, or primary/secondary amenorrhea with increased FSH.
Fragile X Syndrome

• Genetics
 – Fragile site on long arm of X in affected males and some carrier females—
 Molecular diagnosis—variable number of repeat CGG (preferred diagnosis =
 DNA-based molecular analysis)
 – With the genetic mutation, can get trinucleotide expansion during meiosis to a
 premutation state (50-200 repeat CGG); this is passed on to progeny and may
 then further expand to the full mutation (>200 CGG); then, epigenetic methyla-
 tion occurs → gene silencing → protein inactivation = full syndrome. More
 likely meiotic expansion in future generations = genetic anticipation
 – X-linked dominant—males (most common cause of inherited intellectual
 disability); due to lyonization (random inactivation of one X), there are generally
 fewer abnormalities seen in girls but they may present with decreased IQ
 – There is no meiotic expansion in males; can only pass premutation to daughters

• Findings
 – Mild to profound intellectual disability; learning problems; anxiety, depression,
 and autistic-like behaviors
 – Large ears, dysmorphic facial features, large jaw, long face
 – Large testes—mostly in puberty (macroorchidism)(fertile)
 – Natural history—normal lifespan

EARLY OVERGROWTH WITH ASSOCIATED DEFECTS

Beckwith-Wiedemann Syndrome

• Genetics
 – Usually sporadic
 – IGF-2 disrupted at 11p15.5 (imprinted segment)
• Findings
 – Macrosomia
 – Macroglossia—may need partial glossectomy
 – Pancreatic beta cell hyperplasia—excess islets → hypoglycemia; hypoglycemia
 may be refractory; glucose control most important initial management
 – Umbilical abnormalities, diastasis recti, omphalocele
 – Hemihypertrophy → increased risk of abdominal tumors (Wilms)
• Management—obtain ultrasounds and serum AFP every 6 months through 6
 years of age to look for Wilms tumor and hepatoblastoma

UNUSUAL BRAIN AND/OR NEUROMUSCULAR FINDINGS WITH
ASSOCIATED DEFECTS

Prader-Willi Syndrome

• Genetics
 – Most with deletion at 15q11-q13—imprinted segment
 – Paternal chromosome responsible
The same deletion causes both Prader-Willi and Angelman syndromes. This may be due to the normal process of imprinting, which is epigenetic (change in the chromatin and not the gene sequence) silencing (due to hypermethylation) of certain genes in either the male or female germ cells. The alleles in the opposite germ line are expressed and therefore in the zygote this results in monoallelic gene expression so that for any imprinted segment there is a functional haploid state. It is established in the germ line and maintained in all somatic cells.

- If the deletion occurs in the male germ cell, then the inheritance is from the only expressed genes, which are maternal. This is Prader-Willi syndrome.
- If the deletion occurs in the female germ cell, then the inheritance is from the only expressed genes, which are paternal. This is Angelman syndrome.

- Negligible recurrence risk

Findings
- First year, difficulty feeding with poor growth; then, increased feeding and weight gain plus slow height attainment (short stature)
- Obesity—onset from 6 months to 6 years
- Mild to severe intellectual disability
- Food-related behavioral problems (binge eating)
- Small hands and feet, puffy; small genitalia
- Hypothalamic—pituitary dysfunction (growth, thyroid, adrenal) hypogonadotropic-hypogonadism
- Natural history—decreased life expectancy relative to morbid obesity

Angelman Syndrome (Happy Puppet Syndrome)
- Genetics—also deletion of 15q11-q13, but maternally derived (imprinted segment)
- Findings
 - Severe MR
 - Paroxysms of inappropriate laughter
 - Absent speech or <6 words (100%); most can communicate with sign language
 - Ataxia and jerky arm movements resembling a puppet’s movements (100%)
 - Seizures—most at age 4 years, may stop by age 10

FACIAL FEATURES AS THE MAJOR DEFECT

Robin Sequence (Pierre Robin)
- Mandibular hypoplasia in utero → posteriorly placed tongue → posterior palatal, shelves → cleft palate and other palatal abnormalities
- Isolated finding or associated with some syndromes/malformations—fetal alcohol syndrome, Edwards Syndrome
- Findings
 - Micrognathia
 - Retroglossia → possible airway obstruction
 - Cleft soft palate and other abnormalities
- Jaw growth over first years of life if it results from a deformation; if part of a malformation syndrome, then it is a fixed finding
OSTEOCHONDRODYSPLASIAS

Achondroplasia/Hypochondroplasia

- Genetics: autosomal dominant; most common short-limb dwarfism; 90% from new gene mutation; older paternal age; mutations in gene for fibroblast growth factor receptor 3 at 4p16.3 (FGFR3)
- Findings
 - Short stature (increased upper-to-lower segment ratio; short-limbed dwarfism)
 - Proximal femur shortening
 - Megaloccephaly, small foramen magnum (may have hydrocephalus), small cranial base, prominent forehead
 - Lumbar lordosis
- Natural history
 - Normal intelligence
 - Spinal cord compression is rare (cervicomedullary junction); usually occurs in first year of life
 - Tendency of late childhood obesity
 - Small eustachian tube—otitis media and hearing loss
 - Early cervical compression, respiratory problems, obstructive and central apnea, later cardiovascular disease

CONNECTIVE TISSUE DISORDERS

Marfan Syndrome

- Genetics: autosomal dominant with wide variability; mutation in fibrillin gene (FBN1)—15q21.1
- Findings
 - Early rapid growth of the appendicular skeleton and anterior ribs
 - Major findings are skeletal, cardiovascular, and ocular
 - Tall stature with long, slim limbs and little fat
 - Arm span > height
 - Arachnodactyly
 - Decreased U:L segment ratio (as with XXY)
 - Joint laxity with kyphoscoliosis
 - Pectus excavatum or carinatum
 - Lens subluxation (upward; defect in suspensory ligament); secondary glaucoma, myopia, retinal detachment
 - Ascending aortic dilatation with or without dissecting aneurysm (uncommon in children and adolescents unless case is severe) with secondary aortic regurgitation. Mitral valve disease (MVP and regurgitation) is the most common in children.
- Natural history
 - Prevent scoliosis
 - Vascular complications chief cause of death
 - Evaluate heart and aorta
Ehlers-Danlos Syndrome

- Genetics: type I most common (now 6 types); autosomal dominant with wide variability
- Findings
 - Droopy ears
 - Hyperextensible skin, fragile, easy bruisability, poor wound healing
 - Joint hyperlaxity; tendency toward hip, shoulder, knee, and clavicular dislocation
 - MVP, tricuspid valve prolapse, aortic root dilatation; dissecting aneurysm, ASD
 - Blue sclera, myopia, glaucoma, ectopia lentis, retinal detachment
 - Intracranial aneurysm

Osteoporosis

Osteomalacia is undermineralization of normal bone volume, while osteoporosis is normal mineralization but a decrease in bone volume, especially trabecular (vertebral). By definition, with osteoporosis there is also osteopenia, a decreased amount of total bone tissue. It is associated with pathological (atraumatic) fractures.

- Primary osteoporosis: heritable connective tissue disorders
- Secondary osteoporosis: neuromuscular disorders, chronic illness, endocrine disorders, drug-induced, inborn errors of metabolism

Primary Osteoporosis in Children

<table>
<thead>
<tr>
<th>Disease</th>
<th>Defect</th>
<th>Genetics</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteogenesis imperfecta</td>
<td>Structural or quantitative defect of type I collagen, the primary component of the extracellular matrix of bone and skin</td>
<td>• Autosomal dominant: all racial and ethnic groups</td>
<td>Most common genetic cause of osteoporosis</td>
</tr>
<tr>
<td>Ehlers-Danlos syndrome</td>
<td>Quantitative deficiency of fibrillar collagen (collagen molecules packed together to form long, thin fibrils)</td>
<td>Four autosomal dominant types and 2 autosomal recessive</td>
<td>One AD type, vascular has decreased longevity</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>Mutations in the gene (FBN1) encoding for the extracellular matrix protein fibrillin-1, the major constituent of microfibrils</td>
<td>Autosomal dominant</td>
<td>Mostly skeletal, ocular and cardiovascular findings</td>
</tr>
<tr>
<td>Homocystinuria</td>
<td>Classic form: cystathionine-β-synthase deficiency: increase of both methionine and homocysteine in body fluids and decrease to absence of plasma cystine</td>
<td>Autosomal recessive</td>
<td>Phenotype similar to Marfan syndrome but some differences</td>
</tr>
<tr>
<td>Polyostotic fibrous dysplasia (McCune-Albright syndrome)</td>
<td>Postzygotic activating mutation causing overproduction of endocrine protein products independent from normal feedback control; precocious puberty with polyostotic fibrous dysplasia and café-au-lait spots</td>
<td>Noninherited; 2x more in girls</td>
<td>Other endocrinopathies due to overproduction (pituitary, thyroid, adrenal)</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL AGENTS

<table>
<thead>
<tr>
<th>Embryopathy</th>
<th>Major Findings</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Fetal alcohol | • **Neurobehavioral and developmental abnormalities** (in worst cases, intellectual disability)
• **Mid-face dysmorphia** (from abnormal frontal lobe development): short palpebral fissures, maxillary hypoplasia, short and smooth philtrum and indistinct philtrum-vermillion border
• **Pre and postnatal growth deficiency**: symmetric IUGR then short stature, slow growth, and acquired microcephaly
• **PLUS** in worse cases: cardiac and joint anomalies | Most common teratogen; may not have a maternal history, so must make diagnosis by first 3 listed findings |
| Fetal hydantoin | IUGR, hypertelorism; flat, broad nasal bridge and hypertelorism, short nose, cleft lip and palate, malformed ears, web neck, hirsutism, congenital heart disease | Similar features with carbamazepine, primidone and phenobarbital; no dose-response relationship |
| Fetal valproate | Neural tube defects, prominent metopic ridge, cleft lip and palate, radial defects, hypospadias, congenital heart disease, absence of first rib | |
| Fetal warfarin | Nasal hypoplasia, microphthalmia, microcephaly, Dandy-Walker malformation, intellectual disability, scoliosis, congenital heart disease | |
| Retinoic acid | Affects neural crest and branchial arch development: microtia, anotia; hypertelorism, flat, depressed nasal bridge, intellectual disability, learning problems, conotruncal anomalies | • All treated females must take a pregnancy test, use definitive method of birth control plus 1 back-up method, receive counseling about teratogenicity; no problems if stopped prior to 15th postmenstrual day
• Also obtain baseline liver tests and lipid panel |

Clinical Recall

A newborn girl found to be small for gestational age has wide-spaced eyes, increased body hair, and a ventricular septal defect on echocardiography. What was she most likely exposed to in utero?

A. Valproic acid
B. Phenytoin
C. Warfarin
D. Retinoic acid
E. Alcohol

Answer: B
MISCELLANEOUS SEQUENCES

Potter Sequence
- **Etiology**
 - Renal agenesis/dysgenesis or other type of urinary tract defect must occur prior to 31 days' gestation → oligohydramnios (also from chronic leakage)
 - Leads to fetal compression (mid-face, ears)
 - Lack of alveolar sac development → pulmonary hypoplasia
- **Findings**
 - Pulmonary hypoplasia
 - Potter facies—hypertelorism, epicanthal folds, low-set flattened ears, micrognathia, compressed flat nose
 - Breech presentation
 - Abnormal positioning of hands and feet; deformations, limb anomalies
 - Death from respiratory insufficiency (hypoplasia)

MISCELLANEOUS ASSOCIATIONS

VACTERL Association
- Nonrandom association of
 - V = Vertebral defects
 - A = Anal atresia (imperforate anus)
 - C = Cardiac defects (VSD and others)
 - T = TE fistula
 - E = Esophageal atresia
 - R = Renal defects
 - L = Limb defects (radial)

CHARGE Syndrome
Most cases now known to be caused by a mutation in CHD7 gene (8q12.2), which provides instructions for making a protein that regulates chromatin remodeling. When this is the cause, it follows autosomal dominant inheritance; a small number have no known cause or inheritance pattern.
- Nonrandom association of
 - C = Coloboma (from isolated iris to anophthalmos; retinal most common)
 - H = Heart defects (TOF, PDA, and others)
 - A = Atresia choanae
 - R = Retardation of growth and/or development
 - G = Genital hypoplasia (in males)
 - E = Ear anomalies and/or deafness

Note
U/S is necessary for the parents/siblings of patients with oligohydramnios secondary to agenesis and/or dysgenesis of both kidneys. This is because 9% of first-degree relatives have asymptomatic malformations.
Learning Objectives

- Demonstrate steps in evaluation of growth
- Solve problems related to breastfeeding, feeding of solids, and other feeding issues
- Answer questions related to growth disorders

CHILDHOOD GROWTH

Basic Principles of Growth

In the first week of life, a newborn typically loses up to 10% of birth weight (BW) due to the elimination of large amounts of extravascular fluid. By 2 weeks, BW should be regained or surpassed. In the first month of life, a neonate should gain ~30 grams (1 oz) per day, which slows to ~20 grams/day at 3–4 months.

- By 6 months, an infant typically doubles BW, and by 1 year, triples BW.
- Growth rate slows further between 6 and 12 months and then appetite begins to decline through 18 months of age.
- Then height and weight increase at a steady rate, but head-circumference rate of growth decreases somewhat (2–5 years).
- Between age 6 and 12 years: 3–6 growth spurts each year for 8-week periods each; slower brain growth; myelination complete by age 7
- Between age 10 and 20 years: acceleration in early adolescence. Boys’ highest growth stops at age 18. Their average peak is 13.5 years (2–3 years later than girls, and continues 2–3 years after girls have stopped). Girls’ average peak is 11.5 years and it stops at age 16.

Assessment of Growth

- A child is genetically programmed to stay on 1–2 growth curves after age 2 years.
- The height percentile at age 2 years correlates with final adult height percentile.
- Low-birth-weight and very-low-birth-weight infants may continue to show catch-up growth through early school age.
- Weight/height <5th percentile is the single best growth curve indicator for acute malnutrition. In nutritional insufficiency, weight decreases before length, and weight/height
is low. For causes of decreased linear growth, length decreases first or at the same time as weight (e.g., GH deficiency).

- BMI is accepted as best clinical indicator for measure of under- and overweight.
- For bone age-reference standards, use radiographs of left hand and wrist. Skeletal maturity is linked more to sexual maturity than chronologic age.

Growth Patterns

The growth chart is the best tool to determine patterns of growth, with separate charts for boys and girls. The charts measure weight for age, height for age, head circumference for age, weight for height, and body mass index (BMI). Each chart has multiple curves (either 5–95% or 3–97%).

Evaluation of Growth

- Growth velocity (GV): yearly increments of growth; should follow a growth curve
 \[\text{slope} = \frac{\text{change in height}}{\text{change in age}} \]
- Chronologic age (CA): actual age
- Bone age (BA): x-ray of left hand and wrist (non-dominant hand)

Table 3-1. Growth Velocity

<table>
<thead>
<tr>
<th>Bone age = chronological age</th>
<th>Normal</th>
<th>Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ideal</td>
<td>Genetic (familial) short stature</td>
</tr>
<tr>
<td>Bone age < chronological age</td>
<td>Constitutional delay</td>
<td>Chronic systemic disease</td>
</tr>
<tr>
<td>Bone age ≥ chronological age</td>
<td>Obesity (tall)</td>
<td>Familial tall stature</td>
</tr>
<tr>
<td></td>
<td>• Precocious puberty</td>
<td>• Congenital adrenal hyperplasia</td>
</tr>
<tr>
<td></td>
<td>• Hyperthyroidism</td>
<td></td>
</tr>
</tbody>
</table>

• Genetic
• Chromosomal
Length-for-age percentiles: Boys, birth to 36 months

Published May 30, 2000.
SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion (2000).
Stature-for-age percentiles: Girls, 2 to 20 years

Published May 30, 2000.
SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Disease Prevention and Health Promotion (2000).
Constitutional Delay
BA<CA

Adapted from CDC.gov/National Center for Health Statistics
Growth Hormone Deficiency

BA<CA

Adapted from CDC.gov/National Center for Health Statistics
Familial Short Stature
BA=CA

Adapted from CDC.gov/National Center for Health Statistics
DISORDERS OF GROWTH

Height

Short stature

A father is worried that his 13-year-old son is short. The child has been very healthy. He is below the 5th percentile for height and has been all his life. Physical exam is normal. Father is 6 foot 3; mother is 5 foot 10. Father was a “late bloomer.”

- Constitutional growth delay—child is short prior to onset of delayed adolescent growth spurt; parents are of normal height; normal final adult height is reached; growth spurt and puberty are delayed; bone age delayed compared to chronological age.
- Familial short stature—patient is parallel to growth curve; strong family history of short stature; chronologic age equals bone age.
- Pathologic short stature—patient may start out in normal range but then starts crossing growth percentiles. Differential diagnosis: craniopharyngioma, hypothyroidism, hypopituitarism, nutritional problems, and other chronic illnesses.

Tall stature

- Usually a normal variant (familial tall stature)
- Other causes—exogenous obesity, endocrine causes (growth hormone excess [gigantism, acromegaly], androgen excess [tall as children, short as adults])
- Syndromes—homocystinuria, Sotos, Klinefelter

Weight

Organic failure to thrive

A baby weighs 16 pounds at 1 year of age. Birth weight was 8 pounds. He has irritability, diarrhea, and abdominal distension. He was doing well until age 9 months when he started to eat the food that the rest of the family eats. His length curve is just starting to flatten.

- Causes include malnutrition, malabsorption (infection, celiac disease, cystic fibrosis, disaccharide deficiency, protein-losing enteropathy), allergies, immunodeficiency, and chronic disease
- Initial diagnostic tests (when organic causes are suspected)—document caloric intake, CBC, urinalysis, liver function tests, serum protein, sweat chloride, stool for ova and parasites

Note

Suspect Turner syndrome in females with pathologic short stature.

Suspect craniopharyngioma if short stature and vision problems.
Clinical Recall

An 8-year-old boy has been under the 2nd percentile for height all of his life. Hand x-ray for bone age assessment reveals a bone age of 8 years. Which of the following is the most likely diagnosis?

A. Hypothyroidism
B. Constitutional growth delay
C. Familial short stature
D. Chronic illness
E. Poor nutritional status

Answer: C

Courtesy of Tom D. Thacher, M.D.

Figure 3-1. Kwashiorkor

Note generalized edema secondary to low serum albumin.

Non-organic failure to thrive

A 4-month-old infant presents to the emergency department because of upper respiratory symptoms. The patient is <5th percentile in weight and length. He is 3.5 kg. Birth weight was 4.2 kg. The mother states that the child takes 16 oz of infant formula per day with cereal added. Physical exam reveals a baby with little subcutaneous fat, long dirty fingernails, impetigo, and a flat occiput.

- Emotional or maternal deprivation plus nutritional deprivation leads to neglect (psychosocial deprivation); also look at socioeconomic and intelligence issues of parents
- Clinically, children are thin and wasted-appearing and may have poor hygiene; developmental delays, social delays (no eye contact, no expression); feeding aversion
Major emphasis of diagnosis is not on medical testing but on showing that child can gain appropriate weight with good care (may need hospitalization)
Report all cases with respect to maternal neglect to CPS; require long-term intervention

Obesity
- Risk factors—predisposition, parental obesity, family/patient inactivity, feeding baby as response to any crying, and rarely associated in syndromes (Prader-Willi; Down)
- Presentation—tall stature in some, abdominal striae, associated obesity of extremities; increased adipose tissue in mammary tissue in boys, large pubic fat pad, early puberty
- Diagnostic tests—BMI > 85% signifies overweight to obese
- Complications—Obese infants and children are at increased risk of becoming obese adults (the risk is greater with advanced age of onset); cardiovascular (hypertension, increased cholesterol), hyperinsulinism, slipped capital femoral epiphysis, sleep apnea, type 2 diabetes, acanthosis nigricans.
- Treatment—exercise and balanced diet; no medications

FEEDING
A normal newborn has sufficient stores of iron to meet requirements for 4–6 months, but iron stores and absorption are variable. Breast milk has less iron than most formula, but has higher bioavailability.
- Formula is supplemented with vitamin D; breastfed infants must be supplemented from birth (400 IU/d)
- Vitamin K is routinely given intramuscularly at birth, so no supplementation needed
- Both breast milk and formula are 90% H2O, so no additional H2O needed

BREASTFEEDING
A nursing mother asks if her 3-month-old baby requires any vitamin supplementation.

Most infants can breastfeed immediately after birth and all can feed by 4–6 months. The feeding schedule should be by self-regulation; most establish by 1 month.
- Advantages
 - Psychological/emotional—maternal-infant bonding
 - Premixed; right temperature and concentration
 - Immunity—**protective effects** against enteric and other pathogens; less diaper rash, intestinal bleeding, spitting up, early unexplained infant crying, atopic dermatitis, allergy, and chronic illnesses later in life; passive transfer of T-cell immunity
 - Decreased allergies compared to formula fed
 - Maternal—weight loss and faster return to preconceptional uterine size
• Contraindications: HIV; HBV; CMV; HSV (if lesions on breast); acute maternal disease if infant has no disease eg, tuberculosis, sepsis; breast cancer; substance abuse
 – Drugs: (absolute contraindications) antineoplastics, radiopharmaceuticals, ergot alkaloids, iodide/mercurials, atropine, lithium, chloramphenicol, cyclosporin, nicotine, alcohol
 – Drugs (relative contraindications) neuroleptics, sedatives, tranquilizers, metronidazole, tetracycline, sulfonamides, steroids
 – No contraindication with mastitis

Clinical Recall

For which of the following new mothers may breastfeeding be recommended?

A. A woman with HIV
B. A woman with mastitis
C. A woman taking lithium for bipolar disorder
D. A woman with breast cancer on chemotherapy
E. A woman suspected to be using drugs of abuse

Answer: B

Table 3-2. Breast Milk versus Cow Milk

<table>
<thead>
<tr>
<th>Component</th>
<th>Human Milk</th>
<th>Cow Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water/solids</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Calories</td>
<td>20 cal/oz</td>
<td>20 cal/oz</td>
</tr>
<tr>
<td>Protein</td>
<td>1–1.5% (whey dominant)</td>
<td>3.3% (casein dominant)</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>6.5–7% lactose</td>
<td>4.5% lactose</td>
</tr>
<tr>
<td>Fat</td>
<td>high in low chain fatty acids</td>
<td>high in medium chain fatty acids</td>
</tr>
<tr>
<td>Minerals</td>
<td>Iron better absorbed</td>
<td>Low iron and copper</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Diet dependent, low in K</td>
<td>Low in C, D</td>
</tr>
<tr>
<td>Digestibility</td>
<td>Faster emptying</td>
<td>Same after 45 days</td>
</tr>
<tr>
<td>Renal solute load</td>
<td>Low (aids in renal function)</td>
<td>Higher</td>
</tr>
</tbody>
</table>

Note

Mothers with HBV infection are free to breastfeed after the neonate has received the appropriate recommended vaccinations against HBV.
Formula Feeding

- **Infant formulas.** Formula feeding is used to substitute or supplement breast milk. Most commercial formulas are cow-milk–based with modifications to approximate breast milk. They contain **20 calories/ounce**. Specialty formulas (soy, lactose-free, premature, elemental) are modified to meet specific needs.
- Formula versus cow milk—**Fe-deficiency anemia with early introduction (<1 yr) of cow’s milk**
- Advanced feeding—Stepwise addition of foods (one new food every 3–4 days)

SOLIDS

- Iron-fortified cereal only at 4–6 months
- Step-wise introduction of strained foods (vegetables and fruits), then dairy, meats (6–9 months; stage I and II)
- Table foods at 9–12 months
- No honey in first year of life—infant botulism

Note

Do not give cow milk to infants age <1.
Learning Objectives

- Explain information related to primitive reflexes and developmental milestones

OVERVIEW

Development includes 5 main skill areas: visual-motor, language, motor, social, and adaptive.

- Assessment is based on acquisition of milestones occurring sequentially and at a specific rate: each skill area has a spectrum of normal and abnormal
 - abnormal development in one area increases likelihood of abnormality in another area, so careful assessment of all skills is needed
 - developmental diagnosis is a functional description/classification and does not specify an etiology
- Developmental delay is performance significantly below average, i.e., developmental quotient (developmental age/chronologic age × 100) of <75; may be in ≥1 areas; 2 assessments over time are more predictive than a single assessment
- Major developmental disorders
 - Intellectual disability: IQ <70–75 plus related limitation in ≥2 adaptive skills, e.g., self-care, home living, work, communication
 - Communication disorders (deficits of comprehension, interpretation, production, or use of language)
 - Learning disabilities, one or more of (defined by federal government; based on standardized tests): reading, listening, speaking, writing, math
 - Cerebral palsy
 - Attention deficit/hyperactivity disorder
 - Autism spectrum disorders
Medical Evaluation

- Thorough history and physical
- Developmental testing—age-appropriate motor, visual, cognitive, language, behavioral and learning
- Denver II Developmental Assessment
 - Tool for screening the apparently normal child between ages 0–6
 - Suggested at every well-child care visit
 - Allows generalist to identify possible delay → need further evaluation for definitive diagnosis
 - Screens in gross motor, fine motor, language, personal-social
 - For infants born <38 weeks’ gestation, correct age for prematurity up to age 2 years
 - Failure is at least 2 delays

PRIMITIVE REFLEXES AND DEVELOPMENTAL MILESTONES

An infant can sit up with its back straight, has started crawling, has a pincer grasp, and plays peek-a-boo. What age is most appropriate for this baby?

- Appear and disappear in sequence during specific periods of development
- Absence or persistence beyond a given time frame signifies CNS dysfunction

Included here are the major milestones indicative of specific ages. Exam questions typically describe an infant’s/child’s skills and ask for the corresponding age.

Table 4-1. Newborn Reflexes

<table>
<thead>
<tr>
<th>Reflex</th>
<th>Description</th>
<th>Appears</th>
<th>Disappears</th>
<th>CNS Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moro</td>
<td>Extend head → extension, flexion of arms, legs</td>
<td>Birth</td>
<td>4–6 mo</td>
<td>Brain stem vestibular nuclei</td>
</tr>
<tr>
<td>Grasp</td>
<td>Finger in palm → hand, elbow, shoulder flexion</td>
<td>Birth</td>
<td>4–6 mo</td>
<td>Brain stem vestibular nuclei</td>
</tr>
<tr>
<td>Rooting</td>
<td>Cheek stimulus → turns mouth to that side</td>
<td>Birth</td>
<td>4–6 mo</td>
<td>Brain stem trigeminal system</td>
</tr>
<tr>
<td>Trunk incurvation</td>
<td>Withdrawal from stroking along ventral surface</td>
<td>Birth</td>
<td>6–9 mo</td>
<td>Spinal cord</td>
</tr>
<tr>
<td>Placing</td>
<td>Steps up when dorsum of foot stimulated</td>
<td>Birth</td>
<td>4–6 mo</td>
<td>Cerebral cortex</td>
</tr>
<tr>
<td>Asymmetric tonic neck (ATNR)</td>
<td>Fencing posture when supine</td>
<td>Birth to 1 month</td>
<td>4–6 mo</td>
<td>Brain stem vestibular nuclei</td>
</tr>
<tr>
<td>Parachute</td>
<td>Simulate fall → extends arms</td>
<td>6–8 mo</td>
<td>Never</td>
<td>Brain stem vestibular</td>
</tr>
</tbody>
</table>
Table 4-2. Developmental Milestones

<table>
<thead>
<tr>
<th></th>
<th>Gross Motor</th>
<th>Visual Motor</th>
<th>Language</th>
<th>Social Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>• Symmetric movements in supine</td>
<td>• Visually fixes on an object</td>
<td>• Alerts to sound</td>
<td>• Regards face</td>
</tr>
<tr>
<td></td>
<td>• Head flat in prone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 months</td>
<td>• Head in midline while held sitting</td>
<td>• Follows past midline</td>
<td>• Smiles in response to touch and voice</td>
<td>• Recognizes parent</td>
</tr>
<tr>
<td></td>
<td>• Raises head in prone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Begins to lift chest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 months</td>
<td>• Holds head steadily</td>
<td>• Reaches with both arms together</td>
<td>• Laughs</td>
<td>• Likes to look around</td>
</tr>
<tr>
<td></td>
<td>• Supports on forearms in prone</td>
<td>• Hands to midline</td>
<td>• Orients to voice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rolls from prone to supine</td>
<td></td>
<td>• Coos</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>• Sits with support (tripod)</td>
<td>• Unilateral reach</td>
<td>• Babbles</td>
<td>• Recognizes that someone is a stranger</td>
</tr>
<tr>
<td></td>
<td>• Feet in mouth in supine</td>
<td>• Raking grasp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transfers object</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 months</td>
<td>• Rolls from supine to prone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• May crawl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Starts to sit without support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 months</td>
<td>• Crawls well</td>
<td>• Immature pincer grasp</td>
<td>• “Mama,” “dada,” indiscriminately</td>
<td>• Plays gesture games</td>
</tr>
<tr>
<td></td>
<td>• Pulls to stand</td>
<td>• Holds bottle</td>
<td>• Understands “no”</td>
<td>• Explores environment</td>
</tr>
<tr>
<td></td>
<td>• Starting to cruise</td>
<td>• Throws object (not overhand)</td>
<td>• Understands gestures</td>
<td>(crawling and cruising)</td>
</tr>
<tr>
<td>12 months</td>
<td>• May walk alone (must by 18 months)</td>
<td>• Mature pincer grasp</td>
<td>• 1-2 words other than “mama” and “dada” (used appropriately)</td>
<td>• Imitates actions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Crayon marks</td>
<td>• Follows 1-step command with gesture</td>
<td>• Comes when called</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Object permanence (from 10 months)</td>
<td></td>
<td>• Cooperates with dressing</td>
</tr>
<tr>
<td>15 months</td>
<td>• Creeps up stairs</td>
<td>• Scribbles and builds towers of 2 blocks in imitation</td>
<td>• 4-6 words</td>
<td>• Uses cup and spoon</td>
</tr>
<tr>
<td></td>
<td>• Walks backward</td>
<td></td>
<td>• Follows 1-step command without gesture</td>
<td>(variable until 18 months)</td>
</tr>
<tr>
<td>18 months</td>
<td>• Runs</td>
<td>• Scribbles spontaneously</td>
<td>• 15-25 words</td>
<td>• Imitates parents in tasks</td>
</tr>
<tr>
<td></td>
<td>• Throws objects overhand while standing</td>
<td>• Builds tower of 3 blocks</td>
<td></td>
<td>• Plays in company of other children</td>
</tr>
</tbody>
</table>

(Continued)
Table 4-2. Developmental Milestones (Cont'd)

<table>
<thead>
<tr>
<th></th>
<th>Gross Motor</th>
<th>Visual Motor</th>
<th>Language</th>
<th>Social Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 months</td>
<td>• Walks up and down stairs one foot at a time</td>
<td>• Imitates stroke (up or down) with pencil</td>
<td>• 50 words</td>
<td>• Parallel play</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Builds tower of 7 blocks</td>
<td>• 2-word sentences</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Removes clothing</td>
<td>• Follows 2-step commands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Uses pronouns inappropriately</td>
<td></td>
</tr>
<tr>
<td>3 years</td>
<td>• Alternates feet going up the stairs</td>
<td>• Copies a circle</td>
<td>• ≥250 words</td>
<td>• Group play</td>
</tr>
<tr>
<td></td>
<td>• Pedals tricycle</td>
<td>• Undresses completely</td>
<td>• 3-word sentences</td>
<td>• Shares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dresses partially</td>
<td>• Plurals</td>
<td>• Takes turns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unbuttons</td>
<td>• All pronouns</td>
<td>• Knows full name, age and gender</td>
</tr>
<tr>
<td>4 years</td>
<td>• Alternates feet going downstairs</td>
<td>• Copies a square</td>
<td>• Knows colors</td>
<td>• Plays cooperatively</td>
</tr>
<tr>
<td></td>
<td>• Hops and skips</td>
<td>• Buttons clothing</td>
<td>• Recites songs from memory</td>
<td>• Tells “tall tales”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dresses completely</td>
<td>• Asks questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Catches ball</td>
<td>• Knows what a word means</td>
<td></td>
</tr>
<tr>
<td>5 years</td>
<td>• Skips alternating feet</td>
<td>• Copies triangle</td>
<td>• Answers all “wh-” questions</td>
<td>• Plays cooperative games</td>
</tr>
<tr>
<td></td>
<td>• Jumps over lower obstacles</td>
<td>• Ties shoes</td>
<td>• Tells a story</td>
<td>• Abides by rules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spreads with knife</td>
<td>• Plays pretend</td>
<td>• Likes to help in household tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Knows alphabet</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Recall

A young boy is able to walk and build a tower with 7 blocks. He plays well alongside other children and can say “my toy” or “my turn,” with an inventory of about 50 words. What is the most likely age of the child?

A. 12 months
B. 15 months
C. 18 months
D. 24 months
E. 36 months

Answer: D
Possible Abnormalities

You must take into account the number of weeks of prematurity to assess development appropriately, i.e., per the preterm age, NOT chronological. For instance, a 6-month-old baby born at 32 weeks (i.e., 2 months preterm) must be assessed at $6 - 2 = 4$ months CORRECTED AGE. Do this until chronological age 2 years, then consider delays to be true.

- If there appears to be a language delay, first consider conductive hearing loss. While all babies receive hearing testing within the first month of life, that is for congenital sensorineural hearing loss. Over the first year of life, conductive hearing loss may occur from repeated ear infections.

- If there is a lack of development or regression of language skills with impaired social interaction, restricted activities and interests and stereotypic behaviors, consider autistic spectrum disorder. Onset of abnormal findings must occur age < 3 years.
 - After a complete H and P with neurologic exam and development testing, the first step is to perform an autism screening questionnaire. If you feel the diagnosis is likely, the next step is to refer to a specialist in this area.

- Delay is defined as ≥ 1 skills significantly below average, i.e., developmental quotient (developmental age/chronological age x 100) is < 75. When you find this, you must first look for a possible reason, and the child will need developmental therapy in ≥ 1 areas.
Learning Objectives

- Solve problems concerning eating disorders, elimination disorders, and sleep disorders

EATING DISORDERS

Pica

- Repeated or chronic ingestion of non-nutritive substances, e.g., paint, dirt
- After year 2, needs investigation
- Predisposing factors
 - Intellectual disability and lack of parental nurturing
 - Also with family disorganization, poor supervision, and psychologic neglect
- More common with autism, brain-behavior disorders, and low socioeconomic status
- Increased risk for lead poisoning, iron deficiency, and parasitic infections

ELIMINATION DISORDERS

Enuresis

A 7-year-old boy has problems with bedwetting. The mother says that during the day he has no problems but is usually wet 6 of 7 mornings. He does not report dysuria or frequency, and has not had increased thirst. The mother also says that he is a deep sleeper.

- Voluntary or involuntary repeated discharge of urine after a developmental age when bladder control should be present (most by age of 5 years); there are 2 types
- Primary:
 - No significant dry period; most common and usually nocturnal (nocturnal enuresis)
 - Hyposcretion of ADH and/or receptor dysfunction
- Relationship of sleep architecture, diminished arousability during sleep, and abnormal bladder function; anatomic malformations
- Management—thorough history and physical, (should begin with behavioral treatment; not definitive, varying success rates):
 - Enlist cooperation of child—chart dryness, reward system
 - Child should void before going to sleep
 - Alarm to wake once 2–3 hours after falling asleep; may use alarm that goes off when child wets a special sheet (bell and pad alarm)
 - No punishment or humiliation
 - Psychotherapy for traumatized children or when behavioral therapy has failed
 - Pharmacotherapy for failed behavioral therapy in nocturnal enuresis—oral desmopressin (DDAVP)

- **Secondary:**
 - After a period of dryness ≥6 months
 - Causes—psychological, urinary tract infection, constipation, diabetes
 - More common in girls
 - Evaluation—urinalysis
 - Management—treat underlying disorder

- **Children with both diurnal and nocturnal enuresis:**
 - Especially with voiding difficulties, more likely to have abnormalities of the urinary tract
 - Ultrasonography or flow studies are indicated in these cases.

Encopresis

- Passage of feces into inappropriate places after a chronologic age of 4 years, or equivalent developmental level
- May be primary or secondary
- Causes—psychological (toilet phobia), early toilet training, aggressive management of constipation, painful defecation, fissures
- **Types**
 - Retentive encopresis most common:
 - 2/3 of cases
 - **Hard stool on rectal examination is sufficient to document, but a negative exam requires a plain abdominal x-ray**
 - Presence of fecal retention is evidence of chronic constipation, and thus treatment will require active constipation management
 - May have abnormal anal sphincter function
- **Associations**
 - Primary encopresis—especially in boys, associated with global developmental delays and enuresis
 - Secondary encopresis—high levels of psychosocial stressors and conduct disorder
• Management
 − Clear impacted fecal material (with mineral oil or laxative) but avoid long-term laxative use
 − Concomitant behavioral management
 − Regular postprandial toilet-sitting
 − High-fiber diet
 − Familial support for behavior modification
 − Group or individual psychotherapy

Clinical Recall

A concerned mother brings her 4-year-old son to the physician for evaluation of nocturnal enuresis. The boy has never had a significant dry period. He has regular bowel movements without constipation or encopresis. What is the most appropriate next step?

A. Encourage the mother to use a bell and pad alarm system
B. Order a urinalysis to assess for infection
C. Punish the child whenever he wets the bed
D. Refer the mother and child to psychotherapy
E. Reassure the mother that this is normal for the boy’s age

Answer: E

SLEEP DISORDERS

Parasomnias

Parasomnias are episodic nocturnal behaviors that often involve cognitive disorientation and autonomic and skeletal muscle disturbance
 • Associated with relative CNS immaturity
 • More common in children than adults; abate with age
Table 5-1. Parasomnias

<table>
<thead>
<tr>
<th>Sleepwalking and Sleep Terrors (Partial Arousal)</th>
<th>Nightmares</th>
</tr>
</thead>
<tbody>
<tr>
<td>• First third of night</td>
<td>• Last third of night</td>
</tr>
<tr>
<td>• During slow-wave sleep</td>
<td>• REM sleep</td>
</tr>
<tr>
<td>• No daytime sleepiness or recall</td>
<td>• Daytime sleepiness (if prolonged waking) and vivid recall</td>
</tr>
<tr>
<td>• High arousal threshold (agitated if awakened)</td>
<td>• Low arousal threshold (easily awakened)</td>
</tr>
<tr>
<td>• Common family history</td>
<td>• No family history</td>
</tr>
<tr>
<td>• Displaced from bed</td>
<td>• May be displaced from bed</td>
</tr>
<tr>
<td>• Sleepwalking relatively common; night terrors rare</td>
<td>• Very common</td>
</tr>
<tr>
<td>• Treatment: parental education, reassurance, avoid exacerbating factors, i.e., sleep deprivation, safety precautions</td>
<td>• No required treatment unless persistent/frequent, in which case possible abuse or anxiety disorder should be investigated.</td>
</tr>
</tbody>
</table>
Learning Objectives

- Define active immunization
- Describe different routes of immunization for specific routine vaccines

A 6-month-old patient is being seen for routine care. The baby is doing well, and physical examination, growth, and development are normal. The mother states that after the last set of immunizations the baby had a temperature of 39.4°C (103°F) and cried for 2 hours but was consolable. What is your advice to this mother before administering the next set of immunizations?

ACTIVE IMMUNIZATIONS

Table 6-1. Classification of Vaccines

<table>
<thead>
<tr>
<th>Live Attenuated</th>
<th>Inactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral</td>
<td>Polio, rabies, hepatitis A</td>
</tr>
<tr>
<td>Bacterial</td>
<td>Subunit: hepatitis B, parenteral influenza, acellular pertussis</td>
</tr>
<tr>
<td>MMR, varicella, yellow fever, nasal influenza, smallpox, oral rotavirus</td>
<td>Toxoid: diphtheria, tetanus</td>
</tr>
<tr>
<td>BCG, oral typhoid</td>
<td>Pure: pneumococcal, Hib, meningococcal</td>
</tr>
<tr>
<td>Polysaccharide based</td>
<td>Conjugate: Hib, pneumococcal, meningococcal</td>
</tr>
</tbody>
</table>

Vaccine Rules

For stimulation of an adequate and persisting antibody response, 2 or more doses are usually required. In general, vaccines from different manufacturers are interchangeable.
Most vaccines can be safely and effectively administered simultaneously.

A lapse in schedule does not require reinstitution of the entire series.

Unknown or uncertain immunization status
- When in doubt, the child should be considered to be disease-susceptible, and appropriate immunizations should be initiated without delay.
- To be counted, the vaccine(s) must be documented on a formal immunization record, regardless of country.

Dose—No reduced dose or divided dose should be administered, including to babies born prematurely or at low birth weight (exception: first dose hepatitis B).

Active immunization of people who recently received gamma globulin
- Live virus vaccine may have diminished immunogenicity when given shortly before or during the several months after receipt of immunoglobulin (Ig) so live vaccine is delayed (3–11 months).

Institute of Medicine Immunization Safety Review Committee findings
- Available evidence does not support the hypothesis that the MMR causes autism, associated disorders, or inflammatory bowel disease. (Lancet report of Wakefield has been found to be fraudulent)
- Based on epidemiologic evidence, there is no causal relationship between multiple immunizations and increased risk of immune dysfunction and type 1 diabetes.
- There is no causal relationship between hepatitis B vaccine administration and demyelinating neurologic disorders.
- There is no causal relationship between meningococcal vaccination and Guillain-Barré.
- Preservative thimerosal (Hg-containing) not causative of any problems (has now been removed)

Misconceptions
The following are not contraindications to immunizations:
- A reaction to a previous DTaP of temperature <105°F, redness, soreness, and swelling
- A mild, acute illness in an otherwise well child
- Concurrent antimicrobial therapy
- Prematurity—immunize at the chronological age
- A family history of seizures
- A family history of sudden infant death syndrome

Accepted Precautions and Contraindications
- Minor illness, with or without a fever, does not contraindicate immunization.
- Fever, per se, is not a contraindication.
 - Guidelines for administration are based on the physician's assessment of illness and on specific vaccines the child is scheduled to receive.
 - If fever or other problems suggest moderate or serious illness, the child should not be immunized until recovered.
• Documented egg allergy is not a contraindication to the MMR. MMR is derived from chick embryo fibroblast tissue cultures but does not contain significant amounts of egg cross-reacting proteins.

• Influenza vaccine contains egg protein but studies have shown that, like reactions secondary to any component in any vaccine, there are only rare instances of severe reaction in people who truly have an egg protein allergy. As a result, the American Academy of Pediatrics states that children with egg allergy can receive influenza vaccine with no additional precautions than those considered for any vaccine. This means that for any vaccine administration, the patient should be observed post-administration and any severe allergic manifestations should be anticipated and treated appropriately with medication should they occur.

Live Vaccines and Immune Status

• No live vaccines with primary B-cell defects, except for selective IgA deficiency

• May be given with incomplete DiGeorge syndrome (if CD3 count >500 and CD8 >200 and there are normal mitogen responses)

• May give live viral vaccines but not bacterial (oral typhoid, BCG) with phagocytic defects

• May give live vaccines with complement defects

• HIV: may give rotavirus, MMR, and varicella if health status related to HIV conditions is good and CD4% >25%; otherwise they are delayed

• Chemotherapy: MMR and varicella can be given ≥3 mos after completion of therapy except for anti B-cell drugs, where longer periods may be necessary (e.g. rituximab, ≥6 mos)
ACTIVE IMMUNIZATION AFTER DISEASE EXPOSURE

Measles

Table 6-2. Measles

<table>
<thead>
<tr>
<th>Age</th>
<th>Management (post-exposure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–6 months</td>
<td>Immune serum globulin if mother is not immune</td>
</tr>
<tr>
<td>Pregnant or immunocompromised</td>
<td>Immune serum globulin</td>
</tr>
<tr>
<td>All others</td>
<td>Vaccine within 72 hours of exposure for susceptible individuals</td>
</tr>
</tbody>
</table>

Varicella

- Give vaccine to susceptible immunocompetent contacts age >12 months as soon as possible and VZIG to all immunocompromised and susceptible pregnant women. No vaccine or VZIG for healthy infants age 0-12 months.
- VZIG also for susceptible pregnant women, newborn whose mother had the onset of chickenpox within 5 days before delivery to 48 hours after delivery, and certain hospitalized premature infants

Hepatitis

- Hepatitis B: after exposure in nonimmune patient, give hepatitis B Ig plus vaccine; repeat vaccine at 1 and 6 months.
- Hepatitis A: if patient is not vaccinated, give 1 dose of vaccine as soon as possible but within 2 weeks of exposure

Mumps and Rubella

- Not protected by postexposure administration of live vaccine
- Recommended for exposed adults who were born in the United States in or since 1957 and who have not previously had or been immunized against either; except pregnancy
SPECIFIC VACCINES (ROUTINE VACCINATION)

Hepatitis B
- First dose should be given soon after birth, before hospital discharge, with a total of 3 doses by age 18 months if mother is HBsAg negative.
- The infant born to a hepatitis B surface antigen (HBsAg)-positive mother should receive the first dose of hepatitis B virus (HBV) plus hepatitis B Ig at 2 different sites within 12 hours of birth; all 3 doses should be given by age 6 months (treat same as exposure).
- All children and adolescents who have not been immunized should begin the series during any visit to the physician.

DTaP
- All DTaP vaccines for the United States currently contain acellular pertussis.
- The rates of local reactions, fever, and other common systemic reactions are substantially lower with acellular pertussis vaccines than with whole-cell vaccine (but may still occur). Use DT if there has been a serious reaction. No full dose pertussis or diphtheria after age 7 years, 0 days.
- Total of 5 doses is recommended before school entry, with the final given at preschool age, 4–6 years.
- Pertussis booster (Tdap) vaccine is now recommended during adolescence, regardless of immunization status; is also recommended even if one has already had pertussis disease.
- Tdap (childhood tetanus) is given at age 11–12, and then Td (adult tetanus) every 10 years; may be given any time after 7th birthday if needed because it contains only partial doses of diphtheria and pertussis

Tetanus

Table 6-3. Tetanus Prophylaxis in Wound Management

<table>
<thead>
<tr>
<th>History of Doses of Tetanus Toxoid</th>
<th>Clean, Minor Wounds</th>
<th>All Others*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Td</td>
<td>TIG</td>
</tr>
<tr>
<td><3 or unknown</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>≥3</td>
<td>No, unless >10 years from last dose</td>
<td>No</td>
</tr>
</tbody>
</table>

Definition of abbreviations: TIG, tetanus immune globulin; Td, tetanus and diphtheria vaccine.

*All other wounds = increased risk of tetanus: dirt, saliva, feces, avulsions, frostbite, puncture, crush, burns, and missiles.

IPV
- Inactivated is now the only poliovirus vaccine available in the United States.
- Four doses of IPV, with the last at preschool age, 4–6 years
- Any child up to 18 years of age should receive all doses, if behind.
- Any child who has received OPV from another country should complete schedule in United States with IPV.
HiB Conjugated Vaccine

- **Does not cover nontypeable Haemophilus**
- Depending on the vaccine brand, the recommended primary series consists of 3 or 4 doses.
- After the primary series, an additional booster dose is recommended at 12–15 months of age, regardless of which regimen was used for the primary series.
- If immunization is not initiated (i.e., child is behind) until age 15–59 months, then there is catch-up (1 dose), but **not given after age 5 years in normal children**
- Invasive disease does not confirm immunity; patients still require vaccines if age appropriate, i.e., age <5 years.

Pneumococcal Vaccines

- Pneumococcal conjugate vaccine (PCV13)
 - Purified polysaccharides of 13 serotypes conjugated to diphtheria protein
 - Routine administration as a **4-dose series for all children age 15 months and younger**
 - If no dose given yet between age 15–59 months, then there are catch-up doses
- 23-valent pneumococcal polysaccharide vaccine (PS23)—**given as additional protection to the PCV13 in some high-risk children (e.g., functional/anatomic asplenia) age >2 years**
- Age ≥65 years (PPSV-23)

Varicella

- Recommended at age 12 months or older for healthy people who have not had varicella illness, with second dose at age 4–6 years
- **Catch-up dosing:** both doses should be given for proper immunity
- May still have breakthrough varicella; milder than unimmunized, rarely spreads
- Has been associated with the development of herpes zoster after immunization (rare)
- Most people age >18 years, even without a reliable history of varicella infection, will still be immune.

MMR

- Live attenuated vaccine: issues as above for varicella
- First dose given at age **12–15 months**
- Second dose given at preschool age, **4–6 years**
- Catch-up with 2 doses

Hepatitis A Vaccine

- Recommended for all children age >1 year (12–23 months)
- **Two doses, 6 months apart**
- Also recommended routinely for chronic liver disease patients, homosexual and bisexual men, users of illegal drugs, patients with clotting-factor disorders, and those at risk of occupational exposure
- Can give with other vaccines
Meningococcal Conjugate Vaccine (MCV4)

Administer MCV4 to

- All children at the age 11–12 visit and booster at age 16
- All college freshmen living in dormitories, if not vaccinated

There is now a vaccine for serotype B for high risk patients and during outbreaks (status post concurrent type B outbreaks at Princeton and UC Santa Barbara)

Meningococcal B vaccine is recommended only for those at increased risk for meningococcal B disease—persistent complement component deficiencies (C3, C5-C9, properdin, factor D, factor H); anatomic or functional asplenia, including sickle cell disease; and those residing in a community with a serogroup B meningococcal disease outbreak per the local health department on the basis of CDC criteria (college students not considered at increased risk since the incidence is not greater than that of the same-aged general population)

Influenza Vaccine

- Inactivated influenza vaccine (typical flu shot)
 - Administered intramuscularly
 - Inactivated influenza vaccine has been deemed safe in egg-allergic patients
 - Given annually during flu season for children age >6 months (A strains, B strains, and H1N1)

- Live influenza vaccine
 - Live attenuated vaccine has recently had only 3% effectiveness so has not been used in last 2 seasons; the AAP has stated that it may be used in 2019 season, but the preferred vaccine is the quadrivalent inactivated vaccine

Rotavirus Vaccine

- Oral live attenuated vaccine
- Given at ages 2, 4, 6 months
- Essentially no catch-up if behind (no dose after age 8 months)
- Safe, highly effective (no intussusception; M and M from disease reduced significantly)

Human Papillomavirus (HPV) Vaccine

- Quadrivalent vaccine (6, 11, 16, 18) or bivalent vaccine (16, 18) to girls at the age 11-12 visit (through age 26) for cervical cancer prevention
- Quadrivalent vaccine (6, 11, 16, 18) to boys age 11–12; for genital warts caused by HPV 6,11.
- Can give in both males and females as early as age 9.
- 3 doses
 - Now 9-valent in both girls (9–26) and boys (9–15): 6, 11 (genital warts), 16, 18, 31, 33, 45, 52, 58 (cervical cancer prevention)
 - Precancerous lesions (all 9) including anal intraepithelial neoplasia
 - Anal cancer (16, 18, 31, 33, 45, 52, 58)
- Doses 2 and 3: give at 2 months and then 6 months after first

Note

MPSV4 is the older, pure polysaccharide vaccine, while MCV4 is the newer, conjugated vaccine.
Clinical Recall

An 11-year-old girl is brought to the emergency department after falling off her bicycle on a trail in the forest. She has a few minor wounds, some of which contain dirt or tree debris. Her primary vaccines were completed at age 5 and she has not received any vaccines since that time. What treatment should she receive?

A. Tetanus and diphtheria (Td) vaccine only
B. Td vaccine + tetanus immune globulin (TIG)
C. TIG only
D. Diphtheria vaccine only
E. Tetanus vaccine only

Answer: A
Table 1: Recommended Child and Adolescent Immunization Schedule for ages 18 years or younger

United States, 2019

These recommendations must be read with the Notes that follow. For those who fall behind or start late, provide catch-up vaccination at the earliest opportunity as indicated by the green bars in Table 1.

To determine minimum intervals between doses, see the catch-up schedule (Table 2). School entry and adolescent vaccine age groups are shaded in gray.

Vaccine

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Birth</th>
<th>1 mo</th>
<th>2 mos</th>
<th>4 mos</th>
<th>6 mos</th>
<th>9 mos</th>
<th>12 mos</th>
<th>15 mos</th>
<th>18 mos</th>
<th>19-23 mos</th>
<th>2-3 yrs</th>
<th>4-6 yrs</th>
<th>7-10 yrs</th>
<th>11-12 yrs</th>
<th>13-15 yrs</th>
<th>16 yrs</th>
<th>17-18 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B (HepB)</td>
<td></td>
<td></td>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>Rotavirus (RV) RV1 (2-dose series); RV5 (3-dose series)</td>
<td>1st dose</td>
<td>2nd dose</td>
<td>See Notes</td>
<td></td>
</tr>
<tr>
<td>Diphtheria, tetanus, & acellular pertussis (DTaP: <7 yrs)</td>
<td>1st dose</td>
<td>2nd dose</td>
<td>3rd dose</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenza type b (Hib)</td>
<td>1st dose</td>
<td>2nd dose</td>
<td>3rd dose</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal conjugate (PCV13)</td>
<td>1st dose</td>
<td>2nd dose</td>
<td>3rd dose</td>
<td></td>
</tr>
<tr>
<td>Inactivated poliovirus (IPV: <18 yrs)</td>
<td>1st dose</td>
<td>2nd dose</td>
<td>3rd dose</td>
<td></td>
</tr>
<tr>
<td>Influenza (IV)</td>
<td></td>
<td></td>
<td></td>
<td>Annual vaccination 1 or 2 doses</td>
<td></td>
<td></td>
<td>Annual vaccination 1 or 2 doses</td>
<td></td>
</tr>
<tr>
<td>Influenza (LAIV)</td>
<td></td>
<td></td>
<td></td>
<td>Annual vaccination 1 dose only</td>
<td></td>
<td></td>
<td>Annual vaccination 1 dose only</td>
<td></td>
</tr>
<tr>
<td>Measles, mumps, rubella (MMR)</td>
<td></td>
<td></td>
<td></td>
<td>See Notes</td>
<td>1st dose</td>
<td></td>
<td>2nd dose</td>
<td></td>
</tr>
<tr>
<td>Varicella (VAR)</td>
<td></td>
<td></td>
<td></td>
<td>See Notes</td>
<td>1st dose</td>
<td></td>
<td>2nd dose</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A (HepA)</td>
<td></td>
<td></td>
<td></td>
<td>See Notes</td>
<td>2-dose series, See Notes</td>
<td></td>
</tr>
<tr>
<td>Meningococcal (MenACWY-D ≥9 mos; MenACWY-CRM ≥2 mos)</td>
<td>See Notes</td>
<td></td>
<td></td>
<td>See Notes</td>
<td>1st dose</td>
<td></td>
<td>2nd dose</td>
<td></td>
</tr>
<tr>
<td>Tetanus, diphtheria, & acellular pertussis (Tdap ≥7 yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tdap</td>
<td></td>
</tr>
<tr>
<td>Human papilloma virus (HPV)</td>
<td></td>
<td></td>
<td></td>
<td>See Notes</td>
<td></td>
</tr>
<tr>
<td>Meningococcal B</td>
<td></td>
<td></td>
<td></td>
<td>See Notes</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal polysaccharide (PPSV23)</td>
<td>See Notes</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Range of recommended ages for all children
- Range of recommended ages for catch-up immunization
- Range of recommended ages for certain high-risk groups
- Range of recommended ages for non-high-risk groups that may receive vaccine, subject to individual clinical decision-making
- No recommendation

For more details and specific footnotes, go to cdc.gov/vaccines.
Learning Objectives

- Define physical, sexual, and psychological abuse
- Describe the epidemiology of child abuse

INTRODUCTION

Table 7-1. Scope of Child Abuse and Neglect

<table>
<thead>
<tr>
<th>Physical Abuse</th>
<th>Psychological Abuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractures</td>
<td>Terrorizing</td>
</tr>
<tr>
<td>Bruises</td>
<td>Putting down</td>
</tr>
<tr>
<td>Burns</td>
<td>Comparing</td>
</tr>
<tr>
<td></td>
<td>Insulting</td>
</tr>
<tr>
<td></td>
<td>Love</td>
</tr>
<tr>
<td></td>
<td>Support</td>
</tr>
<tr>
<td>Neglect</td>
<td>Stimulation</td>
</tr>
<tr>
<td></td>
<td>Recognition</td>
</tr>
<tr>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>Clothing</td>
<td></td>
</tr>
<tr>
<td>Schooling</td>
<td></td>
</tr>
<tr>
<td>Medical care</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Love</td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td></td>
</tr>
<tr>
<td>Stimulation</td>
<td></td>
</tr>
<tr>
<td>Recognition</td>
<td></td>
</tr>
</tbody>
</table>

Definitions

- **Child maltreatment**: abusive actions or acts of commission and lack of action, or acts of omission that result in morbidity or death
- **Physical abuse**: intentional injury to a child by a caregiver that results in bruises, burns, fractures, lacerations, punctures, or organ damage; may be accompanied by short- or long-term emotional consequences
- **Psychological maltreatment**: intentional verbal/behavioral acts or omissions such as withholding emotional responsiveness, isolating, terrorizing that result in adverse emotional consequences
- **Sexual abuse**: any act intended for sexual gratification of an adult
- **Factitious disorder**: intentionally giving poisons or toxins, or any other deceptive action to simulate a disorder

The consequences of child abuse and neglect are severe. Failure-to-thrive (FTT) (nutritional neglect) is the most common cause of underweight infants (>50% of all cases of FTT). Additionally, developmental delay and learning disabilities are common. Physical disabilities may occur, and possibly death.

Note

In all 50 states, physicians and child care providers are required to report suspected abuse/neglect. Failure to report may result in penalties or malpractice claims for damages.
- Affords lawsuit protection to those who report in good faith
- Allows for all clinical and lab evaluation and documentation without parents’ permission
Epidemiology
There is a higher likelihood of abuse with caregivers who have history of abuse or violence:
- Young parental age
- Closely spaced pregnancies
- Lower socioeconomic status
- On military bases
- Spousal abuse
- Substance abuse
- Single parent (mother)
- Intellectually disabled child
- High stress level
- Preterm, low-birth-weight infants

PHYSICAL ABUSE
A 2-year-old boy presents to the emergency department with a skull fracture that the mother states resulted after he fell from the sofa onto a carpeted floor. On physical examination the child is alert. He is noted to have old bruising on the buttocks and back, as well as a cigarette burn on his palm. The mother states that the child “falls a lot” and is always touching things he should not.

Diagnosis
- When to suspect
 - Injury is unexplained or implausible
 - Injury is incompatible with the history given or with child’s level of development
 - There are no reports of death or serious brain injury from witnessed falls < 10 feet.

Clinical Findings

Bruises
- Most common
- Accidental: thin, leading surfaces overlying bone edges (e.g., shins)
- Nonaccidental: buttocks, genitals, back, back of hands, thoracoabdominal
- Shape of injury suggests object used: suspect with bilateral, symmetric, or geometric injuries
- Staging: bruises in various stages are not compatible with a single event
- Consider cultural issues, e.g., coining, cupping
Fractures

- Wrenching or pulling an extremity → corner chip or bucket handle fracture of metaphysis
- Inflicted fracture of bone shaft → more likely are spiral fractures from twisting rather than transverse from impact
- A spiral fracture of the femur before child can walk independently has usually been inflicted by someone else.
- Accidental impact rarely causes rib fracture or retinal hemorrhage in children
- Highly specific for abuse
 - Rib fractures in infants
 - Fractures of different stages of healing
 - Bilateral fractures
 - Complex skull fracture

Burns

- Cigarette burns → circular, punched-out lesions of uniform size
- Immersion burns (most common in infants)
 - Glove-stocking pattern of extremity
 - Dipping into bathtub water:
 - Demarcation is uniform and distinct
 - Flexion creases spared; hands and feet spared
 - No splash burns
 - Incompatible with falling into tub or turning on hot water while in tub

Intentional Head Trauma

- Most common cause of death
- Consider when injured infant presents with coma, convulsions, apnea, increased ICP
- A subdural hemorrhage in which there are no scalp marks or skull fracture is possibly from a hand blow.
- Retinal hemorrhages
- Shaking—acceleration-deceleration; may have no external marks; 85% associated with retinal hemorrhage

Intra-Abdominal Injuries

- Impacts
- Recurrent vomiting, abdominal distension, absent bowel sounds, localized tenderness, shock
- If struck with fist → row of 3–4 teardrop-shaped, 1-cm bruises in a slight curve
- May rupture liver or spleen
- Laceration of small intestine at sites of ligamental support
- Intramural hematoma → temporary obstruction
- Free air

Note
Differential Diagnosis
With osteogenesis imperfecta or severe osteomalacia, there is an increased incidence of pathologic fractures, but they are rarely of the metaphysis.
Laboratory Studies

- Skeletal survey when you suspect abuse in child age < 2 years; in child > 2 years, appropriate film area of injury, complete survey not usually required
- If infant is severely injured despite absence of CNS findings
 - Head CT scan
 - ± MRI
 - Ophthalmologic examination
- If abdominal trauma
 - Urine and stool for blood
 - Liver and pancreatic enzymes
 - Abdominal CT scan
- For any bleeding, bruises: PT, PTT, platelets, bleeding time, INR

Management

The first step is always to institute prompt medical, surgical, or psychological treatment.
- Consider separating child from caregiver in exam area.
- Report any child suspected of being abused or neglected to CPS; caseworker confers with MD
- Law enforcement agency performs forensics, interviews suspects, and if criminal act has taken place, informs prosecutor (state by state)
- Initial action includes a phone report, then, in most states, a written report is required within 48 hours
- Hospitalization is required if
 - Medical condition requires it
 - Diagnosis is unclear
 - There is no alternative safe place
 - Parents refuse hospitalization/treatment; MD must get emergency court order
- MD should explain to parents
 - Why an inflicted injury is suspected
 - That MD is legally obligated to report
 - That referral is made to protect the child
 - That family will be provided with services
 - That a CPS worker and law enforcement officer will be involved
- Court ultimately decides guilt and disposition

Prognosis

The earlier the age of abuse, the greater the risk of mortality.
SEXUAL ABUSE

A 3-year-old girl presents with green vaginal discharge. Microscopic examination of the discharge reveals gram-negative intracellular diplococci.

• Epidemiology
 – Least common offender is a stranger
 – Most common reported abuse is that of daughters by fathers and stepfathers
 – Most common overall is brother-sister incest
 – Violence is not common but increases with age and size of victim
 – More likely to occur as a single incident with a stranger

• Clinical findings: sexual abuse should be considered as a possible cause if presenting with
 – Vaginal, penile, or rectal pain, discharge, bruising, erythema, or bleeding
 – Chronic dysuria, enuresis, constipation, or encopresis
 – Any STIs in prepubertal child

• Diagnosis
 – Test for pregnancy
 – Test for STIs
 – Test for syphilis, HIV, gonorrhea, hepatitis B

• Management:
 – If abuse suspected: report to CPS and police
 – If ≤72 hrs or any time with acute symptoms or acute psychiatric symptoms: send to acute sexual abuse referral center for immediate exam (videotaped forensic exam)
 – If >72 hrs or no acute symptoms: perform nonacute exam by healthcare professional with experience in evaluation of child with sexual abuse

Clinical Recall

Which of the following is most concerning for child abuse?

A. Bruising over the right shin
B. Buckle fracture of the distal radius
C. Candidal rash in groin
D. Metaphyseal fracture of the distal femur
E. Poorly demarcated burns on the hands

Answer: D
Learning Objectives

- Demonstrate understanding of upper airway obstruction from foreign bodies, congenital anomalies, and acute inflammatory upper airway obstruction
- Answer questions about inflammatory and infectious disorders of the small airways
- Describe the epidemiology and treatment of cystic fibrosis
- Recognize risk factors and presentation of sudden infant death syndrome

ACUTE INFLAMMATORY UPPER AIRWAY OBSTRUCTION

Croup

A 12-month-old child is brought to your office because of a barky cough. The mother states that over the past 3 days the child has developed a runny nose, fever, and cough. The symptoms are getting worse, and the child seems to have difficulty breathing. He sounds like a seal when he coughs.

- Infective agents—parainfluenza types 1, 2, 3
- Age 3 months–5 years; most common in winter; recurrences decrease with increasing growth of airway
- Inflammation of subglottis
- Signs and symptoms/examination—upper respiratory infection 1–3 days, then barking cough, hoarseness, inspiratory stridor; worse at night, gradual resolution over 1 week
- Complications—hypoxia only when obstruction is complete
- Diagnosis—clinical, x-ray not needed (steeple sign if an x-ray is performed)
- Treatment is supportive plus:
 - Mild: corticosteroid then observe; if improved, then home but if worsens, treat as moderate croup
 - Moderate: nebulized epinephrine + corticosteroid, then observe; if improved, then home but if worsens, repeat epinephrine and admit to hospital
 - Severe: nebulized epinephrine and corticosteroid then admit to hospital (possibly PICU)
A 2-year-old child presents to the emergency center with her parents because of high fever and difficulty swallowing. The parents state that the child had been in her usual state of health but awoke with fever of 40°C (104°F), a hoarse voice, and difficulty swallowing. On physical examination, the patient is sitting in a tripod position. She is drooling, has inspiratory stridor, nasal flaring, and retractions of the suprasternal notch and supraclavicular and intercostal spaces.

- **Infective agents**
 - *Haemophilus influenzae* type B (HiB) no longer number one (vaccine success)
 - Now combination of *Streptococcus pyogenes*, *Streptococcus pneumoniae*, *Staphylococcus aureus*, *Mycoplasma*
 - Risk factor—adult or unimmunized child
- **Inflammation of epiglottis and supraglottis**
- **Signs and symptoms/examination—dramatic acute onset**
 - High fever, sore throat, dyspnea, and rapidly progressing obstruction
 - Toxic-appearing, difficulty swallowing, drooling, sniffing-position
 - Stridor is a late finding (near-complete obstruction)
- **Complications**—complete airway obstruction and death
- **Diagnosis**
 - Clinical first (do nothing to upset child), controlled visualization (laryngoscopy) of cherry-red, swollen epiglottis; x-ray not needed (thumb sign if x-ray is performed) followed by immediate intubation
- **Treatment**
 - Establish patent airway (intubate)
 - Antibiotics to cover staphylococci, HiB, and resistant strep (antistaphylococcal plus third-generation cephalosporin)
Table 8-1. Croup and Epiglottitis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Croup</th>
<th>Epiglottitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>• Parainfluenza 1, 2, 3</td>
<td>• S. aureus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• S. pneumonia, S. pyogenes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• H. influenza type B</td>
</tr>
<tr>
<td>Age</td>
<td>• Preschool</td>
<td>• Toddler-young school age</td>
</tr>
<tr>
<td>Timing</td>
<td>• Cool months</td>
<td>• Year round</td>
</tr>
<tr>
<td>Diagnosis Key Words</td>
<td>• Barking cough</td>
<td>• Acute onset</td>
</tr>
<tr>
<td></td>
<td>• Inspiratory stridor</td>
<td>• Extremely sore throat</td>
</tr>
<tr>
<td></td>
<td>• If the patient gets worse:</td>
<td>• Cannot swallow</td>
</tr>
<tr>
<td></td>
<td>Inspiratory stridor</td>
<td>• High fever</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>• Sniffing position</td>
</tr>
<tr>
<td></td>
<td>Expiratory stridor (biphasic stridor)</td>
<td>• Drooling</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>• Inspiratory stridor later</td>
</tr>
<tr>
<td></td>
<td>Stridor at rest</td>
<td></td>
</tr>
<tr>
<td>Best Initial Test</td>
<td>• Clinical Dx</td>
<td>• Laryngoscopy</td>
</tr>
<tr>
<td></td>
<td>• CXR not needed-but shows steeple sign</td>
<td></td>
</tr>
<tr>
<td>Most Accurate Test</td>
<td>• PCR for virus</td>
<td>• C and S from tracheal aspirate</td>
</tr>
<tr>
<td></td>
<td>• Not needed clinically</td>
<td></td>
</tr>
<tr>
<td>Best Initial Treatment</td>
<td>• None or nebulized epinephrine if severe</td>
<td>• Airway (intubation)</td>
</tr>
<tr>
<td>Definitive Treatment</td>
<td>• Parenteral steroid</td>
<td>• Airway (tracheostomy if needed) + broad-spectrum antibiotics</td>
</tr>
<tr>
<td>(If Needed)</td>
<td>– Most common-single dose IM Dexamethasone →</td>
<td>• Then per sensitivities</td>
</tr>
<tr>
<td></td>
<td>– Observation</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Recall

A 5-year-old boy has had a low-grade fever, runny nose, non-productive cough, and mild stridor for 2 days. He sounds like a seal when he coughs. He is non-toxic appearing and has no increased work of breathing. What is the next step?

A. Chest x-ray to evaluate for the steeple sign
B. Discharge with close follow-up if symptoms worsen
C. Nebulized epinephrine
D. Laryngoscopy
E. Parenteral steroids

Answer: B
CONGENITAL ANOMALIES OF THE LARYNX

<table>
<thead>
<tr>
<th>Laryngomalacia</th>
<th>Subglottic Stenosis</th>
<th>Vocal Cord Paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most frequent cause of stridor in infants due to collapse of supraglottic structures in inspiration</td>
<td>Second most common cause</td>
<td>Third most common cause; may occur as a result of repair of congenital heart disease or TE-fistula repair (recurrent laryngeal nerve)</td>
</tr>
<tr>
<td>Clinical: stridor in supine that decreases in prone; exacerbated by exertion</td>
<td>Clinical: recurrent or persistent stridor with no change in positioning</td>
<td>Clinical: often associated with Chiari malformation (hydrocephalus); inspiratory stridor, airway obstruction, cough, choking, aspiration</td>
</tr>
<tr>
<td>Diagnosis: laryngoscopy</td>
<td>Diagnosis: laryngoscopy</td>
<td>Diagnosis: flexible bronchoscopy</td>
</tr>
<tr>
<td>Treatment: supportive; most improve in 6 months but surgery may be needed in severe cases</td>
<td>Treatment: cricoid split reconstruction</td>
<td>Treatment: supportive; most improve in 6-12 months but tracheostomy may be needed</td>
</tr>
</tbody>
</table>

AIRWAY FOREIGN BODY

A toddler presents to the emergency center after choking on some coins. The child’s mother believes that the child swallowed a quarter. On physical examination, the patient is noted to be drooling and in moderate respiratory distress. There are decreased breath sounds on the right with intercostal retractions.

- Most seen in children age 3–4 years
- Most common foreign body is peanuts
- Highly suggested if symptoms are *acute* choking, coughing, wheezing; often a witnessed event
- Clinical—depends on location
 - Sudden onset of respiratory distress
 - Cough, hoarseness, shortness of breath
 - Wheezing ((asymmetric) and decreased breath sounds (asymmetric))
- Complications—obstruction, erosion, infection (fever, cough, pneumonia, hemoptysis, atelectasis)
- Diagnosis—Chest x-ray reveals air trapping (ball-valve mechanism). **Bronchoscopy** for definite diagnosis.
- Therapy—removal by **rigid bronchoscopy**

Note

Larynx is the most common site of foreign body aspiration in children age <1 year.

In children age >1 year, think trachea or right mainstem bronchus.
INFLAMMATORY DISORDERS OF THE SMALL AIRWAYS

Bronchiolitis

A 6-month-old infant presents to the physician with a 3-day history of upper respiratory tract infection, wheezy cough, and dyspnea. On physical examination, the patient has a temperature of 39°C (102°F), respirations of 60 breaths/min, nasal flaring, and accessory muscle usage. The patient appears to be air hungry, and the oxygen saturation is 92%.

- Infective agents—**respiratory syncytial virus** (RSV) (50%), parainfluenza, adenovirus, other viruses
- Typical age—almost all children infected by age <2 years, most severe at age 1–2 months in winter months.
- Inflammation of the small airways (inflammatory obstruction: edema, mucus, and cellular debris) → (bilateral) obstruction → air-trapping and overinflation
- Clinical presentation
 - Signs and symptoms:
 - Mild URI (often from household contact), decreased appetite and fever, irritability, paroxysmal wheezy cough, dyspnea, and tachypnea
 - **Apnea** may be more prominent early in young infants.
 - Examination:
 - Wheezing, increased work of breathing, fine crackles, prolonged expiratory phase
 - Lasts average of 12 days (worse in first 2–3 days)
- Complications—bacterial superinfection, respiratory insufficiency and failure (worse in infants with small airways and decreased lung function)
- Diagnosis and Treatment (per AAP Clinical Practice Guidelines, based on research and clinical evidence)
 - Diagnosis is clinical. Radiography (nonspecific, viral) and lab studies (microbiology) should not be routinely used.
 - Treatment is primarily supportive; hospitalize per severity assessment based on history and physical. Should not administer nebulized albuterol, nebulized epinephrine, nebulized hypertonic saline or systemic (or nebulized) corticosteroids as there is lack of evidence for any of these anecdotal therapies.
- Prevention—monoclonal antibody to RSV F protein (preferred: palivizumab) in high-risk patients only (otherwise healthy infants with a gestational age of 29 weeks, 0 days or greater and during the first year of life to infants with hemodynamically significant heart disease or chronic lung disease of prematurity defined as preterm infants <32 weeks 0 days' gestation who require >21% oxygen for at least the first 28 days of life)
PNEUMONIA

A 3-year-old child presents to the physician with a temperature of 40ºC (104ºF), tachypnea, and a wet cough. The patient’s sibling has similar symptoms. The child attends daycare but has no history of travel or pet exposure. The child has a decreased appetite but is able to take fluids and has good urine output. Immunizations are up to date.

- Definition—Inflammation of the lung parenchyma
- Epidemiology
 - Viruses are predominant cause in infants and children age <5 years
 - Major pathogen—RSV
 - Others—parainfluenza, influenza, adenovirus
 - More in fall and winter
 - Nonviral causes more common in children >5 years
 - Most—M. pneumoniae and C. pneumoniae (genus has been changed to Chlamydophila; but remains Chlamydia for trachomatis)
 - S. pneumoniae most common with focal infiltrate in children of all ages
 - Others in normal children—S. pyogenes and S. aureus (no longer HiB)

<table>
<thead>
<tr>
<th>Table 8-2. Clinical Findings in Viral Versus Bacterial Pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Upper respiratory infection</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>Rales</td>
</tr>
<tr>
<td>WBC</td>
</tr>
<tr>
<td>Chest x-ray</td>
</tr>
<tr>
<td>Diagnosis</td>
</tr>
</tbody>
</table>

- Clinical findings
 - Viral:
 - Usually several days of URI symptoms; low-grade fever
 - Most consistent manifestation is tachypnea
 - If severe—cyanosis, respiratory fatigue
 - Examination—scattered crackles and wheezing
 - Difficult to localize source in young children with hyper-resonant chests; difficult to clinically distinguish viral versus nonviral
Bacterial pneumonia:
- **Sudden shaking chills with high fever, acute onset**
- Significant cough and chest pain
- Tachypnea; productive cough
- Splinting on affected side—minimize pleuritic pain
- Examination—diminished breath sounds, localized crackles, rhonchi early; with increasing consolidation, **markedly diminished breath sounds and dullness to percussion**

Chlamydia trachomatis pneumonia:
- No fever or wheezing (serves to distinguish from RSV)
- 1–3 months of age, with insidious onset
- May or may not have conjunctivitis at birth
- Mild interstitial chest x-ray findings
- **Staccato cough**
- **Peripheral eosinophilia**

Chlamydophila pneumoniae and *mycoplasma pneumoniae*:
- Cannot clinically distinguish
- Atypical, insidious pneumonia; constitutional symptoms
- **Bronchopneumonia**: gradual onset of constitutional symptoms with persistence of cough and hoarseness; coryza is unusual (usually viral)
- Cough worsens with dyspnea over 2 weeks, then gradual improvement over next 2 weeks; becomes more productive; **rales** are most consistent finding (basilar)

Diagnosis
- Chest x-ray confirms diagnosis:
 - Viral—**hyperinflation with bilateral interstitial infiltrates and peribronchial cuffing**
 - Pneumococcal—**confluent lobar consolidation**
 - *Mycoplasma*—unilateral or bilateral lower-lobe interstitial pneumonia; **looks worse than presentation**
 - *Chlamydia*—interstitial pneumonia or lobar; as with *Mycoplasma*, chest x-ray often looks worse than presentation

White blood cells:
- Viral—usually <20,000/mm³ with lymphocyte predominance
- Bacterial—usually 15,000–40,000/mm³ with mostly granulocytes
- *Chlamydia*—**eosinophilia**

Definitive diagnosis:
- Viral—isolation of virus or detection of antigens in respiratory tract secretions; (usually requires 5–10 days); rapid reagents available for RSV, parainfluenza, influenza, and adenovirus
- Bacterial—isolation of organism from blood (positive in only 10–30% of children with *S. pneumoniae*), pleural fluid, or lung; **sputum cultures are of no value in children**. For mycoplasma get PCR (had been IgM titers). PCR is also becoming the test of choice for viruses.
• Treatment
 – Based on presumptive cause and clinical appearance
 – Hospitalized—parenteral ampicillin (if S. aureus suspected, add vancomycin or clindamycin)
 – If suspect viral (outpatient, mild)—may withhold treatment if mild and no respiratory distress. Up to 30% may have coexisting bacterial pathogens; deterioration should signal possible secondary bacterial infection and should start empiric treatment.
 – Chlamyphila or Mycoplasma—erythromycin or other macrolide
Table 8-3. Pneumonia

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bacterial</th>
<th>Viral</th>
<th>C. trachomatis</th>
<th>M. pneumoniae or C. pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>• S. pneumoniae</td>
<td>• RSV</td>
<td>C. Trachomatis</td>
<td>• M. Pneumoniae</td>
</tr>
<tr>
<td></td>
<td>• HIB</td>
<td>• Parainfluenza</td>
<td></td>
<td>• C. Pneumonia</td>
</tr>
<tr>
<td></td>
<td>• S. aureus</td>
<td>• Influenza</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adenovirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>• Any age</td>
<td>Most common form <5 years</td>
<td>Age 1–3 months</td>
<td>Most common form age >5 years</td>
</tr>
<tr>
<td></td>
<td>• Most common reason for lobar is S. pneumonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>More in cold months</td>
<td>Cold months</td>
<td>All year</td>
<td>All year; more in winter</td>
</tr>
<tr>
<td>Diagnosis Key Words</td>
<td>• Acute</td>
<td>• Insidious</td>
<td></td>
<td>• Insidious</td>
</tr>
<tr>
<td></td>
<td>• Severe</td>
<td>• Often worsening URI</td>
<td></td>
<td>• URI symptoms with persistence of cough worsening over 2 weeks</td>
</tr>
<tr>
<td></td>
<td>• Productive cough</td>
<td>• Lower temperature</td>
<td></td>
<td>• Rales most consistent finding (lower lobe uni- or bilateral)</td>
</tr>
<tr>
<td></td>
<td>• Dyspnea</td>
<td>• Wheeze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High fever</td>
<td>• Cough</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Chest pain</td>
<td>• Mild dyspnea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rhonchi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decreased breath sounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• May have empyema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Initial Test</td>
<td>• CXR = lobar consolidation</td>
<td>• CXR = bronchopneumonia, interstitial</td>
<td>• CXR = mild interstitial</td>
<td>• CXR most unilateral lower lobe interstitial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hyperinflation with increased peribronchial markings</td>
<td></td>
<td>• Classically looks worse than symptoms</td>
</tr>
<tr>
<td>Most Accurate Test</td>
<td>• Sputum C and S (cannot rely on in child)</td>
<td>Respiratory secretions for viral or antigen isolation (would not do routinely)</td>
<td>Sputum PCR (but not needed = classic clinical diagnosis)</td>
<td>PCR of NP or throat swab (but not usually needed)</td>
</tr>
<tr>
<td>Best Initial Treatment and Definitive Treatment</td>
<td>• Admit for IV cefuroxime Then change if needed based on C and S</td>
<td>• No treatment of viral pneumonia If uncertain, give oral amoxicillin</td>
<td>Oral macrolide</td>
<td>Oral macrolide</td>
</tr>
</tbody>
</table>
Clinical Recall
A 15-month-old girl presents to the outpatient clinic on a winter afternoon with fever, shortness of breath, and wheezing. If a chest x-ray revealed hyperinflated lungs with peribronchial cuffing without consolidation, what would be the likely diagnosis?

A. Epiglottitis
B. Croup
C. Chlamydia pneumonia
D. Viral pneumonia
E. Pneumococcus

Answer: D

CYSTIC FIBROSIS (CF)
A 3-year-old white child presents with rectal prolapse. She is noted to be in the less than 5th percentile for weight and height. The parents also note that she has a foul-smelling bulky stool each day that “floats.” They also state that the child has developed a repetitive cough over the last few months.

- Most common life-limiting recessive trait among whites
- Major cause of severe chronic lung disease and most common cause of exocrine pancreatic deficiency in children
- Primary pathogenic feature is dysfunction of epithelialized surfaces; obstruction and infection of airways; maldigestion
- Genetics
 - Autosomal recessive; CF gene most prevalent among northern and central Europeans
 - All of the gene mutations occur at a single locus on long arm of chromosome 7.
 - Codes for CF transmembrane regulator (CFTR—ion channel and regulatory functions)
 - Expressed mostly on epithelial cells of airways, gastrointestinal tract, sweat glands, genitourinary (GU) system
 - Not all children with CF can be identified by DNA testing; may need to sequence CFTR gene
- Pathogenesis and pathology
 - Membranes of CF epithelial cells unable to secrete Cl⁻ in response to cyclic adenosine monophosphate–mediated signals:
 - Failure to clear mucous secretions; paucity of water in mucous secretions
 - Increased salt content of sweat and other serous secretions
Manifestations:
- Bronchiolar obliteration, bronchiectasis (end-stage; severe destructive disease)
- Opacified paranasal sinuses
- Large nasal polyps
- Pancreatic dysfunction; fat and fat-soluble vitamin malabsorption
- Intestinal glands distended with mucous secretions; focal biliary cirrhosis
- Endocervicitis
- Body and tail of epididymis, vas deferens, seminal vesicles obliterated or atretic in males

Clinical presentation
- Intestinal tract—usually first presentation:
 - 10% of newborns with meconium ileus
 - X-ray shows dilated loops, no air–fluid levels, “ground-glass” (bubbly appearance) material in lower central abdomen
 - Gastrografin enema → reflux into ileum may clear; if not, then surgery
 - Most with malabsorption from pancreatic exocrine insufficiency → frequent, bulky, greasy stools and failure-to-thrive.
- Fat-soluble vitamin deficiency—ADEK
- Hepatobiliary—icterus, ascites, hepatomegaly, cholelithiasis, varices
- Pancreas—increased incidence of diabetes mellitus, acute pancreatitis
- Rectal prolapse—most in infants with steatorrhea, malnutrition, and cough

Respiratory tract:
- Rate of progression of lung disease is chief determinant of mortality and morbidity—early in life—nontypeable H. influenzae and S. aureus, then colonization with P. aeruginosa, then later colonization with Burkholderia cepacia: associated with rapid deterioration and death (end-stage)
- Cough, purulent mucus—early in first year, extensive bronchiolitis, then pulmonary function test (PFT) abnormalities, dyspnea; finally, cor pulmonale, respiratory failure, and death; high risk for pneumothorax

Examination:
- Increased A-P diameter
- Hyper-resonance, rales, expiratory wheezing
- Clubbing, cyanosis (late)
- Sinuses almost always opacified

Genitourinary tract:
- Delayed sexual development
- Almost all males with azoospermia
- Increased incidence of hernia, hydrocele, undescended testes
- Females: secondary amenorrhea, cervicitis, decreased fertility

Sweat glands:
- Excessive loss of salt → salt depletion, especially with hot weather or gastroenteritis (serum–hypochloremic alkalosis)
- Salty taste of skin
• Diagnosis

Table 8-4. Diagnosing CF

<table>
<thead>
<tr>
<th>Any of the Following</th>
<th>Plus Any of the Following</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Typical clinical features</td>
<td>• Two increased sweat chlorides on 2 separate days</td>
</tr>
<tr>
<td>• History of a sibling with CF</td>
<td>• Identification of 2 CF mutations (homozygous)</td>
</tr>
<tr>
<td>• Positive newborn screen</td>
<td>• Increased nasal potential difference</td>
</tr>
</tbody>
</table>

- Sweat test (**best test**):
 - Difficult in first weeks of life
 - Confirm positive results
 - Diagnosis: >60 mEq/L
- If sweat test is equivocal:
 - Increased potential difference across nasal epithelium
 - Pancreatic function—72-hour fecal fat collection, stool for trypsin, pancreozymin-secretin stimulation, serum immunoreactive trypsinogen (↑ in neonates)
- X-rays:
 - Hyperinflation of chest
 - Nodular densities, patchy atelectasis, confluent infiltrates, hilar nodes
 - With progression—flattening of diaphragm, sternal bowing, narrow cardiac shadow; cysts, extensive bronchiectasis
- Pulmonary function tests:
 - By 5 years—**obstructive** pulmonary disease
 - Then **restrictive (fibrosis)**
- Microbiologic—finding in sputum of *S. aureus* first, followed by *P. aeruginosa* (mucoid forms) is **virtually diagnostic** (also *B. cepacia*, but is usually late finding)
- Genetic:
 - Antenatal diagnosis by mutational analysis in family previously identified by birth of child with CF
 - Test spouse of carrier with standard panel of probes
 - **Newborn screen**—determination of immunoreactive trypsinogen in blood spots and then **confirmation with sweat or DNA testing; does not improve pulmonary and therefore long-term outcome**

• Treatment

- Clear airway secretions and control infections:
 - **Aerosol treatment; albuterol/saline**
 - Daily dose of human recombinant DNase (**mucolytic**)
 - Chest physical therapy with postural drainage: 1–4 times per day
- Antibiotics:
 - For acute infections (change in baseline condition)
 - Most frequent is *P. aeruginosa* (also non-typable *H. influenzae, S. aureus, B. cepacia*)
 - Must base choice on culture and sensitivity
 - Aerosolized antibiotics—**tobramycin**
Hospitalization:
- Progressive despite intensive home measures
- Typical 14-day treatment
- Two-drug regimens to cover *Pseudomonas*, e.g., *piperacillin plus tobramycin* or *ceftazidime*
- Nutritional: *pancreatic enzyme replacement with meals/snacks; vitamin supplementation* (ADEK)
- Adequate fluid replacement when exercising or hot weather
- Ivacaftor for certain mutations
- Lung transplant

SUDDEN INFANT DEATH SYNDROME (SIDS)

A 2-month-old term infant born with no complications via spontaneous vaginal delivery is brought to the emergency center via ambulance with CPR in progress. According to the mother, the patient was in his usual state of good health until 4 A.M. when she found him cyanotic and not breathing. At midnight the infant was fed 4 ounces of formula without any difficulty and then placed to sleep in a crib. At 4 A.M. the mother returned and found the child unresponsive. She immediately called emergency medical services and began CPR. The child was pronounced dead on arrival to the emergency department.

- Sudden death of an infant, unexplained by history or by thorough postmortem examination including autopsy, investigation of death scene, and review of medical history; recently, new nomenclature is *Sudden Unexplained Infant Death Syndrome* (SUIDS)
- Before 1992, incidence was constant at 1.4 in 1,000; then with *Back to Sleep* campaign, down to 0.45 in 1,000
- Differential diagnosis
 - Explained at autopsy: infections; congenital anomaly; unintentional injury; traumatic child abuse; other natural causes
 - Not explained: SIDS; *intentional suffocation*
- Pathology: no findings are pathognomonic and none are diagnostic (markers for pre-existing, chronic, low-grade asphyxia): *petechial hemorrhages; pulmonary edema*
- Environmental risk factors
 - Nonmodifiable:
 - Low socioeconomic status
 - African American and Native American
 - **Highest at 2–4 months** of age; most by 6 months
 - Highest in winter, midnight to 9 A.M.
 - Males > females

Note

Sudden unexpected infant death (SUID) is the death of an infant age <1 year that occurs suddenly, and whose cause of death is not immediately obvious. Most SUIDs are one of 3 types.
- SIDS
- Unknown cause
- Accidental suffocation and strangulation in bed
– Modifiable:
 ◦ Shorter interpregnancy interval
 ◦ Less prenatal care
 ◦ Low birth weight, preterm, intrauterine growth retardation
 ◦ Maternal smoking
 ◦ Postnatal smoking

• Sleep environment
 – Higher incidence related to prone sleeping
 – Supine position now better than side-lying
 – No increased problems in supine, i.e., aspiration
 – Higher incidence with soft bedding/surfaces
 – Higher incidence with overheating
 – Pacifier shown to consistently decrease risk

• Other risk factors
 – Episode of an apparent life-threatening event (ALTE); recently, new nomenclature for ALTE is Brief Resolved Unexplained Episode (BRUE)
 – Subsequent sibling of SIDS victim
 – Prematurity—inverse with gestational age and birth weight

• Home monitors do not decrease risk.

• Reducing risk
 – Supine while asleep
 – Use crib that meets federal safety standards
 – No soft surfaces (sofas, waterbeds, etc.)
 – No soft materials in sleep environment
 – No bed-sharing
 – Avoid overheating and overbundling
 – Use prone position only while infant is awake and observed
 – No recommendation for home monitoring for this purpose
 – Expand national Back to Sleep campaign (up to 25% of infants still sleep prone).

Clinical Recall

You are offering advice to a new mother as she and her newborn are about to be discharged home after an uneventful delivery. The mother asks about sudden infant death syndrome (SIDS) and wants to learn more. What is an appropriate response?

A. Pacifiers should be avoided
B. Prone sleeping is a preventative strategy
C. The underlying cause is determined by autopsy
D. Bilateral retinal hemorrhages are pathognomonic
E. There is a higher risk in infants of women who smoke

Answer: E
Learning Objectives

- Apply knowledge of allergies and asthma to diagnose and describe treatment options

ALLERGIES

Allergic Rhinitis

Allergic rhinitis is generally established by age 6. Risk factors include early introduction of formula (versus breast milk) or solids, mother smoking before child is age 1 year, and heavy exposure to indoor allergens.

- Most perennial or mixed; increased symptoms with greater exposure
- **Diagnosis suggested by typical symptoms in absence of URI or structural abnormality** (nasal congestion/pruritus, worse at night with snoring, mouth-breathing; watery, itchy eyes; postnasal drip with cough; possible wheezing; headache)
- Specific behaviors
 - Allergic salute (rhinorrhea and nasal pruritus) → nasal crease
 - Vigorous grinding of eyes with thumb and side of fist
- History of symptoms
 - Timing and duration (seasonal versus perennial)
 - Exposures/settings in which symptoms occur
 - Family history of allergic disease (atopy, asthma)
 - Food allergies more common (nuts, seafood) in young children (then skin, gastrointestinal, and, less often, respiratory)
- Physical examination
 - **Allergic shiners** (venous stasis)—blue-gray-purple beneath lower eyelids; often with **Dennie lines**—prominent symmetric skin folds
 - Conjunctival injection, **chemosis** (edema), stringy discharge, “cobblestoning” of tarsal conjunctiva
 - **Transverse nasal crease from allergic salute**
 - **Pale nasal mucosa**, thin and clear secretions, **turbinate hypertrophy**, polyps
 - Postnasal drip (posterior pharynx)
 - Otitis media with effusion is common
• Differential diagnosis
 – Nonallergic inflammatory rhinitis (no IgE antibodies)
 – Vasomotor rhinitis (from physical stimuli)
 – Nasal polyps (think of CF)
 – Septal deviation
 – Overuse of topical vasoconstrictors
 – Rare: neoplasms; vasculitides; granulomatous disorders (Wegener)
• Laboratory evaluation (no initial routine labs; clinical DX)
 – In vitro:
 ° Peripheral eosinophilia
 ° Eosinophils in nasal and bronchial secretions; more sensitive than blood eosinophils
 ° Increased serum IgE
 ° IgE-specific allergen in blood draw (advantages are safety and the results will be uninfuenced by skin disease/medications, while major disadvantages are its expense and less sensitivity); best use is for extensive dermatitis and for medications that interfere with mast cell degranulation, have high risk for anaphylaxis, or cannot cooperate with skin tests
 – In vivo—skin test (best):
 ° Use appropriate allergens for geographic area plus indoor allergens.
 ° May not be positive before 2 seasons
• Treatment—environmental control plus removal of allergen is most effective method
 – Avoidance of biggest triggers—house dust mite, cat, cockroach
 – Dehumidifiers, HEPA-filtered vacuuming, carpet removal, pillow and mattress encasement
 – Remove pets
 – No smoking
 – No wood-burning stoves/fireplaces
• Pharmacologic control
 – Antihistamines (first-line therapy):
 ° First generation—diphenhydramine, chlorpheniramine, brompheniramine; cross blood-brain barrier—sedating
 ° Second generation (cetirizine, fexofenadine, loratadine)—nonsedating (now preferred drugs); easier dosing
 ° Oral antihistamines are more effective than cromolyn but significantly less than intranasal steroids; efficacy ↑ when combined with an intranasal steroid
 – Intranasal corticosteroids—most effective medication, but not first-line:
 ° Effective for all symptoms
 ° Add to antihistamine if symptoms are more severe
 – Leukotriene-receptor antagonists
 – Chromones—cromolyn and nedocromil sodium:
 ° Least effective
 ° Very safe with prolonged use
 ° Best for preventing an unavoidable allergen
– Decongestants—(alpha-adrenergic \(\rightarrow\) vasoconstriction)—topical forms (oxy-metazoline, phenylephrine) significant rebound when discontinued.
– Epinephrine—alpha and beta adrenergic effects; drug of choice for anaphylaxis
– Immunotherapy:
 ° Administer gradual increase in dose of allergen mixture \(\rightarrow\) decreases or eliminates person’s adverse response on subsequent natural exposure
 ° Major indication—duration and severity of symptoms are disabling in spite of routine treatment (for at least 2 consecutive seasons). This, however, is the treatment of choice for insect venom allergy.
 ° Should not be used for (lack of proof): atopic dermatitis, food allergy, latex allergy, urticaria, children age <3 years (too many systemic symptoms)
 ° Need several years of treatment; expensive

• Complications of allergic rhinitis
 – Chronic sinusitis
 – Asthma
 – Eustachian tube obstruction \(\rightarrow\) middle ear effusion
 – Tonsil/adenoid hypertrophy
 – Emotional/psychological problems

Insect Venom Allergy

• Etiology/pathophysiology—systemic allergic responses are IgE-mediated and are almost always due to stings from the order Hymenoptera (yellow jackets most notorious—aggressive, ground-dwelling, linger near food)
• Clinical presentation
 – Local—limited swelling/pain <1 day
 – Large local area—develop over hours to days; extensive swelling
 – Systemic—urticaria/angioedema, pruritus, anaphylaxis
 – Toxic—fever, malaise, emesis, nausea
 – Delayed/late response—serum sickness, nephrotic syndrome, vasculitis, neuritis, encephalitis
• Diagnosis—for biting/stinging insects, must pursue skin testing
• Treatment
 – Local—cold compresses, topical antipruritic, oral analgesic, systemic antihistamine; remove stingers by scraping
 – If anaphylaxis—epinephrine pen, ID bracelet, avoid attractants (e.g., perfumes)
 – Indication for venom immune therapy—severe reaction with + skin tests (highly effective in decreasing risk)

Food Reactions

• Clinical presentation
 – Most infants and young children outgrow milk and egg allergy (half in first 3 years); majority with nut or seafood allergies retain for life:
 ° Most food allergies are to egg, milk, peanuts, nuts, fish, soy, wheat, but any food may cause a food allergy.
 ° Food allergic reactions are most common cause of anaphylaxis seen in emergency rooms
With food allergies, there is an **IgE and/or a cell-mediated response**.

Manifestations:
- Skin—urticaria/angioedema and flushing, atopic dermatitis; 1/3 of children with atopic dermatitis have food allergies, but most common is acute urticaria/angioedema
- Gastrointestinal—oral pruritus, nausea, vomiting, diarrhea, abdominal pain, eosinophilic gastroenteritis (often first symptoms to affect infants): predominantly a cell-mediated response, so standard allergy tests are of little value; food protein–induced enterocolitis/proctocolitis presents with bloody stool/diarrhea (most cow milk or soy protein allergies)
- Respiratory—nasal congestion, rhinorrhea, sneezing, laryngeal edema, dyspnea, wheezing, asthma
- Cardiovascular—dysrhythmias, hypotension

Diagnosis
- Must establish the food and amount eaten, timing, and nature of reaction
- Skin tests, IgE-specific allergens are useful for IgE sensitization: a negative skin test excludes an IgE-mediated form but because of cell-mediated responses, patient may need a food elimination and challenge test in a controlled environment (best test)

Treatment
- Only validated treatment is elimination
- Epinephrine pens for possible anaphylaxis

Clinical Recall

A 14-year-old-boy has persistent rhinorrhea, itchy eyes and nose, and post-nasal drip. He has no pets, does not smoke, and uses an allergen-free pillowcase. What is the first-line pharmacologic treatment?

A. Continue conservative management
B. Prescribe oral antihistamine
C. Prescribe intranasal corticosteroid
D. Prescribe intramuscular epinephrine
E. Prescribe inhaled steroids

Answer: B
Urticaria and Angioedema

Causes:
- Acute, IgE-mediated (duration ≤6 weeks)
 - Activation of mast cells in skin
 - Systemically absorbed allergen: food, drugs, stinging venoms; with allergy, penetrates skin → hives (urticaria)
- Non IgE-mediated, but stimulation of mast cells
 - **Radiocontrast agents**
 - Viral agents (especially EBV, hepatitis B)
 - Opiates, NSAIDs
- Physical urticarias; environmental factors—temperature, pressure, stroking, vibration, light
- Hereditary angioedema
 - Autosomal dominant
 - C1 esterase-inhibitor deficiency
 - Recurrent episodes of nonpitting edema
- Diagnosis mainly clinical; skin tests, IgE-specific allergens (blood)
- Treatment
 - Most respond to avoidance of trigger and oral antihistamine
 - Severe—epinephrine, short-burst corticosteroids
 - If H₁ antagonist alone does not work, H₁ plus H₂ antagonists are effective; consider steroids
 - For chronic refractory angioedema/urticaria → IVIg or plasmapheresis
- For hereditary angioedema, C1 esterase

Anaphylaxis

- Sudden release of active mediators with cutaneous, respiratory, cardiovascular, gastrointestinal symptoms
- Most common reasons
 - In hospital—latex, antibiotics, IVIg (intravenous immunoglobulin), radiocontrast agents
 - Out of hospital—food (most common is peanuts), insect sting, oral medications, idiopathic
- Presentation—reactions from ingested allergens are delayed (minutes to 2 hours); with injected allergen, reaction is immediate (more gastrointestinal symptoms)
- Treatment
 - What the patient should do immediately:
 - **Injectable epinephrine**
 - Oral liquid diphenhydramine
 - Transport to ER
 - Medical:
 - **Oxygen and airway management**
 - Epinephrine IM (IV for severe hypotension); intravenous fluid expansion; H₁ antagonist; corticosteroids; nebulized, short-acting beta-2 agonist (with respiratory symptoms); H₂ antagonist (if oral allergen)
Atopic Dermatitis (Eczema)

- Epidemiology/pathophysiology
 - Interaction among genetic, environmental, and immunologic factors; familial with strong maternal influence
 - Majority develop allergic rhinitis and/or asthma
 - Most have increased eosinophils and IgE

- Clinical presentation
 - **Half start by age 1 year**, most by age 1 and 5 years; chronic or relapsing
 - Intense cutaneous reactivity and **pruritus**; worse at night; scratching induces lesions; becomes excoriated
 - Exacerbations with foods, inhalants, bacterial infection, decreased humidity, excessive sweating, irritants
 - Patterns for skin reactions:
 - Acute: **erythematous papules, intensely pruritic, serous exudate and excoriation**
 - Subacute—erythematous, excoriated, **scaling papules**
 - Chronic—**lichenification** (thickening, darkening)

Figure 9-1. Subacute and Chronic Atopic Dermatitis Most Commonly Affects the Flexural Surfaces of Joints

- Distribution pattern:
 - Infancy: **face, scalp, extensor** surfaces of extremities
 - Older, long-standing disease: **flexural** aspects
 - Often have remission with age, but skin left prone to itching and inflammation when exposed to irritants
Treatment
- Identify and eliminate causative factors
- Cutaneous hydration
 - Dry skin, especially in winter (xerosis)
 - Lukewarm soaking baths followed by application of occlusive emollient (hydrophilic ointments)
- Topical corticosteroids
 - Seven classes—the higher potency classes are not to be used on face or intertriginous areas and only for short periods
 - Goal—emollients and low-potency steroids for maintenance
- Topical immunomodulators; tacrolimus (calcineurin inhibitor):
 - Inhibits activation of key cells
 - Ointment safe and effective
 - Safe on face
 - Can use as young as age 2 years
- Tar preparations
- Phototherapy—UV light
- Systemic: antihistamines (sedating at night; for pruritus); glucocorticoids; cyclosporine (refractory to all other treatment); interferon (if all else fails)
- Treat with antibiotics for bacterial superinfection

Complications
- Secondary bacterial infection, especially *S. aureus*; increased incidence of *T. rubrum, M. furfur*
- Recurrent viral skin infections—*Kaposi varicelliform eruption (eczema herpeticum)* most common
- Warts/molluscum contagiosum

ASTHMA

A 6-year-old boy presents to his physician with end-expiratory wheezing scattered throughout the lung fields. He is noted to have nasal flaring, tachypnea, and intercostal retractions. These symptoms are triggered by changes in the weather. He has a family history of asthma and atopic dermatitis. He has never been intubated or admitted to the pediatric ICU. His last hospitalization for asthma was 6 months ago. He takes medication for asthma only when he starts to wheeze.

Etiology/pathophysiology
- Chronic inflammation of airways with episodic at least partially reversible airflow obstruction
 - Genetic and environmental factors: concomitant allergies (perennial in most), induced by common viral agents, tobacco smoke; cold, dry air; strong odors
 - Most with onset age <6 years; most resolve by late childhood
Two main patterns:
- Early childhood triggered primarily by common **viral infections**
- Chronic asthma associated with **allergies** (often into adulthood; atopic)

Some risk factors for persistent asthma: perennial allergies; atopic dermatitis, allergic rhinitis, food allergy; severe lower respiratory tract infections; wheezing other than with URIs (exercise, emotions); environmental tobacco smoke exposure; low birth weight

Clinical presentation
- Diffuse wheezing, expiratory then inspiratory
- Prolonged expiratory phase
- Decreased breath sounds
- Rales/rhonchi → excess mucus and inflammatory exudate
- Increased work of breathing
- Exercise intolerance

Diagnosis
- **In children, neither lab tests nor provocation challenge tests are required for diagnosis; they may support the clinical diagnosis or may be used to follow the patient clinically.**
- Lung function:
 - **Gold standard** = spirometry during forced expiration. FEV₁/FVC <0.8 = airflow obstruction (the forced expiratory volume in 1 second adjusted to the full expiratory lung volume, i.e., the forced vital capacity) in children age ≥ 5 yrs
 - Bronchodilator response to inhaled beta-agonist—improvement in FEV₁ to >12%
 - Exercise challenge—worsening in FEV₁ of at least 15%
 - **Home tool**—peak expiratory home monitoring (PEF); A.M. and P.M. PEF for several weeks for practice and to establish personal best and to correlate to symptoms; based on personal best, divide PEFs into zones: green (80–100%), yellow (50–80%), red (<50%)
- Radiology (no routine use):
 - Hyperinflation—flattening of the diaphragms
 - Peribronchial thickening
 - Use to identify other problems that may mimic asthma (e.g., aspiration with severe gastroesophageal reflux) and for complications during severe exacerbations (atelectasis, pneumonia, air leak)

Treatment—based on asthma severity classification
- **Intermittent:** symptoms ≤ 2 days/week and ≤ 2 nights/mo
 - No need for daily controller
- **Persistent** (mild → moderate → severe) symptoms > intermittent
 - Need daily controller
Table 9-1. Severity Classification and Treatment (simplified from National Asthma Education and Prevention Program)

<table>
<thead>
<tr>
<th>Class</th>
<th>Daytime Symptoms</th>
<th>Nighttime Symptoms</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent</td>
<td>≤2×/week</td>
<td>≤2×/month</td>
<td>Short-acting β, agonist PRN</td>
</tr>
<tr>
<td>Mild persistent</td>
<td>>2×/week</td>
<td>>2×/month</td>
<td>Inhaled steroids β agonist for, breakthrough</td>
</tr>
<tr>
<td>Moderate persistent</td>
<td>Daily</td>
<td>>1×/week</td>
<td>Inhaled steroids Long-acting β agonist Short-acting β for, breakthrough Leukotriene-receptor antagonists</td>
</tr>
<tr>
<td>Severe persistent</td>
<td>Continual; limited activities; frequent exacerbations</td>
<td>Frequent</td>
<td>High-dose inhaled steroid Long-acting β agonist Short-acting β agonist Systemic steroids Leukotriene-receptor antagonists</td>
</tr>
</tbody>
</table>

- **Asthma medications**
 - **Quick-relief medications**
 - Short-acting beta-2 agonists: *albuterol, levalbuterol* (nebulized only), terbutaline, metaproterenol (rapid onset, may last 4–6 hrs; *drug of choice for rescue and preventing exercise-induced asthma but inadequate control if need >1 canister/month*).
 - Anticholinergics (much less potent than beta agonists): *ipratropium bromide*; mostly for added treatment of acute severe asthma in ED and hospital.
 - Short-course systemic glucocorticoids; outpatient for moderate to severe flare-up, and prednisone 3–7 days; inpatient recommended with IV methylprednisolone IV.
 - **Management of asthma exacerbations**
 - **Emergency department:**
 - Monitor, *oxygen* as needed.
 - Inhaled *albuterol q 20 minutes for 1 hour—add ipratropium if no good response for second dose.*
 - **Corticosteroids PO or IV**
 - Can go home if sustained improvement with normal physical findings and SaO₂ >92% after 4 hours in room air; PEF ≥70% of personal best.
 - Home on q 3–4 hour MDI + 3–7-day oral steroid.
 - **Hospital**—for moderate–severe flare-ups without improvement within 1–2 hours of initial acute treatment with PEF <70% of personal best or SaO₂ <92% on room air:
 - *Oxygen*
 - Nebulized *albuterol* (very frequently or continuous)
 - Add *ipratropium q 6 hours*.
 - **Intravenous corticosteroids**
 - May need intravenous fluids
 - Mechanical ventilation (rare)

Note

With all asthma categories, a step-up, step-down dosing is typically used (high at first, then down to minimum necessary to prevent symptoms).

Note

Older children can use a metered dose inhaler (MDI); younger children often need to do so with a spacer and face mask. Infants may need to have nebulized medications.

Note

Adjunct Treatment to Prevent Intubation and Ventilation

- IV beta agonist
- IV theophylline
- Heliox (70:30 He:O₂); decreased airway resistance and clinical response in 20 min.
- IV MgSO₄—smooth-muscle relaxant; monitor BP every 10–15 min (risk of hypotension).
Clinical Recall

A 12-year-old girl is diagnosed with asthma. She has nighttime symptoms twice a week and daily daytime symptoms. Which of the following should NOT be part of her long-term treatment?

A. Inhaled steroids
B. Leukotriene-receptor antagonist
C. Short-acting beta agonist
D. Oral prednisone
E. Long-acting beta agonist

Answer: D

Table 9-2. Bronchiolitis vs. Asthma

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bronchiolitis</th>
<th>Asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Most RSV</td>
<td>Reversible bronchoconstriction with chronic inflammation</td>
</tr>
<tr>
<td>Age</td>
<td>Infants (especially <1 year)</td>
<td>Most start age <5 years</td>
</tr>
<tr>
<td>Timing</td>
<td>• Winter</td>
<td>• All year</td>
</tr>
<tr>
<td></td>
<td>• Most with URI in winter</td>
<td>• Most with URI in winter</td>
</tr>
<tr>
<td>Diagnosis Key Words</td>
<td>• URI from another household contact</td>
<td>• Repeated episodes of expiratory wheezing</td>
</tr>
<tr>
<td></td>
<td>• Getting worse</td>
<td>• Chronic non-productive cough</td>
</tr>
<tr>
<td></td>
<td>• Fever</td>
<td>• Chest tightness</td>
</tr>
<tr>
<td></td>
<td>• Tachypnea</td>
<td>• Respiratory distress</td>
</tr>
<tr>
<td></td>
<td>• Bilateral expiratory wheezing ± respiratory distress</td>
<td>• May have other atopic disease + family history</td>
</tr>
<tr>
<td></td>
<td>• Apnea</td>
<td>• May occur primarily with URIs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cannot make diagnosis of asthma for first-time wheezing in infant with fever (diagnosis is bronchiolitis)</td>
</tr>
<tr>
<td>Best Initial Test</td>
<td>• Clinical Dx</td>
<td>Worsening of FEV1/FVC with exercise and improvement with beta-agonist</td>
</tr>
<tr>
<td></td>
<td>• CXR only if severe and therefore possibility of secondary bacterial pneumonia</td>
<td></td>
</tr>
<tr>
<td>Most Accurate Test</td>
<td>• NP rapid test or PCR for organism</td>
<td>• Repeated episodes that improve with beta-agonist</td>
</tr>
<tr>
<td></td>
<td>• ABG only for severe to evaluate possible need for ventilation</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>• Oxygen, if needed</td>
<td>• Oxygen</td>
</tr>
<tr>
<td></td>
<td>• Supportive Rx</td>
<td>• Short-acting beta-agonist</td>
</tr>
<tr>
<td></td>
<td>• May try nebulized hypertonic saline</td>
<td>• Add oral steroid for acute attack</td>
</tr>
<tr>
<td></td>
<td>• Ribavirin in severe or worsening cases MAY prevent the need for intubation and ventilation</td>
<td>• May need chronic maintenance Rx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Objectives

- Explain information related to evaluation of suspected immune deficiency
- Categorize specific defects of immune deficiency
Table 10-1. Suspecting Immunodeficiency by Major Defect

<table>
<thead>
<tr>
<th>Common organism</th>
<th>B-Cell</th>
<th>T-Cell</th>
<th>Complement</th>
<th>Neutrophil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common organism</td>
<td>Recurrent bacterial: streptococci, staphylococci, Haemophilus, Campylobacter; Viral: enteroviruses; Uncommon: giardia, cryptosporidia</td>
<td>Opportunistic organisms: CMV, EBV, varicella, Candida, Pneumocystis jiroveci, mycobacteria</td>
<td>Pneumococci, Neisseria</td>
<td>Bacteria: Staphylococci, Pseudomonas, Serratia, Klebsiella, Salmonella; Fungi: Candida, Aspergillus</td>
</tr>
<tr>
<td>Age onset</td>
<td>Age 5-7 months or later childhood to adult</td>
<td>Usually age 2-6 months</td>
<td>Any age</td>
<td>Early onset</td>
</tr>
<tr>
<td>Infections</td>
<td>Most are recurrent sinopulmonary infections and recurrent entero viral meningitis</td>
<td>Mucocutaneous candidiasis; pulmonary and GI infections</td>
<td>Meningitis, arthritis, septicemia, recurrent sinopulmonary infections</td>
<td>Skin abscesses, impetigo, cellulitis, suppurative adenitis, gingivitis, oral ulcers, osteomyelitis, internal organ abscesses</td>
</tr>
<tr>
<td>Other findings</td>
<td>Autoimmunity, lymphoreticular malignancy</td>
<td>Chronic diarrhea and failure-to-thrive; postvaccination dissemination-varicella, BCG; hypocalcemia in infancy; graft-versus-host from transplacental maternal engraftment or nonirradiated blood</td>
<td>Autoimmune disorders, vasculitis, glomerulonephritis, angioedema</td>
<td>Prolonged attachment of umbilical cord, poor wound healing, decreased signs of infection</td>
</tr>
<tr>
<td>Best initial test</td>
<td>Screen with IgA if low, measure IgG and IgM (quantitative immunoglobulins)</td>
<td>Lymphocyte count (low)</td>
<td>Screen is total hemolytic complement (CH₁₅₀)—will be depressed if any component is consumed</td>
<td>Neutrophil count</td>
</tr>
<tr>
<td>Other tests</td>
<td>Low antibody titers to specific antigens—iso hemagglutinins, vaccines</td>
<td>Best cost-effective test for T-cell function — Candida skin test</td>
<td>Identify mode of inheritance—all are autosomal except for properdin deficiency (X-linked)</td>
<td>Neutrophil respiratory burst after phorbol ester stimulation; most reliable now uses rhodamine fluorescence (replaced the NBT test)</td>
</tr>
<tr>
<td>Specific tests</td>
<td>Enumerate B-cells with flow cytometry (monoclonal antibodies to B-cell-specific CD antigens): B cell absent or present and number</td>
<td>Flow cytometry using monoclonal antibodies recognizing T-cell CD antigens (phytohemagglutinin, concanavalin A, pokeweed mitogen)</td>
<td>Can easily measure C3 and C4 (hereditary angioedema); others require a research lab</td>
<td>Can identify leukocyte adhesion deficiencies with flow cytometric assays of lymphocytes and neutrophils (CD18, CD11, CD15)</td>
</tr>
</tbody>
</table>

Note: For each, the most accurate test is molecular genetic diagnosis.
SPECIFIC DEFECTS

Defects of Antibody Production

X-linked (Bruton) agammaglobulinemia

X-linked (Bruton) agammaglobulinemia (XLA) is a profound defect in B-cell development which leads to an absence of circulating B cells and thus leads to severe hypogammaglobulinemia with small-to-absent tonsils and no palpable lymph nodes.

- **Genetics**: >500 known mutations of the Btk gene (Bruton tyrosine kinase), which is necessary for pre-B-cell expansion and maturation; long arm of X-chromosome
- **Clinical findings**: boys with pyogenic sinopulmonary infections
- **Diagnosis**: clinical presentation + lymphoid hypoplasia on exam; all immunoglobulins severely depressed; flow cytometry shows absence of circulating B-cells; gene sequencing for specific mutation
- **Treatment**: appropriate use of antibiotics + regular monthly IVIG

NOTE: The only 2 B-cell defects for which stem cell transplantation is recommended are CD40 ligand defect (extremely rare; one of the known mutations on the X-chromosome for hyper-IGM syndrome) and X-linked lymphoproliferative disease.

Common variable immunodeficiency

Common Variable Immunodeficiency (CVID) is hypogammaglobulinemia with phenotypically normal B-cells; blood B-lymphocytes do not differentiate into IG-producing cells

- **Genetics**: majority have no identified molecular diagnosis, so are sporadic; may have a common genetic basis with selective IgA deficiency (occurs in families together and some later with IgA may develop CVID)
- **Clinical findings**: boy or girl (equal sex distribution) with later onset infections, less severe; clinically similar to XLA, but rare echovirus meningoencephalitis
- **Diagnosis**: clinical presentation + serum Ig and antibody deficiencies as profound or less than in XLA; normal sized lymphoid tissue; later autoimmune disease and malignancy (lymphoma)
- **Treatment**: need to be screened for anti-IgA antibodies (as in selective IgA deficiency) → if present, therapy consists of the one IG preparation available that contains no IgA.

Selective IgA deficiency

Selective IgA deficiency is the most common immunodeficiency. It is caused by the absence or near absence of serum and secretory IgA with phenotypically normal B-cells

- **Genetics**: basic defect is unknown; boys and girls and familial pattern suggests autosomal dominant with variable expression; also seen in families with CVID (as above); both may be triggered by environmental factors
- **Clinical findings**: same bacteria as others with most infections in respiratory, GI and urogenital tracts; giardiasis is common
• Diagnosis: very low-to-absent serum IgA with other IGs normal; as with CVID, incidence of autoantibodies, autoimmune disease and malignancy increased; serum antibodies to IgA can cause severe anaphylactic reactions if any blood product with IgA is administered (NOT a transfusion reaction)

• Treatment: IVIG is not indicated (95–99% is IgG) because if usual IVIG (containing IgA) product is given, patients are at risk for severe reaction. Additionally, because it is specifically an IgA deficiency, the IVIG product with the IgA removed cannot be used. Treat the infections (generally milder).

Defects of Cellular Immunity (T-cell Defects)

DiGeorge syndrome (thymic hypoplasia)

DiGeorge syndrome is thymic and parathyroid hypoplasia to aplasia from dysmorphogenesis of the 3rd and 4th pharyngeal pouches. Other structures are also involved: great vessel anomalies (right-sided aortic arch, interrupted aortic arch), esophageal atresia, bifid uvula, congenital heart disease (conotruncal malformations, septal defects), facial dysmorphism (short philtrum, thin upper lip, hypertelorism, mandibular hypoplasia, low-set, often notched ears), and cleft palate.

• Genetics: microdeletions of 22q11.2 (DiGeorge syndrome chromosomal region, DGCR); 22q deletions also seen in velocardiofacial syndrome and conotruncal anomaly face syndrome (CATCH 22 syndromes: Cardiac, Abnormal facies, Thymic hypoplasia, Cleft palate, Hypocalcemia); partial DiGeorge is more common, with variable thymic and parathyroid hypoplasia. About 1/3 with complete DiGeorge have the CHARGE association. Must confirm diagnosis for complete form by molecular genetics (fatal without definitive treatment).

• Clinical findings: from almost no infections with normal growth to severe opportunistic infections and graft-versus-host disease. In most, initial presentation is neonatal hypocalcemic seizures.

• Diagnosis: most with only moderately low absolute lymphocyte counts with variably decreased CD3 T-lymphocytes per the degree of thymic hypoplasia and variable response to mitogen stimulation. Must get a T-cell count on all infants born with primary hypoparathyroidism, CHARGE, truncus arteriosus and interrupted aortic arch

• Treatment: complete form correctable with either culture unrelated thymic tissue transplants or bone marrow or peripheral blood transplantation from HLA-identical sibling

Combined Antibody and Cellular Immunodeficiencies

Severe combined immunodeficiency

Severe Combined Immunodeficiency (SCID) is the absence of all adaptive immune function, and in some, natural killer cells due to diverse mutations. It is the most severe immunodeficiency known.

• Genetics: mutations of any one of 13 genes encoding the components of immune system critical for lymphoid cell development; result in very small thymuses which
fail to descend from the neck and a lack of normal components + splenic depletion of lymphocytes and absent (or very undeveloped) remaining lymphatic tissue. X-linked SCID is the most common form in the United States.

- **Clinical findings:** first 1-3 months of life with recurrent/persistent diarrhea and opportunistic infections that may lead to death; also at risk for graft-versus-host disease from maternal immunocompetent T-cells that crossed the placenta in utero
 - If patient continues to live without treatment, typical B-cell related infections will develop
- **Diagnosis:** all patients have lymphopenia from birth, low-to-absent T-cells and absence of lymphocyte proliferative response to mitogens low-to-absent serum Igs and no antibodies after immunizations. The X-linked form has a low percentage of T and NK cells; autosomal recessive form more common in Europe (mutated forms in 12 genes). ADA deficiency affects primarily T-cell function (most severe lymphopenia from birth; second most common form; deletions of chromosome 20).
- **Treatment:** stem cell transplantation (HLA-identical or T-cell depleted half-matched parental); without it, most patients will die in first year but if diagnosed in first 3-4 months and treated, 94% will survive. The ADA form and X-linked have been treated with somatic gene therapy.

Combined immunodeficiency

Combined immunodeficiency is the presence of low but not absent T-cell function and low but not absent antibodies; patients survive longer but have failure-to-thrive and still die relatively early in life which are:

Wiskott-Aldrich syndrome

Wiskott-Aldrich Syndrome is an impaired humoral immune response and highly variable concentrations of the Igs with moderately reduced T-cells and variable mitogen responses.

- **Genetics:** X-linked recessive (Xp11.22-11.23); encodes a cytoplasmic protein restricted in expression to hematopoietic cell lines (WASP = Wiskott-Aldrich Syndrome Protein)
- **Clinical findings:** (1) thrombocytopenia presenting in neonatal period or early infancy most commonly with prolonged circumcision bleeding or bloody diarrhea, (2) atopic dermatitis, and (3) recurrent infections in first year of life (early encapsulated bacteria causing otitis, pneumonia, meningitis and sepsis, then later opportunistic infections)
- **Diagnosis:** clinical and molecular genetics; most common IG pattern is low IgM, high IgA and IgE and normal to slightly low IgG and variably reduced T-cells.
- **Treatment:** rare survival beyond adolescence (bleeding, infections and EBV-associated malignancies and autoimmune complications) without a bone marrow transplant
Ataxia-telangiectasia
Ataxia-telangiectasia is a moderately depressed response to T and B-cell mitogens, moderately reduced CD3 and CD4 T-cells with normal or increased percentages of CD8, T-helper cell and intrinsic B-cell defects, and hypoplastic thymus.

- **Genetics:** AT mutation (ATM) at 11.22-23
- **Clinical findings:** (1) ataxia evident with onset of walking and progresses until age 10-12 years when confined to a wheelchair (2) oculocutaneous telangiectasias develop at 3-6 years of age and (3) recurrent sinopulmonary infections most with common viruses and occasional fatal varicella; lymphoreticular malignancies and adenocarcinomas develop later; unaffected relatives also have increased incidence of malignancies
- **Treatment:** supportive care

Disorders of Phagocytic Function

Leukocyte adhesion deficiency
Leukocyte adhesion deficiency is a rare disorder of leukocyte function causing recurrent bacterial and fungal infections and decreased inflammatory responses in the presence of neutrophilia (increased counts).

- **Genetics:** autosomal recessive with 3 types; affects neutrophil adhesion; mutation of 21q22.3 (results in decreased expression of β₂-integrin to the endothelial surface, exiting of neutrophils from the circulation and adhesion to microorganisms (which promotes phagocytosis and activation of NADPH oxidase)
- **Clinical findings:** infant with recurrent, low-grade bacterial infections of the skin, large chronic oral ulcers with polymicrobes and severe gingivitis; respiratory tract and genital mucosa; delayed separation of the umbilical cord with omphalitis; typical signs of inflammation may be absent and there is no pus formation; most common organisms are *S. aureus*, gram-negatives and *Candida and Aspergillus*
- **Diagnosis:** paucity of neutrophils in affected tissue but circulating neutrophil count is significantly elevated; assessment of neutrophil and monocyte adherence, aggregation, chemotaxis and phagocytosis are all abnormal diagnosis confirmed with flow cytometry
- **Treatment:** early allogenic stem-cell transplantation for severe forms otherwise supportive care

Chronic granulomatous disease
Chronic granulomatous disease (CGD) is when neutrophils and monocytes phagocytize but cannot kill catalase-positive microorganisms as a result of a defect in production of oxidative metabolites.

- **Genetics/pathogenesis:** one X-linked and 3 autosomal recessive genes; most are males with X-linked inheritance; neutrophils do not produce hydrogen peroxide, which usually acts as a substrate for myeloperoxidase needed to oxidize halide to hypochlorous acid and chloramines that kill microbes; if organism is catalase positive, the organism’s hydrogen peroxide is metabolized and the organism survives, while catalase-negative organisms are killed
• **Clinical findings**: variable age on onset and severity; **recurrent abscesses** (skin, lymph nodes, liver), pneumonia, osteomyelitis; most common pathogens are *S. aureus* and then *S. marcesens, B. cepacia, Aspergillus and C. albicans, Nocardia and Salmonella*; granuloma formation (due to abnormal accumulation of ingested material) and inflammatory processes are the hallmark (pyloric outlet obstruction, bladder or ureteral obstruction, rectal fistulae or granulomatous colitis)

• **Diagnosis**: flow cytometry using dihydrorhodamine 123 (DHR) to measure oxidant production through increased fluorescence when oxidized by hydrogen peroxide (has taken the place of the NBT); identifying specific genetic subgroup is useful for genetic counseling and prenatal diagnosis

• **Treatment**: only cure is stem cell transplant; otherwise supportive care including interferon to reduce serious infections

Clinical Recall

Which of the following immune deficiencies is correctly matched to its treatment?

A. X-linked agammaglobulinemia: IVIG
B. DiGeorge syndrome: thyroid transplant
C. CVID: systemic steroids
D. Selective IgA deficiency: bone marrow transplant
E. Wiskott-Aldrich syndrome: treat infections as needed

Answer: A

OTHER IMMUNE DEFICIENCIES

Chédiak-Higashi Syndrome

- Autosomal recessive
- Abnormal secretory/storage granules lead to large and irregular seen in neutrophils
- Oculocutaneous albinism from birth, prolonged bleeding time, peripheral neuropathy, recurrent infections
- Bone marrow transplant or death from infection or lymphoproliferative-like disorder

Complement Deficiencies (Rare)

- Total hemolytic complement screens for most disease of the system; it depends on all 11 components of the classical system; alternative pathway activity (D and B factors) and properdin can be diagnosed with a different assay (AP50)
- All components are autosomal recessive or co-dominant, except for properdin deficiency which is X-linked recessive
• Decrease in both C3 and C4 suggests activation of the alternative pathway; this is most useful in distinguishing nephritis secondary to immune complex deposition from that due to nephritic factor
• Defect in complement function: recurrent angioedema, autoimmune disease, chronic nephritis, HUS, recurrent pyogenic infections, disseminated meningococcal or gonococcal infections or a second episode of bacteremia at any age; high incidence of pneumococcal and meningococcal infections
• The only significant one (in terms of numbers of people) is ineffective synthesis of active C1 inhibitor which produces hereditary angioedema.

Graft-Versus-Host Disease (GVHD)

• Major cause of morbidity and mortality after allogenic stem cell transplantation
• Caused by engraftment of immunocompetent donor lymphocytes in an immunocompromised host that shows histocompatibility differences with the donor lead to donor T-cell activation against recipient major or minor MHC antigens
• Acute GVHD: 2-5 weeks post-transplant; erythematous maculopapular rash, persistent anorexia, vomiting and/or diarrhea and abnormal liver enzymes and LFTs; primary prevention is with post-transplant immunosuppressive drugs and corticosteroids
• Chronic GVHD: develops or persists >3 months after transplant; major cause of non-relapse morbidity and mortality in long-term transplant survivors
 – Disorder of immune regulation: autoantibody production, increased collagen deposition and fibrosis and signs and symptoms of autoimmune disease
Learning Objectives

- Answer questions about congenital and acquired abnormalities of the eye structures
- Recognize and describe treatment approaches to periorbital versus orbital cellulitis

ABNORMALITIES OF THE EYE STRUCTURES

Pupils and iris

- **Coloboma of iris**
 - Often autosomal dominant
 - Defect of lid, iris, lens, retina, or choroid
 - Always inferior—**keyhole appearance of iris; in lid, manifests as cleft**
 - Possible **CHARGE association**

- **Leukocoria—white reflex**
 - Retinoblastoma
 - Cataract
 - Retinopathy of prematurity
 - Retinal detachment
 - Larval granulomatosis

Lens

- Cataracts—lens opacities; the most important congenital etiologies:
 - Prematurity (many disappear in a few weeks)
 - Inherited—most autosomal dominant
 - Congenital infection—TORCH (especially rubella); also, measles, polio, influenza, varicella, vaccinia
 - **Galactosemia**
 - Chromosomal (trisomies, deletions and duplications, XO)
 - Drugs, toxins, and trauma (steroids, contusions, penetrations)

- Ectopia lentis—instability or displacement of lens; edge of displaced lens may be visible in pupillary aperture
 - Differential:
 - **Trauma**—most common
 - Uveitis, congenital glaucoma, cataract, aniridia, tumor
Systemic causes: Marfan syndrome (most with superior and temporal; bilateral), homocystinuria (inferior and nasal), Ehlers-Danlos

Ocular muscles

- **Strabismus**
 - Definition—Misalignment of the eyes from abnormal innervation of muscles
 - Diagnosis—Hirschberg corneal light reflex—most rapid and easily performed; light reflex should be symmetric and slightly nasal to center of each pupil
 - Patch the good eye to eliminate amblyopia, then eye muscle surgery
- **Pseudostrabismus**
 - Epicanthal folds and broad nasal bridge
 - Caused by unique facial characteristics of infant
 - Transient pseudostrabismus; common up to age 4 months

Conjunctiva

A 12-hour-old newborn is noted to have bilateral conjunctival injection, tearing, and some swelling of the left eyelid. Physical examination is otherwise normal.

- **Ophthalmia neonatorum**
 - Redness, chemosis, edema of eyelids, purulent discharge
 - Causes:
 - Chemical conjunctivitis most common in first 24 hours of life (from silver nitrate and erythromycin)
 - N. gonorrhea—2–5-day incubation; may be delayed >5 days due to suppression from prophylactic eye treatment; mild inflammatory and serosanguineous discharge, then thick and purulent; complications are corneal ulceration, perforation, iridocyclitis
 - C. trachomatis—5–14-day incubation; most common; mild inflammation to severe swelling with purulent discharge; mainly tarsal conjunctivae; cornea rarely affected
 - Diagnosis—Gram stain, culture, PCR (polymerase chain reaction) for chlamydia
 - Treatment:
 - N. gonorrhea: ceftriaxone × 1 dose IM + saline irrigation until clear
 - Chlamydia: erythromycin PO × 2 weeks + saline irrigation until clear (may prevent subsequent pneumonia)

- **The red eye**
 - Bacterial conjunctivitis
 - General conjunctival hyperemia, edema, mucopurulent exudate (crusting of lids together), and eye discomfort
 - Unilateral or bilateral
 - S. pneumonia, H. influenza (non-typable), S. aureus, other strep
 - Treatment—warm compresses and topical antibiotics
Viral conjunctivitis
- Watery discharge, bilateral, usually with URI
- Adenovirus, enterovirus
- Epidemic keratoconjunctivitis = adenovirus type 8
- Good hand-washing

Allergic
- Chemical
 - Household cleaning substances, sprays, smoke, smog
 - Extensive tissue damage, loss of sight
- Keratitis—corneal involvement
 - H. simplex, adenovirus, S. pneumoniae, S. aureus, Pseudomonas, chemicals
- Foreign bodies → corneal abrasion (pain, photophobia)
- Anterior uveitis = iridocyclitis (from ciliary body to iris)
- Periorbital versus orbital cellulitis
- Dacryocystitis (S. aureus, H. influenza, S. pneumoniae), dacryoadenitis (S. aureus, streptococci, CMV [cytomegalovirus], measles, EBV [Epstein-Barr virus], trauma)
- Treatment—underlying cause and topical steroids

Retina and vitreous
- Retinopathy of prematurity (ROP)
 - Prematurity, hyperoxia, and general illness
 - From mild to severe progressive vasoproliferative scarring and blinding retinal detachment
 - Treatment—bevacizumab or laser photocoagulation
• Retinoblastoma
 – Most common primary malignant intraocular tumor
 ◦ Recessive-suppressive gene—13q14 → family members need to be screened
 ◦ Average age of diagnosis = 15 months for bilateral and 25 months for unilateral
 ◦ Rarely discovered at birth
 ◦ Initial sign in most = leukocoria
 ◦ Appears as white mass
 ◦ Second most common—strabismus
 ◦ Diagnosis—CT scan to confirm; no biopsy (spreads easily)
 ◦ Need to consider enucleation—radiation, chemotherapy, laser therapy, cryotherapy
 ◦ Prognosis poor if extends into orbit or optic nerve

EYE INJURIES

Corneal abrasions
- Symptoms—pain, tearing, photophobia, decreased vision
- Diagnosis—first anesthetize eye, then fluorescein and blue-filtered light (Wood’s lamp)
- Treatment—pain relief and topical antibiotics

Foreign body
Attempt gentle removal with irrigation or moist cotton-tipped applicator; if embedded body cannot be easily removed, refer immediately to an ophthalmologist.

PERIORBITAL VERSUS ORBITAL CELLULITIS

Periorbital cellulitis
- Inflammation of lids and periorbital tissue without signs of true orbital involvement; insidious onset; low-grade fever; no toxicity
- Causes—trauma, infected wound, abscess of lid, sinusitis, bacteremia *(H. influenzae nontypeable, S. pneumoniae, S. aureus)*
- May be first sign of sinusitis that may progress to orbital cellulitis
 - Physical exam: inflammation with intact eye movements; normal vision; no proptosis
- Diagnosis—clinical (blood culture unlikely to be positive)
- Treatment—oral or IV (depending on severity) antibiotics *(cover for S. aureus and gram positive resistant strains)*
Orbital cellulitis

A 7-year-old boy presents with swelling around the eye 2 days after suffering an insect bite to the eyelid. There is edema, erythema, and proptosis of the eye. Marked limitation of eye movements are noted. He has a low-grade fever.

- Infection of orbital tissue including subperiosteal and retrobulbar abscesses
- Physical examination
 - Ophthalmoplegia (eyeball does not move)
 - Chemosis
 - Inflammation
 - Proptosis
- Toxicity, fever, leukocytosis, acute onset
- Causes: paranasal sinusitis, direct infection from wound, bacteremia
- Organisms nontypeable H. influenza, S. aureus, beta hemolytic strep, S. pneumoniae, anaerobes
- Diagnosis—CT scan with contrast of orbits and surrounding area (best initial test)
- Treatment—Intravenous antibiotics (again, cover for S. aureus) and may require sinus and/or orbital drainage (will give you culture and sensitivities) if no improvement

Clinical Recall

A 5-day-old newborn boy presents with thick, purulent discharge of the right eye and evidence of a corneal ulcer. What is the likely etiology?

A. Syphilis
B. Chlamydia
C. HIV
D. Gonorrhea
E. Silver nitrate

Answer: D
Learning Objectives

- Describe diagnosis and treatment of disorders of the ears, nose, and throat in childhood

EARS

External Ear

Otitis externa (swimmer’s ear)

- Normal flora of external canal includes *Pseudomonas aeruginosa* (most common cause), *S. aureus* (second most common cause), coagulase-negative *Staphylococcus*, diphtheroids, *Micrococcus* spp., and viridans streptococci
- Causes—excessive wetness, dryness, skin pathology, or trauma
- Symptoms—significant pain (especially with manipulation of outer ear), conductive hearing loss
- Findings—edema, erythema, thick otorrhea, preauricular nodes
- Malignant external otitis is invasive to temporal bone and skull base, with facial paralysis, vertigo, other cranial nerve abnormalities; requires immediate culture, IV antibiotics, and imaging (CT scan) → may need surgery
- Treatment—topical otic preparations ± corticosteroids
- Prevention—earplugs, thorough drying of canal, and 2% acetic acid after getting wet

Middle Ear

Otitis media (OM)

A 4-year-old child is seen in the office with a 3-day history of fever and cold symptoms and now complains of right ear pain. Physical examination is remarkable for a bulging tympanic membrane with loss of light reflex and landmarks.

- Acute, suppurative otitis media; accompanied by a variable degree of hearing loss (20–30 dB)
Clinical Correlate
Otitis Media
Correlated Factors
• Commonly first 2 yrs of life; boys > girls; Native Americans/Inuit; low SES
• Heritable genetic component
• Protective effect of breast milk vs formula
• Positive correlation to both tobacco smoke and exposure to other children
• Season: cold weather
• Congenital anomalies: more with palatal clefts, other craniofacial anomalies, and Down syndrome

Note
Abnormal Exam Findings
Purulent otorrhea: sign of otitis externa, otitis media with perforation and/or drainage from middle ear through tympanostomy tube
Bulging TM: increased middle ear pressure with pus or effusion in middle ear
TM retraction: negative middle ear pressure (more rapid diffusion of air from middle ear cavity than its replacement via the eustachian tube)
Other findings for an effusion: bubbles, air-fluid level seen behind TM

Clinical Correlate
Otitis Media
Etiology
• Bacterial (up to 75%): S. pneumoniae (40%); nontypeable H. influenzae (25–30%); Moraxella catarrhalis (10–15%)
• Other 5%: Group A strep, S. aureus, gram negatives (neonates and hospitalized very young infants), respiratory viruses (rhinovirus, RSV most often)

Pathogenesis
• Interruption of normal eustachian tube function (ventilation) by obstruction → inflammatory response → middle ear effusion → infection; most with URI
• Shorter and more horizontal orientation of tube in infants and young children allows for reflux from pharynx (and in certain ethnic groups and syndromes)

Clinical findings highly variable
• Symptoms: ear pain, fever, purulent otorrhea (ruptured tympanic membrane), irritability, or no symptoms
• Pneumatic otoscopy: fullness/bulging or extreme retraction, intense erythema (otherwise erythema may be from crying, fever, sneezing; erythema alone is insufficient unless intense), some degree of opacity (underlying effusion)
• Mobility is the most sensitive and specific factor to determine presence of a middle ear effusion (pneumatic otoscopy)

Diagnosis: must have acute onset, tympanic membrane inflammation, middle ear effusion

Treatment: advisable to use routine antimicrobial treatment especially for age <2 years or those systemically ill, with severe infection, or with history of recurrent acute otitis media.
• Pain relief is essential: acetaminophen, NSAIDs (except acetylsalicylic acid because of risk of Reye syndrome)
• First-line drug of choice = amoxicillin (high dose)
• Alternate first-line drug or history of penicillin allergy = azithromycin
• In some patients age >2 years with no high fever or severe pain, observation and reevaluation in 2-3 days is acceptable; if no improvement, start antibiotics.
• Duration: 10 days; shorter if mild, older child
• Follow up: within days for young infants, continued pain or severe; otherwise 8–12 wks if age <2 yrs or ≥ 2 yrs and with language/learning problems (sustained improvement seen in TM)
• Second-line drugs—if continued pain after 2–3 days
 • Amoxicillin-clavulanic acid (effective against β-lactamase producing strains)
 • Cefuroxime axetil (unpalatable, low acceptance)
 • IM ceftriaxone (may need repeat 1–2×; for severe infection if oral not possible) if patient is not taking/tolerating oral medications
 • Also maybe cefdinir (very palatable, shorter duration)
 • If clinical response to good second-line drug is unsatisfactory, perform myringotomy or tympanocentesis

Otitis media with effusion (OME)
• Generally after repeated infections with insufficient time for effusion to resolve
• Fullness is absent or slight or TM retracted; no or very little erythema
Chapter 12 Disorders of the Ear, Nose, and Throat

• Treatment
 – Monthly evaluation
 – Assess hearing if effusion >3 months; most resolve without problems
 – Recent studies suggest that in otherwise healthy children an effusion up to 9 months in both ears during first 3 years of life poses no developmental risks at 3–4 years of life.
 – Routine antibiotic prophylaxis is not recommended.
 – Tympanostomy tubes
 ° For children with bilateral OME and impaired hearing for >3 months; prolonged unilateral or bilateral OME with symptoms (school or behavioral problems, vestibular, ear discomfort); or prolonged OME in cases of risk for developmental difficulties (Down syndrome, craniofacial disorders, developmental disorders).
 ° Likelihood that middle ear ventilation will be sustained for at least as long as tubes remain in (average 12 months)

• Complications
 – Acute mastoiditis: displacement of pinna inferiorly and anteriorly and inflammation of posterior auricular area; pain on percussion of mastoid process
 ° Diagnosis: when suspected or diagnosed clinically, perform CT of temporal bone
 ° Treatment: myringotomy and IV antibiotics (S. pneumoniae, nontypeable H. influenzae, P. aeruginosa); if bone destruction, intravenous antibiotics and mastoidectomy
 – Acquired cholesteatoma = cyst-like growth within middle ear or temporal bone; lined by keratinized, stratified squamous epithelium
 ° Most with long-standing chronic otitis media
 ° Progressively expands: bony resorption and intracranially; life-threatening
 ° Discrete, white opacity of eardrum through a defect in TM or persistent malodorous ear discharge
 ° CT scan to define presence and extent
 ° Treatment: tympanomastoid surgery

Clinical Recall

A 5-year-old boy with a history of recurrent acute otitis media and penicillin allergy receives a diagnosis of otitis media with effusion. What is the next step?

A. Prescribe amoxicillin
B. No antibiotics are needed
C. Refer for tympanostomy tube placement
D. Prescribe azithromycin
E. Admit for IV antibiotics

Answer: D
NOSE AND THROAT

Nose

Choanal atresia

A newborn is noted to be cyanotic in the wellborn nursery. On stimulation, he cries and becomes pink again. The nurse has difficulty passing a catheter through the nose.

- Unilateral or bilateral bony (most) or membranous septum between nose and pharynx
 - Half have other anomalies (CHARGE association)
 - Unilateral—asymptomatic for long time until first URI, then persistent nasal discharge with obstruction
 - Bilateral—*typical pattern of cyanosis while trying to breathe through nose, then becoming pink with crying*; if can breathe through mouth, will have problems while feeding

- Diagnosis
 - Inability to pass catheter 3–4 cm into nasopharynx
 - Fiberoptic rhinoscopy
 - Best way to delineate anatomy is CT scan

- Treatment
 - Establish oral airway, possible intubation
 - Transnasal repair with stent(s)

Foreign body

- Any small object
- Clinical—unilateral *purulent, malodorous bloody discharge*
- Diagnosis—may be seen with nasal speculum or otoscope; lateral skull film if radiopaque (may have been pushed back, embedded in granulation tissue)
- Treatment—if cannot easily remove with needle-nose forceps, refer to ENT

Epistaxis

An 8-year-old child has repeated episodes of nosebleeds. Past history, family history, and physical examination are unremarkable.

- Common in childhood; decreases with puberty
- Most common area—*anterior septum* (Kiesselbach plexus), prone to exposure
Chapter 12 • Disorders of the Ear, Nose, and Throat

- **Etiology**
 - **Digital trauma** (nose picking; most common)
 - **Dry air** (especially winter)
 - **Allergy**
 - **Inflammation** (especially with URI)
 - **Nasal steroid sprays**
 - Severe GERD in young infants
 - Congenital vascular anomalies
 - Clotting disorders, hypertension
- **Treatment**—most stop spontaneously
 - Compress nares, upright, head forward; cold compress
 - If this does not work, then local oxymetazoline or phenylephrine
 - If this does not work, then anterior nasal packing; if it appears to be coming posteriorly, need posterior nasal packing
 - If bleeding site identified, cautery
 - Use humidifier, saline drops, petrolatum for prevention

Polyps
- Benign pedunculated tumors from chronically inflamed nasal mucosa
 - Usually from ethmoid sinus external to middle meatus
- **Most common cause is cystic fibrosis**—suspect in any child <12 years old with polyp; **EVEN in absence of other typical symptoms**
 - May also be associated with the Samter triad (polyps, aspirin sensitivity, asthma)
- Presents with **obstruction** → hyponasal speech and mouth breathing; may have profuse mucopurulent rhinorrhea
- Examination—generally glistening, gray, grape-like masses
- Treatment—intranasal steroids/systemic steroids may provide some shrinkage (helpful in CF); remove surgically if complete obstruction, uncontrolled rhinorrhea, or nose deformity.

Sinusitis
- Acute—viral versus bacterial
 - Most with URI—most viral, self-limited; up to 2% complicated by bacterial sinusitis
 - Sinus development
 - Ethmoid and maxillary present at birth, but only **ethmoid is pneumatized**
 - Sphenoid present by 5 years
 - Frontal begins at 7–8 years and not completely developed until adolescence
- **Etiology**—*S. pneumonia*, nontypeable *H. influenza*, *M. catarrhalis*; *S. aureus* in chronic cases
 - May occur at **any age**
 - Predisposed with URI, allergy, cigarette smoke exposure
 - Chronic—immune deficiency, CF, ciliary dysfunction, abnormality of phagocytic function, GERD, cleft palate, nasal polyps, nasal foreign body

Note
The same organisms that are responsible for AOM are also implicated in sinusitis.
Pathophysiology—fluid in sinuses during most URIs from nose blowing. Inflammation and edema may block sinus drainage and impair clearance of bacteria.

Clinical features

- **Nonspecific complaints**—nasal congestion, discharge, fever, cough
- Less commonly—bad breath, decreased sense of smell, periorbital edema, headache, face pain
- Sinus tenderness only in adolescents and adults; exam mostly shows mild erythema and swelling of nasal mucosa and discharge

Diagnosis—entirely historical and clinical presentation (evidence-based)

- Persistent URI symptoms without improvement for at least 10 days
- Severe respiratory symptoms with purulent discharge and temperature at least 38.9°C (102°F) for at least 3 consecutive days
 - Only accurate method to distinguish viral versus bacterial is sinus aspirate and culture, but this is NOT done routinely
 - Sinus films/CT scans—show mucosal thickening, opacification, air-fluid levels but does not distinguish viral versus bacterial

Treatment

- Initial—amoxicillin (adequate for majority)
- Alternative—cefuroxime axetil, cefpodoxime, azithromycin
- Treat 7 days past improvement
- If still does not work—to ENT (maxillary sinus aspirate)

Throat

Acute pharyngitis

An 8-year-old girl complains of acute sore throat of 2 days’ duration, accompanied by fever and mild abdominal pain. Physical examination reveals enlarged, erythematous tonsils with exudate and enlarged, slightly tender cervical lymph nodes.

- Viruses versus group A beta-hemolytic strep (GABHS)
- Viral—typical winter and spring; close contact
- GABHS—uncommon <2–3 years of age; increased incidence in childhood, then decreases in adolescence; all year long (but most in cold months)

Clinical presentation

- Strep pharyngitis
 - Rapid onset
 - Severe sore throat and fever
 - Headache and gastrointestinal symptoms frequently
 - Exam—red pharynx, tonsillar enlargement with yellow, blood-tinged exudate, petechiae on palate and posterior pharynx, strawberry tongue, red swollen uvula, increased and tender anterior cervical nodes
Scarlet fever—from GABHS that produce one of 3 streptococcal pyogenic exotoxins (SPE A, B, C); exposure to each confers a specific immunity to that toxin, so a person can have scarlet fever up to 3 times
- Findings of pharyngitis plus circunoral pallor
- Red, finely papular erythematos rash diffusely that feels like sandpaper
- Pastia’s lines in intertriginous areas

Viral—more gradual; with typical URI symptoms; erythematous pharynx, no pus
- Pharyngoconjunctival fever (adenovirus)
- Coxsackie:
 - Herpangina—small 1–2 mm vesicles and ulcers on posterior pharynx
 - Acute lymphonodular pharyngitis—small 3–6 mm yellowish-white nodules on posterior pharynx with lymphadenopathy
 - Hand-foot-mouth disease—inflamed oropharynx with scattered vesicles on tongue, buccal mucosa, gingiva, lips, and posterior pharynx → ulcerate; also on hands and feet and buttocks; tend to be painful

Diagnosis of strep
- First—rapid strep test; if positive, do not need throat culture
 - But must confirm a negative rapid test with cultures if clinical suspicion is high
- Treatment—early treatment only hastens recovery by 12–24 hours but prevents acute rheumatic fever if treated within 9 days of illness
 - Penicillin
 - Allergy—erythromycin

Complications
- Retropharyngeal and lateral pharyngeal abscess—deep nodes in neck; infection from extension of localized infection of oropharynx
 - Clinical—nonspecific—fever, irritability, decreased oral intake, neck stiffness, torticollis, refusal to move neck, muffled voice
 - Examination—bulging of posterior or lateral pharyngeal wall
 - Soft tissue neck film with head extended may show increase width
 - Definitive diagnosis—incision and drainage, C and S—most polymicrobial (GABHS, anaerobes, S. aureus)
- Treatment
 - Intravenous antibiotics + surgical drainage
 - Third-generation cephalosporin plus ampicillin/sublactam or clindamycin
 - Surgical drainage needed if respiratory distress or failure to improve

Peritonsillar abscess—bacterial invasion through capsule of tonsil
- Typical presentation—adolescent with recurrent history of acute pharyngotonsillitis
- Sore throat, fever, dysphagia, trismus
- Examination—asymmetric tonsillar bulge with displacement of uvula away from the affected side is diagnostic
 - GABHS + mixed oropharyngeal anaerobes

Note
Causes of Cervical Lymphadenitis
- Infections
 - Viral/bacterial pharyngitis
 - Cat scratch disease
 - Tb/atypical mycobacteria
 - Mumps
 - Thyroglossal duct cyst
 - Branchial cleft cyst
- Cystic hygroma
- Tumors (rare)
Treatment
- Antibiotics and needle aspiration
- Incision and drainage
- Tonsillectomy if recurrence or complications (rupture with aspiration)

Clinical Recall

A 7-year-old girl presents with fever and sore throat. Exam reveals tonsillar erythema and exudates. Rapid strep test is positive. What is the next step?

A. Swab the throat for culture
B. Prescribe penicillin
C. Obtain a blood culture
D. Advise rest and fluids with follow-up as needed
E. Perform a second rapid strep test for confirmation

Answer: B
Learning Objectives

- Demonstrate understanding of the pediatric cardiac evaluation
- Categorize disorders in which left-to-right shunt, right-to-left shunt, or hypertension occurs
- Recognize stenotic, regurgitant, and mixed disorders
- Cardiac evaluation and congenital heart lesions

CARDIAC EVALUATION AND CONGENITAL HEART LESIONS

Children do not present with the typical features of congestive heart failure as seen in adults. Age is very important when assessing the child.

- Infants:
 - Feeding difficulties
 - Easily fatigued
 - Sweating while feeding
 - Rapid respirations
- Older children:
 - Shortness of breath
 - Dyspnea on exertion
- Physical examination
 - Need to refer to normal heart and respiratory rates for ages to determine tachycardia and tachypnea.
 - Height and weight should be assessed to determine proper growth.
 - Always get upper and lower extremity blood pressures and pulses.
 - Hepatosplenomegaly suggests right-sided heart failure.
 - Rales on auscultation may indicate pulmonary edema and left-sided heart failure.
 - Cyanosis and clubbing result from hypoxia.

Note

Orthopnea and nocturnal dyspnea are rare findings in children.
Table 13-1. Heart Murmur Gradation

<table>
<thead>
<tr>
<th>Grade</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Soft, difficult to hear</td>
</tr>
<tr>
<td>2</td>
<td>Easily heard</td>
</tr>
<tr>
<td>3</td>
<td>Louder but no thrill</td>
</tr>
<tr>
<td>4</td>
<td>Associated with thrill</td>
</tr>
<tr>
<td>5</td>
<td>Thrill; audible with edge of stethoscope</td>
</tr>
<tr>
<td>6</td>
<td>Thrill; audible with stethoscope just off chest</td>
</tr>
</tbody>
</table>

- Diagnostic tests—chest radiograph
 - Evaluate heart size, lung fields, ribs for notching, position of great vessels
 - Electrocardiogram
 - **Echocardiography—definitive diagnosis**
 - Other—MRI, cardiac catheterization, angiography, exercise testing
- Embryology—knowledge of cardiac embryology is helpful for understanding congenital cardiac lesions, their presentations, symptoms, and treatment.

Figure 13-1. Fetal Circulation
PEDIATRIC HEART SOUNDS AND INNOCENT MURMURS

Heart Sounds

First heart sound (S1)

- Closure of mitral and tricuspid valves (MV, TV)
- High pitch, but lower pitch and greater intensity compared to S1
- Usually no discernible splitting of S1 but in completely normal child, a split S1 represents asynchronous closure of the 2 valves (20−30 msec difference); however, what sounds like a split S1 but is not represents pathology:
 - Split S1 best heard at apex or right upper sternal border may be a click (opening of stenotic valve) may be heard in aortic stenosis
 - Apical mid systolic click of mitral valve prolapse
 - At upper left sternal border, a click may be heard from pulmonic valve stenosis; compared to aortic stenosis, this changes with respiration (with inspiration, venous return is increased, thus causing the abnormal pulmonary valve to float superiorly after which the click softens or disappears)
 - Tricuspid valve abnormalities (e.g., Ebstein anomaly) may cause billowing of the leaflets and result in multiple clicks
- S1 may be inaudible at the lower left sternal border mostly due to sounds that obscure the closure of the MV and TV, e.g., in VSD, PDA, mitral or tricuspid regurgitation and severe right ventricular outflow tract obstruction. Therefore, if the first heart sound is not heard at the lower left sternal border, there is most likely a congenital heart defect, and there will be other clinical and auscultatory findings.

Second heart sound (S2)

- Closure of pulmonary and aortic valves (PV, AV), which close simultaneously on exhalation and a single heart sound is best heard with diaphragm at the upper left sternal border
 - Wider splitting of S2 on inspiration is related not only to increased venous return but also to pressures in the aorta and pulmonary artery (PA) (it is significantly higher in the Ao than in the PA, so Ao valve closes first)
- Wider than normal splitting will occur with any lesion that allows more blood to traverse the PV compared to normal
 - Increased splitting of S2 may be fixed with respect to respiration if there is increased volume and hence pressure in the right atrium (e.g., ASD); otherwise, it will continue to vary with respiration; may also hear fixed splitting with a right bundle branch block
- Loud single S2: heard with PA hypertension (increased pressure closing the PV causes early closure of the anterior semilunar valve resulting in a loud single S2)
 - In D-transposition, the AV is anterior and to the right of the PV, which overwhelms the sound from the PV, so one hears a loud single S2; in truncus arteriosus, there is only 1 valve so there is a single S2
Third heart sound (S3)
- Hear early in diastole; creates a gallop rhythm with S1 + S2; very low frequency and is best heard with bell of the stethoscope at cardiac apex; asking patient to lie on left side may increase intensity of S3
- On occasion may be heard normally in children with no pathology: in older people, it represents the presence of CHF and is caused by sudden deceleration of blood flow into LV from the LA

Fourth heart sound (S4)
- Occurs in late diastole, just prior to S1 (presystolic) and is produced by a decrease in compliance (increased stiffness) of the LV
- Low frequency (lower than S3) and best heard with bell of the stethoscope pressed lightly against the skin; never hear with atrial fibrillation because the contraction of the atria is ineffective
- Summation gallop rhythm (S3 + S4) may be found with improving CHF, myocarditis, or a cardiomyopathy

Clinical Recall
A medical student is performing a physical exam on an infant. Cardiac auscultation reveals a loud single S2. What congenital anomaly does the infant likely have?
A. Atrial septal defect
B. Patent ductus arteriosus
C. Ventricular septal defect
D. Ebstein anomaly
E. D-transposition
Answer: E

Innocent Murmurs

Peripheral pulmonic stenosis
- Normal finding age 6 weeks to 1 year
- Generated by blood flowing into the lungs due to (1) pulmonary arteries, which have limited blood flow in utero and are therefore small with significantly increased blood flow after birth (turbulence from RV blood flowing through these arteries) and (2) increasing cardiac output associated with declining [Hgb] over the first weeks of life (physiologic anemia)
- Normal infant with normal S1, then grade 1-2 systolic ejection murmur at the upper sternal border and radiating bilaterally into the axillae; then, normal splitting of S2

Still’s murmur
- Commonly heard first at age 3–5 years
- Represents turbulence or vibrations in either ventricle; child is healthy and asymptomatic
Precordial activity is normal, as are S1 and S2; the murmur is typically low-pitched (bell of stethoscope), musical-quality and often radiates throughout the precordium.

Murmur is **loudest while supine** (greater blood flow) and decreases sitting or standing—opposite to the finding of HOCM. Also increases with fever or exercise (hyperdynamic states).

Venous hum
- Only diastolic murmur that is **not** pathological; represents blood flow returning from the head and flowing from SVC into the RA
- Described as “whooshing” sound (like holding a seashell to your ear at the ocean); is a continuous murmur
 - Best heard in sitting position with head in the neutral position
 - Murmur becomes softer or disappears while in supine, with slight pressure to the right side of the neck or turning head to opposite side

Aortic outflow murmur
- Heard in adolescents and young adults (especially athletes, due to lower resting heart rate and therefore larger stroke volume)
- Best heard in upper right sternal border; represents blood flow in LV outflow tract (without a click, as there is in aortic stenosis)
- Precordial activity is normal, S1 and S2 are normal, the murmur is grade 1-2 ejection
 - Going from **supine to sitting or standing decreases the murmur** (again, opposite to HOCM)

Congenital Heart Disease
In most cases, diagnosis usually made by age 1 month. Murmurs may not be heard in early life because of increased pulmonary vascular resistance (from fetal to neonatal transition physiology).

- **Etiology**
 - Most are unknown
 - Associated with teratogens, such as alcohol and rubella
 - Genetic predisposition—trisomies; Marfan, Noonan, DiGeorge syndromes
- **Classification**

<table>
<thead>
<tr>
<th>Table 13-2. Congenital Heart Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regurgitant</td>
</tr>
<tr>
<td>MVP</td>
</tr>
<tr>
<td>PI, AI</td>
</tr>
<tr>
<td>MI, TI</td>
</tr>
</tbody>
</table>

Definition of abbreviations: TAPVR total anomalous pulmonary venous return; HLH hypoplastic left heart; MVP mitral valve prolapse; PI pulmonic insufficiency; AI aortic insufficiency; MI mitral insufficiency; TI tricuspid insufficiency
LEFT TO RIGHT SHUNTS

Ventricular Septal Defect (VSD)

A 3-month-old child presents with poor feeding, poor weight gain, and tachypnea. Physical examination reveals a harsh, pansystolic 3/6 murmur at the left lower sternal border, and hepatomegaly.

- **Most common** congenital heart lesion
- **Most are** membranous
- **Shunt determined by** ratio of PVR to SVR
 - As PVR falls in first few weeks of life, shunt increases
 - When PVR>SVR, Eisenmenger syndrome (must not be allowed to happen)
- **Clinical findings**
 - Asymptomatic if small defect with normal pulmonary artery pressure (most); large defect—dyspnea, feeding difficulties, poor growth, sweating, pulmonary infection, heart failure
 - Harsh holosystolic murmur over lower left sternal border ± thrill; S2 widely split
 - With hemodynamically significant lesions, also a low-pitched diastolic rumble across the mitral valve heard best at the apex
- **Diagnosis**—chest x-ray (large heart, pulmonary edema), EKG (LVH), echocardiogram is definitive
- **Treatment**
 - Small muscular VSD more likely to close in first 1–2 years than membranous
 - Less common for moderate to large to close → medical treatment for heart failure (control failure and prevent pulmonary vascular disease)
 - Surgery in first year; indications:
 - Failure to thrive or unable to be corrected medically
 - Infants at 6–12 months with large defects and pulmonary artery hypertension
 - More than 24 months of age with Qp:Qs >2:1 (shunt fraction)

Figure 13-2. Cardiomegaly Due to Ventricular Septal Defect

Note

Eisenmenger Syndrome

- Transformation of any untreated left-to-right shunt into a bidirectional or right-to-left shunt
- Characterized by cyanosis
- Results from high pulmonary blood flow, causing medial hypertrophy of pulmonary vessels and increased pulmonary vascular resistance

Eisenmenger Syndrome

- Transformation of any untreated left-to-right shunt into a bidirectional or right-to-left shunt
- Characterized by cyanosis
- Results from high pulmonary blood flow, causing medial hypertrophy of pulmonary vessels and increased pulmonary vascular resistance

Figure 13-2. Cardiomegaly Due to Ventricular Septal Defect
Chapter 13 l Cardiology

- Complications
 - Large defects lead to heart failure, failure to thrive
 - Endocarditis
 - Pulmonary hypertension

Atrial Septal Defect (ASD)
- Ostium secundum defect **most common** (in region of fossa ovalis)
- Clinical
 - **Few symptoms early in life** because of structure of low-flow, left-to-right shunt
 - In older children, often with large defects; varying degrees of exercise intolerance
 - With hemodynamically significant lesions, also a low-pitched diastolic rumble across the tricuspid valve heard best at the lower sternum
- Physical examination
 - **Wide fixed splitting of S2**
 - Systolic ejection murmur along left mid to upper sternal border (from increased pulmonary flow)
- Diagnosis
 - Chest x-ray—varying heart enlargement (right ventricular and right atrial); increased pulmonary vessel markings, edema
 - EKG—**right-axis deviation and RVH**
 - Echocardiogram definitive
- Treatment
 - Most in term infants close spontaneously; **symptoms often do not appear until third decade**
 - **Surgery or transcatheter device closure for all symptomatic patients or 2:1 shunt**
- Complications
 - Dysrhythmia
 - Low-flow lesion; does not require endocarditis prophylaxis

Endocardial Cushion Defect
- Pathophysiology
 - When both ASDs and VSDs occur, which are contiguous, and the atrioventricular valves are abnormal
 - Left-to-right shunt at both atrial and ventricular levels; some right-to-left shunting with desaturation (**mild, intermittent cyanosis**)
 - Atrioventricular valve insufficiency → increase volume load on one or both ventricles; **early heart failure, infections, minimal cyanosis, hepatomegaly, and failure to thrive**
- Physical examination
 - Heart failure early in infancy (hepatomegaly, failure to thrive)
 - Eisenmenger physiology occurs earlier
 - Moderate-to-severe increase in heart size with hyperdynamic precordium (**precordial bulge and lift**)

Note
Patients with trisomy 21 are at a higher risk for endocardial cushion defects.
USMLE Step 2 CK • Pediatrics

- Widely fixed split S2 (like an isolated ASD)
- Pulmonary systolic ejection murmur, low-pitched diastolic rumble at left sternal border and apex; may also have mitral insufficiency (apical harsh holosystolic murmur radiating to left axilla)

• Diagnostic tests
 - Chest x-ray—significant cardiomegaly, increased pulmonary artery and pulmonary blood flow and edema
 - EKG—signs of biventricular hypertrophy, right atrial enlargement, superior QRS axis
 - Echocardiogram (gold standard)

• Treatment—surgery more difficult with heart failure and pulmonary hypertension (increased pulmonary artery pressure by 6–12 months of age); **must be performed in infancy**

• Complications
 - Without surgery—death from heart failure
 - With surgery—arrhythmias, congenital heart block

Patent Ductus Arteriosus (PDA)

• Results when the ductus arteriosus fails to close; this leads to blood flow from the aorta to the pulmonary artery

• Risk factors
 - **More common in girls** by 2:1
 - Associated with **maternal rubella infection**
 - Common in **premature infants** (developmental, not heart disease)

• Presentation
 - If small—possibly no symptoms
 - If large—heart failure, a wide pulse pressure, bounding arterial pulses, characteristic sound of “machinery”

• Diagnostic tests
 - Chest x-ray—increased pulmonary artery with increased pulmonary markings and edema; moderate-to-large heart size
 - EKG—left ventricular hypertrophy
 - Echocardiogram—increased left atrium to aortic root; ductal flow, especially in diastole

• Treatment
 - May close spontaneously
 - Indomethacin (preterm infants)
 - Surgical closure

• Complications
 - Congestive heart failure
 - Infective endocarditis

Note

If a PDA persists beyond the first week of life, it is unlikely to close spontaneously.
STENOTIC LESIONS

Pulmonic Stenosis

• Pathophysiology
 − Deformed cusps → open incompletely during systole; obstruction to right ventricular outflow → increased systemic pressure and wall stress → right ventricular hypertrophy (depends on severity of pulmonary stenosis)
 − Arterial saturation normal unless ASD or VSD is present with R → L shunt
 − Neonate with severe pulmonary stenosis = critical pulmonary stenosis = R → L shunt via foramen ovale

• Physical examination
 − Heart failure only in severe cases, most in first month of life
 − Mild cases—normal life, usually no progression
 − Moderate to severe—increasing gradient with growth: signs of right ventricular failure (hepatomegaly, peripheral edema, exercise intolerance)
 − Pulmonary ejection click after S1 in left upper sternal border and normal S2 (in mild); relatively short, low-to-medium–pitched SEM over pulmonic area radiating to both lung fields

• Diagnosis
 − EKG—right ventricular hypertrophy in moderate to severe; tall, spiked P-waves; right atrial enlargement (RAE)
 − Chest x-ray—poststenotic dilatation of pulmonary artery; normal-to-increased heart size (right ventricle) and decreasing pulmonary vascularity
 − Echocardiogram (gold standard)

• Complications
 − Heart failure
 − Endocarditis (lower risk)
 − Secondary subvalvular muscular and fibrous hypertrophy

• Treatment
 − Moderate to severe—balloon valvuloplasty initially; may need surgery
 − Neonate with critical pulmonary stenosis—emergent surgery

Aortic Stenosis

• Most are bicuspid aortic valve—usually asymptomatic in children

• Supravalvular stenosis (least common form)—sporadic, familial, or with Williams syndrome (intellectual disability, elfin facies, heart disease, idiopathic hypercalcemia; deletion of elastin gene 7q11.23)

• Clinical presentation—symptoms depend on severity of obstruction
 − If severe early in infancy = critical aortic stenosis = left ventricular failure and decreased cardiac output
 − If significant decrease in cardiac output—intensity of murmur at right upper sternal border may be minimal
 − Mild to moderate—usually asymptomatic with normal growth and development
 • Often discovered with murmur on routine physical examination
 • Rare—older children present with syncope, fatigue, angina, dizziness

Note

Pulmonic stenosis as a result of valve dysplasia is the common defect in Noonan syndrome (12q24.1; autosomal dominant; boys and girls with Turner phenotype).

Pulmonic stenosis (either valve or branched artery) is common in Alagille syndrome (arteriohepatic dysplasia).
With increasing severity—decreased pulses, increased heart size, left ventricular apical thrust

- Early systolic ejection click at apex and left sternal border (does not vary with respiration)
 - Severe—no click and decreased S1 (decreased left ventricular compliance), decreased S2 (aortic component), and maybe an S4
 - SEM upper-right second intercostal space; the louder (harsher) and longer the murmur, the greater the degree of obstruction; radiates to neck and left mid-sternal border; positive thrill in suprasternal notch

- Diagnosis
 - EKG—left ventricular hypertrophy and strain
 - Chest x-ray—prominent ascending aorta; may have valve calcification (older children and adults); if severe → increased heart size (left ventricular hypertrophy)
 - Echocardiogram (gold standard)

- Treatment
 - Balloon valvuloplasty
 - Surgery on valves
 - Valve replacement

Coarctation of the Aorta

- Narrowing at any point from transverse arch to iliac bifurcation; 90% just below origin of left subclavian artery at origin of ductus arteriosus (juxtaductal coarctation)

Adult versus childhood

- Discrete juxtaductal coarctation (adult type)
 - Ascending aortic blood flows normally through narrowed segment to reach descending aorta, but there is left ventricular hypertrophy and hypertension
 - If mild, not recognized until later in childhood
 - Increased blood pressure in vessels proximal to coarctation and decreased blood pressure and pulses below constriction
 - Femoral and other lower pulses weak or absent; bounding in arms and carotids; also delay in femoral pulse compared to radial (femoral normally occurs slightly before radial)
 - Normally, leg systolic pressure is 10–20 mm Hg higher than in arms; in coarctation, leg systolic pressure is decreased (>5%)
 - If pressure is greater in right arm than left arm, suggests coarctation involving left subclavian artery
 - Short systolic murmur along left sternal border at third-to-fourth intercostal space → left scapula and neck
 - Hypertension due not only to mechanical but also to neurohormonal reasons
 - Over time, patient develops an extensive collateral circulation (systolic or continuous murmurs over left and right sides of chest with thrills), rib notching (dilated intercostal arteries)

- Tubular hypoplasia (preductal, infantile type)
 - Severe narrowing starting at one of the head or neck vessels and extending to the ductus
 - Right ventricular blood flows across the PDA to supply the descending aorta so the perfusion of the lower part of the body is dependent upon right ventricular output
− Seen as differential cyanosis—**upper body is pink, lower is cyanotic**; prominent heart failure as ductus closes (if completely atretic = interrupted aortic arch)
− Presents with lower body hypoperfusion, acidosis, and severe heart failure with ductal closure; large heart, systolic murmur along left sternal border

• Diagnostic tests
− Chest x-ray—depends on age and effects of hypertension and collaterals
 • Severe (infantile)—increased heart size and pulmonary congestion
 • Adult—findings usually occur after first decade:
 ‣ Increased size of subclavian artery—prominent shadow in left superior mediastinum
 ‣ **Notching of inferior border of ribs** from passive erosion of increased collaterals in late childhood
 ‣ Poststenotic dilatation of ascending aorta

• Diagnosis
− EKG—left ventricular hypertrophy in older children; in neonates, biventricular hypertrophy
− Echocardiogram (gold standard)

• Treatment
− Neonate—PGE₃ infusion to maintain patent, ductus, which establishes adequate lower extremity blood flow; **surgery** after stabilization
− **Surgery soon after diagnosis of any significant coarctation**
− Adult—treat heart failure and hypertension, then follow with surgery

• Complications
− Associated cerebrovascular disease
− Systemic hypertension
− Endocarditis
− Aortic aneurysms

Clinical Recall

A newborn with Noonan syndrome and a cardiac anomaly presents for evaluation. EKG will likely show which of the following?

A. Right ventricular hypertrophy
B. Left ventricular hypertrophy
C. Biventricular hypertrophy
D. Bialtrial dilation
E. Left ventricular dilation

Answer: A
RIGHT TO LEFT SHUNTS (CYANOTIC LESIONS)

Cyanotic Lesions Associated with Decreased Pulmonary Blood Flow

Tetralogy of Fallot (TOF)

A 6-month-old infant is prone to episodes of restlessness, cyanosis, and gasping respirations. Symptoms resolve when he is placed in the knee-chest position. Physical examination reveals an underweight infant, with a harsh long systolic ejection murmur and a single second heart sound.

- Components
 - Pulmonary stenosis and infundibular stenosis (obstruction to right ventricular outflow)
 - VSD
 - Overriding aorta (overrides the VSD)
 - Right ventricular hypertrophy

- Most common cyanotic lesion

- Pulmonary stenosis plus hypertrophy of subpulmonic muscle (crista supraventricularis) \(\rightarrow \) varying degrees of right ventricular outflow obstruction
 - Blood shunted right-to-left across the VSD with varying degrees of arterial desaturation and cyanosis
 - If mild, patient may not be visibly cyanotic (pink tetralogy of Fallot)
 - With growth and further hypertrophy of infundibulum, cyanosis may be seen later in first year of life
 - With severe obstruction, cyanosis in the immediate neonatal period (ductal dependent)
 - If not corrected, older children are blue, have marked clubbing, and have dyspnea on exertion (child will squat to increase systemic vascular resistance and to decrease right-to-left shunt)
 - Paroxysmal hypercyanotic attacks (tet spells)
 - Acute onset of hyperpnea and restlessness \(\rightarrow \) increased cyanosis \(\rightarrow \) gasping \(\rightarrow \) syncope (increased infundibular obstruction with further right-to-left shunting)
 - Treatment—place in lateral knee-chest position, give oxygen, subcutaneous morphine, give beta-blockers

- Physical examination—subcostal right ventricular impulse, systolic thrill along third-to-fourth intercostal space on left sternal border, loud and harsh systolic ejection murmur (upper sternal border), may be preceded by a click; either a single S2 or soft pulmonic component

- Diagnosis
 - Chest x-ray—hypertrophied right ventricle causes the apex to be uplifted above the diaphragm \(\rightarrow \) boot-shaped heart plus dark lung fields (decreased pulmonary blood flow)
 - EKG—right axis deviation plus right ventricular hypertrophy
 - Echocardiogram (gold standard)

Note
Common Cyanotic Heart Disease (5 Ts)
- Tetralogy of Fallot
- Transposition of great vessels
- Truncus arteriosus
- Total anomalous pulmonary venous return
- Tricuspid atresia
• Pre-correction complications—cerebral thromboses, brain abscess, bacterial endocarditis, heart failure, but not common because of early correction
• Treatment
 − Depends on degree of obstruction
 ○ PGE\textsubscript{1} infusion—prevent ductal closure; given if cyanotic at birth
 ○ Augment pulmonary blood flow with palliative systemic to pulmonary shunt (modified Blalock-Taussig shunt)
 ○ Corrective surgery (electively at age 4–12 months)—remove obstructive muscle, valvulotomy, and patching of VSD

Tricuspid atresia
• Pathophysiology—no outlet from the right atrium to the right ventricle; entire venous (systemic) return enters the left atrium from a foramen ovale or ASD (there must be an atrial communication); left ventricular blood to right ventricle (atretic) via a VSD and is augmented by PDA; therefore, pulmonary blood flow depends on presence (and size) of VSD
• Clinical presentation
 − Will present at birth with severe cyanosis
 − Increased left ventricular impulse (contrast to most others with right ventricular impulse), holosystolic murmurs along left sternal border (most have a VSD; though right ventricle is small, it is still a conduit for pulmonary blood flow)
• Diagnosis
 − Chest x-ray—pulmonary undercirculation
 − EKG—left axis deviation plus left ventricular hypertrophy (distinguishes from most other congenital heart disease)
 − Echocardiogram (gold standard)
• Treatment
 − PGE\textsubscript{1} until aortopulmonary shunt can be performed
 − May need an atrial balloon septostomy (to make larger ASD)
 − Later, staged surgical correction

Ebstein anomaly
• Development associated with periconceptional maternal lithium use in some cases
• Downward displacement of abnormal tricuspid valve into right ventricle; the right ventricle gets divided into 2 parts: an atrialized portion, which is thin-walled, and smaller normal ventricular myocardium
• Right atrium is huge; tricuspid valve regurgitant
• Right ventricular output is decreased because
 − Poorly functioning, small right ventricle
 − Tricuspid regurgitation
 − Variable right ventricular outflow obstruction—abnormal anterior tricuspid valve leaflet. Therefore, increased right atrial volume shunts blood through foramen ovale or ASD → cyanosis

Note
The combination of severe cyanosis in the newborn plus a chest x-ray showing decreased pulmonary blood flow plus an EKG with left axis deviation and left ventricular hypertrophy is most likely to be tricuspid atresia.
USMLE Step 2 CK • Pediatrics

Note
Patients with Ebstein anomaly may have Wolff-Parkinson-White syndrome (delta wave and short PR interval) and present with episodes of supraventricular tachycardia.

Note
TGA is the most common cyanotic lesion presenting in the immediate newborn period. It is seen more often in infants of diabetic mothers.

• Clinical presentation
 - Severity and presentation depend upon degree of displacement of valve and degree of right ventricular outflow obstruction
 - May not present until adolescence or adulthood
 - If severe in newborn → marked cyanosis, huge heart
 - Holosystolic murmur of tricuspid insufficiency over most of anterior left chest (most characteristic finding)
• Diagnosis
 - Chest x-ray—heart size varies from normal to massive (increased right atrium); if severe, decreased pulmonary blood flow
 - EKG—tall and broad P waves, right bundle branch block
• Treatment
 - PGE_1
 - Systemic-to-pulmonary shunt
 - Then staged surgery

Cyanotic Lesions Associated with Increased Pulmonary Blood Flow

Transposition of the great arteries (TGA)

• Pathophysiology
 - Aorta arises from the right ventricle, and the pulmonary artery arises from the left ventricle; d = dextroposition of the aorta anterior and the right of the pulmonary artery (normal is posterior and to the right of the pulmonary artery)
 - Series circuit changed to 2 parallel circuits; need foramen ovale and PDA for some mixture of desaturated and oxygenated blood; better mixing in half of patients with a VSD
• Clinical presentation
 - With intact septum (simple TGA)—as PDA starts to close, severe cyanosis and tachypnea ensue
 - S2 usually single and loud; murmurs absent, or a soft systolic ejection murmur at midleft sternal border
 - If VSD is present, there is a harsh murmur at the lower left sternal border. If large, then holosystolic murmur, significant mixing of blood lessens cyanosis, but presents as heart failure
• Diagnosis
 - Chest x-ray:
 - Mild cardiomegaly, narrow mediastinum, and normal-to-increased pulmonary blood flow
 - “Egg on a string” appearance—narrow heart base plus absence of main segment of the pulmonary artery
 - EKG—normal neonatal right-sided dominance
 - Echocardiogram (gold standard)
• Treatment
 − PGE₁ (keeps PDA patent)
 − Balloon atrial septostomy
 − Arterial switch surgery in first 2 weeks

Truncus Arteriosus

- **Pathophysiology**
 − Single arterial trunk arises from the heart and supplies all circulations.
 − Truncus overlies a ventral septal defect (always present) and receives blood from both ventricles (total mixing).
 − Both ventricles are at systemic pressure.

- **Clinical presentation**
 − With dropping pulmonary vascular resistance in first week of life, pulmonary blood flow is greatly increased and results in heart failure.
 − Large volume of pulmonary blood flow with total mixing, so minimal cyanosis
 − If uncorrected, Eisenmenger physiology
 − Single truncal valve, which may be incompetent (high-pitched, early diastolic decrescendo at mid-left sternal border)
 − Initially, SEM with loud thrill, single S₂, and minimal cyanosis
 − With decreasing pulmonary vascular resistance (PVR) → torrential pulmonary blood flow with heart failure; runoff from truncus to pulmonary circulation → wide pulse pressure with bounding pulses and hyperdynamic precordium
 − Apical mid-diastolic rumble (increased flow across mitral valve)

- **Diagnosis**
 − Chest x-ray—heart enlargement with increased pulmonary blood flow
 − EKG—biventricular hypertrophy
 − Echocardiogram (gold standard)

- **Treatment**
 − Treat heart failure
 − Then surgery in first few weeks of life

MIXED LESIONS

Total Anomalous Pulmonary Venous Return (TAPVR)

- **Pathophysiology**
 − Complete anomalous drainage of the pulmonary veins into the systemic venous circulation; total mixing of systemic venous and pulmonary venous blood within the heart produces cyanosis
 − Right atrial blood → right ventricle and pulmonary artery or to left atrium via foramen ovale or ASD
 − Enlarged right atrium, right ventricle, and pulmonary artery; and small left atrium; and left ventricle normal or small

Note

Truncus arteriosus is one of the major conotruncal lesions associated with the CATCH-22 syndrome, i.e., DiGeorge. Also seen are transposition of the great arteries and aortic arch abnormalities.

Note

TAPVR always has an atrial connection.
Clinical manifestations depend on presence or absence of obstruction.

- Obstruction (of pulmonary veins, usually infracardiac):
 - Severe pulmonary venous congestion and pulmonary hypertension with decreasing cardiac output and shock
 - Cyanosis and severe tachypnea; may not respond to ventilation and PGE$_1$ → need emergent diagnosis and surgery for survival
 - Heart failure early with mild-to-moderate obstruction and a large left-to-right shunt; pulmonary hypertension and mild cyanosis
- No obstruction—total mixing with a large left-to-right shunt; mild cyanosis; less likely to be severely symptomatic early

Diagnosis

- Chest x-ray—large supracardiac shadow with an enlarged cardiac shadow forms a “snowman” appearance; pulmonary vascularity is increased
- EKG—RVH and tall, spiked P waves (RAE)
- Echocardiogram (gold standard)

Treatment: PGE$_1$; surgical correction

Hypoplastic Left Heart Syndrome

- Pathophysiology
 - Atresia of mitral or aortic valves, left ventricle, and ascending aorta (or any combination)
 - Right ventricle maintains both pulmonary and systemic circulation.
 - Pulmonary venous blood passes through foramen ovale or ASD from left atrium → right atrium and mixes with systemic blood to produce total mixing
 - Usually, the ventricular septum is intact and all of the right ventricular blood enters the pulmonary artery.
 - Ductus arteriosus supplies the descending aorta, ascending aorta and coronary arteries from retrograde flow.
 - Systemic circulation cannot be maintained, and if there is a moderate-to-large ASD → pulmonary overcirculation

- Clinical presentation
 - Cyanosis may not be evident with ductus open, but then gray-blue skin color (combination of hypoperfusion and cyanosis as ductus closes)
 - Signs of heart failure, weak or absent pulses, and shock
 - Enlarged heart with right parasternal lift; nondescript systolic murmur

- Diagnosis: chest x-ray shows heart enlargement with increased pulmonary blood flow; EKG shows right ventricular hypertrophy and right atrial enlargement with decreased left-sided forces; echocardiogram (gold standard)
Treatment: consider doing nothing if malformations or genotype not compatible with life; best treatment is 3-stage Norwood procedure (better result than cardiac transplantation)

- Other: many patients have a significant abnormality of central nervous system (CNS) and/or kidneys: need careful genetic, neurologic examination and screening tests on any child being considered for surgery

Clinical Recall

Which of the following cardiac anomalies is correctly matched to its classic chest x-ray findings?

A. Hypoplastic left heart syndrome: normal cardiac silhouette with decreased pulmonary vascularity
B. TAPVR: snowman sign with increased pulmonary vascularity
C. Truncus arteriosus: egg on a string sign
D. TGA: massively enlarged right atrium
E. Tricuspid atresia: boot-shaped heart

Answer: B

REGURGITANT LESIONS

Mitral Valve Prolapse

- Abnormal cusps—billowing of one or both leaflets into left atrium toward end of systole (congenital defect)
- Usually not recognizable until adolescence or adulthood; girls > boys
 - May present with chest pain or palpitations
 - Arrhythmias, especially uni- or multifocal premature ventricular contractions
- Apical late systolic murmur, preceded by a click—in abrupt standing or Valsalva, click may appear earlier in systole and murmur may be more prominent
- Diagnosis: EKG usually normal; chest x-ray normal; echocardiogram (gold standard)
- No therapy, not progressive; adults (more in men) at risk for cardiovascular complications if have thickened leaflets

Note

Mitral valve prolapse is a common finding in those with Marfan and Ehlers-Danlos syndrome.
OTHER CARDIAC PATHOLOGY

Infective Endocarditis

A 6-year-old boy has had high intermittent fevers for 3 weeks, accompanied by chills. He has a past history of bicuspid aortic valves and recently had dental work.

- **Etiology/epidemiology**
 - Most are *Streptococcus viridans* (alpha hemolytic) and *Staphylococcus aureus*
 - Organism associations
 - *S. viridans*—after dental procedures
 - Group D streptococci—large bowel or genitourinary manipulation
 - *Pseudomonas aeruginosa* and *Serratia marcescens*—intravenous drug users
 - Fungi—after open heart surgery
 - Coagulase-negative *Staphylococcus*—indwelling intravenous catheters
 - Highest risk with prosthetic valve and uncorrected cyanotic heart lesions
 - Most cases occur after **surgical or dental procedures** (high risk with poor dental hygiene) are performed.
- **Clinical presentation**
 - **Prolonged intermittent fever, weight loss**, fatigue, myalgia, arthralgia, headache, nausea, vomiting
 - **New or changing heart murmur**
 - Splenomegaly, petechiae, embolic stroke, CNS abscess, CNS hemorrhage, mycotic aneurysm (all more with *Staphylococcus*)
 - Skin findings (rare): late findings (uncommon in treated patients); represent vasculitis from circulating Ag-Ab complexes; if present, are highly suggestive
 - **Osler nodes**—tender, pea-sized, intradermal nodules on pads of fingers and toes
 - **Janeway lesions**—painless, small erythematous or hemorrhagic lesions on palms and soles
 - **Splinter hemorrhage**—linear lesions beneath nail beds
 - **Roth spots**—retinal exudates
- **Diagnosis**
 - Two separate positive blood cultures plus echocardiographic evidence of intracardiac or valve lesion; prosthetic regurgitant flow; abscess; partial dehiscence of prosthetic valve or new valvular regurgitant flow
Table 13-3. Duke Criteria

<table>
<thead>
<tr>
<th>Major Criteria</th>
<th>Minor Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Positive blood culture (2 separate for usual pathogens; at least 2 for less common)</td>
<td>• Predisposing conditions</td>
</tr>
<tr>
<td>• Evidence on echocardiogram (intracardiac or valve lesion, prosthetic regurgitant flow, abscess, partial dehiscence of prosthetic valve, new valvular regurgitant flow)</td>
<td>• Fever</td>
</tr>
<tr>
<td></td>
<td>• Emboli or vascular signs</td>
</tr>
<tr>
<td></td>
<td>• Immune complex disease</td>
</tr>
<tr>
<td></td>
<td>(glomerulonephritis, arthritis, positive rheumatoid factor, Osler node, Roth spots [retinal hemorrhages with white centers])</td>
</tr>
<tr>
<td></td>
<td>• Single positive blood culture</td>
</tr>
<tr>
<td></td>
<td>• Echocardiographic signs not meeting criteria</td>
</tr>
</tbody>
</table>

- Complications
 - Most common—heart failure from aortic or mitral lesions
 - Others—systemic or pulmonary emboli, myocardial abscess, myocarditis, valve obstruction, heart block, meningitis, osteomyelitis, arthritis, renal abscess, immune complex—mediated glomerulonephritis
- Treatment
 - Organism specific for 4–6 weeks (S. viridans, Enterococci, S. aureus, MRSA, S. epidermidis, HACEK)
 - Heart failure—digitalis, diuretic, salt restriction
 - Surgery with severe involvement or lack of improvement
- Prophylaxis (AHA, 2007) for:
 - Artificial valves
 - Previous history of infective endocarditis
 - Unrepaired or incompletely repaired cyanotic disease, including those with palliative shunts and conduits
 - A completely repaired defect with prosthetic material or device for first 6 months
 - Any residual defect at site of any repair
 - Cardiac transplant which develops a problem in a valve
 - Given ONLY for dental procedures with manipulation of gingival tissue or periapical area or perforation of oral mucosa; incision or biopsy of respiratory tract mucosa and surgery on infected skin or musculoskeletal structures
 - Drug of choice is amoxicillin

Note
Clinical diagnosis of infective endocarditis is made with one of the following:
- 2 major
- 1 major + 3 minor
- 5 minor

Note
HACEK
- Haemophilus spp.
- Actinobacillus actinomycetemcomitans
- Cardiobacterium hominis
- Eikenella corrodens
- Kingella kingae
These are slow-growing gram-negative organisms that are part of normal flora.
Acute Rheumatic Fever

A 6-year-old girl complains of severe joint pain in her elbows and wrists. She has had fever for the past 4 days. Past history reveals a sore throat 1 month ago. Physical examination is remarkable for swollen, painful joints and a heart murmur. Laboratory tests show an elevated erythrocyte sedimentation rate and high antistreptolysin (ASO) titers.

- Etiology/epidemiology
 - Related to group A Streptococcus infection within several weeks
 - Antibiotics that eliminate Streptococcus from pharynx prevent initial episode of acute rheumatic fever
 - Remains most common form of acquired heart disease worldwide (but Kawasaki in United States and Japan)
 - Initial attacks and recurrences with peak incidence Streptococcus pharyngitis: age 5–15
 - Immune-mediated—antigens shared between certain strep components and mammalian tissues (heart, brain, joint)

- Clinical presentation and diagnosis—Jones criteria. Absolute requirement: evidence of recent Streptococcus infection (microbiological or serology); then 2 major or 1 major and 2 minor criteria

<table>
<thead>
<tr>
<th>Table 13-4. Jones Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Criteria</td>
</tr>
<tr>
<td>Carditis</td>
</tr>
<tr>
<td>Polyarthritis (migratory)</td>
</tr>
<tr>
<td>Erythema marginatum</td>
</tr>
<tr>
<td>Chorea</td>
</tr>
<tr>
<td>Subcutaneous nodules</td>
</tr>
</tbody>
</table>

- Treatment
 - Bed rest and monitor closely
 - Oral penicillin or erythromycin (if allergic) for 10 days will eradicate group A strep; then need long-term prophylaxis
 - Anti-inflammatory
 - Hold if arthritis is only typical manifestation (may interfere with characteristic migratory progression)
 - Aspirin in patients with arthritis/carditis without CHF
 - If carditis with CHF, prednisone for 2–3 weeks, then taper; start aspirin for 6 weeks
 - Digoxin, salt restriction, diuretics as needed
 - If chorea is only isolated finding, do not need aspirin; drug of choice is phenobarbital (then haloperidol or chlorpromazine)

- Complications
 - Most have no residual heart disease
 - Valvular disease most important complication (mitral, aortic, tricuspid)

Note

If arthritis is present, arthralgia cannot be used as a minor criterion.

The presence of Sydenham’s chorea alone is sufficient for diagnosis.
• Prevention
 – Continuous antibiotic prophylaxis
 ° If carditis—continue into adulthood, perhaps for life; without carditis—lower risk; can discontinue after patient is in their twenties and at least 5 years since last episode
 ° Treatment of choice—single intramuscular benzathine penicillin G every 4 weeks
 ° If compliant—penicillin V PO BID or sulfadiazine PO QD; if allergic to both: erythromycin PO BID

Hypertrophic Obstructive Cardiomyopathy (HOCM)

• Pathophysiology
 – Obstructive left-sided congenital heart disease
 – Decreased compliance, so increased resistance and decreased left ventricular filling, mitral insufficiency
 – Clinical presentation—weakness, fatigue, dyspnea on exertion, palpitations, angina, dizziness, syncope; risk of sudden death
 – Cardiovascular examination—left ventricular lift, no systolic ejection click (differentiates from aortic stenosis), SEM at left sternal edge and apex (increased after exercise, during Valsalva, and standing)

• Diagnosis
 – EKG—left ventricular hypertrophy ± ST depression and T-wave inversion; may have intracardiac conduction defect
 – Chest x-ray—mild cardiomegaly (prominent LV)
 – Echocardiogram—left ventricular hypertrophy, mostly septal; Doppler—left ventricular outflow gradient usually mid-to-late systole (maximal muscular outflow obstruction)

• Treatment
 – No competitive sports or strenuous exercise (sudden death)
 – Digoxin and aggressive diuresis are contraindicated (and infusions of other inotropes)
 – Beta blockers (propranolol) and calcium channel blockers (verapamil)

Clinical Recall

A 16-year-old girl seen in clinic last month for strep throat returns with a few weeks of knee pain that is resolving and 2 days of worsening elbow pain despite no recent trauma. In addition, she has noticed several small ring-like rashes on her arms and abdomen that come and go. What additional finding is needed to diagnose acute rheumatic fever?

A. Cardiac inflammation
B. EKG showing PR interval prolongation
C. Chorea
D. No additional findings are needed
E. Elevated ESR and CRP

Answer: D
A 5-year-old girl is noted to have blood pressure >95th percentile on routine physical examination. The rest of the examination is unremarkable. Her blood pressure remains elevated on repeat measurement over the next few weeks. Past history is remarkable for a treated urinary tract infection 1 year ago. Complete blood cell count is normal; urinalysis is normal. Blood urea nitrogen is 24 mg/dL and creatinine is 1.8 mg/dL.

- Routine blood pressure check beginning at 3 years of age
 - If increased blood pressure, check all 4 extremities (coarctation)
 - Normal—blood pressure in legs should be 10–20 mm Hg higher than in arms
 - If obese, on medications which increase BP, diabetes, or chronic kidney disease, check blood pressure
- Blood pressure increases with age—need standard nomograms
 - If mild hypertension, repeat twice over next 6 weeks
 - If consistently >95% for age, need further evaluation
 - ≥95th percentile at 3 different visits
- Etiology—essential (primary) or secondary
 - Secondary—most common in infants and younger children
 - Newborn—umbilical artery catheters → renal artery thrombosis
 - Early childhood—renal disease, coarctation, endocrine, medications
 - Adolescent—essential hypertension
 - Renal and renovascular hypertension—majority of causes may be due to urinary tract infection (secondary to an obstructive lesion), acute glomerulonephritis, Henoch-Schönlein purpura with nephritis, hemolytic uremic syndrome, acute tubular necrosis, renal trauma, leukemic infiltrates, mass lesions, renal artery stenosis
 - Essential hypertension—more common in adults and adolescents
 - Positive family history
 - Multifactorial—obesity, genetic, and physiologic changes
- Diagnosis
 - CBC, blood chemistries, UA, EKG, echo, renal ultrasound, angiogram (less common)
- Treatment
 - If obese—weight control, aerobic exercise, no-added-salt diet, monitor blood pressure
 - Pharmacologic treatment (secondary hypertension and selective primary)—similar use of drugs as in adults
 - No real workup age ≥6 years and family history, obese, with normal history and physical
 - DASH diet (Dietary Approaches to Stop Hypertension)
Learning Objectives

- Demonstrate understanding of disorders of the oral cavity
- Diagnose and describe treatments for children who present with gastroenteritis, vomiting, hematochezia, or constipation

ORAL CAVITY

Cleft Lip and Palate

- Most are multifactorial inheritance; also autosomal dominant in families (most with isolated cleft palate)
- Clefts are highest among Asians, lowest among African descent
- Increase in other malformations with isolated cleft palate
- Most important early issue is feeding (special nipple needed)
- Complications—increased risk of otitis media, hearing loss, speech problems
- Treatment—surgical correction
 - Lip at 3 months of age
 - Palate at <1 year

GASTROENTERITIS

Acute Diarrhea

A 13-month-old child has had a 3-day history of green watery stools. She has also been vomiting for 1 day. Physical examination reveals a febrile, irritable baby with dry mucous membranes and sunken eyes.
Table 14-1. Causes of Diarrhea (Acute and Chronic)

<table>
<thead>
<tr>
<th></th>
<th>Infant</th>
<th>Child</th>
<th>Adolescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>• Gastroenteritis</td>
<td>• Gastroenteritis/ Food poisoning</td>
<td>• Gastroenteritis/ Food poisoning</td>
</tr>
<tr>
<td></td>
<td>• Systemic infection</td>
<td>• Systemic infection</td>
<td>• Systemic infection</td>
</tr>
<tr>
<td></td>
<td>• Antibiotic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>• Postinfectious lactase deficiency</td>
<td>• Postinfectious lactase deficiency</td>
<td>• Irritable bowel syndrome</td>
</tr>
<tr>
<td></td>
<td>• Milk/soy intolerance</td>
<td>• Irritable bowel syndrome</td>
<td>• Inflammatory bowel disease</td>
</tr>
<tr>
<td></td>
<td>• Chronic diarrhea of infancy</td>
<td>• Celiac disease</td>
<td>• Lactase intolerance</td>
</tr>
<tr>
<td></td>
<td>• Celiac disease</td>
<td>• Lactose intolerance</td>
<td>• Giardiasis</td>
</tr>
<tr>
<td></td>
<td>• Cystic fibrosis</td>
<td>• Giardiasis</td>
<td>• Inflammatory bowel disease</td>
</tr>
</tbody>
</table>

Table 14-2. Common Causes of Acute Diarrhea

<table>
<thead>
<tr>
<th>Bacterial (Inflammatory)</th>
<th>Viral</th>
<th>Parasitic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>Norovirus</td>
<td>Giardia lamblia (most common)</td>
</tr>
<tr>
<td>Enteroinvasive E. coli</td>
<td>Rotavirus</td>
<td>E. histolytica</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Enteric adenovirus</td>
<td>Strongyloides</td>
</tr>
<tr>
<td>Shigella</td>
<td>Astrovirus</td>
<td>Balantidium coli</td>
</tr>
<tr>
<td>Yersinia</td>
<td>Calicivirus</td>
<td>Cryptosporidium parvum</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td></td>
<td>Trichuris trichiura</td>
</tr>
<tr>
<td>E. coli 0157:H7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etiology

- **Note**
 - Common Causes of Bloody Diarrhea
 - *Campylobacter*
 - *Amoeba* (*E. histolytica)*
 - *Shigella*
 - *E. coli*
 - *Salmonella*

- **Note**
 - Antidiarrheal compounds should never be used in children.

Common organisms

- **Table 14-2. Common Causes of Acute Diarrhea**

- **Major transmission** is **fecal/oral** or by **ingestion of contaminated food or water**

- **Clinical presentation**
 - Diarrhea, vomiting, abdominal cramps, nausea, fever (suggests inflammation and dehydration)
 - Can present from an **extraintestinal infection**, e.g., urinary tract infection, pneumonia, hepatitis

- **Management**
 - Assess hydration and provide fluid and electrolyte replacement
 - Prevent spread
 - In some cases, determine etiology and provide specific therapy (some are not treated)
 - Think about **daycare** attendance, recent **travel**, use of **antibiotics**, exposures, intake of **seafood**, **unwashed vegetables**, **unpasteurized milk**, **contaminated water**, **uncooked meats** to isolate differential diagnosis of organisms
• Labs: **stool examination** (cost-effective, noninvasive)
 - Mucus, blood, leukocytes → colitis (invasive or cytotoxic organism)
 - Stool cultures—with blood, leukocytes, suspected hemolytic uremic syndrome, immunosuppressed, in outbreaks
 - *Clostridium difficile* toxin—if recent history of antibiotics
 - Ova and parasites
 - Enzyme immunoassays for viruses or PCR (rarely need to be diagnosed)

Chronic Diarrhea

Table 14-3. Organism-Specific Associations and Therapy

<table>
<thead>
<tr>
<th>Organism</th>
<th>Association</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotavirus</td>
<td>Watery diarrhea, vomiting, ± fever</td>
<td>Supportive</td>
</tr>
<tr>
<td>Enteropathogenic E. coli</td>
<td>Nurseries, daycare</td>
<td>Supportive care in severe cases, neomycin or colistin</td>
</tr>
<tr>
<td>Enterotoxigenic E. coli</td>
<td>Traveler’s diarrhea</td>
<td>Supportive care trimethoprim sulfamethoxazole in severe cases</td>
</tr>
<tr>
<td>Enterohemorrhagic E. coli</td>
<td>Hemorrhagic colitis, HUS</td>
<td>No antimicrobial therapy in suspected cases due to ↑ risk of HUS; supportive care only</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Infected animals and contaminated eggs, milk, poultry</td>
<td>Treatment indicated only for patients who are ≤3 months of age, toxic, has disseminated disease, or S. typhi</td>
</tr>
<tr>
<td>Shigella</td>
<td>Person-to-person spread, contaminated food</td>
<td>Trimethoprim/sulfamethoxazole</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>Person-to-person spread, contaminated food</td>
<td>Self-limiting; erythromycin speeds recovery and reduces carrier state; recommended for severe disease</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>Pets, contaminated food, arthritis, rash</td>
<td>No antibiotic therapy; aminoglycosides plus a third-generation cephalosporin for infants ≤3 months of age or with culture-proven septicemia</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>History of antibiotic use</td>
<td>Metronidazole or vancomycin and discontinuation of other antibiotics</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Food poisoning (onset within 12 h of ingestion)</td>
<td>Supportive care, antibiotics rarely indicated</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>Acute bloody diarrhea</td>
<td>Metronidazole</td>
</tr>
<tr>
<td>Giardia</td>
<td>Anorexia, nausea, abdominal distension, watery diarrhea, weight loss</td>
<td>Metronidazole, furazolidone</td>
</tr>
<tr>
<td></td>
<td>Cysts ingested from infected individual or from contaminated food or water</td>
<td></td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>Mild diarrhea in immunocompromised infants; severe diarrhea in AIDS patients</td>
<td>Raising CD4 count to normal is best treatment. No proven therapy (antimicrobial); strong supportive care; may try rifabutin</td>
</tr>
</tbody>
</table>

Definition of abbreviations: HUS, hemolytic uremic syndrome
Chronic Diarrhea and Malabsorption

- **Patterns**
 - From birth
 - After introduction of a new food

- **Clinical presentation**
 - Chronic nonspecific diarrhea of infancy:
 - Weight, height, and nutritional status is normal, and no fat in stool
 - Excessive intake of fruit juice, carbonated fluids, low fat intake usually present in history
 - Diarrhea with carbohydrates—CHO malabsorption
 - Weight loss and stool with high fat—think malabsorption

- **Workup of chronic diarrhea** (simple, noninvasive testing to be done first)
 - History and physical, nutritional assessment; **stool** for pH, reducing substances, fat, blood, leukocytes, culture, C. difficile toxin, ova, and parasites
 - Blood studies—complete blood count and differential, ESR, electrolytes, glucose, BUN, and creatinine
 - Sweat test, 72-hour fecal fat, breath hydrogen tests

- **Initial evaluation**
 - Fat:
 - **Most useful screening test is stool for fat** (Sudan red stain)
 - **Confirm with 72-hour stool for fecal fat** (gold standard for steatorrhea)
 - **Steatorrhea is most prominent with pancreatic insufficiency**; all require a sweat chloride
 - Serum trypsinogen is also a good screen (reflects residual pancreatic function)
 - CHO malabsorption—screen with **reducing substances in stool** (Clinitest)
 - **Breath hydrogen test**—after a known CHO load, the collected breath hydrogen is analyzed and malabsorption of the specific CHO is identified
 - Protein loss—cannot be evaluated directly (large proportion of bacterial protein and dietary protein almost completely absorbed before terminal ileum; amino acids and peptides are reabsorbed)
 - **Screen**—**spot stool α1-antitrypsin level**

- **More common differential diagnosis of malabsorption**
 - **Giardiasis**—only common primary infection causing chronic malabsorption; **duodenal aspirate/biopsy/immunoassay (Giardia)**
 - HIV or congenital T- or B-cell defects
 - Small-bowel disease—**gluten enteropathy**, abetalipoproteinemia, lymphangiectasia
 - Pancreatic insufficiency—fat malabsorption (cystic fibrosis is most common congenital disorder associated with malabsorption)
 - Most common anomaly causing incomplete bowel obstruction with malabsorption is **malrotation**
 - **Short bowel**—congenital or postnatal loss of >50% of small bowel with or without a portion of the large intestine (presence of ileocecal valve is better)
Celiac disease—associated with exposure to gluten (rye, wheat, barley, derivatives)
- Patients mostly age 6 months to 2 years
- Permanent intolerance
- Genetic predisposition (HLA DQ2)
- Clinical presentation: diarrhea, failure to thrive, growth retardation, vomiting, anorexia/lack of interest in feeding, ataxia

- Evaluation
 - Blood for anti-tissue transglutaminase (IgA) and serum IgA (false if IgA deficiency) (best initial test)
 - Definitive test—small intestine biopsy
- Treatment—lifelong, strict gluten-free diet

Clinical Recall
A 14-year-old boy presents with watery diarrhea and nausea after a hiking trip during which he swam in a small freshwater lake. What is the treatment of choice?

A. Supportive care with rest and fluids
B. Trimethoprim/sulfamethoxazole
C. Metronidazole
D. Neomycin
E. Cefuroxime

Answer: C

VOMITING

Esophageal Atresia (EA) and Tracheoesophageal Fistula (TEF)

- Three basic types:
 - Isolated EA
 - Isolated (H-type) TEF
 - EA and distal TEF
- Most common anatomy is upper esophagus ends in blind pouch and TEF connected to distal esophagus
- H-type—presents chronically and diagnosed later in life with chronic respiratory problems
- Half with associated anomalies—VACTERL association
- Clinical presentation in neonate (EA or EA + TEF)
 - Frothing, bubbling, cough, cyanosis, and respiratory distress
 - With feedings → immediate regurgitation and aspiration
- Clinical presentation with just TEF—feeding problems and recurrent aspiration

Note
VACTERL Association
Nonrandom association of birth defects:
- Vertebral anomalies
- Anal atresia
- Cardiac defect
- Tracheoesophageal fistula
- Renal anomalies
- Limb abnormalities
• Diagnosis
 − **Inability to pass nasogastric/orogastric tube**
 − Esophageal atresia: x-ray shows coiled nasogastric tube in blind pouch with no distal gas (gasless abdomen)
 − **Isolated TEF: esophagram with contrast media** (or bronchoscopy or endoscopy with methylene blue)
 − Esophageal atresia and distal fistula: coiled nasogastric tube in blind pouch the large amount of air in stomach and intestines
• Treatment—surgical ligation of TEF and resection with end-to-end anastomosis of esophageal atresia

Figure 14-1. Tracheoesophageal Fistula (TEF) Types
Gastroesophageal Reflux Disease (GERD)

A 4-month-old is admitted with episodes of apnea occurring 20–30 min after feeds. The mother states the baby has been spitting up since birth. She is at the 5th percentile for weight.

Almost all infants have some degree of reflux (mild to moderate) from birth due to slow development of lower gastroesophageal sphincter tone development. Improvement is seen over the first months and almost always resolves by age 12-24 months. Older children are clinically like adults; only about 50% spontaneously resolve.

Most signs and symptoms are:
- Postprandial regurgitation
- Esophagitis (arching and irritability with feeds)
- Aspiration (worst cases): recurrent wheezing, recurrent pneumonia

Diagnosis
- Most by clinical findings but barium esophagram will determine if recurrent aspiration is due to GERD or TE fistula. If there is any confusion as to the diagnosis, or for severe reflux, the best test (which also quantitates the reflux) is a pH study. Endoscopy is used for the presumption of erosive esophagitis.

Treatment
- Conservative (normalize feedings, positioning during feeds and sleep, thickening feeds) and then H2 receptor antagonists as first-line; PPIs for severe disease and esophagitis
- Surgery (fundoplication) for refractory disease

Pyloric Stenosis

A 4-week-old boy has nonbilious projectile vomiting. Physical examination is remarkable for a small mass palpated in the abdomen.

- Epidemiology—more common in whites of Northern European ancestry, firstborn males
- Clinical presentation
 - Nonbilious, projectile vomiting
 - Still hungry and desire to feed more
 - Usually age ≥3 weeks (1 week to 5 months)
 - Mild-to-moderate dehydration, hypochloremic, hypokalemic metabolic alkalosis
 - Palpation of a firm, movable, 2-cm, olive-shaped, hard mass in midepigastrium; left to right peristaltic wave
- Diagnosis—best test is ultrasound (a target-like appearance in cross-section)
- Treatment
 - Rehydrate, correct electrolytes (NaCl, KCl)
 - Pyloromyotomy

Note
Pyloric stenosis is high yield for the exam.
Duodenal Atresia

A newborn presents with bilious vomiting with every feed. Abdominal film reveals a double bubble.

- Epidemiology
 - Half are born premature
 - Down syndrome
 - With other anomalies—malrotation, esophageal atresia, congenital heart defects, anorectal malformation, renal anomalies
- Clinical presentation
 - Bilious vomiting without abdominal distention on first day of life (obstruction just distal to ampulla)
 - Polyhydramnios prenatally
 - Many with jaundice (increased enterohepatic circulation)
- Diagnosis
 - X-ray shows classic double bubble with no distal bowel gas.
 - X-ray spine for anomalies; ultrasound for other anomalies
- Treatment
 - Nasogastric decompression
 - Intravenous fluids
 - Surgery—duodenoduodenostomy

Clinical Recall

A newborn is diagnosed with a tracheoesophageal fistula. What additional anomaly is she most likely to have?

A. Pulmonary stenosis
B. Sternal dysplasia
C. Oral atresia
D. Renal agenesis
E. Ectopia lentis

Answer: D
Table 14-4. Congenital Bowel Obstruction

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Etiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenal Atresia</td>
<td>Failed recanalization of bowel lumen 4th–7th week gestation</td>
</tr>
<tr>
<td></td>
<td>- Duodenal stenosis</td>
</tr>
<tr>
<td></td>
<td>- Annular pancreas</td>
</tr>
<tr>
<td></td>
<td>- Duplication cysts</td>
</tr>
<tr>
<td></td>
<td>- Ladd bands from malrotation</td>
</tr>
<tr>
<td>Jejunal and Ileal Atresias</td>
<td>Intrauterine vascular accident → segmental infarction and resorption of fetal intestine</td>
</tr>
<tr>
<td></td>
<td>- Meconium ileus/plug</td>
</tr>
<tr>
<td></td>
<td>- Malrotation ± volvulus</td>
</tr>
<tr>
<td></td>
<td>- Hirschsprung disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DDx</th>
<th>Clinical Background/Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Polyhydramnios</td>
</tr>
<tr>
<td></td>
<td>- 50% premature</td>
</tr>
<tr>
<td></td>
<td>- Other organ system anomalies</td>
</tr>
<tr>
<td></td>
<td>- Half with chromosomal anomalies, especially trisomy 21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenal Atresia</td>
<td>- Prenatal sonogram</td>
</tr>
<tr>
<td></td>
<td>- Postnatal plain X-ray: double-bubble with NO distal bowel gas</td>
</tr>
<tr>
<td></td>
<td>- CXR, spine films</td>
</tr>
<tr>
<td></td>
<td>- Echocardiogram</td>
</tr>
<tr>
<td>Jejunal and Ileal Atresias</td>
<td>- Renal ultrasound for other most common anomalies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Algorithm/Definitive Treatment</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- NG/OG decompression</td>
</tr>
<tr>
<td></td>
<td>- NPO + IV fluids + electrolyte balance</td>
</tr>
<tr>
<td></td>
<td>- Broad-spectrum antibiotics</td>
</tr>
<tr>
<td></td>
<td>- Definitive Treatment:</td>
</tr>
<tr>
<td></td>
<td>- Surgery when stable— duodenodudodenostrctomy</td>
</tr>
</tbody>
</table>

Definitive Treatment: Surgery—resect dilated proximal bowel, then end-to-end anastomosis

(Continued)
Table 14-4. Congenital Bowel Obstruction (Continued)

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Etiology</th>
<th>DDX</th>
<th>Clinical Background/ Presentation</th>
<th>Diagnosis</th>
<th>Management Algorithm/ Definitive Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meconium Ileus</td>
<td>Abnormal viscous secretions → distal 20-30 cm of ileum collapsed and proximal bowel dilated and filled with thick meconium impacted in ileum</td>
<td>• Meconium plug
• Atresias
• Hirschsprung disease
• Malrotation ± volvulus</td>
<td>• 80-90% will be diagnosed with CF
• May perforate in utero → meconium peritonitis (calcifications)
Presentation:
• Vomiting becomes persistent with prominent abdominal distention
• No passage of meconium
• May present as bowel perforation and peritonitis
• Palpation of “doughy” or cordlike masses</td>
<td>• Plain films: dilated loops of bowel proximal to obstruction that vary with width and not evenly filled with gas
• Presence of bubbly or granular appearance in RLQ (meconium with gas bubbles)
Definitive Treatment:
First: hypertonic water-soluble contrast enema to attempt wash-out
If fails—laparotomy</td>
<td>• NPO
• NG/OG decompression
• IV fluid and electrolyte balance
• Antibiotics
Definitive Treatment:
First: hypertonic water-soluble contrast enema to attempt wash-out
If fails—laparotomy</td>
</tr>
<tr>
<td>Meconium Plugs</td>
<td>Decreased water content for many possible reasons leads to lower colonic or anorectal meconium plug</td>
<td>• Meconium ileus
• Hirschsprung disease</td>
<td>• Majority not associated with CF, unless in small bowel
• Infants with polycythemia, dehydration and small left colon as may be seen with IODM
• Maternal opiate use or treatment with MgSO4
Presentation:
Failure of meconium passage and abdominal distention</td>
<td>• Plain films: low obstruction with proximal bowel dilatation and multiple air-fluid levels</td>
<td>• NG/OG + NPO
• IV fluid and electrolyte balance
• Antibiotics
Definitive Treatment:
• Evacuation with glycerin suppository if very low or saline enema or hypertonic water-soluble contrast if higher
• Observe for possible Hirschsprung disease
• Consider sweat test if contrast shows small bowel plug.</td>
</tr>
<tr>
<td>Lesion</td>
<td>Etiology</td>
<td>DDX</td>
<td>Diagnosis</td>
<td>Management Algorithm/Definitive Treatment</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Malrotation</td>
<td>• As developing bowel rotates in and out of abdominal cavity (weeks 5-12), superior mesenteric artery acts as the axis • With nonrotation, 1st and 2nd part of duodenum are in normal position, but because of inadequate mesenteric attachment to posterior wall, rest of small bowel occupies RLQ and colon the left • Failure of cecum to move to the RLQ → failure to form broad-based adhesions to posterior wall → superior mesenteric artery is tethered by a narrow stalk (causes volvulus) and Ladd bands can extend from cecum to RUQ and obstruct at duodenum.</td>
<td>• Intestinal atresias • Meconium ileus • Hirschsprung disease</td>
<td>• Other anomalies of abdominal wall – Diaphragmatic hernia – Gastrochisis – Omphalocele – Heterotaxy syndrome (CHD, malrotation, asplenia/ polysplenia)</td>
<td>• Plain film: may show double-bubble with evidence of small amount of distal gas (prior to the volvulus) or a gasless abdomen • Ultrasound: inversion of superior mesenteric artery and vein • Upper GI: malposition of ligament of Treitz and small bowel obstruction with corkscrew appearance or duodenal obstruction with “bird’s beak” appearance</td>
<td>• If volvulus: emergency surgery after IV and fluids • Otherwise NPO, NG/OG • Correct fluid and electrolyte imbalance. Definitive Treatment: • Surgery: any patient of any age with any significant rotational abnormality • Volvulus: acute surgical emergency</td>
</tr>
</tbody>
</table>
Table 14-4. Congenital Bowel Obstruction (Continued)

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Etiology</th>
<th>DDX</th>
<th>Clinical Background/ Presentation</th>
<th>Diagnosis</th>
<th>Management Algorithm/ Definitive Treatment</th>
</tr>
</thead>
</table>
| Hirschsprung Disease | • Developmental disorder of the enteric nervous system such that there are absence of ganglion cells in the submucosal and myenteric plexus
• Arrest of neuroblast migration from proximal to distal bowel → inadequate relaxation and hypertonicity | • Long segment disease vs., intestinal atresia
• Meconium plug
• Meconium ileus | • Most common cause of intestinal obstruction in neonate
• Usual short segment is male preponderance but equalizes with long segment disease
• Increased familial incidence with long segment but must (short segment) are sporadic
• May be associated with cardiovascular and urological defects and with Down syndrome
• 80% are short (rectosigmoid)
• 10-15% long (more than that)
• 5% total bowel aganglionosis | • Plain film: distended loops of bowel
• Contrast enema may not show classic line of demarcation from small aganglionic bowel to proximal dilatation (better >1 month of age) but 24 hr films usually show retained contrast and suggest the diagnosis
• Barium enema also useful prior to surgery to define extent of aganglionic segment
• Gold standard confirmation is the suction rectal biopsy | • NG/OG
• NPO
• Fluid and electrolyte management
• Evaluate for other defects
Definitive Treatment: Laparoscopic single-stage endorectal pull-through is procedure of choice. |
Malrotation and Volvulus

- **Etiology**
 - Incomplete rotation of intestine during fetal development
 - Superior mesenteric artery acts as axis for rotation
 - Ladd bands may extend from cecum to right upper quadrant (RUQ) to produce duodenal obstruction

- **Clinical presentation**
 - Most present in first year of life with acute or chronic incomplete obstruction
 - Bilious emesis, recurrent abdominal pain with vomiting
 - An acute small-bowel obstruction in a patient without previous bowel surgery is suspicious for volvulus (acute surgical abdomen)

- **Diagnosis**
 - Plain film is nonspecific—may show double bubble if there is duodenal obstruction
 - Barium enema shows malposition of cecum (mobile cecum is not situated in the right lower quadrant); upper gastrointestinal will show malposition of ligament of Treitz
 - Ultrasound will show inversion of superior mesenteric artery and vein (superior mesenteric vein to the left of the artery is suggestive) and duodenal obstruction with thickened bowel loops to the right of the spine; advantage is no need for contrast; start with this study

- **Treatment**—surgery

Clinical Recall

A 3-week old infant girl with bilious emesis has an abdominal x-ray with a double-bubble sign and a small amount of air in the distal small bowel loops. What imaging test should be ordered to confirm the diagnosis, and what are the expected findings?

A. None: go straight to surgery
B. Water-soluble enema: no passage through the ileocecal valve
C. Barium enema: small rectum and dilated sigmoid colon
D. Ultrasound: increased thickness of the pylorus
E. Upper GI series: corkscrew appearance of the duodenum

Answer: E

Note

A delay in treating volvulus can result in short bowel syndrome.
HEMATOCHEZIA

Meckel Diverticulum

A 2-year-old boy presents with a 1-week history of painless rectal bleeding. Physical examination is unremarkable. The abdomen is soft and nontender. Rectal examination is unremarkable.

- Etiology
 - Remnant of embryonic yolk sac (omphalomesenteric or vitelline duct), lining similar to stomach
 - Most frequent congenital gastrointestinal anomaly
- Clinical presentation
 - Acid-secreting mucosa causes intermittent painless rectal bleeding
 - May get anemia, but blood loss is self-limited
 - May have partial or complete bowel obstruction (lead point for an intussusception) or develop diverticulitis and look like acute appendicitis (much less common presentation)
- Diagnosis—Meckel radionuclide scan (Tc-99m pertechnetate)
- Treatment—surgical excision

Intussusception

A 15-month-old child is seen for cramping, colicky abdominal pain of 12 h duration. He has had 2 episodes of vomiting and a fever. Physical examination is remarkable for a lethargic child; abdomen is tender to palpation. Leukocytosis is present. During examination, the patient passes a bloody stool with mucus.

- Etiology
 - Telescoping of bowel; most ileal-colic
 - Most present at age 3 months to 6 years (80% <2 years)
 - Commonly following adenovirus or rotavirus infection, upper respiratory infection, otitis media
 - Associated with HSP (Henoch-Schönlein purpura)
 - Can also occur with a leading point—Meckel diverticulum, polyp, neurofibroma, hemangioma, malignancy
- Pathophysiology—bowel drags mesentery with it and produces arterial and venous obstruction and mucosal necrosis → classic “black currant jelly” stool
• Clinical presentation
 − Sudden onset of severe paroxysmal colicky abdominal pain; straining, legs flexed
 − Progressive weakness
 − Lethargy, shock with fever
 − Vomiting in most (early on, it is bile-stained)
 − Decreased stooling
 − Blood in most patients in first 12 hours, but may be delayed or not at all
• Physical examination—slightly tender, sausage-shaped mass on right in cephalocaudal axis
• Diagnosis
 − Ultrasound to first screen for the diagnosis (non-invasive and cost-effective; “doughnut appearance”) and look for free-air (if intussusception has caused perforation)
 − Air enema is the next study of choice as it is far safer than the previously-used barium enema (0.1 vs. 2.5% risk of perforation); air enema may be therapeutic and prevent the need for immediate surgery
• Treatment
 − If prolonged, shock, peritoneal irritation, or perforation → surgery
 − Radiographic reduction under fluoroscopy—most will reduce if done within 48 hours of presentation (goes down to half after that time)
 − If surgical—if manual operative reduction is not possible or bowel is not viable, then resection and end-to-end anastomosis

Note
Other causes of GI bleed
• Anal fissure (most common cause of lower GI bleed in infancy)
• Accidental swallowing of maternal blood (do Apt test)
• Peptic ulcer disease

CONSTIPATION

Functional Constipation

A 6-year-old boy complains of hard bowel movements every fifth day. Physical examination reveals normal weight and height. Abdomen is soft, and hard stool is palpable on rectal examination.

• Delay or difficulty in stooling for at least 2 weeks; typically after age 2 years
• Passage of painful bowel movements with voluntary withholding to avoid pain
• May have blood in stool
• Physical examination—large volume of stool palpated in suprapubic area; rectal exam shows vault filled with stool
• Treatment
 − Patient education (bowel training program)
 − Relief of impaction—enema, then stool softeners (mineral oil, lactulose, polyethylene glycol; no prolonged use of stimulants)
 − Behavioral modification
 − Deal with any psychosocial issues

OTHER CAUSES OF GI BLEED
• Anal fissure (most common cause of lower GI bleed in infancy)
• Accidental swallowing of maternal blood (do Apt test)
• Peptic ulcer disease
Hirschsprung Disease

- Etiology—absence of a ganglion cells in bowel wall beginning at internal anal sphincter and extending variably proximally
- Most common reason for bowel obstruction in neonates
- Clinical presentation
 - Symptoms usually present at birth
 - Suspect in any full-term infant with a delay in passage of meconium (>24 hours)
 - May have subsequent history of chronic constipation (if short aganglionic segment)
- Diagnosis
 - Rectal suction biopsy is definitive
 - Presence of transition zone on barium enema (not necessary to perform)
- Treatment—surgery (most with temporary colostomy) and wait 6–12 months for definitive correction (most achieve continence) or one-stage repair
- Complications—enterocolitis

Table 14-5. Functional Constipation Versus Hirschsprung Disease

<table>
<thead>
<tr>
<th></th>
<th>Functional Constipation</th>
<th>Hirschsprung Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset constipation</td>
<td>After 2 years of age</td>
<td>At birth</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>Uncommon</td>
<td>Possible</td>
</tr>
<tr>
<td>Enterocolitis</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Abdominal distention</td>
<td>Usually not</td>
<td>Yes</td>
</tr>
<tr>
<td>Poor weight gain</td>
<td>Usually not</td>
<td>Common</td>
</tr>
<tr>
<td>Anal tone</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Rectal</td>
<td>Stool in ampulla</td>
<td>No stool</td>
</tr>
<tr>
<td>Anorectal manometry</td>
<td>Distention of rectum → relaxation of internal sphincter</td>
<td>No sphincter relaxation</td>
</tr>
<tr>
<td>Barium enema</td>
<td>Large amount of stool; no transition zone</td>
<td>Transition zone with delayed evacuation</td>
</tr>
</tbody>
</table>
Learning Objectives

- Recognize and describe treatment for urinary tract infection, vesicoureteral reflux, obstructive uropathy, and polycystic kidney disease
- Diagnose and describe treatments for disorders presenting with hematuria or proteinuria

URINARY TRACT INFECTION (UTI)

A 12-day-old infant presents with fever of 39°C (102°F), vomiting, and diarrhea. On physical examination the infant appears to be ill and mildly dehydrated.

- Epidemiology and risk factors
 - Age <24 months
 - 7% of febrile infants without a source and T >39°C for 24–48 hrs
 - More common in whites than blacks
 - Febrile females are more common in first year than age >12 mos
 - Male infection correlated to not being circumcised
 - Age ≥24 months
 - Can describe symptoms and localize
 - Most important factors: presence of bowel/bladder withholding behaviors; congenital anomalies; previous history of UTI
- Etiology and pathogenesis
 - *E. coli* is number 1 organism for all ages; then *Klebsiella, Proteus Enterococcus, Pseudomonas* (these all with later, recurrent infections and immune compromise)
 - Most from ascending infection; rare hematogenous spread
- Clinical presentation
 - Age <24 mos: fever, irritability, crying, decreased input, less sleep
 - Age ≥24 mos: localized symptoms of dysuria, urgency, frequency, suprapubic pain, incontinence for cystitis and abdominal or flank pain, malaise, nausea, vomiting, diarrhea for pyelonephritis
 - May also have asymptomatic bacteriuria—positive urine culture without signs or symptoms; may become symptomatic if untreated; almost exclusively in girls
• Diagnosis
 − Need evidence of inflammation (urinalysis: WBCs and leukocyte esterase) + bacterial growth (UA nitrites, bacteria and positive culture)
 − Age <24 mos: may place a urethral bag for UA only and then if positive → need catheterization for culture and sensitivity
 − Age ≥ 24 mos: mid-stream clean catch urine
 − Best sensitivity and specificity for positive cultures: leukocyte esterase + nitrites + microscopic WBCs + microscopic bacteria
 − Interpretation: ≥50,000 CFU/ml (may be less in neonates, immune deficiency, congenital anomalies or if already on antibiotics)

• Management
 − Oral antibiotics are as effective as IV
 − Use IV if toxic or cannot tolerate oral
 − Choice is tailored to local bacterial susceptibility data, compliance, cost and history of previous treatment/results
 − Oral: amoxicillin, trimethoprim-sulfamethoxazole, oral cephalosporins
 − Parenteral: best/safest are third-generation cephalosporins

• Imaging
 − Age <24 mos: renal and bladder U/S after first febrile UTI; VCUG after first febrile UTI with an abnormal U/S (note: not afebrile)
 − All children: VCUG after second febrile UTI (no policy for U/S or nonfebrile UTIs, which generally means that physicians should use their judgement)
 − If there is grade 2-5 reflux, obtain a renal radionuclide scan for function, kidney size, and scarring

Clinical Recall

Which of the following children should undergo a voiding cystourethrogram?

A. A 4-month-old uncircumcised male infant with his first positive urine culture
B. A 9-year-old girl with no significant medical history being treated for pyelonephritis
C. A 17-year-old sexually active girl with 2 urinary tract infections in 3 years
D. A 1-year-old boy with hydronephrosis on renal U/S
E. None of the above, as only children with recurrent UTIs should receive a VCUG

Answer: D
VESICOURETERAL REFLUX (VUR)

A 2-year-old girl presents with urinary tract infection. She has had multiple urinary tract infections since birth but has never had any follow-up studies to evaluate these infections. Physical examination is remarkable for an ill-appearing child who has a temperature of 40°C (104°F) and is vomiting.

- **Definition**—abnormal backflow of urine from bladder to kidney
- **Etiology**
 - Occurs when the submucosal tunnel between the mucosa and detrusor muscle is short or absent.
 - **Predisposition to pyelonephritis → scarring → reflux nephropathy (hypertension, proteinuria, renal insufficiency to end-stage renal disease [ESRD], impaired kidney growth)**
- **Grading**
 - **Grade I:** into nondilated ureter (common for anyone)
 - **Grade II:** upper collecting system without dilatation
 - **Grade III:** into dilated collecting system with calyceal blunting
 - **Grade IV:** grossly dilated ureter and ballooning of calyces
 - **Grade V:** massive; significant dilatation and tortuosity of ureter; intrarenal reflux with blunting of renal pedicles
- **Diagnosis**
 - VCUG for diagnosis and grading
 - Renal scan for renal size, scarring and function; if scarring, follow creatinine
- **Natural history**
 - Increased scarring with grade V (less so with bilateral 4)
 - Most below grade V resolve regardless of age at diagnosis or whether it is unilateral or bilateral
 - With growth, tendency to resolve (lower > higher grades); resolve by age 6–7 years
- **Treatment**
 - Medical—based on reflux resolving over time; most problems can be taken care of nonsurgically
 - Careful ongoing monitoring for and aggressive treatment of all UTIs
 - Surgery if medical therapy fails, if grade V reflux, or if any worsening on VCUG or renal scan
 - The issue of antibiotic prophylaxis is controversial and thus must be individualized. Studies do show, however, that it would take thousands of doses of antibiotics to prevent a single UTI and that prophylaxis does not prevent scarring. Therefore, it is not currently recommended routinely by the AAP.
Reflux into a nondilated ureter

Reflux into the pelvis and calyces without dilation

Reflux with mild to moderate dilation of the ureter, renal pelvis, and calyces, with minimal blunting of the fornices

Reflux with moderate tortuosity of the ureter and dilation of the pelvis and calyces

Reflux causing ureteral tortuosity with severe dilation of ureter, renal pelvis, and calyces and loss of fornices and papillary impressions

Figure 15-1. Vesicoureteral Grading Scale

OBSTRUCTIVE UROPATHY

- Definition—obstruction of urinary outflow tract
- Clinical presentation
 - Hydronephrosis
 - Upper abdominal or flank pain
 - Pyelonephritis, UTI (recurrent)
 - Weak, decreased urinary stream
 - Failure to thrive, diarrhea (or other nonspecific symptoms)
- Diagnosis
 - Palpable abdominal mass in newborn; most common cause is hydronephrosis due to ureteropelvic junction obstruction or multicystic kidney disease (less so—infantile polycystic disease)
 - Most can be diagnosed prenatally with ultrasound.
 - Obtain VCUG in all cases of congenital hydronephrosis and in any with ureteral dilatation to rule out posterior urethral valves
- Common etiologies
 - Ureteropelvic junction obstruction—most common (unilateral or bilateral hydronephrosis)
 - Ectopic ureter—drains outside bladder; causes continual incontinence and UTIs
– Ureterocele—cystic dilatation with obstruction from a pinpoint ureteral orifice; mostly in girls
– **Posterior urethral valves:**
 ° Most common cause of severe obstructive uropathy; mostly in boys
 ° Can lead to end-stage renal disease
 ° Present with mild hydronephrosis to severe renal dysplasia; suspect in a male with a palpable, distended bladder and weak urinary stream

• **Diagnosis**—voiding cystourethrogram (VCUG)
• **Treatment**
 – Decompress bladder with catheter
 – Antibiotics (intravenously)
 – Transurethral ablation or vesicostomy
• **Complications**
 – If lesion is severe, may present with pulmonary hypoplasia (Potter sequence)
 – Prognosis dependent on lesion severity and recovery of renal function

DISEASES PRESENTING PRIMARILY WITH HEMATURIA

Acute Poststreptococcal Glomerulonephritis

A 10-year-old boy presents with Coca-Cola–colored urine and edema of his lower extremities. On physical examination, the patient has a blood pressure of 185/100 mm Hg. He does not appear to be in any distress. His lungs are clear to auscultation, and his heart has a regular rate and rhythm without any murmurs, gallops, or rubs. His past medical history is remarkable for a sore throat that was presumed viral by his physician 2 weeks before.

• **Etiology**
 – Follows infection with nephrogenic strains of group A beta-hemolytic streptococci of the throat (mostly in cold weather) or skin (in warm weather)
 – Diffuse mesangial cell proliferation with an increase in mesangial matrix; **lumpy-bumpy deposits of immunoglobulin (Ig) and complement on glomerular basement membrane and in mesangium**
 – Mediated by immune mechanisms but complement activation is mostly through the alternate pathway
• **Clinical presentation**
 – Most 5–12 years old (corresponds with typical age for strep throat)
 – **1–2 weeks after strep pharyngitis or 3–6 weeks after skin infection (impetigo)**
 – Ranges from asymptomatic microscopic hematuria to acute renal failure
 – **Edema, hypertension, hematuria (classic triad)**
 – Constitutional symptoms—malaise, lethargy, fever, abdominal or flank pain
• **Diagnosis**
 – Urinalysis—RBCs, **RBC casts**, protein 1–2 +, polymorphonuclear cells
 – Mild normochromic anemia (hemodilution and low-grade hemolysis)

Note

For diagnosis of prior Strep infection, use **streptozyme** (slide agglutination), which detects antibodies to streptolysin O, DNase B, hyaluronidase, streptokinase, and nicotinamide-adenine dinucleotidase.
- Low C3 (returns to normal in 6–8 weeks)
- Need positive throat culture or increasing antibody titer to streptococcal antigens; best single test is the anti-DNase antigen
- Consider biopsy only in presence of acute renal failure, nephrotic syndrome, absence of streptococcal or normal complement; or if present >2 months after onset

• Complications
 - Hypertension
 - Acute renal failure
 - Congestive heart failure
 - Electrolyte abnormalities
 - Acidosis
 - Seizures
 - Uremia

• Treatment (in-patient, if severe)
 - Antibiotics for 10 days (penicillin)
 - Sodium restriction, diuresis
 - Fluid and electrolyte management
 - Control hypertension (calcium channel blocker, vasodilator, or angiotensin-converting enzyme inhibitor)
 - Complete recovery in >95%

Other Glomerulonephritides

IgA nephropathy (Berger disease)

- Most common chronic glomerular disease worldwide

• Clinical presentation
 - Most commonly presents with gross hematuria in association with upper respiratory infection or gastrointestinal infection
 - Then mild proteinuria, mild to moderate hypertension
 - Normal C3

• Most important primary treatment is blood pressure control.

Alport syndrome

The school nurse refers a 7-year-old boy because he failed his hearing test at school. The men in this patient’s family have a history of renal problems, and a few of his maternal uncles are deaf. A urinalysis is obtained from the patient, which shows microscopic hematuria.

• Hereditary nephritis (X-linked dominant); renal biopsy shows foam cells
• Asymptomatic hematuria and intermittent gross hematuria 1–2 days after upper respiratory infection
• Hearing deficits (bilateral sensorineural, never congenital); females have subclinical hearing loss
• Ocular abnormalities (pathognomonic is extrusion of central part of lens into anterior chamber

Henoch-Schönlein purpura
- Small vessel vasculitis with good prognosis
- Present with purpuric rash, joint pain, abdominal pain
- Most resolve spontaneously; anti-inflammatory medications, steroids

Hemolytic uremic syndrome (HUS)

A 3-year-old child presents to the emergency center with history of bloody diarrhea and decreased urination. The mother states that the child’s symptoms began 5 days after the family ate at a fast-food restaurant. At that time the patient developed fever, vomiting, abdominal pain, and diarrhea. On physical examination, the patient appears ill. He is pale and lethargic.

- **Most common cause of acute renal failure in young children**
- **Microangiopathic hemolytic anemia, thrombocytopenia, and uremia**
 - Most from *E. coli* O157:H7 (shiga toxin–producing)
 - Most from undercooked meat or unpasteurized milk; spinach
 - Also from *Shigella, Salmonella, Campylobacter*, viruses, drugs, idiopathic
- **Pathophysiology**
 - Subendothelial and mesangial deposits of granular, amorphous material—vascular occlusion, glomerular sclerosis, cortical necrosis
 - Capillary and arteriolar endothelial injury → localized clotting
 - Mechanical damage to RBCs as they pass through vessels
 - Intrarenal platelet adhesion and damage (abnormal RBCs and platelets then removed by liver and spleen)
 - Prothrombotic state
- **Clinical presentation**
 - Most common <4 years old
 - Bloody diarrhea
 - 5–10 days after infection, sudden pallor, irritability, weakness, oliguria occur; mild renal insufficiency to acute renal failure (ARF)
- **Labs**—hemoglobin 5–9 mg/dL, **helmet cells, burr cells, fragmented cells**, moderate reticulocytosis, white blood cells up to 30,000/mm³, Coombs negative, **platelets usually 20,000–100,000/mm³**, low-grade microscopic hematuria and proteinuria
- Many complications, including seizures, infarcts, colitis, intussusception, perforation heart disease, death
• Treatment
 − Meticulous attention to fluids and electrolytes
 − Treat hypertension
 − Aggressive nutrition (total parenteral nutrition [TPN])
 − Early peritoneal dialysis
 − No antibiotics if *E. coli* O157:H7 is suspected—treatment increases risk of developing HUS
 − Plasmapheresis or fresh frozen plasma—may be beneficial in HUS not associated with diarrhea or with severe central nervous system involvement
• Prognosis—more than 90% survive acute stage; small number develop ESRD (end-stage renal disease)

Clinical Recall

A 15-year-old girl recovering from the common cold presents with gross hematuria, causing red blood cell casts and mild proteinuria on urinalysis. There are no hearing difficulties and eye exam is normal. What is the treatment of choice?

A. No treatment beyond control of blood pressure
B. Penicillin
C. Steroids
D. NSAIDs
E. Plasmapheresis

Answer: A

POLYCYSTIC KIDNEY DISEASE

Autosomal-Recessive Type (Infantile)

• Both kidneys greatly enlarged with many cysts through cortex and medulla
• Microcysts → development of progressive interstitial fibrosis and tubular atrophy → renal failure
• Also liver disease—bile duct proliferation and ectasia with hepatic fibrosis
• Clinical presentation
 − Bilateral flank masses in neonate or early infancy
 − May present with Potter sequence
 − Hypertension, oliguria, acute renal failure
 − About half have liver disease in newborn period
• Diagnosis
 − Bilateral flank masses in infant with pulmonary hypoplasia (if severe)
 − Oliguria and hypertension in newborn with absence of renal disease in parents
 − Ultrasound–prenatal and postnatal (numerous small cysts throughout)
• Treatment and prognosis
 − Symptomatic
 − Now more than 80% with 10-year survival
 − End-stage renal failure in more than half
 − Need dialysis and transplant

Autosomal-Dominant Type (Adults)

• Most common hereditary human kidney disease
• Both kidneys enlarged with cortical and medullary cysts
• Most present in **fourth to fifth decade**, but may present in children and neonates
• Renal ultrasound shows bilateral macrocysts
• Also **systemic cysts**—liver, pancreas, spleen, ovaries; **intracranial (Berry) aneurysm** (rarely reported in children)
• Diagnosis—**presence of enlarged kidneys with bilateral macrocysts with affected first-degree relative**
• Treatment—**control of blood pressure** (disease progression correlates with degree of hypertension); presentation in older children with favorable prognosis

DISEASES PRESENTING WITH PROTEINURIA

Nephrotic Syndrome

A 3-year-old child presents to the physician with a chief complaint of puffy eyes. On physical examination, there is no erythema or evidence of trauma, insect bite, cellulitis conjunctival injection, or discharge.

• Steroid-sensitive minimal change disease is the most common nephrotic syndrome seen in children.
• Features
 − Proteinuria (>40 mg/m²/hour)
 − Hypoalbuminemia (<2.5 g/dL)
 − Edema
 − Hyperlipidemia (reactive to loss of protein)

Minimal change disease

• Clinical presentation
 − **Most common between 2 and 6 years of age**
 − May follow minor infections
 − **Edema**—localized initially around eyes and lower extremities; anasarca with serosal fluid collections less common
 − Common—diarrhea, abdominal pain, anorexia
 − Uncommon—hypertension, gross hematuria
• Diagnosis
 − Urinalysis shows proteinuria (3–4+)
 − Some with microscopic hematuria
 − 24-hour urine protein—40 mg/m²/hour in children but now preferred initial test is a spot urine for protein/creatinine ratio >2
 − Serum creatinine usually normal but may be increased slightly
 − Serum albumin <2.5 g/dL
 − Elevated serum cholesterol and triglycerides
 − C3 and C4 normal

• Treatment
 − Mild—outpatient management; if severe—hospitalize
 − Start prednisone for 4–6 weeks, then taper 2–3 months without initial biopsy
 − Consider biopsy with hematuria, hypertension, heart failure, or if no response after 8 weeks of prednisone (steroid resistant)
 − Sodium restriction
 − If severe—fluid restriction, plus intravenous 25% albumin infusion, followed by diuretic to mobilize and eliminate interstitial fluid
 − Re-treat relapses (may become steroid-dependent or resistant); may use alternate agents (cyclophosphamide, cyclosporine, high-dose pulsed methylprednisolone); renal biopsy with evidence of steroid dependency

• Complications
 − Infection is the major complication; make sure immunized against Pneumococcus and Varicella and check PPD
 − Most frequent is spontaneous bacterial peritonitis (S. pneumoniae most common)
 − Increased risk of thromboembolism (increased prothrombotic factors and decreased fibrinolytic factors) but really with aggressive diuresis

• Prognosis
 − Majority of children have repeated relapses; decrease in number with age
 − Those with steroid resistance and who have focal segmental glomerulosclerosis have much poorer prognosis (progressive renal insufficiency).

MALE GENITOURINARY DISORDERS

Undescended Testes
• Most common disorder of sexual differentiation in boys (more in preterm)
• Testes should be descended by 4 months of age or will remain undescended
• Usually in inguinal canal, but some are ectopic
• Prognosis
 − Treated: bilateral (50–65% remain fertile), unilateral (85% remain fertile)
 − Untreated or delay in treatment: increased risk for malignancy (seminoma most common)
• Surgery (orchiopexy) at 9–15 months

Note
Differentiate undescended testes from retractile testes (brisk cremasteric reflex age >1 [can manipulate into scrotum]).
Testicular Torsion
- Most common cause of testicular pain age >12 years
- Clinical presentation—acute pain and swelling; tenderness to palpitation
- Testicle in transverse lie and retracted, no cremasteric reflex
- Diagnosis—Doppler color flow ultrasound (only to determine direction of torsion and to guide manual detorsion, if urologist decides this is warranted; also to confirm successful detorsion in a completely asymptomatic patient)
- Treatment—emergent surgery (scrotal orchiopexy); if within 6 hours and <360-degree rotation, >90% of testes survive

Torsion of Appendix Testes
- Most common cause of testicular pain age 2–11 years
- Clinical presentation
 - Gradual onset
 - 3–5 mm, tender, inflamed mass at upper pole of testis
 - Naturally resolves in 3–10 days (bed rest, analgesia)
- Diagnosis
 - Clinical—blue dot seen through scrotal skin
 - Ultrasound if concerned with testicular torsion
 - Scrotal exploration if diagnosis still uncertain

Epididymitis
- Ascending, retrograde urethral infection → acute scrotal pain and swelling (rare before puberty)
- Main cause of acute painful scrotal swelling in a young, sexually active man
- Urinalysis shows pyuria (can be N. gonorrhoeae [GC] or Chlamydia, but organisms mostly undetermined)
- Treatment—bedrest and antibiotics

Testicular Tumors
- 65% are malignant
- Palpable, hand mass that does not transilluminate
- Usually painless
- Diagnosis
 - Ultrasound
 - Serum AFP, beta-HCG
- Treatment—radical orchiectomy
Learning Objectives

- Recognize and describe treatments for thyroid, parathyroid, and adrenal disorders
- Describe the epidemiology and treatment of childhood diabetes mellitus

PITUITARY DISORDERS

Hypopituitarism

- Deficiency of growth hormone ± other hormones; also delay in pubertal development is common; results in postnatal growth impairment corrected by growth hormone
- Isolated growth-hormone deficiency or multiple pituitary deficiencies
 - Congenital—autosomal dominant, recessive, or X-linked recessive
 - Acquired—any lesion that damages the hypothalamus, pituitary stalk, or anterior pituitary (most common is craniopharyngioma)
- Clinical presentation
 - Congenital hypopituitarism:
 - Normal size and weight at birth; then severe growth failure in first year
 - Infants—present with neonatal emergencies, e.g., apnea, hypoglycemic seizures, hypothyroidism, hypoadrenalism in first weeks or boys with microphallus and small testes ± cryptorchidism
 - Also have a variety of dysmorphic features; appearance
 - Acquired hypopituitarism:
 - Findings appear gradually and progress: growth failure; pubertal failure, amenorrhea; symptoms of both decreased thyroid and adrenal function; possible DI
 - If there is an expanding tumor: headache, vomiting; visual changes, decreased school performance; papilledema, cranial nerve palsies
- Laboratory evaluation
 - Screen for low serum insulin-like growth factor (IGF)-1 and IGF-binding protein-3 (IGF-BP3)
 - Definitive test—growth-hormone stimulation test
 - Examine other pituitary function:
 - Thyroid-stimulating hormone (TSH), T₄
 - Adrenocorticotropic hormone (ACTH), cortisol, dehydroepiandrosterone (DHEA) sulfate, gonadotropins, and gonadal steroids
• Other studies
 - X-ray most helpful with destructive lesions (enlargement of sella, erosions)
 - Calcification
 - Bone age—skeletal maturation markedly delayed (BA 75% of CA)
 - MRI is indicated in all patients with hypopituitarism (superior to CT scan)
• Differential diagnoses (the major ones)
 - Systemic conditions (Weight is often proportionally much less than height.)
 - Constitutional delay (delayed BA, delayed adolescent growth spurt, and pubertal development)
 - Familial short stature (BA = CA, short parents)
 - Primary hypothyroidism
 - Emotional deprivation (psychosocial dwarfism)
• Treatment
 - Classic growth-hormone deficiency—recombinant growth hormone
 - Need periodic thyroid evaluation—develop reversible hypothyroidism
• Indications—growth hormone currently approved in United States for
 - Documented growth-hormone deficiency
 - Turner syndrome
 - End-stage renal disease before transplant
 - Prader-Willi syndrome
 - Intrauterine growth retardation (IUGR) without catch-up growth by 2 years of age
 - Idiopathic pathologic short stature

Hyperpituitarism
• Primary—rare; most are hormone-secreting adenomas
• Majority are deficiencies of target organs and because of negative feedback, there are increases in hypothalamus and pituitary hormones
• Laboratory evaluation
 - Screen—IGF-1 and IGF-BP3 for growth hormone excess; confirm with a glucose suppression test
 - Need MRI of pituitary
 - Chromosomes especially in tall males (decreased upper- to lower-body segment ratio suggests XXY; intellectual disability suggests fragile X)
 - Thyroid tests
• Management
 - Treatment only if prediction of adult height (based on BA) >3 SD above the mean or if there is evidence of severe psychosocial impairment
 - Trial of sex steroids (accelerates puberty and epiphyseal fusion)
Prolactinoma

- Most common pituitary disorder of adolescents; more common in girls
- Headache, visual disturbances (with large tumors), galactorrhea, amenorrhea ± findings of hypopituitarism (again with large tumors)
- Diagnosis: increased serum prolactin level then best test, MRI
- Treatment: bromocriptine (still the only dopamine-agonist approved for children)

Physiologic Gynecomastia

- Breast tissue in the male: common (estrogen: androgen imbalance)
- Distinguish from pseudogynecomastia: adipose tissue in an overweight male
- May occur in newborns (estrogen effect) or adolescents (most common)
- Symmetric or asymmetric; may be tender
- Usually up to age 2 years
- If significant with psychological impairment, consider danazol (anti-estrogen) or surgery (rare)

Precocious Puberty

- Definition
 - Girls—sexual development age <8 years
 - Boys—sexual development age <9 years
- Most common etiologies
 - Sporadic and familial in girls
 - Hamartomas in boys
- Clinical presentation—advanced height, weight, and bone age; early epiphyseal closure and early/fast advancement of Tanner stages
- Evaluation
 - Screen—significant increase in luteinizing hormone
 - Definitive—GnRH stimulation test; give intravenous GnRH analog for a brisk, luteinizing hormone response
 - If positive, then order MRI
- Treatment—stop sexual advancement and maintain open epiphyses (stops BA advancement) with leuprolide

Incomplete Precocious Puberty

- Premature thelarche
 - Usually isolated, transient (from birth due to maternal estrogens)
 - May be first sign of true precocious puberty
- Premature adrenarche—early adrenal androgen production (variation of normal)—axillary, inguinal, and genital hair. It is familial.
- Premature menarche—very rare (other causes of bleeding much more common)
Clinical Recall

A 7-year-old boy is seen by his pediatrician and noted to be Tanner Stage 3. Initial work-up reveals no oncologic process. What is the treatment of choice?

A. Growth hormone
B. Bromocriptine
C. Leuprolide
D. Thyroid hormone
E. Surgical resection of the testicles

Answer: C

THYROID DISORDERS

Hypothyroidism

A 2-month-old patient appears to be having inadequate weight gain. His mother states he is constipated. On examination, he has decreased muscle tone, a large fontanel, a large tongue, and an umbilical hernia.

- **Congenital hypothyroidism**—most are primary (i.e., from thyroid gland)
 - Sporadic or familial; with or without a goiter
 - Most common is **thyroid dysgenesis** (hypoplasia, aplasia, ectopia); **no goiter**
 - Defect in **thyroid hormone synthesis**—goitrous; autosomal recessive
 - **Transplacental passage of maternal thyrotropin** (transient)
 - Exposure to maternal antithyroid drugs
 - Radioiodine exposure/fetal exposure to excessive iodine (topical iodine antiseptics) (now rare in U.S.)
 - Iodine deficiency or endemic goiter
 - Central hypopituitarism
 - Clinical presentation is known as “cretinism.”
 - Prolonged jaundice
 - Large tongue
 - Umbilical hernia
 - Edema
 - Intellectual disability; developmental delay
 - Anterior and posterior fontanels wide
 - Mouth open
 - Hypotonia
 - Other findings—weight and length normal at birth, feeding difficulties, apnea, sluggish, decreased appetite, increased sleep, constipation, decreased temperature, skin cold and mottled, peripheral anemia; apathetic appearance
Chapter 16 l Endocrine Disorders

− Laboratory evaluation:
 ° Low serum T_4 or free T_4; increased TSH
 ° Treatment—sodium thyroxine

• Acquired hypothyroidism
 − Hashimoto; thyroiditis is most common cause; may be part of autoimmune polyglandular syndrome
 − Typically presents in adolescence
 − Other causes—iatrogenic (medications, irradiation, surgery, radioiodine); systemic disease (cystinosis, histiocytic infiltration)

• Clinical presentation
 − Many more girls than boys
 − First sign usually deceleration of growth
 − Then myxedema, constipation, cold intolerance, decreased energy, increased sleep, delayed osseous maturation, delayed puberty, headache, visual problems
 − Diffusely increased, firm, nontender thyroid; but may be atrophic so can be nongoitrous
 − Laboratory and treatment—same as congenital

Hyperthyroidism

A 12-year-old girl has a 6-month history of hyperactivity and declining school performance. Appetite is increased, but she shows no weight gain. Physical examination reveals a slight tremor of the fingers, mild exophthalmos, and a neck mass.

• Almost all cases are Graves disease
• Peak at age 11–15 years; girls > boys
• Most with family history of some form of autoimmune thyroid disease
• Findings
 − Infiltration of thyroid and retro-orbital tissue with lymphocytes and plasma cells → exophthalmos
 − Lymphadenopathy and splenomegaly
 − Thymic hyperplasia
• In whites, association with HLA-B8 and DR3 is also seen with other DR3-related disorders (Addison disease, diabetes mellitus, myasthenia gravis, celiac disease).
• Clinical
 − Most signs and symptoms appear gradually
 − Earliest usually emotional lability and motor hyperactivity
 − Decreased school performance, tremor, increased appetite with weight loss, skin flushed with increased sweating, muscle weakness, tachycardia, palpitations, arrhythmias, hypertension
 − Goiter, exophthalmos
 − Thyroid storm—acute onset of hyperthermia, severe tachycardia, restlessness → rapid progression to delirium, coma, and death

• Laboratory evaluation
 − Increased T_4, T_3, free T_4
 − Decreased TSH
 − Measurable TRS-AB (and may have thyroid peroxidase antibodies)

Note
Autoimmune Polyglandular Disease
Type I
• Hypoparathyroidism
• Addison disease
• Mucocutaneous candidiasis
• Small number with autoimmune thyroiditis

Type II (Schmidt syndrome)
• Addison disease, plus:
 − Insulin-dependent DM
 − With or without thyroiditis

Note
Thyroid cancer in children is uncommon, but you should know about medullary carcinoma (parafollicular cells), seen in 2 of the multiple endocrine neoplasias (MEN):
• MEN IIA: hyperplasia or cancer of thyroid plus adrenal medullary hyperplasia or pheochromocytoma
 − parathyroid hyperplasia
• MEN IIB (mucosal neuroma syndrome): multiple neuromas plus medullary thyroid cancer plus pheochromocytoma
PARATHYROID DISORDERS

Hypoparathyroidism

- Parathyroid hormone (PTH) deficiency
 - Etiologies
 - Aplasia/hypoplasia—most with DiGeorge or velocardiofacial syndrome
 - X-linked recessive—defect in embryogenesis
 - Autosomal dominant—mutation in calcium-sensing receptor
 - Postsurgical (thyroid)
 - Autoimmune—polyglandular disease
 - Idiopathic (cannot find other cause)
 - Clinical presentation
 - Early—muscle pain/cramps, numbness, tingling
 - Laryngeal and carpopedal spasm
 - Seizures (hypocalcemic seizures in newborn; think DiGeorge)
 - Laboratory evaluation
 - Decreased serum calcium (5–7 mg/dL)
 - Increased serum phosphorus (7–12 mg/dL)
 - Normal or low alkaline phosphatase
 - Low 1,25(OH)2D3 (calcitriol)
 - Normal magnesium
 - Low parathyroid hormone (immunometric assay)
 - EKG: prolongation of QT
 - Treatment
 - Emergency for neonatal tetany → intravenous 10% calcium gluconate and then 1,25(OH)2D3 (calcitriol); this normalizes the calcium
 - Chronic treatment with calcitriol or vitamin D2 (less expensive) plus adequate calcium intake (daily elemental calcium)
 - Decrease foods high in phosphorus (milk, eggs, cheese)

Table 16-1. Lab Diagnosis of Parathyroid Disease

<table>
<thead>
<tr>
<th></th>
<th>PTH</th>
<th>Calcium</th>
<th>Phosphate</th>
<th>Alkaline Phosphatase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Hypo</td>
<td>Decreased</td>
<td>Low</td>
<td>High</td>
<td>Normal</td>
</tr>
<tr>
<td>Pseudo Hypo</td>
<td>Increased</td>
<td>Low</td>
<td>High</td>
<td>NL or SL increased</td>
</tr>
<tr>
<td>Primary Hyper</td>
<td>Increased</td>
<td>High</td>
<td>Low</td>
<td>Increased</td>
</tr>
<tr>
<td>Secondary Hyper</td>
<td>Increased</td>
<td>NL to SL decreased</td>
<td>Low</td>
<td>Huge increase</td>
</tr>
</tbody>
</table>
Vitamin D Deficiency

- Most common cause of rickets
- Poor intake, inadequate cutaneous synthesis
- Low serum phosphate, normal to low serum calcium lead to increased PTH and increased alkaline phosphatase
- Increased 25-hydroxy vitamin D
- Fractures, rachitic rosary, craniofacial bone deformities
- Treatment: initial vitamin D replacement and calcium, then adequate dietary calcium and phosphate

ADRENAL DISORDERS

Congenital Adrenal Hyperplasia (CAH)

A 1-month-old infant is seen with vomiting and severe dehydration. Physical examination reveals ambiguous genitalia; laboratory tests show hyponatremia.

- 21-Hydroxylase deficiency (most common)
 - Autosomal-recessive enzyme deficiency
 - Decreased production of cortisol → increased ACTH → adrenal hyperplasia
 - Salt losing (not in all cases; some may have normal mineralocorticoid synthesis)
 - Precursor steroids (17-OH progesterone) accumulate
 - Shunting to androgen synthesis → masculinizes external genitalia in females

Note

Other 3 Main Defects in CAH

- 3-beta-hydroxysteroid deficiency: salt-wasting, male and female pseudohermaphrodites, precocious pubarche; increased 17-OH pregnenolone and DHEA
- 11-beta-hydroxylase deficiency: female pseudohermaphroditism, postnatal virilization, hypertension; increased compound S, DOC, serum androgens, and hypokalemia
- 17-alpha hydroxyl/17,20 lyase deficiency: male pseudohermaphroditism, sexual infantilism, hypertension; increased DOC, 18-OH DOC, 18-OH corticosterone, and 17-alpha-hydroxylated steroids; hypokalemia
Findings (with salt losing):
- Progressive weight loss (through 2 weeks of age), anorexia, vomiting, dehydration
- Weakness, hypotension
- Hypoglycemia, **hyponatremia**, hyperkalemia
- **Affected females**—masculinized external genitalia (internal organs normal)
- Males normal at birth; postnatal virilization

Laboratory evaluation
- **Increased 17-OH progesterone**
- Low serum sodium and glucose, high potassium, acidosis
- Low cortisol, increased androstenedione and testosterone
- Increased plasma renin and **decreased aldosterone**
- **Definitive test**—measure 17-OH progesterone before and after an intravenous bolus of ACTH

Treatment
- **Hydrocortisone**
- **Fludrocortisone** if salt losing
- Increased doses of both hydrocortisone and fludrocortisone in times of stress
- Corrective surgery for females

Cushing Syndrome
- Exogenous—most common reason is **prolonged exogenous glucocorticoid administration**.
- Endogenous
 - In infants—**adrenocortical tumor (malignant)**
 - Excess ACTH from **pituitary adenoma** results in **Cushing disease** (age >7 years)
- Clinical findings
 - **Moon facies**
 - Truncal obesity
 - Impaired growth
 - Striae
 - Delayed puberty and amenorrhea
 - **Hyperglycemia**
 - Hypertension common
 - Masculinization
 - **Osteoporosis with pathologic fractures**
- Laboratory evaluation
 - Dexamethasone-suppression test (single best test)
 - Determine cause—CT scan (gets most adrenal tumors) and MRI (may not see if microadenoma)
- Treatment—remove tumor; if no response, remove adrenals; other tumor-specific protocols
Clinical Recall

What laboratory abnormality is expected in patients with 21-hydroxylase deficiency?

A. Hyperglycemia
B. Hyponatremia
C. Hypokalemia
D. High cortisol
E. High aldosterone

Answer: B

DIABETES MELLITUS

Type 1

An 8-year-old boy arrives in the emergency department with vomiting and abdominal pain of 2 days’ duration. His mother states he has been drinking a lot of fluids for the past month and has lost weight. Physical examination reveals a low-grade fever and a moderately dehydrated boy who appears acutely ill. He is somnolent but asks for water. Respirations are rapid and deep. Laboratory tests reveal a metabolic acidosis and hyperglycemia.

- Etiology—T-cell–mediated autoimmune destruction of islet cell cytoplasm, insulin autoantibodies (IAA)
- Pathophysiology—low insulin catabolic state
 - Increased glucose production and decreased tissue utilization lead to increased serum glucose concentration → osmotic diuresis (hyperosmotic state); result is a loss of fluid and electrolytes, and eventual dehydration
 - Activation of renin-angiotensin-aldosterone axis can lead to accelerated potassium loss
 - Increased catabolism → cellular loss of Na, K and phosphate
 - Increased release of free fatty acids from peripheral fat stores = substrates for hepatic ketoacid production → depleted buffer system → metabolic acidosis
- Clinical presentation
 - Polyuria
 - Polydipsia
 - Polyphagia
 - Weight loss
 - Most initially present with diabetic ketoacidosis
Diagnostic criteria
- Impaired glucose tolerance test: fasting blood sugar 110–126 mg/dL or 2-hour glucose during OGTT<200 mg/dL but ≥125 mg/dL
- Diabetes: symptoms + random glucose ≥200 mg/dL or fasting blood sugar ≥126 mg/dL or 2-hour OGTT glucose ≥200 mg/dL
- Diabetic ketoacidosis—hyperglycemia, ketonuria, increased anion gap, decreased HCO₃⁻ (or total CO₂), decreased pH, increased serum osmolality

Treatment
- Insulin administration, dosed primarily with meals
- Testing before meals and at night
- Diet modification
- Close patient follow up
- Diabetic ketoacidosis:
 - Insulin must be started at beginning of treatment.
 - Rehydration also lowers glucose.
 - Monitor blood sugar, electrolytes; avoid rapid changes
 - Sodium falsely low
- Exercise
 - All forms of exercise or competitive sports should be encouraged.
 - Regular exercise improves glucose control.
 - May need additional CHO exchange

Type 2
- Most common cause of insulin resistance is childhood obesity.
- Symptoms more insidious
 - Usually excessive weight gain
 - Fatigue
 - Incidental glycosuria (polydipsia and polyuria uncommon)
- Risk factors
 - Age 10-19 years
 - Overweight to obese (BMI for age and sex >85%)
 - Non-Caucasian
 - History of type 2 DM in 1st- or 2nd-degree relatives
 - Having features of the metabolic syndrome
- Features of the Metabolic Syndrome
 - Glucose intolerance leads to L hyperglycemia
 - Insulin resistance
 - Obesity
 - Dyslipidemia
 - Hypertension
 - Acanthosis nigricans
• Screening and Treatment
 − **Who**: All who meet the BMI criteria + 2 risk factors
 − **How to screen**: fasting blood glucose every 2 years beginning at age 10 years or onset of puberty if above criteria are met
 − **Diagnosis**: same criteria (glucose levels) as adults
 − **Treatment**: first and most important is nutritional education and improved exercise level, but most will eventually need an oral hypoglycemic

Maturity-Onset Diabetes of Youth (MODY)
 − Primary autosomal dominant defect in insulin secretion (6 types based on gene mutation)
 − Diagnosis: 3 generations of DM with autosomal; dominant transmission and diagnosis of onset age <25 years
 − Best test: molecular genetics for mutation (facilitates management and prognosis)
Learning Objectives

- Recognize and describe treatments for childhood disorders of the hip, knee, foot, spine, and upper limbs
- Diagnose and describe treatments for osteomyelitis, septic arthritis, osteogenesis imperfecta, and bone tumors

DISORDERS OF THE HIP

Developmental Dysplasia of the Hip (DDH)

- General ligamental laxity
 - Family history
 - Significantly more females
 - Firstborn
 - Breech
 - Oligohydramnios
 - Multiple gestation
- Physical examination
 - Barlow: will dislocate an unstable hip; is easily felt (clunk not a click)
 - Ortolani (most important clinical test for detecting infant hip dysplasia): reduces a recently dislocated hip (most at 1–2 months of age), but after 2 months, usually not possible because of soft-tissue contractions
- All infants with positive exams should immediately be referred to an orthopedic surgeon (per standard of practice of the AAP); no radiographic confirmation is needed
- If equivocal, can repeat exam in 2 weeks and if equivocal then a dynamic U/S of the hips is the best test (age <4 months) or hip x-ray (age >4 months)
- Treatment
 - Pavlik harness for 1–2 months
 - Surgery, casting
- Complications—acetabular dysplasia, leg length discrepancy
Legg-Calvé-Perthes Disease

A 5-year-old boy has developed progressive limping. At first painless, it now hurts to run and walk. The pain is in the anterior thigh. The pain is relieved by rest. Parents recall no trauma.

- **Idiopathic avascular necrosis** of the capital femoral epiphysis in immature, growing child
- More in males; 20% bilateral; sometimes after trauma
- Presentation—mild intermittent pain in anterior thigh with **painless limp** with restriction of motion
- Diagnosis—anterior/posterior and frog leg lateral x-ray shows compression, collapse, and deformity of femoral head
- Treatment
 - Containment (femoral head within acetabulum) with orthoses or casting
 - Bedrest
 - Abduction stretching exercises
 - If significant femoral deformity persists, surgical correction

Slipped Capital Femoral Epiphysis (SCFE)

- Most common adolescent hip disorder
- Either obese with delayed skeletal maturation, or thin with a recent growth spurt
- Can occur with an underlying endocrine disorder
- Clinical presentation
 - Pre-slip stable; exam normal; mild limp external rotation
 - Unstable slip; sudden-onset extreme pain; cannot stand or walk; 20% complain of knee pain with decreased hip rotation on examination
• Complications—osteonecrosis (avascular necrosis) and chondrolysis (degeneration of cartilage)
• Diagnosis—AP and frog-leg lateral x-ray, earliest finding: widening of physis without slippage (preslip); as slippage occurs, femoral neck rotates anteriorly while head remains in acetabulum
• Treatment—open or closed reduction (pinning)

![X-ray of the Hips Demonstrating Slipped Capital Femoral Epiphysis](image)

Figure 17-2. X-ray of the Hips Demonstrating Slipped Capital Femoral Epiphysis

Transient Synovitis

• Viral; most 7–14 days after a nonspecific upper respiratory infection; most at 3–8 years of age
• Clinical presentation
 – Acute mild pain with limp and mild restriction of movement
 – Pain in groin, anterior thigh, and knee
• Diagnosis
 – Small effusion (±)
 – Slight increase in ESR
 – Normal x-rays
 – No to low-grade fever; non-toxic-appearing
• Treatment—bedrest and no weight-bearing until resolved (usually <1 week), then 1–2 weeks of limited activities
Clinical Recall

A 12-year-old boy presents with a limp. He is overweight. Radiographs are concerning for slipped capital femoral epiphysis. What is the treatment of choice?

A. Pavlik harness
B. Surgical pinning
C. Casting and rest
D. Physical therapy
E. Antibiotics

Answer: B

INTOEING

Metatarsus Adductus

- Most common in firstborn (deformation)
- Forefoot adducted from flexible to rigid
- Treatment—primarily nonsurgical; serial plaster casts before 8 months of age; orthoses, corrective shoes; if still significant in a child age >4 years, may need surgery

Talipes Equinovarus (Clubfoot)

A newborn is noted to have a foot that is stiff and slightly smaller than the other one. The affected foot is medially rotated and very stiff, with medial rotation of the heel.

- Congenital, positional deformation, or associated with neuromuscular disease
- Hindfoot equinus, hindfoot and midfoot varus, forefoot adduction (at talonavicular joint)
- Treatment
 - Complete correction should be achieved by 3 months (serial casting, splints, orthoses, corrective shoes); if not, then surgery

Internal Tibial Torsion

- Most common cause of intoeing <2 years of age (also because of in utero positioning); often with metatarsus adductus
- Measure prone thigh/foot angles
- No treatment needed—resolves with normal growth and development; takes 6–12 months (is physiologic)
Internal Femoral Torsion (Femoral Anteversion)
- Most common cause of intoeing ≥2 years of age; entire leg rotated inwardly at hip during gait
- Most are secondary to abnormal sitting habits (W-sitting).
- Treatment—observation; takes 1–3 years to resolve; surgery only if significant at >10 years of age

DISORDERS OF THE KNEE

Osgood-Schlatter Disease
- Traction apophysitis of tibial tubercle (overuse injury)
- Look for active adolescent (running, jumping)
- Swelling, tenderness, increased prominence of tubercle
- Treatment—rest, restriction of activities, knee immobilization, isometric exercises
- Complete resolution requires 12–24 months

DISORDERS OF THE SPINE

Scoliosis
A 12-year-old girl is seen for routine physical examination. She voices no complaints. Examination is remarkable for asymmetry of the posterior chest wall on bending forward. One shoulder appears higher than the other when she stands up.

- Most are idiopathic; rarely, hemivertebra
- Others are congenital, with neuromuscular disorders, compensatory, or with intraspinal abnormalities.
- Slightly more females than males; more likely to progress in females
- Adolescent (>11 years) more common
- Adams test bending forward at hips—almost all with >20-degree curvature are identified in school screening programs (but many false positives)
- Diagnosis—x-ray is standard: posterior/anterior and lateral of entire spine gives greatest angle of curvature
- Treatment—trial brace for immature patients with curves 30–45 degrees and surgery for those >45 degrees (permanent internal fixation rods)
DISORDERS OF THE UPPER LIMB

Nursemaid Elbow
- When longitudinal traction causes radial head subluxation
- History of sudden traction or pulling on arm
- Physical exam reveals a child who refuses to bend the arm at the elbow
- Treatment—rotate hand and forearm to the supinated position with pressure of the radial head → reduction

OSTEOMYELITIS AND SEPTIC ARTHRITIS
- Etiology
 - Osteomyelitis:
 - S. aureus most common overall, in all
 - Pseudomonas—puncture wound
 - More Salmonella in sickle cell (S. aureus still most common)
 - Septic arthritis:
 - Almost all S. aureus
 - Most in young children; hematogenous; LE > UE and other parts of body
- Presentation
 - Pain with movement in infants
 - Older—fever, pain, edema, erythema, warmth, limp, or refusal to walk (acute, toxic, high fever)
- Diagnosis
 - Blood culture, CBC, ESR
 - Radiographic studies:
 - Initial plain film if diagnosis not obvious to exclude other causes—trauma, foreign body, tumor; trabecular long bones do not show changes for 7–14 days (septic arthritis shows widening of joint capsule and soft-tissue edema)
 - Ultrasound for septic arthritis—joint effusion, guide localization of drainage
 - Best test is MRI for osteo; very sensitive and specific
 - Bone scan—can be valuable to augment MRI, especially if multiple foci are suspected or vertebrate
 - Definitive—aspire for culture and sensitivity
 - Osteomyelitis → bone biopsy for culture and sensitivity
 - Septic arthritis → ultrasound guided arthrocentesis for culture and sensitivity
- Treatment
 - Intravenous antibiotics—always cover for Staphylococcus initially (treatment for osteo much longer)

Note
X-rays for patients with osteomyelitis are initially normal. Changes are not seen until 10–14 days.
OSTEOGENESIS IMPERFECTA
- Susceptibility to fracture of long bones or vertebral compression from mild trauma
- Most common genetic cause of osteoporosis; all types caused by structural or quantitative defects in type I collagen
- Autosomal dominant
- Clinical triad is fragile bones, blue sclera, and early deafness (and short stature)
- Four types, from perinatally lethal to mild, nonlethal
- Diagnosis
 - May see fractures on prenatal ultrasound as early as 6 weeks
 - Rule out child abuse due to fracture and injury history.
 - Confirmed by collagen biochemical studies using fibroblasts cultured from a skin-punch biopsy
- Treatment—no cure; physical rehabilitation; fracture management and correction of deformities

Figure 17-3. Blue Sclera in Osteogenesis Imperfecta

Figure 17-4. Skeletal Malformation Due to Osteogenesis Imperfecta
BONE TUMORS

Table 17-1. Comparison of Osteogenic Sarcoma, Ewing Sarcoma, and Osteoid Osteoma

<table>
<thead>
<tr>
<th></th>
<th>Osteogenic Sarcoma</th>
<th>Ewing Sarcoma</th>
<th>Osteoid Osteoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>Second decade</td>
<td>Second decade</td>
<td>Second decade</td>
</tr>
<tr>
<td>M:F</td>
<td>Slightly greater in males</td>
<td>Slightly greater in males</td>
<td>3x greater in males</td>
</tr>
<tr>
<td>Predisposition</td>
<td>Retinoblastoma, radiation</td>
<td>None</td>
<td>Male gender</td>
</tr>
<tr>
<td>X-ray</td>
<td>Sclerotic destruction: “sunburst”</td>
<td>Lytic with laminar periosteal elevation: “onion skin”</td>
<td>Small round central lucency with sclerotic margin</td>
</tr>
<tr>
<td>Malignant</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Metastases</td>
<td>Lungs, bone</td>
<td>Lungs, bone</td>
<td>N/A</td>
</tr>
<tr>
<td>Treatment</td>
<td>Chemotherapy, ablative surgery</td>
<td>Radiation and/or surgery</td>
<td>NSAIDs Surgery recommended when associated pain</td>
</tr>
<tr>
<td>Prognosis</td>
<td>70% cure without metastasis at diagnosis</td>
<td>60% cure without metastasis at diagnosis</td>
<td>Over time it may resolve spontaneously</td>
</tr>
<tr>
<td>Outcome if metastasis</td>
<td>≤20%</td>
<td>20–30%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Clinical Recall

An adolescent boy with a history of retinoblastoma status post-enucleation of the right eye presents with right shin pain. Right tibia-fibula radiographs are most likely to show which of the following?

A. Lytic lesion with onion skin pattern of periosteal elevation
B. Small round central lucency with sclerotic margin
C. Expansile lucent lesion with endosteal scalloping
D. Sunburst pattern of sclerotic destruction
E. Small sclerotic focus without periosteal reaction

Answer: D
Learning Objectives

- Diagnose and describe management of juvenile idiopathic arthritis, systemic lupus erythematosus, Kawasaki disease, and Henoch-Schonlein purpura

JUVENILE IDIOPATHIC ARTHRITIS (JIA)

A 7-year-old girl complains of pain and swelling of the left wrist and right knee off and on for the past 3 months. She has been previously healthy. The pain is worse in the morning and improves throughout the day. Physical examination is remarkable for swelling and effusion of the right knee, with decreased range of motion.

- Definition—idiopathic synovitis of peripheral joints associated with soft-tissue swelling and joint effusion
- Pathophysiology
 - Vascular endothelial hyperplasia and progressive erosion of articular cartilage and contiguous bone
 - Immunogenetic susceptibility and an external trigger
 - DR8 and DR5
- Clinical presentation
 - Morning stiffness; easy fatigability
 - Joint pain later in the day, joint swelling, joints warm with decreased motion, and pain on motion, but no redness
- Criteria for diagnosis: the diagnosis of JIA is a clinical one, and one of exclusion. There are many diseases that mimic it and there are no pathognomonic diagnostic labs. The clinical exclusion of other diseases is essential, as lab studies may be normal.
 - Age of onset: <16 years
 - Arthritis in 1 or more joints
 - Duration: ≥6 weeks
 - Onset type by disease presentation in first 6 months
 - Exclusion of other forms of arthritis, other connective tissue diseases and vasculitides, Lyme disease, psoriatic arthritis, inflammatory bowel disease, lymphoproliferative disease

Note

A positive rheumatoid factor in JIA is indicative of a poor prognostic outcome.
• Prognosis for severe and persistent disease
 – Young age at onset
 – RF+
 – Rheumatoid nodules
 – Persistence of anti-cyclic citrullinated peptide (CCP) antibodies (like RF, a marker for more severe disease)
 – Large number of affected joints
 – Involvement of hip, hands and wrists
 – Systemic onset JIA is the most difficult to control in terms of both articular inflammation and systemic manifestations (poorer with polyarthritis, fever >3 months and increased inflammatory markers for >6 months)

• Category of disease:
 – Pauciarticular (oligoarthritis)
 • Pattern: 1-4 joints affected in first 6 months; primarily knees (+) and ankles (+), less so the fingers; never presents with hip involvement
 • Peak age <6 years
 • F:M = 4:1
 • % of all: 50-60%
 • Extra-articular: 30% with anterior uveitis
 • Labs: ANA+ in 60%; other tests normal; may have mildly increased ESR, CRP
 • Treatment: NSAIDs + intraarticular steroids as needed; methotrexate occasionally needed
 – Polyarticular, RF negative
 • Pattern: 5 joints in first 6 months; both UE and LE small and large joints; may have C-spine and TMJ involvement
 • Peak age: 6-7 years
 • F:M: 3:1
 • % of all: 30%
 • Extra-articular: 10% with anterior uveitis
 • Labs: ANA+ in 40%; RF negative; ESR increased (may be significantly), but CRP increased slightly or normal; mild anemia
 • Treatment: NSAIDs + methotrexate; if not responsive, anti-TNF or other biologicals (as FDA-approved for children)
 – Polyarticular RF positive
 • Pattern: ≥5 joints as above but will be aggressive symmetric polyarthritis
 • Peak age: 9-12 years
 • F:M: 9:1
 • % of all: <10%
 • Extra-articular: rheumatoid nodules in 10% (more aggressive)
Chapter 18 • Rheumatic and Vasculitic Disorders

- Labs: RF positive; ESR greatly, CRP increased top normal; mild anemia; if anti-CCP antibodies are positive, then significantly worse disease
 - Treatment: long-term remission unlikely; early aggressive treatment is warranted

- Systemic Onset
 - Pattern: arthritis may affect any number of joints, but course is usually polyarticular, destructive and ultimately affecting hips, C-spine and TMJ
 - Peak age: 2–4 years
 - F:M: 1:1
 - % of all: <10%
 - Extra-articular: For initial diagnosis, in addition to arthritis in ≥1 joint, must have with or be preceded by fever ≥2 weeks documented to be quotidian (daily, rises to 39˚ then back to 37˚) for at least 3 days of the ≥2-week period plus ≥1 of the following:
 - Evanescent (nonfixed, migratory; lasts about 1 hour) erythematous, salmon-colored rash (linear or circular), most over the trunk and proximal extremities
 - Generalized lymph node involvement
 - Hepatomegaly, splenomegaly or both
 - Serositis (pleuritis, pericarditis, peritonitis)
 - Labs: anemia, increased WBCs, increased ESR, CRP, increased platelets
 - Treatment: less responsive to standard treatment with methotrexate and anti-TNF agents; consider IL-1 receptor antagonists in resistant cases.
 - May have cervical spine involvement

- Labs
 - No best test
 - Increased acute-phase reactants; increased anemia of chronic disease
 - Increased antinuclear antibodies (ANA) in 40–85%, mostly with poly- and pauciarticular disease
 - Positive rheumatoid factor (RF)—typically with onset of disease in an older child with polyarticular disease and development of rheumatoid nodules

- Treatment
 - Most with pauciarticular disease respond to nonsteroidal anti-inflammatory drugs (NSAIDs) alone
 - Additional treatment—methotrexate (safest and most efficacious of second-line agents); azathioprine or cyclophosphamide and biologicals
 - Corticosteroids (few indications):
 - Overwhelming inflammation
 - Systemic illness
 - Bridge treatment
 - Ophthalmology follow up; physical therapy (PT)/occupational therapy
Table 18-1. JRA Prognosis

<table>
<thead>
<tr>
<th>Category</th>
<th>Serology</th>
<th>Major Problems</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyarticular disease</td>
<td>RF+</td>
<td>Older girls; hand and wrist; erosions, nodules, unremitting</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>ANA+</td>
<td>Younger girls</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Seronegative</td>
<td>—</td>
<td>Variable</td>
</tr>
<tr>
<td>Pauciarticular disease</td>
<td>ANA+</td>
<td>Younger girls; chronic iridocyclitis</td>
<td>Excellent, (except eyes)</td>
</tr>
<tr>
<td></td>
<td>RF+</td>
<td>Polyarthritis, erosions, unremitting</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>HLA B27</td>
<td>Older males</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Seronegative</td>
<td>—</td>
<td>Good</td>
</tr>
<tr>
<td>Systemic</td>
<td>—</td>
<td>Pauciarticular</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>Polyarticular</td>
<td>Poor</td>
</tr>
</tbody>
</table>

SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

A 10-year-old girl presents with fever, fatigue, and joint pains. Physical examination is remarkable for a rash on the cheeks, swelling of the right knee, and pericardial friction rub. Initial laboratory tests reveal anemia and an elevated blood urea nitrogen and creatinine.

- Etiology
 - Autoantibodies, especially against nucleic acids including DNA and other nuclear antigens and ribosomes; blood cells and many tissue-specific antigens; immune complex deposition
 - Immune complex deposition in the dermal/epidermal junction is specific for SLE (called the lupus band test)
 - Diffuse proliferative glomerulonephritis significantly increases risk for severe renal morbidity (pathology varies from minimal mesangial changes to advanced sclerosing nephritis)

- Epidemiology
 - 90% female
 - Compared with adults, children have more severe disease and more widespread organ involvement
 - Highest rate among African-Americans, Hispanics, Asians, Native-Americans and Pacific Islanders
 - Rare age <5 years and only up to 20% present age <16 years, so usual presentation is mid-to-late adolescence

Note

A pregnant woman with SLE will transfer IgG autoantibodies (usually anti-Ro) across the placenta at 12 to 16 weeks. This can cause a variety of manifestations, the most important being congenital heart block. All are temporary, except for the heart block, which may require permanent pacing.
Clinical presentation
- Most common is a female with fever, fatigue, rash, hematological abnormalities (anemia of chronic disease or hemolytic; thrombocytopenia, leukopenia) and arthralgia/arthritis
- Renal disease is often asymptomatic, so needs careful monitoring of UA and BP; presents as either flares with quiescent periods or a more smoldering disease (hypertension, glomerulonephritis, nephrosis, acute renal failure)
- Neuropsychiatric complications can occur with or without active disease
- Less common: lymphadenopathy, HSM/hepatitis, abdominal pain, diarrhea, melena

Lab studies
- Nonspecific: elevated ESR, CRP, platelets, anemia, elevated WBC or leukopenia/lymphopenia; decreased CH50, C3, C4 (typically decreased in active disease and increases with treatment)
- +ANA: present in 95-99% of SLE patients but has poor specificity; does not reflect disease activity; first screening test
- +anti-dsDNA: more specific (but not 100%) and correlates with disease activity, especially nephritis
- +anti-Smith antibody (anti-Sm): 100% specific but no disease activity correlation
- Antiribonucleoprotein antibodies: increased with Raynaud phenomenon (blanching of fingers) and pulmonary hypertension; high titer may be diagnostic of mixed CT disorder; antiribosomal-P-antibody is a marker for lupus cerebritis
- Anti-Ro antibody (anti-SSA): IgG maternal antibodies crossing the placenta and produce transient neonatal lupus; may suggest Sjögren syndrome
- Anti-La (anti-SSB): also increased risk of neonatal lupus; may be associated with cutaneous and pulmonary manifestations of SLE or isolated discoid lupus; also seen in Sjögren syndrome
- Antiphospholipid antibodies (APL; including anticardiolipin): when a clotting event occurs in the presence of APL antibodies, the antiphospholipid syndrome is suspected:
 - Increased risk of arterial and venous thrombosis
 - Livedo reticularis
 - Raynaud phenomenon produces cyanosis and then erythema; caused by cold stress or emotional stress; initial arterial vasoconstriction creates hypoperfusion then venous stasis, followed by reflex vasodilation
 - Positive lupus anticoagulant: may give a false-positive serological test for syphilis; also seen in patients with neurological complications
 - Recurrent fetal loss
- Coombs positive: hemolytic anemia
- Antiplatelet antibodies: thrombocytopenia
- Antithyroid antibodies: autoimmune thyroiditis
- Antihistone antibodies: may be found with drug-induced lupus; may act as a trigger in those prone to lupus or cause a reversible syndrome hepatitis is common (otherwise rare in children with lupus); more common drugs: minocycline, tetracycline, sulfasalazine, penicillin, nitrofurantoin, IH, many antihypertensives, anticonvulsants, procainamide, lithium, glyburide, statins, PTU, penicillamine, chlorpromazine, some biologicals

Note
Diagnosis of SLE—“MD Soap ‘n Hair”
- Malar rash
- Discoid rash
- Serositis
- Oral ulcers
- ANA-positive
- Photosensitivity
- Neurologic disorders
- Hematologic disorders
- Arthritis
- Immune disorders (LE [lupus erythematosus] prep test, anti-DNA, Smith)
- Renal disorders
• General principles of treatment
 – Sunscreen and direct sun avoidance
 – Hydroxychloroquine for all, if tolerated
 – NSAIDs for joints
 – Corticosteroids for more severe disease, especially renal
 – Steroid-sparing immunosuppressives for severe disease (proliferative GN, continued vasculitis, pulmonary hemorrhage, severe persistent CNS disease)
 – LMW heparin is drug of choice for thrombosis, APL, lupus anticoagulant

Clinical Recall

When considering a diagnosis of systemic lupus erythematosus (SLE), which antibody test would provide both high specificity and correlate with disease activity?

A. ANA
B. Anti-RNP
C. Anti-dsDNA
D. Anti-Smith
E. Antihistone

Answer: C

NEONATAL LUPUS

• Passive transfer of IgG across placenta; most is maternal anti-Ro and anti-La
• Mostly presents at age 6 weeks with annular or macular rash affecting the face, especially periorbital area, trunk and scalp after exposure to any UV light; generally lasts 3-4 months
• At risk for future pregnancies; baby is at some risk for future autoantibody disease
• May manifest with any SLE finding, but all resolve unless there is congenital heart block (can be detected in utero at 16 weeks); is permanent; if it is third degree, pacing is usually required.

Note

The most serious sequelae of Kawasaki disease are cardiac-related.

KAWASAKI DISEASE

An 18-month-old has had fever for 10 days. He now has conjunctival injection, a very red tongue and cracked lips, edema of the hands, and a truncal rash.

• Etiology
 – Many factors point to an infective cause but no specific organism has been found
 – Genetic susceptibility: highest in Asians irrespective of location and in children and sibs of those with KD
– KD-associated antigen in cytoplasmic inclusion bodies of ciliated bronchial epithelial cells, consistent with viral protein aggregates; suggests respiratory portal of entry
– Seems to require an environmental trigger

• Epidemiology
 – Asians and Pacific Islanders at highest risk
 – 80% present at age <5 years (median is 2.5 years) but may occur in adolescence
 – Poor outcome predictors with respect to coronary artery disease: very young age, male, neutrophilia, decreased platelets, increased liver enzymes, decreased albumin, hyponatremia, increased CRP, prolonged fever

• Pathology
 – Medium size vasculitis, especially coronary arteries
 – Loss of structural integrity weakens the vessel wall and results in ectasia or saccular or fusiform aneurysms; thrombi may decrease flow with time and can become progressively fibrotic, leading to stenosis

• Diagnosis
 Absolute requirement: fever ≥5 days (≥101˚ F), unremitting and unresponsive; would last 1–2 weeks without treatment plus any 4 of the following:
 – Eyes: bilateral bulbar conjunctivitis, non-exudative
 – Oral: diffuse oral and pharyngeal erythema, strawberry tongue, cracked lips
 – Extremities: edema and erythema of palms and soles, hands and feet acutely; subacute (may have periungual desquamation of fingers and toes and may progress to entire hand)
 – Rash: polymorphic exanthema (maculopapular, erythema multiforme or scarlatiniform with accentuation in the groin); perineal desquamation common in acute phase
 – Cervical lymphadenopathy: usually unilateral and >1.5 cm, nonsuppurative

Associated symptoms: GI (vomiting, diarrhea, pain); respiratory (interstitial infiltrates, effusions); significant irritability (likely secondary to aseptic meningitis); liver (mild hepatitis, hydrops of gallbladder); GU (sterile pyuria, urethritis, metritis); joints (arthralgias/arthritis—small or large joints and may persist for several weeks)

• Cardiac findings
 – Coronary aneurysms: up to 25% without treatment in week 2–3; approximately 2–4% with early diagnosis and treatment; giant aneurysms (>8 mm) pose greatest threat for rupture, thrombosis, stenosis and MI; best detected by 2D echocardiogram
 – Myocarditis: in most in the acute phase; tachycardia out of proportion to the fever and decreased LV systolic function; occasional cardiogenic shock; pericarditis with small effusions. About 25% with mitral regurgitation, mild and improves over time; best detected by 2D echocardiogram plus EKG
 – Other arteries may have aneurysms (local pulsating mass)

Note
Any child suspected of having Kawasaki disease should have an echocardiogram.

Note
Kawasaki disease is one of the few instances in pediatrics for which you would use aspirin. (It is usually avoided because of the risk of developing Reye syndrome.)
• Clinical phases
 – **Acute febrile**: 1-2 weeks (or longer without treatment), diagnostic and associated findings and lab abnormalities; WBC increased (granulocytes), normocytic/normochromic anemia, normal platelets in first 1-2 weeks; ESR and CRP must be increased (usually significantly for the ESR); sterile pyuria, mild increase in liver enzymes and bilirubin; mild CNS pleocytosis. **Most important tests at admission are platelet count, ESR, EKG, and baseline 2D-echocardiogram**.
 – **Subacute**: next 2 weeks; acute symptoms resolving or resolved; extremity desquamation, significant increase in platelet count beyond upper limits of normal (rapid increase in weeks 2-3, often greater than a million); coronary aneurysm, if present, this is the time of highest risk of sudden death. **Follow platelets, ESR and obtain 2nd echocardiogram**.
 – **Convalescent**: next 2-4 weeks; when all clinical signs of disease have disappeared and continue until ESR normalizes; **follow platelet, ESR and if no evidence of aneurysm, obtain 3rd echocardiogram**; repeat echo and lipids at 1 year. If abnormalities were seen with previous echo, more frequent studies are needed, and cardiology follow-up and echocardiograms are tailored to their individual status.

• Treatment
 – **Acute** (at admission): (a) IVIG over 10-12 hours (mechanism unknown but results in rapid defervescence and resolution of clinical symptoms in 85-90%); the IVIG gives the large drop in incidence of aneurysms. If continued fever after 36 hours, then increased risk of aneurysm; give 2nd infusion. (b) Oral high dose aspirin (anti-inflammatory dosing) until afebrile 48 hours
 – If winter, give heat-killed influenza vaccine if not yet received (Reye syndrome); cannot give varicella vaccine acutely (live, attenuated vaccine and concurrent IVIG would decrease its effectiveness, so must delay any MMR and varicella vaccine until 11 months post-IVIG.
 – **Subacute (convalescent)**: change ASA to low dose (minimum dose for anti-thrombotic effects as a single daily dose until ESR has normalized at 6-8 weeks and then discontinue if echocardiogram is normal; if abnormalities, continue indefinitely

• Complications and prognosis
 – Small solitary aneurysms: continue ASA indefinitely; giant or numerous aneurysms need individualized therapy, including thrombolytic
 – Long-term follow-up with aneurysms: periodic echo and stress test and perhaps angiography; if giant, catheter intervention and percutaneous transluminal coronary artery ablation, direct atherectomy and stent placement (and even bypass surgery)
 – Overall- 50% of aneurysms regress over 1-2 years but continue to have vessel wall anomalies; giant aneurysms are unlikely to resolve
 – Vast majority have normal health
 – Acute KD recurs in 1-3%
 – Fatality rate <1%; all should maintain a heart-healthy diet with adequate exercise, no tobacco and should have intermittent lipid checks.
HENOCH-SCHÖNLEIN PURPURA (HSP)

A 5-year-old boy is seen with maculopapular lesions on the legs and buttocks. He complains of abdominal pain. He has recently recovered from a viral upper respiratory infection. Complete blood cell count, coagulation studies, and electrolytes are normal. Microscopic hematuria is present on urine analysis.

- **Most common vasculitis among children in United States**: leukocytoclastic vasculitis (vascular damage from nuclear debris of infiltrating neutrophils) + IgA deposition in small vessels (arterioles and venules) of skin, joints, GI tract and kidney.
- Worldwide distribution, all ethnic groups; slightly greater in males; almost all age 3-10 years; occurs mostly in fall, winter and spring, many after a URI
- Infectious trigger is suspected, mediated by IgA and IgA-immune complexes
- Genetic component suggested by occasional family clusters
- Skin biopsy shows vasculitis of dermal capillaries and postcapillary venules with infiltrates of neutrophils and monocytes; in all tissues, immunofluorescence shows IgA deposition in walls of small vessels and smaller amounts of C3, fibrin and IgM
- Clinical presentation:
 - Nonspecific constitutional findings
 - Rash: **palpable purpura**, start as pink macules and then become petechial and then purpuric or ecchymotic; usually symmetric and in gravity-dependent areas (legs and back of arms) and pressure points (buttocks); lesions evolve in crops over 3-10 days and may recur up to 4 months. Usually there is some amount of subcutaneous edema
 - **Arthralgia/arthritis**: oligoarticular, self-limited and in lower extremities; resolves in about 2 weeks, but may recur
 - GI: **in up to 80%**: pain, vomiting, diarrhea, ileus, melena, **intussusception**, mesenteric ischemia or perforation (purpura in GI tract)
 - Renal: **up to 50%**: hematuria, proteinuria, hypertension, nephritis, nephrosis, acute or chronic renal failure
 - Neurological: due to hypertension or CNS vasculitis, possible intracranial hemorrhage, seizures, headaches and behavioral changes
 - Less common: orchitis, carditis, inflammatory eye disease, testicular torsion and pulmonary hemorrhage
- American College of Rheumatology diagnosis: need **2 of the following**:
 (a) palpable purpura
 (b) age of onset <10 years
 (c) bowel angina = postprandial pain, bloody diarrhea
 (d) biopsy showing intramural granulocytes in small arterioles and venules
- Labs (**none are diagnostic**): increased WBCs, platelets, mild anemia, increased ESR, CRP; stool + for occult blood; increased serum IgA. Must assess and follow BP, UA, serum Cr; GI ultrasound: bowel wall edema, rarely intussusception; skin and renal biopsies would be diagnostic but are rarely performed (only for severe or question-able cases)
• Treatment: supportive and corticosteroids (with significant GI involvement or life-threatening complications only), although steroids will not alter course/overall prognosis or prevent renal disease. For chronic renal disease – azathioprine, cyclophosphamide, mycophenolate mofetil.

• Outcome: Most significant acute complications affecting morbidity and mortality = serious GI involvement; renal complications are major long-term and can develop up to 6 months after initial diagnosis, but rarely if initial UA and BP are normal. Monitor all patients for 6 months with BP and UA. Overall prognosis is excellent; most have an acute, self-limited disease; about 30% have >1 recurrence, especially in 4-6 months, but with each relapse symptoms are less. If more severe at presentation, higher risk for relapses; 1-2% with chronic renal disease and 8% ESRD.

Clinical Recall

A 5-year-old boy admitted to the hospital with Henoch-Schonlein purpura develops abdominal pain and a palpable abdominal mass. What is the likely diagnosis?

A. Pyloric stenosis
B. Neuroblastoma
C. Wilms tumor
D. Intussusception
E. Malrotation with volvulus

Answer: D
Learning Objectives

- Categorize anemias into those caused by inadequate production, acquired production, and congenital anemias
- Describe the pathophysiology, diagnosis, and treatment of megaloblastic and hemolytic anemias
- Recognize and describe management of thalassemias and hemoglobin disorders
- Demonstrate understanding of coagulation disorders

ANEMIAS OF INADEQUATE PRODUCTION

Physiologic Anemia of Infancy

- Intraxuterine hypoxia stimulates erythropoietin → ↑ RBCs (Hb, Hct)
- High F_{O_2} at birth downregulates erythropoietin
- Progressive drop in Hb over first 2–3 months until tissue oxygen needs are greater than delivery (typically 8–12 weeks in term infants, to Hb of 9–11 g/dL)
- Exaggerated in preterm infants and earlier; nadir at 3–6 weeks to Hb of 7–9 g/dL
- In term infants—no problems, no treatment; preterm infants usually need transfusions depending on degree of illness and gestational age

Iron-Deficiency Anemia

An 18-month-old child of Mediterranean origin presents to the physician for routine well-child care. The mother states that the child is a “picky” eater and prefers milk to solids. In fact, the mother states that the patient, who still drinks from a bottle, consumes 64 ounces of cow milk per day. The child appears pale. Hemoglobin is 6.5 g/dL and hematocrit 20%. Mean corpuscular volume is 65 fl.

- Contributing factors/pathophysiology
 - Higher bioavailability of iron in breast milk versus cow milk or formula
 - Introducing iron-rich foods is effective in prevention.
Infants with decreased dietary iron typically are anemic at 9–24 months of age: caused by consumption of large amounts of cow milk and foods not enriched with iron; also creates abnormalities in mucosa of GI tract → leakage of blood, further decrease in absorption

Adolescents also susceptible → high requirements during growth spurt, dietary deficiencies, menstruation

- Clinical appearances—pallor most common; also irritability, lethargy, pagophagia, tachycardia, systolic murmurs; long-term with neurodevelopmental effects
- Laboratory findings
 - First decrease in bone marrow hemosiderin (iron tissue stores)
 - Then decrease in serum ferritin
 - Decrease in serum iron and transferrin saturation → increased total iron-binding capacity (TIBC)
 - Increased free erythrocyte protoporphyrin (FEP)
 - Microcytosis, hypochromia, poikilocytosis
 - Decreased MCV, mean corpuscular hemoglobin (MCH), increase RDW, nucleated RBCs, low reticulocytes
 - Bone marrow—no stainable iron
- Treatment
 - Oral ferrous salts
 - Limit milk, increase dietary iron
 - Within 72–96 hours—peripheral reticulocytosis and increase in Hb over 4–30 days
 - Continue iron for 8 weeks after blood values normalize; repletion of iron in 1–3 months after start of treatment

Lead Poisoning

- Blood lead level (BLL) up to 5 µg/dL is acceptable.
- Increased risks
 - Preschool age
 - Low socioeconomic status
 - Older housing (before 1960)
 - Urban dwellers
 - African American
 - Recent immigration from countries that use leaded gas and paint
- Clinical presentation
 - Behavioral changes (most common: hyperactivity in younger, aggression in older)
 - Cognitive/developmental dysfunction, especially long-term (also impaired growth)
 - Gastrointestinal—anorexia, pain, vomiting, constipation (starting at 20 µg/dL)
 - Central nervous system—related to increased cerebral edema, intracranial pressure (ICP [headache, change in mentation, lethargy, seizure, coma → death])
 - Gingival lead lines
Chapter 19 l Hematology

• Diagnosis
 − Screening—targeted blood lead testing at 12 and 24 months in high-risk
 − Confirmatory venous sample—gold standard blood lead level
 − Indirect assessments—x-rays of long bones (dense lead lines); radiopaque flecks in intestinal tract (recent ingestion)
 − Microcytic, hypochromic anemia
 − Increased FEP
 − Basophilic stippling of RBC
• Treatment: chelation

Table 19-1. Treatment for Lead Poisoning

<table>
<thead>
<tr>
<th>Lead Level (µg/dL)</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–14</td>
<td>Evaluate source, provide education, repeat blood lead level in 3 months</td>
</tr>
<tr>
<td>15–19</td>
<td>Same plus health department referral, repeat BLL in 2 months</td>
</tr>
<tr>
<td>20–44</td>
<td>Same plus repeat blood lead level in 1 month</td>
</tr>
<tr>
<td>45–70</td>
<td>Same plus chelation: single drug, preferably dimercaptosuccinic acid (succimer, oral)</td>
</tr>
<tr>
<td>≥70</td>
<td>Immediate hospitalization plus 2-drug IV treatment: ethylenediaminetetraacetic acid (EDTA) plus dimercaprol</td>
</tr>
</tbody>
</table>

CONGENITAL ANEMIAS

Congenital Pure Red-Cell Anemia (Blackfan-Diamond)

A 2-week-old on routine physical examination is noted to have pallor. The birth history was uncomplicated. The patient has been doing well according to the mother.

• Increased RBC programmed cell death → profound anemia by 2–6 months
• Congenital anomalies
 − Short stature
 − Craniofacial deformities
 − Defects of upper extremities; triphalangeal thumbs
• Labs
 − Macrocytosis
 − Increased HbF
 − Increased RBC adenosine deaminase (ADA)
 − Very low reticulocyte count
 − Increased serum iron
 − Marrow with significant decrease in RBC precursors
Congenital Pancytopenia

A 2-year-old presents to the physician with aplastic anemia. The patient has microcephaly, microphthalmia, and absent radii and thumbs.

- Most common is Fanconi anemia—spontaneous chromosomal breaks
- Age of onset from infancy to adult
- Physical abnormalities
 - Hyperpigmentation and café-au-lait spots
 - Absent or hypoplastic thumbs
 - Short stature
 - Many other organ defects
- Labs
 - Decreased RBCs, WBCs, and platelets
 - Increased HbF
 - Bone-marrow hypoplasia
- Diagnosis—bone-marrow aspiration and cytogenetic studies for chromosome breaks
- Complications—increased risk of leukemia (AML) and other cancers, organ complications, and bone-marrow failure consequences (infection, bleeding, severe anemia)
- Treatment
 - Corticosteroids and androgens
 - Bone marrow transplant definitive

Clinical Recall

Which lab finding differentiates Diamond-Blackfan anemia from congenital pancytopenia?

A. Decreased red blood cells (RBCs)
B. Increased RBC adenosine deaminase
C. Increased HbF
D. Low reticulocytes
E. Low white blood cells and platelets

Answer: B
ACQUIRED ANEMIAS

Transient Erythroblastopenia of Childhood

- Transient hypoplastic anemia between 6 months–3 years
 - Transient immune suppression of erythropoiesis
 - Often after nonspecific viral infection (not parvovirus B19)
- Labs—decreased reticulocytes and bone-marrow precursors, normal MCV and HbF
- Recovery generally within 1–2 months
- Medication not helpful; may need 1 transfusion if symptomatic

Anemia of Chronic Disease and Renal Disease

- Mild decrease in RBC lifespan and relative failure of bone marrow to respond adequately
- Little or no increase in erythropoietin
- Labs
 - Hb typically 6–9 g/dL, most normochromic and normocytic (but may be mildly microcytic and hypochromic)
 - Reticulocytes normal or slightly decreased for degree of anemia
 - Iron low without increase in TIBC
 - Ferritin may be normal or slightly increased.
 - Marrow with normal cells and normal to decreased RBC precursors
- Treatment—control underlying problem, may need erythropoietin; rarely need transfusions

MEGALOBLASTIC ANEMIAS

Background

- RBCs at every stage are larger than normal; there is an asynchrony between nuclear and cytoplasmic maturation.
- Ineffective erythropoiesis
- Almost all are folate or vitamin B12 deficiency from malnutrition; uncommon in United States in children; more likely to be seen in adult medicine.
- Macrocytosis; nucleated RBCs; large, hypersegmented neutrophils; low serum folate; iron and vitamin B12 normal to decreased; marked increase in lactate dehydrogenase; hypercellular bone marrow with megaloblastic changes

Folic Acid Deficiency

- Sources of folic acid—green vegetables, fruits, animal organs
- Peaks at 4–7 months of age—irritability, failure to thrive, chronic diarrhea
- Cause—inadequate intake (pregnancy, goat milk feeding, growth in infancy, chronic hemolysis), decreased absorption or congenital defects of folate metabolism
- Differentiating feature—low serum folate
- Treatment—daily folate; transfuse only if severe and symptomatic

Note

Hypersegmented neutrophils have >5 lobes in a peripheral smear.
Note

If autoimmune pernicious anemia is suspected, remember the Schilling test and antiparietal cell antibodies.

Vitamin B12 (Cobalamin) Deficiency

- Only animal sources; produced by microorganisms (humans cannot synthesize)
- Sufficient stores in older children and adults for 3–5 years; but in **infants born to mothers with deficiency, will see signs in first 4–5 months**
- Inadequate production (extreme restriction [vegans]), lack of intrinsic factor (congenital pernicious anemia [rare], autosomal recessive; also juvenile pernicious anemia [rare] or gastric surgery), impaired absorption (terminal ileum disease/removal)
- Clinical—weakness, fatigue, failure to thrive, irritability, pallor, **glossitis**, diarrhea, vomiting, jaundice, many **neurologic symptoms**
- Labs—normal serum folate and decreased vitamin B12
- Treatment—parenteral B12

Table 19-2. Comparison of Folic Acid Versus Vitamin B12 Deficiencies

<table>
<thead>
<tr>
<th></th>
<th>Folic Acid Deficiency</th>
<th>Vitamin B12 (Cobalamin) Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food sources</td>
<td>Green vegetables, fruits, animals</td>
<td>Only from animals, produced by microorganisms</td>
</tr>
<tr>
<td>Presentation</td>
<td>Peaks at 4–7 months</td>
<td>Older children and adults with sufficient stores for 3–5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infants born to mothers: first signs 4–6 months</td>
</tr>
<tr>
<td>Causes</td>
<td>Goat milk feeding</td>
<td>Inadequate production (vegans)</td>
</tr>
<tr>
<td></td>
<td>Chronic hemolysis</td>
<td>Congenital or juvenile pernicious anemia (autosomal recessive, rare)</td>
</tr>
<tr>
<td></td>
<td>Decreased absorption</td>
<td>Gastric surgery</td>
</tr>
<tr>
<td></td>
<td>Congenital defects of folate metabolism</td>
<td>Terminal ileum disease</td>
</tr>
<tr>
<td>Findings</td>
<td>Low serum folate with normal to increased iron and vitamin B12</td>
<td>Normal serum folate and decreased vitamin B12</td>
</tr>
<tr>
<td>Treatment</td>
<td>Daily folate</td>
<td>Parenteral vitamin B12</td>
</tr>
</tbody>
</table>

HEMOLYTIC ANEMIAS

Hereditary Spherocytosis and Elliptocytosis

- Most **autosomal dominant**
- Abnormal shape of RBC due to **spectrin deficiency → decreased deformability → early removal of cells by spleen**
- Clinical presentation
 - Anemia and hyperbilirubinemia in newborn
 - Hypersplenism, biliary gallstones
 - Susceptible to aplastic crisis (parvovirus B19)
• Labs
 − Increased reticulocytes
 − Increased bilirubin
 − Hb 6–10 mg/dL
 − Normal MCV; increased mean cell Hb concentration (MCHC)
 − Smear—spherocytes or elliptocytes diagnostic
• Diagnosis
 − Blood smear, family history, increased spleen size
 − Confirmation—osmotic fragility test
 − The combination of the eosin-5-maleimide (EMA) binding test and acidified glycerol lysis test (AGLT) has enabled all patients with hereditary spherocytosis to be identified.
• Treatment—transfusions, splenectomy (after 5–6 years), folate

Enzyme Defects

Pyruvate kinase (glycolytic enzyme)
• Wide range of presentation
 − Some degree of pallor, jaundice, and splenomegaly
 − Increased reticulocytes, mild macrocytosis, polychromatophilia
• Diagnosis—pyruvate kinase (PK) assay (decreased activity)
• Treatment—exchange transfusion for significant jaundice in neonate; transfusions (rarely needed), splenectomy

Glucose-6-phosphate dehydrogenase (G6PD)

A 2-year-old boy presents to the physician’s office for an ear check. Three weeks earlier, the child had an ear infection that was treated with trimethaprim-sulfamethoxazole. On physical examination the patient is noted to be extremely pale. Hemoglobin and hematocrit are 7 g/dL and 22%, respectively.

• Two syndromes
 − Episodic hemolytic anemia (most common)
 − Chronic nonspherocytic hemolytic anemia
• X-linked; a number of abnormal alleles
• Episodic common among Mediterranean, Middle Eastern, African, and Asian ethnic groups; wide range of expression varies among ethnic groups
• Within 24–48 hours after ingestion of an oxidant (acetylsalicylic acid, sulfa drugs, antimalarials, fava beans) or infection and severe illness → rapid drop in Hb, hemoglobinuria and jaundice (if severe)
• Acute drop in Hb, saturated haptoglobin → free Hb and hemoglobinuria, Heinz bodies, increased reticulocytes
• Diagnosis—direct measurement of G6PD activity
• Treatment—prevention (avoid oxidants); supportive for anemia
HEMOGLOBIN DISORDERS

Sickle Cell Anemia (Homozygous Sickle Cell or S-Beta Thalassemia)

A 6-month-old, African-American infant presents to the pediatrician with painful swollen hands and swollen feet.

- Occurs in endemic malarial areas: sub-Saharan Africa, Middle East, India; survival advantage with heterozygous trait provides protection against falciparum infection
 - Hydrophobic valine residues → HbS polymerizes in the deoxygenated state, decreased pH; increased [HbS] in RBCs → characteristic sickle RBC shape (reversible)
 - With repeated episodes → irreversible RBC sickling → become stiff and nondeformable → vasooclusion → tissue ischemia and intra- and extravascular hemolysis.
- Single base pair change (thymine for adenine) at sixth codon of the beta gene (valine instead of glutamic acid)
 - Sickle cell disease: up to 65% are SS, but there are also compound heterozygotes with Hg SC the most common, then HbSβ0 and then HbSβ+
 - Hgb S-beta thal – 0 (α2β2s, α2β2Th-0): clinically same as Hb SS
 - Hgb S–beta thal + (α2β2s, α2β2Th-+): variable depending on specific β-thalassemia mutation
 - Hgb SC (α2β2s, α2β2c): same as Hb SS but less frequent events
- Sickle cell trait (Hb AS)
 - Life span normal; serious complications rare
 - CBC normal; normal RBC life span
 - No limitation of activities
 - Known complications: hematuria, renal papillary necrosis, hyposthenuria; splenic infarction at high altitude (>3000 m); exertional rhabdomyolysis, sudden death
- Clinical presentation
 - Effects on blood: after transition to adult beta globin expression in 4–6 months; with health, maintains stable Hb at 6–9 g/dL; significant fluctuations occur with disease complications; also, typical leukocytosis (15–25,000) and mild thrombocytosis (400–475,000)
 - Newborn usually without symptoms; development of hemolytic anemia over first 2–4 months (replacement of HbF); as early as age 6 months; some children have functional asplenia; by age 5, all have functional asplenia
 - First presentation usually hand-foot syndrome (acute distal dactylitis)—symmetric, painful swelling of hands and feet (ischemic necrosis of small bones)
 - Infection: S. pneumonia with functional asplenia; peak in first 3 years of life; penicillin prophylaxis (orally 2x/day or monthly benzathine penicillin IM age 2 months–5 years) decreases rate by 84% and S. pneumoniae vaccine by another 70%
 - Acute painful crises (vaso-occlusive):
 - Severe, episodic pain
 - Increased with age and peak age 20s
 - Bone marrow ischemia, leading to possible infarction
• Triggers: infection, emotional stress, cold, wind, high altitude, dehydration

• **Younger:** mostly fingers and toes (acute distal dactylitis in infant beginning age 5–7 months), arms and legs; **with increasing age:** lower back, head, chest, abdomen

 - More extensive **vaso-occlusive crises** → ischemic damage
 - Skin ulcers
 - Retinopathy
 - Avascular necrosis of hip and shoulder
 - Infarction of bone and marrow (increased risk of *Salmonella osteomyelitis*)

• **Splenectomy**

 - Pulmonary: **acute chest syndrome** (along with sepsis, most common causes of mortality)
 - New pulmonary infiltrate on chest x-ray with ≥1 of the following: fever, tachypnea, dyspnea, hypoxia, chest pain
 - 45% with no identifiable cause
 - 30% infection: most recent statistics now show *C. pneumoniae* and *M. pneumoniae* are most common causes of acute chest syndrome in children; then viruses, and then *S. pneumoniae*
 - Also caused by pulmonary infarction and fat embolism
 - Treatment: oxygen, antibiotics, bronchodilators, analgesia, fluids, transfusion as needed; consider exchange transfusion if severe and progressive

• **Stroke (peak age 6–9 yrs):** most are ischemic of middle cerebral artery; treatment is rapid reduction in percent SS with RBC transfusion or partial automated exchange transfusion; resolution or marked decrease in 24–48 hrs; second stroke more likely without use of regular RBC transfusion program to suppress percent of SS (chronic transfusion regimen); best long-term treatment is stem cell transplant; current routine screening with annual transcranial Doppler study to detect cerebral blood flow velocity related to risk of stroke

 - **Priapism,** especially in adolescence
 - **Acute splenic sequestration:** rapid spleen enlargement, decreased [Hb], and decreased platelets; 30% by age 5 yrs (most age <2); teach family splenic palpation (early detection decreases mortality; remove spleen preventively if occurs again)
 - **Aplastic crisis:** after infection with **parvovirus B19;** absence of reticulocytes during acute anemia; maturational arrest of RBC precursors in marrow for 10–14 days; because in SS disease, RBC lifespan is only 10–20 days instead of normal 120, there is profound anemia; need transfusional support until reticulocytes return; may hasten recovery with IVIG
 - Cholelithiasis: symptomatic gallstones; sudden hemolysis → increased serum bilirubin → stores in gall bladder and can precipitate to form stones

 • Labs
 - Increased reticulocytes
 - Mild to moderate anemia
 - Normal MCV
 - If severe anemia: smear for **target cells,** poikilocytes, hypochromasia, sickle RBCs, nucleated RBCs, **Howell-Jolly bodies** (lack of splenic function); bone marrow **markedly hyperplastic**
− Renal: glomerular and tubular dysfunction; hyposthenuria in all; also gross hematuria, nephrotic syndrome, renal infarction, pyelonephritis, papillary necrosis, and end-stage renal disease requiring dialysis/transplant

• Diagnosis
− Every state with mandatory newborn screening program; identify newborns with the disease for prompt referral to providers with expertise and initiation of penicillin before age 4 months
− Most commonly used procedures are thin layer/isolectric focusing and high-performance liquid chromatography
− Those with abnormal screens are retested at first clinical visit (and after age 6 months) to determine final hemoglobin phenotype; also a CBC and Hb phenotype determination is recommended for both parents to confirm the diagnosis and provide an opportunity for genetic counseling

• Treatment—prevent complications
− Immunize (pneumococcal regular plus 23-valent, meningococcal)
− **Penicillin prophylaxis** at 2 months until age 5
− Educate family (assessing illness, palpating spleen, etc.)
− Folate supplementation
− Aggressive antibiotic treatment of infections
− Pain control
− **Transfusions** as needed
− Monitor for risk of stroke with **transcranial Doppler**
− **Hydroxyurea**: only FDA-approved drug for sickle cell disease; inhibits polymerization in frequent painful crises by increasing expression of fetal Hb
− **Stem-cell transplant**: only curative option; reserved for those with severe and life-threatening complications

Clinical Recall

Which of the following infectious complications of sickle cell disease is correctly matched to its causative organism?

A. Osteomyelitis: *Streptococcus*
B. Pneumonia: *Pseudomonas*
C. Dactylitis: *Coxsackie virus*
D. Acute chest syndrome: *Staphylococcus*
E. Aplastic crisis: Parvovirus B19

Answer: E
THALASSEMIAS

Alpha Thalassemia

- Alpha thalassemia trait: deletion of 2 genes
 - Common in African Americans and those of Mediterranean descent
 - Mild hypochromic, microcytic anemia (normal RDW) without clinical problems;
 - Often diagnosed as iron deficiency anemia; need molecular analysis for diagnosis
- HgB H disease: deletion of 3 genes; Hgb Barts >25% in newborn period and easily diagnosed with electrophoresis
 - At least 1 parent has alpha-thalassemia trait; later beta-tetramers develop (Hgb H—interact with RBC membrane to produce Heinz bodies) and can be identified electrophoretically; microcytosis and hypochromia with mild to moderate anemia; target cells present, mild splenomegaly, jaundice and cholelithiasis
 - Typically do not require transfusions or splenectomy; common in Southeast Asians
- Alpha-thalassemia major: deletion of 4 genes; severe fetal anemia resulting in hydrops fetalis
 - Newborn has predominantly Hgb Barts with small amounts of other fetal Hgb; immediate exchange transfusions are required for any possibility of survival; transfusion-dependent with only chance of cure (bone marrow transplant)

Figure 19-1. Skull X-ray Demonstrating “Hair on End” Appearance of Thalassemia
Beta Thalassemia Major (Cooley Anemia)

A 9-year-old has a greenish-brown complexion, maxillary hyperplasia, splenomegaly, and gallstones. Her Hb level is 5 g/dL and MCV is 65 mL.

- Excess alpha globin chains → alpha tetramers form; increase in HbF (no problem with gamma-chain production)
- Presents in second month of life with progressive anemia, hypersplenism, and cardiac decompensation (Hb <4 mg/dL)
- Expanded medullary space with increased expansion of face and skull (hair-on-end); extramedullary hematopoiesis, hepatosplenomegaly
- Labs
 - Infants born with HbF only (seen on Hgb electrophoresis)
 - Severe anemia, low reticulocytes, increased nucleated RBCs, hyperbilirubinemia microcytosis
 - No normal cells seen on smear
 - Bone-marrow hyperplasia; iron accumulates → increased serum ferritin and transferrin saturation
- Treatment
 - Transfusions
 - Deferoxamine (assess iron overload with liver biopsy)
 - May need splenectomy
 - Bone-marrow transplant curative

HEMORRHAGIC DISORDERS

Evaluation of Bleeding Disorders

History provides the most useful information for bleeding disorders.

- von Willebrand disease (vWD) or platelet dysfunction → mucous membrane bleeding, petechiae, small ecchymoses
- Clotting factors—deep bleeding with more extensive ecchymoses and hematoma
- Laboratory studies
 - Obtain platelets, bleeding time, PT, PTT
 - If normal, von Willebrand factor (vWF) testing and thrombin time
 - If abnormal, further clotting factor workup
 - Bleeding time—platelet function and interaction with vessel walls; qualitative platelet defects or vWD (platelet function analyzer)
 - Platelet count—thrombocytopenia is the most common acquired cause of bleeding disorders in children
 - PTT—intrinsic pathway: from initiation of clotting at level of factor XII through the final clot (prolonged with factor VIII, IX, XI, XII deficiency)
 - PT—measures extrinsic pathway after activation of clotting by thromboplastin in the presence of Ca²⁺; prolonged by deficiency of factors VII, XIII or anticoagulants; standardized values using the International Normalized Ratio (INR)
− Thrombin time—measures the final step: fibrinogen → fibrin; if prolonged: decreased fibrin or abnormal fibrin or substances that interfere with fibrin polymerization (heparin or fibrin split products)
− Mixing studies: if there is a prolongation of PT, PTT, or thrombin time, then add normal plasma to the patient’s and repeat labs
 ° Correction of lab prolongation suggests deficiency of clotting factor.
 ° If not or only partially corrected, then it is due to an inhibitor (most common on inpatient basis is heparin).
 ° If it becomes more prolonged with clinical bleeding, there is an antibody directed against a clotting factor (mostly factors VIII, IX, or XI).
 ° If there is no clinical bleeding but both the PTT and mixing study are prolonged, consider lupus anticoagulant (predisposition to excessive clotting).
− Clotting factor assays—each can be measured; severe deficiency of factors VIII or IX = <1% of normal; moderate = 1–5%; mild = >5%
− Platelet aggregation studies—if suspect a qualitative platelet dysfunction, ristocetin

Table 19-3. Clinical Findings in Coagulopathies

<table>
<thead>
<tr>
<th></th>
<th>Factor VIII</th>
<th>Factor IX</th>
<th>vWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>PT</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>PTT</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Bleeding time</td>
<td>Normal</td>
<td>Normal</td>
<td>↑</td>
</tr>
<tr>
<td>Factor VIII</td>
<td>↓</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Factor IX</td>
<td>Normal</td>
<td>↓</td>
<td>Normal</td>
</tr>
<tr>
<td>vWF</td>
<td>Normal</td>
<td>Normal</td>
<td>↓</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
<td>Male/female</td>
</tr>
<tr>
<td>Treatment</td>
<td>Factor VIII, desmopressin</td>
<td>Factor IX</td>
<td>Fresh frozen plasma, cryotherapy, DDAVP</td>
</tr>
</tbody>
</table>

Hemophilia A (VIII) and B (IX)

• 85% are A and 15% B; no racial or ethnic predisposition
• X-linked
• Clot formation is delayed and not robust → slowing of rate of clot formation
 − With crawling and walking—easy bruising
 − Hallmark is hemarthroses—earliest in ankles; in older child, knees and elbows
 − Large-volume blood loss into iliopsoas muscle (inability to extend hip)—vague groin pain and hypovolemic shock
 − Vital structure bleeding—life-threatening
Labs
- 2× to 3× increase in PTT (all others normal)
- Correction with mixing studies
- Specific assay confirms:
 - Ratio of VIII:vWF sometimes used to diagnose carrier state
 - Normal platelets, PT, bleeding time, and vW Factor

Treatment
- Replace specific factor
- Prophylaxis now recommended for young children with severe bleeding (intravenous via a central line every 2–3 days); prevents chronic joint disease
- For mild bleed—patient’s endogenous factor can be released with desmopressin (may use intranasal form)
- Avoid antiplatelet and aspirin medications
- DDAVP increases factor VIII levels in mild disease

von Willebrand Disease (vWD)
- Most common hereditary bleeding disorder; autosomal dominant, but more females affected
- Normal situation—vWF adheres to subendothelial matrix, and platelets then adhere to this and become activated; also serves as carrier protein for factor VIII
- Clinical presentation—mucocutaneous bleeding (excessive bruising, epistaxis, menorrhagia, postoperative bleeding)
- Labs—increased bleeding time and PTT
- Quantitative assay for vWFAg, vWF activity (ristocetin cofactor activity), plasma factor VIII, determination of vWF structure and platelet count
- Treatment—need to increase the level of vWF and factor VIII
 - Most with type 1 DDAVP induces release of vWF
 - For types 2 or 3 need replacement → plasma-derived vWF-containing concentrates with factor VIII

Other Bleeding Disorders

Vitamin K deficiency
- Newborn needs intramuscular administration of vitamin K or develops bleeding diathesis
- Postnatal deficiency—lack of oral intake, alteration in gut flora (long-term antibiotic use), malabsorption
- Vitamin K is fat soluble so deficiency associated with a decrease in factors II, VII, IX, and X and proteins C and S
- Increased PT and PTT with normal platelet count and bleeding time

Liver disease
- All clotting factors produced exclusively in the liver, except for factor VIII
- Decreases proportional to extent of hepatocellular damage
- Treatment—fresh frozen plasma (supplies all clotting factors) and/or cryoprecipitate (supplies fibrinogen)
PLATELET DISORDERS

Immune Thrombocytopenic Purpura (ITP)

A 4-year-old child previously healthy presents with petechiae, purpura, and excessive bleeding after falling from his bicycle.

- **Autoantibodies** against platelet surface
- **Clinical presentation**
 - Typically 1–4 weeks after a nonspecific **viral infection**
 - Most 1–4 years of age → **sudden onset of petechiae and purpura with or without mucous membrane bleeding**
 - Most resolve within 6 months
 - ≤1% with **intracranial hemorrhage**
 - 10–20% develop chronic ITP
- **Labs**
 - Platelets <20,000/mm3
 - Platelet size normal to increased
 - Other cell lines normal
 - Bone marrow—normal to increased megakaryocytes
- **Treatment**
 - **Transfusion contraindicated** unless life-threatening bleeding (platelet antibodies will bind to transfused platelets as well)
 - No specific treatment if platelets >20,000 and no ongoing bleeding
 - If very low platelets, ongoing bleeding that is difficult to stop or life-threatening:
 - **Intravenous immunoglobulin for** 1–2 days
 - If inadequate response, then prednisone
 - Splenectomy reserved for older child with severe disease

Note

With ITP, the physical examination is otherwise normal; hepatosplenomegaly and lymphadenopathy should suggest another disease.
Learning Objectives

- Categorize and describe management of leukemia and lymphomas
- Describe the epidemiology and management of brain tumors and other malignancies

LEUKEMIA AND LYMPHOMA

Acute Lymphoblastic Leukemia

A 5-year-old patient is seen due to a limp. On physical examination a low-grade fever, URI symptoms, hepatosplenomegaly, and petechiae are seen.

- Predisposing conditions (majority): trisomy 21, Fanconi anemia, ataxia-telangiectasia, Wiskott-Aldrich syndrome, neurofibromatosis, Blackfan-Diamond syndrome
- Other predisposing factors: siblings (2–4 x increase; greater for twins), radiation, certain chemotherapeutic agents, B-cell ALL with EBC (Burkitt)
- The first disseminated cancer shown to be curable
- Striking peak incidence at age 2–3 years and greater in boys; most by age 15
- 85% from progenitor B-cells
- 77% of all childhood leukemias (AML 11%, CML 2–3%, juvenile myelomonocytic 1–2%; others rare and chronic)
- Presentation: initially nonspecific
 - Bone (often severe) and joint pain (often with swelling and effusion)
 - Then signs and symptoms of bone marrow failure: RBCs (pallor, anorexia, exercise intolerance); platelets (bruising, bleeding); WBCs (fever, either from disease itself or infection)
 - Then organ infiltration: lymphadenopathy; splenomegaly (less so hepatomegaly); testicular swelling/pain; ± CNS (headache, increased ICP, neuropathies, seizures)
- Diagnosis
 - Best initial step (after H and P) is CBC, differential, platelets, and smear; almost all have anemia and thrombocytopenia (WBCs <10,000 and blasts may be reported as atypical lymphocytes); with high WBCs, possible lymphoblasts

Note

ALL is both CALLA (common acute lymphoblastic leukemia antigen) and TdT-positive.
Then, immediate bone marrow aspirate (>25% homogeneous population of lymphoblasts) and staging lumbar puncture (thus staging at diagnosis is from bone marrow aspirate + lumbar puncture)

- WBC mostly <10,000/mm³ (atypical lymphocytes); poor prognosis if >100,000
- Best test is bone marrow aspirate \(\rightarrow\) lymphoblasts
- If chromosomal abnormalities, poor prognosis

Treatment

- Remission induction (98% remission in 4–5 weeks; slow response = poor prognosis) with combination drugs
- Second phase = central nervous system (CNS) treatment

Complications

- Majority is relapse (15–20%):
 - Increased intracranial pressure (ICP) or isolated cranial nerve palsies
 - Testicular relapse in 1–2% of boys
- Pneumocystis pneumonia
- Other infections because of immunosuppression
- Tumor lysis syndrome—result of initial chemotherapy (cell lysis): hyperuricemia, hyperkalemia, hyperphosphatemia \(\rightarrow\) hypocalcemia (tetany, arrhythmias, renal calcinosis)
 - Treat with hydration and alkalinization of urine; prevent uric acid formation (allopurinol)

- Prognosis: >85% 5-year survival

Hodgkin Lymphoma

A 16-year-old boy presents with complaints of weight loss, fever, and night sweats. On physical examination, he is noted to have a nontender cervical lymph node that is 4–5 cm.

- Typically seen age 15–19
- **Epstein-Barr virus** may play a role; immunodeficiencies may predispose
- Diagnostic hallmark—**Reed-Sternberg cell** (large cell with multiple or multilobulated nuclei)
- Four major histologic subtypes
 - Lymphocytic predominant
 - Nodular sclerosing
 - Mixed cellularity
 - Lymphocyte depleted; now considered to be a high-grade non-Hodgkin lymphoma
- Clinical presentation depends on location
 - Painless, firm cervical or supraclavicular nodes (most common presenting sign)
 - Anterior mediastinal mass
 - Night sweats, fever, weight loss, lethargy, anorexia, pruritus
Diagnosis
- **Excisional biopsy of node (preferred)**
- Staging from I to IV (single node or site to diffuse disease; multiple tests)

Treatment
- Determined by disease stage, large masses, hilar nodes
- Chemotherapy
- Radiation

Prognosis—overall cure of 90% with early stages and >70% with more advanced

Non-Hodgkin Lymphoma

A 6-year-old boy presents to his primary care provider (PCP) with a nonproductive cough. A diagnosis of upper respiratory infection is made. However, the patient’s symptoms persist, and he returns to his PCP. At this visit the patient is wheezing, and the PCP makes the diagnosis of reactive airway disease and prescribes an inhaled b2-agonist. The medication does not improve the symptoms; and the patient returns to the PCP for a third time. The patient is now complaining of cough and has a low-grade fever. The patient is diagnosed with clinical pneumonia; and an antibiotic is prescribed. Two days later the patient presents to the emergency department in respiratory distress. A chest roentgenogram shows a large mediastinal mass.

- Malignant proliferation of **lymphocytes of T-cell, B-cell, or intermediate-cell origin**
- **Epstein-Barr virus**—major role in Burkitt lymphoma
- Predisposition with congenital or acquired immunodeficiencies
- Three histologic subtypes
 - **Lymphoblastic** usually T cell, mostly mediastinal masses
 - **Small, noncleaved cell lymphoma**—B cell
 - **Large cell**—T cell, B cell, or indeterminate
- Presentation—depends on location
 - Anterior mediastinal mass (respiratory symptoms)
 - Abdominal pain, mass
 - Hematogenous spread
- Diagnosis—prompt because it is a very aggressive disease.
 - Biopsy
 - Any noninvasive tests to determine extent of disease: staging I to IV (localized to disseminated; CNS and/or bone marrow)

Treatment
- **Surgical excision of abdominal tumors**, chemotherapy, and monoclonal antibodies ± radiation
- 90% cure rate for stages I and II
BRAIN TUMORS

Brain tumors are the second most frequent malignancy in children, with mortality 45%. They are more common age <7 years. Most are infratentorial (age 2–10 years, e.g., juvenile pilocytic astrocytoma, medulloblastoma); symptoms depend on the location.

The best initial test for all tumors is head CT scan. The best imaging test overall is MRI.

Some findings of brain tumors in general are severe persistent headaches, onset recurrent seizures, new onset neurologic abnormalities e.g., ataxia, behavioral/personality changes, deterioration of school performance, visual changes, III and VI nerve palsies, abnormal endocrine findings/new onset, papilledema.

Infratentorial Tumors

- Most common
- Low-grade, rarely invasive
- Most common—juvenile pilocytic astrocytoma
 - Classic site—cerebellum
 - Surgery, radiation, and/or chemotherapy
 - With complete resection, 80–100% survival

Others

- Malignant astrocytoma (includes glioblastoma multiforme)
- Medulloblastoma (midline cerebellar)
- Brain stem tumors (diffuse intrinsic with very poor outcome vs. low-grade gliomas)
- Ependymoma (most posterior fossa)

Supratentorial Tumors

Craniopharyngioma

A 14-year-old girl presents to the physician because of short stature. On physical examination, the patient is found to have bitemporal visual field defects. A head CT scan shows calcification at the sella turcica.

- Most common; 7–10% of all
- Minimal invasiveness; calcification on x-ray
- Major morbidity—panhypopituitarism, growth failure, visual loss
- Surgery and radiation; no role for chemotherapy

Optic nerve glioma

A 4-year-old boy with neurofibromatosis presents to the ophthalmologist with complaints of decreased visual acuity according to his parents. On physical examination, the patient has proptosis and papilledema.

- Most frequent tumor of the optic nerve; benign, slowly progressive
- Unilateral visual loss, proptosis, eye deviation, optic atrophy, strabismus, nystagmus
- Increased incidence in neurofibromatosis
- Treatment—observation:
 - If chiasm is involved—radiation/chemotherapy
 - Surgery if proptosis with visual loss

OTHER MALIGNANCIES

Wilms Tumor

A mother brings her 3-year-old child to the physician because she found an abdominal mass while bathing the child. The child has been in her usual state of health according to the mother. However, on review of the vital signs, the patient is noted to have an elevated blood pressure.

- Nephroblastoma (Wilms's tumor)
- Second most common malignant abdominal tumor
 - Usual age 2–5 years
 - One or both kidneys (bilateral in 7%)
- Associations:
 - Hemihypertrophy
 - Aniridia
 - Genitourinary anomalies
 - WAGR
- Clinical presentation—most are asymptomatic abdominal mass (unless invasive at diagnosis, some with ↑ BP due to renal ischemia)
- Diagnosis
 - Best initial test—ultrasound
 - Abdominal CT scan confirmatory test
- Treatment
 - Surgery
 - Then chemotherapy and radiation
 - Bilateral renal—unilateral nephrectomy and partial contralateral nephrectomy
- Prognosis—54 to 97% have 4-year survival

Neuroblastoma

A 2-year-old child is brought to the physician because of bluish skin nodules, periorbital proptosis, and periorbital ecchymosis that have developed over the last few days. On physical examination, a hard smooth abdominal mass is palpated.

- From neural crest cells, due to N-myc Oncogene; can occur at any site
- 8% of childhood malignancies
- Most are
 - Adrenal
 - Retroperitoneal sympathetic ganglia
 - Cervical, thoracic, or pelvic ganglia

Note

Patients with neuroblastoma can present with ataxia or opsomyoclonus ("dancing eyes and dancing feet"). These patients may also have Horner syndrome.
• Firm, palpable mass in flank or midline; **painful with calcification and hemorrhage**
• Initial presentation often as **metastasis**—long bones and **skull, orbital**, bone marrow, lymph nodes, liver, skin
• **Diagnosis**
 - Plain x-ray, CT scan, MRI (overall best)
 - Elevated urine **homovanillic acid (HVA)** and **vanillylmandelic acid (VMA)** in 95% of cases
 - Evaluate for spread—bone scan, bone marrow (neuroblasts) → staging from I (organ of origin) to IV (disseminated)
• **Treatment**
 - Surgery
 - Chemotherapy and radiation
 - Stem cell transplant (definitive)

Pheochromocytoma

• **Catecholamine-secreting** tumor from chromaffin cells
• **Most common site**—**adrenal medulla**, but can occur anywhere along abdominal sympathetic chain
• Children age 6–14 years; 20% are bilateral, and some with multiple tumors
• Autosomal dominant; associated with **neurofibromatosis, MEN-2A** and **MEN2B**, tuberous sclerosis, Sturge-Weber syndrome, and ataxia-telangiectasia
• **Clinical presentation**
 - **Episodic severe hypertension**, palpitations and diaphoresis, headache, abdominal pain, dizziness, pallor, vomiting, sweating, encephalopathy
 - Retinal examination—**papilledema, hemorrhages, exudate**
• **Labs**—significant increase in blood or **urinary levels of catecholamines and, metabolites**
• **Diagnosis**
 - Most tumors can be localized by **CT scan (best initial test)** and MRI, but extra-adrenal masses are more difficult.
 - Can use **I^{131} metaiodobenzylguanidine (MBIG)** scan → taken up by chromaffin tissue anywhere in body
• **Treatment**—**removal**, but high-risk
 - **Preoperative alpha and beta blockade** and fluid administration
 - Need prolonged follow up; may manifest later with new tumors

Rhabdomyosarcoma

A mother brings her 3-year-old daughter to the physician for evaluation because the young girl has "grapes" growing out of her vagina.

• Almost any site, which determines presentation; determination of specific histologic type needed for assessment and prognosis
 - **Head and neck**—40%
 - **Genitourinary tract**—20%

Note

Children with pheochromocytoma excrete predominantly norepinephrine-increased VMA and metanephrine. Children with neuroblastoma usually do not have hypertension, and major metabolites are dopamine and HVA.
Chapter 20 l Oncology

- Extremities—20%
- Trunk—10%
- Retroperitoneal and other—10%

• Increased frequency in neurofibromatosis

• Types
 - Embryonal—60%
 - Intermediate prognosis
 - Botryoid (projects; grapelike)—vagina, uterus, bladder, nasopharynx, middle ear
 - Alveolar—15%
 - Very poor prognosis
 - Trunk and extremities
 - Pleomorphic—adult form; very rare in children

• Clinical presentation
 - Mass that may or may not be painful
 - Displacement or destruction of normal tissue
 - Easily disseminates to lung and bone

• Diagnosis—depends on site of presentation
 - Biopsy, CT, MRI, U/S, bone scan

• Treatment—best prognosis with completely resected tumors (but most are not completely resectable)
 - Chemotherapy pre- and postoperatively; radiation

Clinical Recall

A 7-year-old girl with an abdominal mass diagnosed by MIBG imaging is found to have elevated urinary catecholeamines. With which systemic disease is this mass associated?

A. MEN 1
B. von Hippel-Lindau
C. Tuberous sclerosis
D. WAGR
E. Basal cell nevus syndrome

Answer: C
Learning Objectives

- Describe the epidemiology and treatment of febrile and other seizure disorders
- Describe CNS anomalies, neurocutaneous syndromes, and neurodegenerative disorders
- Recognize and categorize encephalopathies
- Categorize and describe the epidemiology and genetics of neuromuscular disease

CENTRAL NERVOUS SYSTEM (CNS) ANOMALIES

Neural Tube Defects
Elevated alpha-fetoprotein is a marker for neural tube defects.

Spina bifida occulta
- Midline defect of vertebral bodies without protrusion of neural tissue; occasionally associated with other anomalies
- Most asymptomatic and of no clinical consequence
- May have overlying midline lumbosacral defect (patch of hair, lipoma, dermal sinus)

Tethered cord
- Ropelike filum terminale persists and anchors the conus below L2
- Abnormal tension—asymmetric lower extremity growth, deformities, bladder dysfunction, progressive scoliosis, diffuse pain, motor delay
- Most associated with a midline skin lesion
- MRI needed for precise anatomy
- Surgical transection

Meningocele
- Meninges herniate through defect in posterior vertebral arches
- Fluctuant midline mass well covered with skin; may transilluminate
- Must determine extent of neural involvement with MRI
 - CT scan of head for possible hydrocephalus
 - Surgery
Myelomeningocele

The pediatrician is called to the delivery room because an infant is born with a defect in the lumbosacral area.

- Strong evidence that maternal periconceptional use of folate reduces risk by half
- May occur anywhere along the neuraxis, but most are lumbosacral
- Low sacral lesions—bowel and bladder incontinence and perineal anesthesia without motor impairment

Note

Almost every child with a sacral or lower lumbar spine lesion will achieve some form of functional ambulation, and half of those with higher spine defects will have some degree of hip flexor and hip adductor movement.

Figure 21-1. Arnold-Chiari Malformation, a Defect of the Hindbrain Usually Accompanied by Myelomeningocele

- Midlumbar lesion—**saclike cystic structure** covered by thin, partially epithelized tissue
 - Flaccid paralysis below the level of the lesion is most common; no deep tendon reflexes (DTRs), no response to touch and pain
 - Urinary dribbling, relaxed anal sphincter
• 80% associated with hydrocephalus; type II Chiari malformation—may have symptoms of hindbrain dysfunction (feeding difficulty, choking, stridor, apnea, vocal cord paralysis, upper extremity spasticity)

• Evaluation and treatment
 − Must evaluate for other anomalies prior to surgery
 − Evaluate renal function
 − Head CT scan for possible hydrocephalus
 − Treatment—ventriculoperitoneal shunt and correction of defect

Hydrocephalus

A 2-month-old infant is noted to have a head circumference >95th percentile.

• Definition—impaired circulation and absorption of CSF or, rarely, from increased CSF production from a choroid plexus papilloma

• Types
 − **Obstructive** (noncommunicative) versus **nonobstructive** (communicative) from obliteration of subarachnoid cisterns or malfunction of arachnoid villi
 ◦ Obstructive—most are abnormalities of the cerebral aqueduct (stenosis or gliosis; congenital, intrauterine infection, mumps, hemorrhage) or lesions near the fourth ventricle (brain tumor, Chiari malformation, Dandy-Walker malformation)
 − Nonobstructive—occurs mostly with subarachnoid hemorrhage; also with pneumococcal or TB meningitis or leukemic infiltrates

• Clinical presentation—depends on rate of rise of intracranial pressure
 − Infants:
 ◦ Increased head circumference
 ◦ Bulging anterior fontanel
 ◦ Distended scalp veins
 ◦ Broad forehead
 ◦ “Setting sun” sign
 ◦ Increased DTRs
 ◦ Spasticity, clonus
 − Older child (subtler symptoms)
 ◦ Irritability
 ◦ Lethargy
 ◦ Poor appetite
 ◦ Vomiting
 ◦ Headache
 ◦ Papilledema
 ◦ Sixth-nerve palsy

• Treatment for all types of hydrocephalus—shunting
Dandy-Walker malformation

- Cystic expansion of fourth ventricle due to absence of roof
- Associated agenesis of posterior cerebellar vermis and corpus callosum
- Presents with increasing head size and prominent occiput, long-tract signs, cerebellar ataxia, and delayed motor development, positive transillumination

Figure 21-2. Dandy Walker Malformation, the Result of Agenesis or Hypoplasia of the Cerebellar Vermis, Cystic Dilatation of the Fourth Ventricle, and Enlargement of the Posterior Fossa

SEIZURES

Seizures are triggered recurrently from within the brain versus somatic disorders that may trigger a seizure from outside the brain. Epilepsy is present when at least 2 unprovoked seizures occur >24 hours apart.

Febrile Seizures

An 18-month-old child is brought to the emergency center after having a generalized tonic-clonic seizure that lasted approximately 5 min. The parents say that the child had been previously well but developed cold symptoms earlier today with a temperature of 39°C (102°F).
• Occurs between age 6 months to 5 years; incidence peaks at age 14–18 months and may reoccur with fever
• Usually positive family history
• Temperature usually increases rapidly to >39°C (102°F)
• Typical: generalized tonic-clonic seizures, <10–15 minutes; brief postictal period
• Atypical: >15 minutes, more than 1 in a day, and focal findings
• Simple febrile seizure has no increased risk of epilepsy—risk for febrile seizures is increased with atypical seizure, family history of epilepsy, initial seizure before age 6 months, abnormal development, or preexisting neurologic disorder
 – Workup/Evaluation
 • Must determine cause of fever, must not look like meningitis
 • No routine labs, no EEG, no neuroimaging
 – Treatment—control fever

Partial Seizures

Simple
• Asynchronous tonic or clonic movements; most of the face, neck, and extremities; average duration 10–20 seconds
• Some have an aura and may verbalize during the attack; no postictal period
• EEG—spike and sharp waves or multifocal spikes
• Treatment—phenytoin and other anticonvulsants

Complex seizures
• Impaired consciousness at some point, may be very brief; one-third with aura (always indicates focal onset)
• Automatisms common after loss of consciousness (lip-smacking, chewing, swallowing, increased salivation)
• Interictal EEG—anterior temporal lobe shows sharp waves or focal spikes
• MRI—many will show abnormalities in temporal lobe (sclerosis, hamartoma, cyst, infarction, arteriovenous malformation [AVM], glioma)
• Treatment—carbamazepine (drug of choice) and other add-ons

Generalized Seizures

Absence (petit mal)
• Sudden cessation of motor activity or speech with blank stare and flickering eyes
• More in girls; uncommon <5 years of age
• No aura; usually <30 seconds; no postictal period
• EEG—3/second spike and generalized wave discharge
• Treatment—ethosuximide (drug of choice), valproic acid (second line)
Tonic-clonic seizures

- May have **aura (focal onset; may indicate site of pathology)**; loss of consciousness, eyes roll back, tonic contraction, apnea
- **Then clonic rhythmic contractions** alternating with relaxation of all muscle groups
- Tongue-biting, loss of bladder control
- Semicomatose for up to 2 hours afterward with vomiting and bilateral frontal headache
- Treatment—valproic acid, phenobarbital, phenytoin, carbamazepine, and other add-ons

Myoclonic Seizures

- Repetitive seizures—**brief, symmetric muscle contraction** and loss of body tone with falling forward
- Five types, with variable severity, morbidity, and prognosis
- Treatment—valproic acid and others

Infantile Spasms

- **Symmetric contractions of neck, trunk, and extremities** (with extension episodes as well)
- Pathophysiology—increased corticotropin-releasing hormone (CRH): neuronal hyperexcitability
- Begin typically at 4–8 months of age
- Types
 - Cryptogenic—infant is normal prior to seizure with normal neurologic examination and development; **good prognosis**
 - Symptomatic—disease present prior to seizure (e.g., tuberous sclerosis); **poor control and intellectual disability**
- EEG—**hypsarrhythmia** (asynchronous, chaotic bilateral spike-and-wave pattern)
- Treatment
 - Adrenocorticotropic hormone (ACTH); drug of choice
 - Prednisone and add-on of other anticonvulsants if no response

Neonatal Seizures

- Because of immaturity of CNS, **tend to have subtle seizures**; therefore, they are difficult to recognize
- Etiology
 - Hypoxic ischemic encephalopathy most common; seizure usually present within 12–24 hours after birth
 - CNS infection
 - CNS hemorrhage
 - Structural abnormalities
 - Blood chemistry abnormalities
 - Inborn errors of metabolism
 - Drug withdrawal

Note

Benign Myoclonus of Infancy

- Often confused with myoclonic seizures
- Clusters confined to the neck, trunk, and extremities
- EEG normal
- Good prognosis
- Goes away after 2 years; no treatment
Evaluation:
- CBC; platelets
- Electrolytes, calcium, magnesium, phosphorus; glucose
- Lumbar puncture to exclude meningitis or bleed
- CT scan in term, ultrasound in preterm to diagnose bleed
- Blood and urine culture may be indicated (+CSF)
- Consider newborn screen for inborn errors of metabolism, if abnormal results suggestive or no diagnosis
- Treatment—lorazepam, phenobarbital

Table 21-1. Neonatal Seizures

<table>
<thead>
<tr>
<th>Cause</th>
<th>Presentation</th>
<th>Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxic ischemic encephalopathy</td>
<td>12–24 hours</td>
<td>Term; cerebral palsy</td>
</tr>
<tr>
<td>Intraventricular hemorrhage</td>
<td>1–7 days</td>
<td>Preterm</td>
</tr>
<tr>
<td>Metabolic</td>
<td>Variable</td>
<td>IODM (infant of diabetic mother), inborn errors of metabolism, DiGeorge syndrome</td>
</tr>
<tr>
<td>Infection</td>
<td>Variable</td>
<td>TORCH, maternal fever, sepsis/ meningitis</td>
</tr>
</tbody>
</table>

Clinical Recall

A 2-year-old boy with fever, rhinorrhea, and cough is seen in the emergency department after having a first-time generalized tonic-clonic seizure which lasted 6-7 minutes. The exam is notable for a tired-appearing child with no focal neurologic signs or nuchal rigidity. There is no lethargy or irritability. There is no sensitivity to light and no mental status changes or vomiting. What is the next step?

A. Lumbar puncture
B. EEG
C. Brain MRI
D. Prescribe acetaminophen
E. Prescribe ethosuximide

Answer: D
NEUROCUTANEOUS SYNDROMES

A 6-year-old presents to the pediatrician for a routine evaluation. The child is noted to have 10 café-au-lait lesions as well as axillary freckling.

Neurofibromatosis (NF; von Recklinghausen Disease)

NF-1

- **Autosomal dominant;** but most with new mutation
- Every organ can be affected; features present from birth but complications may be delayed into adulthood
- Diagnosis—a good history and physical examination are needed to make the diagnosis.
 - Two of the following are needed:
 - At least 5 café-au-lait spots >5 mm prepubertal or at least 6 café-au-lait spots >15 mm postpubertal
 - Axillary/inguinal freckling
 - >2 iris Lisch nodules (seen on slit lamp only)
 - >2 neurofibromas or 1 plexiform neurofibroma
 - Osseous lesions, sphenoid dysplasia or cortical thinning of long-bones (LE)
 - Optic gliomas
- Complications
 - CNS:
 - Low-grade gliomas (optic), hamartomas
 - Malignant neoplasms (astrocytoma, neurofibrosarcoma, and others)
 - Transient ischemic attack, hemiparesis, hemorrhage
 - Complex partial or generalized seizures
 - Cognitive defects, learning disabilities, attention deficit, speech abnormalities, psychiatric disturbances
 - Renovascular hypertension or pheochromocytoma
 - Increased incidence of leukemia, rhabdomyosarcoma, Wilms tumor
- Treatment
 - Genetic counseling
 - Early detection of treatable conditions
 - Annual ophthalmologic examination
 - Examine family members

NF-2

- Presentation
 - Primary feature—**bilateral acoustic neuromas**
 - Hearing loss
 - Facial weakness
 - Headache
 - Unsteady gait
– Skin findings much less common (glioma, meningoia, schwannoma)
– CNS tumors common

• Treatment
 – Developmental and cognitive evaluation and diagnosis
 – Prevent pathological fractures if LE cortical thinning present

Tuberous Sclerosis

A 1-month-old infant presents with infantile spasms and has a hypsarrhythmic EEG pattern.

• Autosomal dominant; half with new mutations
• Wide range of manifestations within same family
• The younger the patient, the higher the likelihood of intellectual disability
• Hallmark is CNS tubers found in convolutions of cerebral hemispheres; undergo calcification and project into ventricular cavity, causing obstruction of CSF flow and hydrocephalus.

• Clinical presentation
 – Infancy—with infantile spasms and characteristic skin lesions
 – Ash-leaf macule—hypopigmented; increased with Wood UV lamp
 – CT scan shows calcified tubers (but may not see till 3–4 years of age)
 – Childhood—generalized seizures and skin lesions
 – Sebaceous adenoma—red or clear nodules on nose and cheeks
 – Shagreen patch—rough, raised lesion with orange-peel consistency; most in lumbosacral area (midline)

• Diagnosis—clinical: characteristic skin lesions and seizure disorder
• Treatment—seizure control

• Complications
 – Retinal lesions—either mulberry tumor from optic nerve head or phakomas (round, flat, gray lesions in area of disc)—visual disturbances
 – Brain tumors much less common (but may see malignant astrocytoma)
 – Half have rhabdomyoma of the heart (can detect in fetus with echocardiogram); most spontaneously regress over first 2 years
 – Renal lesion in most—either hamartoma or polycystic kidneys
 – Pulmonary—cystic or fibrous changes

Sturge-Weber (SW) syndrome

A newborn is examined in the nursery by the pediatrician. The patient is a product of a term spontaneous vaginal delivery without complications. On physical examination, the patient is noted to have a facial nevus.

• Facial nevus (port wine stain), seizures, hemiparesis, intracranial calcifications, and intellectual disability
• Nevus is always present at birth and always involves at least the upper face and eyelid

Note

Not all babies with a facial nevus have Sturge-Weber syndrome. Obtain a skull x-ray and intraocular pressure.
• **Glaucoma** in ipsilateral eye
• **Presentation**
 - Seizures in most (focal tonic-clonic, contralateral to the nevus); becomes refractory and slowly develops hemiparesis, intellectual disability
• **Diagnosis**
 - Skull x-ray shows occipital-parietal calcifications (serpentine or railroad-track appearance) and intraocular pressure reading initially (↑)
 - CT scan to highlight extent and show unilateral cortical atrophy and hydrocephalus ex vacuo
• **Treatment**
 - Conservative if seizures are well controlled and development is not severely affected
 - Hemispherectomy or lobectomy—may prevent intellectual disability and recalcitrant seizures if done in the first year of life
 - Regular intraocular pressure evaluation
 - Nevus—pulsed laser
 - Special education

ENCEPHALOPATHIES

Cerebral Palsy

• Group of motor syndromes from disorders of early brain development
 - Neurologic function may change or progress with time
 - Some have cognitive dysfunction
 - Most born at term with uncomplicated labor and delivery
 - Majority have no identifiable antenatal problems
 - Only 10% with intrapartum asphyxia
• The most obvious manifestation is impaired ability of voluntary muscles (rigidity and spasticity).
 - Other associations—seizures and abnormalities of speech, vision, and intellect
• Other risk factors—increased risk with intrapartum infection, low birth weight, (especially <1,000 g); most of these secondary to intraventricular hemorrhage and periventricular leukomalacia
• **Diagnosis**
 - MRI (location and extent of lesions or abnormalities)
 - If spinal involvement, MRI of spine
 - Hearing and visual evaluation
 - Genetic evaluation
 - Complete neurologic and developmental exams
• **Treatment**
 - Multidisciplinary team
 - Teach daily activities, exercises, assistance and adaptive equipment, surgical release procedures, communication equipment
 - Spasticity drugs (dantrolene, baclofen, botulinum toxin)
 - Psychological support
NEURODEGENERATIVE DISORDERS
The hallmark of neurodegenerative disorders is typically progressive deterioration of neurologic function. This includes loss of speech, vision, hearing, and/or walking; feeding difficulties, cognitive dysfunction, and possible seizures; and regression of developmental milestones.

Friedrich Ataxia
- Abnormal gene encoding for frataxin; autosomal recessive
- Onset of ataxia before <10 years of age
 - Slowly progressive
 - Loss of DTRs
 - Extensor plantar reflex
 - Weakness in hands and feet
 - Degeneration of posterior columns—loss of position and vibration sense
- Explosive, dysarthric speech
- Skeletal abnormalities, e.g., kyphoscoliosis
- Hypertrophic cardiomyopathy—refractory congestive heart failure, death

Wilson Disease
- Inborn error of copper metabolism; autosomal recessive
- Liver with or without CNS disease (neurologic, psychiatric)
- Liver symptoms first (any liver pathology), neurologic symptoms later (adolescent to adults)
 - Dystonia, tremors, basal ganglia problems
 - Kayser-Fleischer rings—pathognomonic (all will have with neuropsych symptoms)
 - MRI shows dilated ventricles with atrophy of cerebrum and lesions in thalamus and basal ganglia
- Diagnosis—Suspect in any child with acute or chronic liver disease, unexplained neurologic disease, or behavioral or psychiatric changes
 - Best screen—serum ceruloplasmin (decreased)
 - Confirm with liver biopsy—increased Cu content
 - Screen family members
- Treatment
 - Chelation with penicillamine (slows progression)
 - Definitive treatment with liver transplant
Sphingolipidoses

Tay-Sachs disease
- Deficient β-hexosaminidase-A, accumulate GM2
- Mostly in Ashkenazi Jews (carrier rate 1 in 30)
- Normal developmental until 6 months, then lag and lose milestones
- Seizures, hypotonia, blindness
- Cherry-red macula

Purine Metabolism Disorders

Lesch-Nyhan disease
- X-linked
- Purine metabolism disorder of purine metabolism → excess uric acid
- Delayed motor development after a few months
- Self-mutilation and dystonia, gouty arthritis, tophi, renal calculi
- Choreoathetosis, spasticity
- Diagnosis—Analyze HPRT enzyme
- Treatment
 - Manage renal complications, arthritis
 - Behavioral modification
 - Medication for reduction of anxiety and mood stabilization

Clinical Recall

Which of the following neurodegenerative disorders is correctly matched to a key finding?

A. Lesch-Nyhan disease: cherry red macula
B. Tay-Sachs disease: deficient hexosaminidase-A
C. Wilson disease: error of iron metabolism
D. Friedrich ataxia: dilated cardiomyopathy
E. Niemann-Pick disease: Kayser-Fleischer rings

Answer: B
NEUROMUSCULAR DISEASE

Spinal Muscle Atrophy (SMA)

A pediatrician examines an infant who is on the examination table in frog-leg position, with subdiaphragmatic retractions and absent tendon reflexes.

- Degenerative disease of motor units beginning in the fetus and progressing into infancy; denervation of muscle and atrophy
- Types
 - SMA 1 = severe infantile (Werdnig-Hoffman disease)
 - SMA 2 = late infancy, slower progression
 - SMA 3 = chronic juvenile (Kugelberg-Welander disease)
- Autosomal recessive
- Clinical presentation—SMA 1 presents in early infancy with
 - Progressive hypotonia; generalized weakness; Infant is flaccid, has little movement and poor head control
 - Feeding difficulty
 - Respiratory insufficiency
 - Fasciculations of the tongue and fingers
 - Absent DTRs
- Typically appear brighter than others of same age
- Diagnosis
 - Simplest, most effective diagnosis is molecular genetic marker in blood for the SMN gene.
 - EMG—fibrillation potential and other signs of denervation
 - Muscle biopsy shows a characteristic pattern of perinatal denervation.
- Treatment is supportive; there is no cure; most die in first 2 years of life

Myasthenia Gravis

A pediatrician examines an infant with poor sucking and swallowing since birth. The infant is noted to be a floppy baby with poor head control. There is associated ocular ptosis and weak muscles on repeated use.

- Immune-mediated neuronal blockade; motor end plate is less responsive due to, decreased number of available acetylcholine receptors secondary to circulating receptor binding antibodies; generally nonhereditary
- Clinical presentation
 - Posis and extraocular muscle weakness is the earliest and most consistent finding.
 - Dysphagia and facial weakness, and early infant feeding difficulties
 - Poor head control

Note

Transient Neonatal Myasthenia
- Neonates born to mothers with myasthenia; may have generalized hypotonia and weakness, feeding difficulties, and respiratory insufficiency from days to weeks
- May need ventilation and nasogastric feedings
- After antibodies wane, they are normal and have no risk for disease.
− Limb-girdle weakness and in distal muscles of hands
− **Rapid muscle fatigue**, especially late in the day
− May have respiratory muscle involvement

Diagnosis
− EMG **more diagnostic than muscle biopsy**—decremental response to repetitive nerve stimulation, reversed after giving cholinesterase inhibitor (edrophonium) → improvement within seconds
− CPK is normal.
− May have anti-acetylcholine (anti-ACh) antibodies (inconsistent)

Treatment
− Mild—many need no medication
− Cholinesterase-inhibiting drugs—either neostigmine bromide PO or pyridostigmine
− Severe—long-term prednisone; if no response, intravenous immunoglobulin (Ig), then plasmapheresis
− Thymectomy—most effective if patient has high anti-ACh titers and symptoms for <2 years
− Complications—do not tolerate neuromuscular blockade and aminoglycosides potentiate

Hereditary Motor-Sensory Neuropathies (HMSNs)

HMSN I: Marie-Charcot-Tooth disease

− Progressive disease of peripheral nerves; **peroneal muscle atrophy; peroneal and tibial nerves**
− Autosomal dominant
− Clinical presentation
 − Asymptomatic until late childhood or adolescence but may have problem with gait as early as age 2 years
 − **Clumsy, fall easily; muscles of anterior compartment of lower leg become wasted** → **stork-like appearance**
 − Pes cavus, foot drop
 − Claw hand (in worse cases)
 − **Slowly progressive** through life, but normal lifespan and remain ambulatory

Diagnosis
− CPK is normal.
− Decreased nerve conduction velocities (motor and sensory)
− Sural nerve biopsy is diagnostic.
 − Blood molecular genetic diagnosis

Treatment
− **Stabilize ankles**
− Surgical ankle fusion
− Protection from trauma
− If sensory problems, phenytoin or carbamazepine
Guillain-Barré syndrome

- Postinfectious polyneuropathy—mostly motor; all ages; most with demyelinating neuropathy
- 10 days after a **nonspecific viral illness or Campylobacter jejuni or Mycoplasma pneumoniae**—Landry ascending paralysis
 - Symmetric proximal and distal muscles
 - Gradually over days to even weeks
 - May have **tenderness, pain, paresthesias early**
 - **Bulbar involvement** in half—dysphagia, facial weakness, **respiratory insufficiency**
 - May have **autonomic involvement**—blood pressure lability, bradycardia, asystole
 - Spontaneous recovery begins in 2–3 weeks; some have residual weakness; improvement in inverse direction
- Diagnosis
 - Significant **increase in CSF protein** with normal glucose and no cells
 - Reduced motor and sensory nerve conductions
- Treatment
 - Mostly supportive
 - **Admit all patients** (observe respiratory effort)
 - Mild-observation
 - **Intravenous immunoglobulin** 2–5 days
 - May need plasmapheresis, steroids, interferon, or other immunosuppressives

Muscular Dystrophy

Duchenne

A 3-year-old boy is brought to the pediatrician because he is very clumsy. According to his parents, he has difficulty climbing stairs and frequently falls. On physical examination hypertrophy of the calves is noted.

- Primary myopathy with genetic basis; is progressive and results in degeneration and death of muscle fibers; most common of the neuromuscular diseases in all races and ethnic groups; X-linked recessive
- Clinical presentation
 - First sign may be poor head control in infancy.
 - By year 2, may have subtle findings of hip-girdle weakness
 - **Gower sign** as early as age 3 years but fully developed by age 5–6 years; with hip-waddle gait and lordotic posturing
 - **Calf pseudohypertrophy** (fat and collagen) and wasting of thigh muscles
 - Most walk without orthotic devices until age 7–10 years, then with devices until 12; once wheelchair-bound, **significant acceleration of scoliosis**
Progressive into second decade:
- Respiratory insufficiency
- Repeated pulmonary infections
- Pharyngeal weakness (aspiration)
- Contractures
- **Scoliosis** (further pulmonary compromise)
- **Cardiomyopathy** is a constant feature.
- **Intellectual impairment** in all; IQ <70 in about 30%; most with **learning disabilities**

Figure 21-3. Gower Sign in Duchenne Muscular Dystrophy
Death usually around age 18 years from respiratory failure in sleep, intractable heart failure, pneumonia, aspiration with obstruction

- **Lab studies**
 - CPK—15,000–35,000 U/L (normal is <160 U/L) (initial screen for myopathy)
 - Best initial test—molecular genetic diagnosis: deficiency or defective dystrophin cytoskeletal protein from gene at Xp21.2
 - Muscle biopsy to show the abnormal or absent dystrophin; most accurate test (do if dystrophin-negative)

- **Treatment**—multidisciplinary team
 - Digoxin for heart failure (all patients need cardiology referral)
 - Vigorous treatment of pulmonary infections
 - Maintain good nutrition; good calcium supply (prevent osteoporosis)
 - Physiotherapy—delay contractions; orthotic devices, proper wheelchair, physiatrist

Myotonic Dystrophy

Myotonic dystrophy is the second most common muscular dystrophy.

- **Autosomal dominant** inheritance; CTG trinucleotide expansion at 19q13.3; causes multiple dysfunctions in multiple organ systems
- **Involves both striated and smooth muscle**
- Most common findings may be present at birth; the severe congenital form occurs in a baby born to a mother with symptomatic disease:
 - Facial wasting: Inverted V-shaped upper lip, thin cheeks, scalloped concave temporalis muscles, narrow head, high arched palate
 - Hypotonia: mild weakness and progressive wasting of DISTAL muscles especially hands, then dorsal forearm and anterior compartment of lower leg, then atrophy of proximal muscles
 - Progressive difficulty in climbing steps and lastly a Gower sign
 - Slow progression through childhood to adulthood but rare to lose ability to walk
 - NOTE: The distal distribution of muscle wasting is the exception to the general rule of myopathies having a proximal and neuropathies a distal distribution
 - Myotonia: not evident until age >5; very slow relaxation of muscle after a contraction, but NOT a painful muscle spasm (difficulty opening fist or relaxing grip)

- **Other problems:**
 - Poor speech articulation, slurred
 - Difficulty swallowing, aspiration pneumonia
 - Extraocular muscle weakness; cataracts
 - Slow GI emptying, constipation
 - Ineffective uterine contractions
 - Heart block and arrhythmia (not cardiomyopathy as in other dystrophies)
 - Many endocrine problems
 - Half with intellectual impairment

- **Diagnosis:** CPK as a screen (in the hundreds compared to MD); EMG classic myotonic findings; best test is DNA (blood); biopsy not needed

- **Treatment:** supportive
Clinical Recall

Which of the following is true about muscular dystrophy versus myotonic dystrophy?

A. Creatine kinase is only elevated in myotonic dystrophy.
B. Gower sign is only seen in myotonic dystrophy.
C. Calf pseudohypertrophy is only seen in muscular dystrophy.
D. Distal muscle involvement is seen only in muscular dystrophy.
E. Trinucleotide repeats are present only in muscular dystrophy.

Answer: C
Learning Objectives

- Describe the presentation and emergency management of meningitis
- Describe the presentation and management of pertussis
- Recognize and describe treatment for mycobacteria, Lyme disease, and Rocky Mountain Spotted Fever
- Categorize and describe other important mycotic, viral, and helminthic diseases

MENINGITIS

A 6-year-old presents to the physician with the chief complaint of headache, vomiting, neck stiffness, and photophobia. Physical examination reveals an ill-appearing child unable to flex his neck without eliciting pain. Kernig and Brudzinski signs are positive.

Acute Bacterial (Older Than a Neonate)

- First 2 months of life (and some into month 3) represent maternal vaginal flora—group B Streptococcus, E.coli, Listeria
- Age 2 months to 12 years—S. pneumoniae (peaks in first 2 years), N. meningitidis (sporadic or in epidemics; direct contact from a daycare center or a colonized adult family member; increased in college freshmen living in dorms), and HiB (now uncommon due to many years of immunization)
- Pathology—meningeal inflammation and exudate
 - Most from hematogenous spread, initially from bacterial colonization of nasopharynx, and a prior or current viral infection may enhance pathogenicity
 - Rarely from an infection at a contiguous site (sinusitis, otitis media [OM], mastoiditis, orbital cellulitis)
Note
Infants may not have positive Kernig or Brudzinski sign in meningitis but will have bulging fontanelles on physical examination.

• Clinical presentation
 − Several days of fever, lethargy, irritability, anorexia, nausea, vomiting
 − Then meningeal irritation (photophobia, neck and back pain, and rigidity)
 ▶ Kernig sign: flexing of hip 90° and subsequent pain with leg extension (inconsistent)
 ▶ Brudzinski sign: involuntary flexing of knees and hips after passive flexing of the neck while supine (better test)
 − Increased ICP suggested by headache, emesis, bulging anterior fontanelles, oculomotor or abducens palsies, hypertension with bradycardia, apnea, decorticate or decerebrate posturing, stupor, coma
• Diagnosis—need lumbar puncture (LP) and blood culture in all (90% have positive blood culture)
 − Contraindications to immediate LP
 ▶ Evidence of increased ICP
 ▶ Severe cardiopulmonary problems requiring resuscitation
 ▶ Infection of skin over site
 ▶ Do not delay antibiotics for the CT scan.

Table 22-1. CSF Findings in Various Types of Meningitis

<table>
<thead>
<tr>
<th></th>
<th>Bacterial</th>
<th>Partially Treated</th>
<th>Granulomatous (TB)</th>
<th>Aseptic (Viral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells/mL</td>
<td>200–5,000</td>
<td>200–5,000</td>
<td>100–500</td>
<td>100–700</td>
</tr>
<tr>
<td>Cytology</td>
<td>Polymorphonuclear neutrophil</td>
<td>Mostly polymorphonuclear neutrophil</td>
<td>Lymphocytes</td>
<td>Mostly lymphocytes</td>
</tr>
<tr>
<td>Glucose†</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Normal</td>
</tr>
<tr>
<td>Protein</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Normal to slightly high</td>
</tr>
<tr>
<td>Gram stain</td>
<td>Positive</td>
<td>Variable</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Culture</td>
<td>Positive</td>
<td>Variable</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>CIE or LA</td>
<td>Positive</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Pressure</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Definition of Abbreviations: CIE, counterimmunoelectrophoresis; LA, latex agglutination
†CSF glucose concentration should be considered in relation to blood glucose concentration; normally CSF glucose is 50–70% of blood glucose.
Chapter 22 l Infectious Disease

• Treatment

Table 22-2. Empiric Antibiotic Therapy Based on Age for Bacterial Meningitis

<table>
<thead>
<tr>
<th>Age</th>
<th>Most Likely Organisms</th>
<th>Empiric Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 months</td>
<td>GBS, E. coli, L. monocytogenes</td>
<td>Ampicillin + cefotaxime</td>
</tr>
<tr>
<td>2-3 months</td>
<td>Above perinatal organisms + some S. pneumoniae + very little H. influenza type B</td>
<td>Ampicillin + cefotaxime/ceftriaxone + vancomycin (assume resistant S. pneumoniae)</td>
</tr>
<tr>
<td>3 months – 2 years</td>
<td>S. pneumoniae + N. meningitides</td>
<td>Vancomycin + cefotaxime/ceftriaxone</td>
</tr>
<tr>
<td>2-18 years</td>
<td>N. meningitides +</td>
<td>Vancomycin + cefotaxime/ceftriaxone</td>
</tr>
</tbody>
</table>

Data support the use of IV dexamethasone added to the initial treatment of meningitis due to HiB, beginning with the first dose for 4 doses in children age >6 weeks (this will rarely be the case). Decreased incidence of fever, elevated CSF protein, and 8th cranial nerve damage.

• Complications
 - Increased ICP with herniation and seizures
 - Subdural effusion, especially in infants with HiB, can cause seizures, persistent fever; drain if symptomatic.
 - Cranial nerve palsies, stroke, thrombosis of dural venous sinuses
 - Most common sequela is hearing loss (especially with pneumococcus)
 - Less common: intellectual disability, developmental delay, visual impairment

• Prevention
 - Chemoprophylaxis with rifampin for *N. meningitidis* and HiB, but not for *S. pneumoniae*
 - All close contacts regardless of age or immune status

Acute Meningococcemia

• Initially may mimic a viral disease (nonspecific)
• Any organ can be affected by vasculitis and thromboembolic disease.
• Characteristic meningococcal rash (black central arch and surrounding ring or erythema) often seen before more serious signs develop
• If fulminant—rapid progression: septic shock, disseminated intravascular coagulation, acidosis, adrenal hemorrhage, renal and heart failure
• Petechiae and purpura ± meningitis = purpura fulminans (DIC)
• Need high dose IV penicillin ASAP
• Chemoprophylaxis for close quarters (dorms, army barracks)
Viral (Aseptic) Meningitis

- Affects meninges and brain tissue variably; most are self-limited; person-to-person contact in summer and fall; most are enteroviruses
 - Arbovirus = arthropod-borne viruses; vectors are mosquitoes and ticks after biting infected birds or small animals; spreads to humans and other vertebrates
 - Rural exposure more common
 - Herpes simplex: focal; progresses to coma and death without treatment
 - Varicella zoster: most common presentation is cerebellar ataxia and acute encephalitis.
 - Cytomegalovirus: in immunocompromised, disseminated disease; or congenital infection but not in immunocompetent host
 - Epstein-Barr virus (EBV), mumps: mild but with 8th-nerve damage
- Clinical
 - Headache and hyperesthesia in older children
 - Irritability and lethargy in infants
 - Fever, nausea, vomiting, photophobia, and neck, back, and leg pain
 - Exanthems, especially echovirus and coxsackie, varicella, measles, and rubella
- Complications
 - Guillain-Barré syndrome, transverse myelitis, hemiplegia, cerebellar ataxia
 - Most completely resolve without problems except for neonates with HSV (severe sequelae)
- Diagnosis
 - PCR of CSF is the best test.
 - Viral culture
- Treatment—supportive, except acyclovir indicated for herpes simplex virus (HSV)

Clinical Recall

A 5-month-old boy presents to the emergency department with fever, lethargy, and meningismus. A lumbar puncture is performed, and CSF is sent for analysis. What is the best next step in management?

A. Ampicillin and ceftriaxone
B. Ampicillin, ceftriaxone, and vancomycin
C. Ceftriaxone and vancomycin
D. Ampicillin and vancomycin
E. IV fluids, and wait for CSF culture results before initiating antibiotic therapy

Answer: C

PERTUSSIS

A 10-month-old child who is delayed in immunizations presents with a paroxysmal cough. The patient appears ill and continuously coughs throughout the examination. The patient has facial petechiae and conjunctival hemorrhages. In addition, the patient has post-tussive emesis.
Chapter 22 l Infectious Disease

• Cause—Bordetella pertussis
 – Endemic; very contagious; aerosol droplets
• Neither natural disease nor vaccination provides complete or lifelong immunity; wanes after age 8–15 years
 – Subclinical reinfection
 – Coughing adolescents and adults are major reservoirs.
• Clinical presentation of whooping cough
 – Catarrhal phase (2 weeks)—coldlike symptoms (rhinorrhea, conjunctival injection, cough)
 – Paroxysmal phase (2–5 weeks)—increasing to severe coughing paroxysms, inspiratory “whoop” and facial petechiae; post-tussive emesis
 – Convalescent phase ≥2 weeks of gradual resolution of cough
• Diagnosis
 – History may reveal incomplete immunizations
 – Gold standard is PCR of nasopharyngeal aspirate 2–4 weeks after onset of cough, or a culture
• Treatment (See immunization chapter)
 – Supportive care
 – Always treat if suspected or confirmed: erythromycin for 14 days (other macrolides with similar results) only decreases infectious period of patient; it may shorten the course of illness; also treat all household members and any close contacts

Bartonella (Cat-Scratch Disease)

A 6-year-old presents with a swollen 3x5-cm tender, erythematous, anterior cervical neck node. He denies a history of fever, weight loss, chills, night sweats, or sore throat. The patient’s pets include a kitten, a turtle, and goldfish.

• Etiologic agent—Bartonella henselae
 – Most common cause of lymphadenitis lasting >3 weeks
 – Cutaneous inoculation (arthropod borne by cat flea); kittens transmit better than cats
 – Incubation period 3–30 days
• Clinical presentation
 – One or more 3- to 5-mm red to white papules along the linear scratch plus hallmark: chronic regional lymphadenitis
 – Other nonspecific findings: fever, malaise, headache, anorexia
 – Less common: abdominal pain, weight loss, hepatosplenomegaly, osteolytic lesion
 – Atypical presentation: Parinaud oculoglandular syndrome
• Diagnosis
 – Clinical with history of scratch from cat
 – Tissue: PCR and Warthin-Starry stain (shows gram-negative bacilli)
 – Serology: variable immunoglobulin IgG and IgM response (not good test)
• Treatment: aspiration of large and painful lesions; usually self-limiting and resolves in 2–4 mos; avoid antibiotics unless severe hospitalized case as there is discordance between in vitro and in vivo activity

Note
• Parinaud oculoglandular syndrome (similar to conjunctivitis) consists of unilateral conjunctivitis, preauricular lymphadenopathy, and cervical lymphadenopathy.
• It can be transmitted by rubbing the eye after touching a pet.
MYCOBACTERIA

Tuberculosis

A 10-year-old child is referred by the school nurse because of a positive tuberculin skin test. The patient has been well, without any associated complaints.

- **M. tuberculosis**
- High-risk reservoirs—recent immigrants, low SES, HIV, elderly
- Primary complex—affects the lung with local infection with hilar adenopathy
- Latent infection—reactive TB skin test and absence of clinical or radiographic findings
- Diagnosis
 - Skin testing
 - Delayed hypersensitivity—Mantoux (PPD) test, (+) most often 4–8 weeks after inhalation
 - Positive reaction (5, 10, 15 mm), depending on risk factors
 - Best—if can get sputum
 - 3 consecutive early A.M. gastric aspirates (still only 50%, even with PCR)
 - A negative culture never excludes the diagnosis.
- Clinical Presentation
 - Primary TB usually asymptomatic in children; healthy host will wall off the organism; occasionally, low-grade fever, mild cough, malaise which resolve in 1 week
 - Infants more likely to have signs and symptoms
 - Reactivation rare, (esp. if acquired <2 years of age) occurs during adolescence
 - Small number with extrapulmonary presentation; symptoms depend on location
- Presentation
 - Primary pulmonary disease
 - Localized nonspecific infiltrate
 - Large adenopathy compared to infiltrate: compression → atelectasis and hyperinflation; most resolve completely
- Extrapulmonary
 - Erosion into blood or lymph = miliary
 - Lungs
 - Spleen
 - Liver
 - Bone and joints—Pott disease (destruction of vertebral bodies leading to kyphosis)
 - **TB meningitis**—mostly affects brainstem; CN III, VI, VII palsies and communicating hydrocephalus
 - If reactivation—fever, anorexia, malaise, weight loss, night sweats, productive cough, hemoptysis, chest pain
• Treatment
 − Latent TB
 ◦ INH × 9 months
 − Primary pulmonary disease
 ◦ INH + rifampin × 6 months, plus pyrazinamide in first 2 months
 − Increased community resistance
 ◦ Add streptomycin, ethambutol or ethionamide
 − In some cases of meningitis, studies have shown decreased morbidity and mortality when corticosteroids added to regimen. Use adjunctively in patients with severe miliary disease and pericardial or pleural effusions.

Bacille Calmette-Guérin (BCG) Vaccination in the United States
• Not routine—variable efficacy, time-limited efficacy
• Only used in the following situations:
 − High-risk with close or long-term exposures
 − Continuous exposure to resistance strains
• Contraindicated in those with primary or secondary immune deficiencies

Perinatal Tuberculosis
• If mother has (+) PPD → obtain chest x-ray
• Start INH after first trimester if chest x-ray (−) and clinically stable → no separation, no evaluation of baby, INH prophylaxis for mother for 9 months
• If mother has suspected TB at delivery → separate baby from mother until chest x-ray obtained
 − If mother has disease → treat infant for TB with no further separation from mother and treat mother with anti-TB therapy until mother is culture negative for 3 months

LYME DISEASE
A 6-year-old child presents with a rash after camping on Long Island with his family. On physical examination, the rash has a red raised border with central clearing.

Borrelia Burgdorferi
• Most common vector-borne disease in the United States
• Most in southern New England, eastern Middle Atlantic states, and upper Midwest, with small endemic area along the Pacific coast
• *Ixodes scapularis*, i.e., the deer tick
• Clinical presentation: history of tick bite is helpful but absent in most; tick is small and often not seen by human eye; history of being in the woods or mountains should give suspicion
USMLE Step 2 CK • Pediatrics

– Early disease
 ◦ **Local: erythema migrans** 3–32 days after bite at site of the bite; **target lesion** (must be >10 cm in diameter) often called “bulls-eye” rash; fever, headache, and malaise most common symptoms; without treatment, lesion resolves in 1–2 weeks
 ◦ **Early disseminated: secondary lesions**, smaller than the primary + constitutional symptoms + lymphadenopathy; uveitis and Bell palsy (may be only finding); carditis (myocarditis, heart block); CNS findings (neuropathy, aseptic meningitis)
– Late disease: **arthritis** weeks to months later; affecting large joints, more likely to be chronic in adults

• **Diagnosis**
 – No definitive tests
 – Primarily **clinical and based on history + rash**
 – Quantitative ELISA test and confirmatory Western blot if the ELISA is positive or equivocal

• **Treatment**
 – Early: **doxycycline** 14–21 days (if age >8); **amoxicillin** (if age <8)
 – Ceftriaxone with meningitis or carditis (heart block)
 – Doxycycline or amoxicillin with Bell palsy

• **Prognosis**—excellent in children with permanent cure

Clinical Recall

For which of the following patients with Lyme disease is the correct treatment listed?

A. A 10-year-old boy with erythema migrans: doxycycline
B. A 5-year-old girl with meningitis: amoxicillin
C. A 2-year-old boy with erythema migrans: ceftriaxone
D. An 11-year-old girl with carditis: doxycycline
E. An 8-year-old boy with Bell palsy: ceftriaxone

Answer: A

ROCKY MOUNTAIN SPOTTED FEVER

A 17-year-old presents to the emergency department with his friends because of fever, headache, and a rose-colored rash that began on his ankles and is spreading. The patient and his friends have been camping in Virginia.
Rickettsia Rickettsii

- Consider in differential diagnosis of fever, headache, and rash in summer months, especially after tick exposure
- Seen now in every state; most in Southeast, especially in North Carolina
- Wooded areas, coastal grasses, and salt marshes
- Most April–September; most patients age <10 years
- Ticks are the natural hosts, reservoirs, and vectors (dog tick, wood tick, brown dog tick).
- Clinical presentation
 - Incubation period 2–14 days, then headache, fever, anorexia, myalgias, gastrointestinal (GI) symptoms early
 - After third day—skin rash
 - Extremities first (palms, soles)
 - Spreads rapidly
 - Becomes petechial/hemorrhagic
 - Palpable purpura
 - Vascular obstruction, due to vasculitis and thromboses, leads to gangrene
 - Hepatosplenomegaly
 - CNS: delirium, coma, and other neurologic findings
 - Myocarditis, acute renal failure, pneumonitis, shock
 - Severe or fatal disease usually due to delay in diagnosis and treatment
- Diagnosis
 - Strong clinical suspicion
 - Confirm with serologic tests; fourfold increase in antibody titer (acute, convalescence)
- Treatment—doxycycline or tetracycline in all patients regardless of age (chloramphenicol in allergy only)

MYCOTIC INFECTIONS

Candida

A newborn infant is noted to have white plaques on his buccal mucosa that are difficult to scrape off with a tongue depressor. When removed, a small amount of bleeding is noted by the nurse. The infant just received a course of empiric antibiotics for suspected Group B β-hemolytic Streptococcus infection.

- Most human infections with C. albicans; part of normal gastrointestinal tract and vaginal flora of adults
- Oral infection = thrush; white plaques; seen with recurrent or continuing antibiotic treatment and immunodeficiency and normally in breast-fed infants
 - Diagnosis—punctate bleeding with scraping
 - Treatment—oral nystatin; if recalcitrant or recurrent, single-dose fluconazole
• Diaper dermatitis: intertriginous areas of perineum; confluent, papular erythema with satellite lesions
 - Diagnosis—skin scrapings; see yeast with KOH prep, but not usually necessary in the presence of clinical findings
 - Treatment—topical nystatin; if significant inflammation, add 1% hydrocortisone for 1–2 days

• Catheter-related fungemia can affect any organ; may look like bacterial sepsis
 - Diagnosis—buffy coat, catheter tips, urine shows yeast, culture
 - Treatment—remove all catheters; amphotericin B is drug of choice

• Chronic mucocutaneous candidiasis—primary defect of T lymphocytes in response to *Candida*; often when endocrine (diabetes mellitus) and autoimmune disease

Cryptococcus Neoformans

• Soil contaminated with bird droppings, or in fruits and vegetables
• Predominant fungal infection in HIV patients; rare in children and immunocompetent
• Inhalation of spores; in immunocompromised (mostly in HIV patients) disseminated to brain, meninges, skin, eyes, and skeletal system; forms granulomas
• **Pneumonia most common presentation**; asymptomatic in many; otherwise, progressive pulmonary disease
• Diagnosis
 - Latex agglutination—cryptococcal antigen in serum; most useful for CSF infections
• Treatment
 - Oral fluconazole for 3–6 months if immunocompetent and only mild disease
 - Amphotericin B + flucytosine if otherwise
 - In HIV—lifelong prophylaxis with fluconazole
Coccidioidomycosis (San Joaquin Fever; Valley Fever)

A 14-year-old who lives in Arizona presents to the physician with a 10-day history of fever, headache, malaise, chest pain, and dry cough. He is currently in New York visiting relatives and is accompanied by his aunt. Physical examination reveals a maculopapular rash and tibial erythema nodosum.

- Inhaled arthroconidia from dust; no person-to-person spread
- Types
 - Primary (self-limiting)
 - Residual pulmonary lesions (transient cavity or chest x-ray)
 - Disseminating—can be fatal; more common in males, Filipino/Asians, blood group B
 - Influenza-like symptoms
 - Chest pain
- **Dry, nonproductive cough**
 - Maculopapular rash
 - **Tibial erythema nodosum**
- Diagnosis
 - Sputum should be obtained via bronchoalveolar lavage or gastric aspirates.
 - Diagnosis is confirmed by culture, PCR
- Treatment—most conservative; for those at high risk of severe disease, treatment as with histoplasmosis

VIRAL INFECTIONS

Viral Exanthematous Disease

![Image of rash](phil.cdc.gov)

Figure 22-2. Typical Appearance of Morbilliform Rash Seen in Measles Infection

Note

Disseminated Coccidiomycosis Triad
- Flu-like symptoms +/- chest pain
- Maculopapular rash
- Erythema nodosum
Measles

A mother presents to the physician with her adopted daughter, who has just arrived in the United States from a foreign country. The immunization record is not up-to-date. The child has coryza, cough, conjunctivitis, and fever. The mother states that the child also has a rash that began cephalad and spread caudad. On physical examination, a morbilliform rash is seen over the body including the palms. Tiny grayish white dots are seen on the buccal mucosa next to the third molar.

- Rubeola—10-day measles
- RNA Paramyxovirus, very contagious
- Risk factors—Unimmunized entering high school or college
- Incubation—10–12 days before prodrome appears
- Prodrome—3 Cs
 - Cough
 - Coryza
 - Conjunctivitis, then Koplik spots (grayish-white spots on buccal mucosa)
- Final—rash + fever (occur concurrently)
 - Rash—macular; starts at head (nape of neck and behind ears) and spreads downward; fades in same manner
- Diagnosis—mainly clinical
- Treatment—supportive, vitamin A (if deficient)
- Complications—otitis media (most common), pneumonia, encephalitis
- Prevention—immunization

Rubella

A 5-year-old child who has delayed immunizations presents with low-grade fever, a pinpoint rash, postoccipital and retroauricular lymphadenopathy, and rose spots on the soft palate.

- German, 3-day measles
- Risk factors/Etiology—Incubation 14–21 days; contagious 2 days before rash and 5–7 days after rash
- Clinical Presentation
 - Rash similar to measles, begins on face and spreads to rest of body, lasts approximately 3 days; concurrent with fever
 - Retroauricular, posterior, and occipital lymphadenitis are hallmarks.
 - Forscheimer spots—affect the soft palate and may appear before onset of the rash
 - Polyarthritis (hands) may occur in some patients, especially older females.
- Diagnosis—clinical
- Treatment—supportive
- Prevention—immunization with MMR vaccine
- Complications—congenital rubella syndrome seen if contracted during pregnancy (see Newborn chapter)
Roseola

A 15-month-old infant is brought to the physician because of a rash. The mother states that the patient had a fever of 40°C (104°F) for the last 3 days without any source of infection. She explains that the fever has resolved, but now the child has pink, slightly raised lesions on the trunk, upper extremities, face, and neck.

- Also known as exanthema subitum
- Etiology—febrile illness of viral etiology; due to infection with human herpes virus—HHV-6; peaks in children age <5 years, usually 6–15 months; incubation period 5–15 days
- Clinical Presentation
 - High fever (up to 41°C [106°F]) lasting a few days with only signs and symptoms of URI
 - By day 3 or 4, the fever resolves and a maculopapular rash appears on the trunk, arms, neck, and face
 - Characteristic rose-colored rash begins as papules
- Diagnosis and treatment—clinical diagnosis based on age, history, and physical findings. No studies necessary and treatment is supportive.

Mumps

A 4-year-old child is brought to the clinic by his mother with a history of swelling in his face and fever for the last 4 days. His history includes incomplete immunizations due to religious beliefs. Physical examination reveals bilateral, tender facial swelling around the area of the masseter muscle and fever of 39.3°C (102.7°F).

- Etiology/Risk Factors—viral infection due to Paramyxovirus transmitted through air-borne droplets and respiratory/oral secretions.
 - Most common in winter/spring
 - Incubation period from 14–24 days
 - Contagious 1 day before and 3 days after swelling appears
 - History usually reveals inadequate or lacking immunizations
- Clinical Presentation
 - Constitutional findings: fever, headache, and malaise
 - Unilateral or bilateral salivary gland swelling, predominantly in the parotids
 - Orchitis (and oophoritis) possible, rare before puberty
 - May result in sterility only if bilateral
- Diagnosis—clinical and based upon history/physical findings
- Treatment—supportive
- Meningoencephalomyelitis most common complication; others include pancreatitis, thyroiditis, myocarditis, deafness, and dacryoadenitis
Varicella

A 5-year-old child is brought to the emergency center because he has a temperature of 38.9°C (102°F) and is developing a pruritic rash. The rash appears to be in various stages of papules, vesicles, and crusts. It began on his trunk and spread to his extremities.

- **Etiology/Risk Factors**—due to varicella-zoster virus, a herpes virus
 - Incubation 10–21 days
 - Transmitted through respiratory secretions
 - Remains latent in sensory ganglia after recovery → reactivation in immunosuppressed
- **Clinical Presentation**—nonspecific symptoms and fever preceding rash
 - Pruritic rash in various stages
 - Macules → papules → vesicle → open vesicle → crust
 - Lesions can turn hemorrhagic.
 - Crops of lesions at same time
- **Clinical diagnosis**—no labs
- **Treatment**
 - Supportive in immunocompetent; treat secondary infection
 - Consider acyclovir and VZIG in immunocompromised or those at risk for severe disease
- **Complications**—worse in adolescence (scarring)
 - Varicella pneumonia seen in 15–20%
 - Other sequelae include Guillain-Barré syndrome, encephalitis, cerebellar ataxia, postherpetic neuralgia, and Ramsay-Hunt syndrome.
 - Congenital varicella (see Newborn chapter)
- **Prevention**—second vaccine dose recommended
Erythema infectiosum (fifth disease)

A 4-year-old is brought to the physician’s office because she developed red cheeks that appear as if someone has slapped her and a lacy rash on her upper extremities and trunk.

- Etiology—due to Parvovirus B19, a DNA virus; seen most commonly in spring
- Clinical Presentation
 - Mild systemic symptoms
 - Arthritis
 - Intensely red “slapped cheek” appearance
 - Lacy, reticular rash over trunk and extremities
 - Sparing of palms and soles
 - Rash may last up to 40 days
- Diagnosis—clinical; labs not routine except when diagnosing hydrops, then viral DNA in fetal blood is often helpful
- Complications—aplastic crisis in patients with hemolytic anemia; hydrops fetalis in neonates during maternal infection in first trimester

Clinical Recall

An unimmunized 6-year-old boy presents with a rash. Which of the following favors a diagnosis of measles?

A. Retroauricular lymphadenitis
B. Maculopapular rash that includes the hands and feet
C. Lacy, reticular rash over the trunk and extremities
D. Macular rash on the neck that has spread down to the trunk
E. Vesicular rash with interspersed crusted lesions

Answer: D
<table>
<thead>
<tr>
<th>Table 22-3. Common Childhood Infections with Exanthems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodrome</td>
</tr>
<tr>
<td>Measles</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rubella</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mumps</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Varicella</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fifth Disease</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Roseola</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Scarlet Fever</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
OTHER VIRAL DISEASES

Epstein-Barr Virus

A 22-year-old college student presents to the clinic complaining of fever, fatigue, and sore throat that have not improved for the last 2 weeks. Physical examination reveals generalized adenopathy most prominent in the anterior and posterior cervical nodes.

• Etiology/Risk Factors
 – Infectious mononucleosis (90%)
 – First human virus to be associated with malignancy
 o Nasopharyngeal carcinoma
 o Burkitt lymphoma
 o Others: Hodgkin disease, lymphoproliferative disorders, and leiomyosarcoma in immunodeficiency states
 – Transmitted in oral secretions by close contact (kissing disease); intermittent shedding for life
 – Incubation period: 30–50 days; most cases in infants and young children are clinically silent

• Clinical presentation
 – Insidious, vague onset: prodrome for 1–2 weeks with fever, fatigue, headache, myalgia, sore throat, abdominal pain
 – Generalized lymphadenopathy (most in anterior and posterior cervical and submandibular nodes; less often in axillary, inguinal, epitrochlear nodes), splenomegaly (half the cases; 2–3 cm), and a small number with hepatomegaly
 – Moderate to severe pharyngitis with tonsillar exudative enlargement
 – Small number with rashes (maculopapular); most will have rash if treated with ampicillin or amoxicillin (immune-mediated vasculitic rash)

• Diagnosis
 – Atypical lymphocytosis
 – Heterophile antibodies (Monospot test)
 – IgM to viral capsid (IgM–VcA–EBV) antigen is the most valuable and specific (up to 4 months).

• Treatment
 – Rest and symptomatic therapy
 – No contact sports or strenuous activity with splenomegaly
 – Short course of steroids for complications: incipient airway obstruction, thrombocytopenia with hemorrhage, autoimmune hemolytic anemia, seizures, meningitis

• Complications
 – Splenic hemorrhage or rupture (very rare); most in second week, most with trauma
 – Swelling of tonsils and oropharyngeal lymphoid tissue: airway obstruction
 – Neurological complications rare; Guillain-Barré syndrome
 – Aplastic anemia
Interstitial pneumonia
- Myocarditis

- Prognosis
 - Most cases resolve in 2–4 weeks; some disability that comes and goes for a few months is common; and there may be fatigue for a few years
 - There is no evidence of second attacks from EBV and no evidence that EBV is related to chronic fatigue syndrome

Influenza Viruses

A 14-year-old girl is brought to the physician’s office by her mother. She has a 2-day history of fever of 39.7°C (103.5°F), headache, sore throat, refusal to eat, myalgia, chills and non-productive cough. Her current temperature in the clinic is 39.3°C (102.7°F).

- Etiology/Risk Factors
 - Three types—A, B, and C, with A and B being the primary pathogens of epidemic disease; now, also since 2009, H_1N_1
 - Migratory avian hosts may be responsible for spread.
 - Annual spread between Northern and Southern hemispheres; origin of new strains often traced to Asia
 - One or 2 predominant strains spread annually
 - Attack rate highest in the young; colder months in temperate climates
 - Transmission by small particle aerosol

- Clinical presentation
 - Predominantly respiratory illness
 - **Abrupt onset** with coryza, conjunctivitis, pharyngitis, and **dry cough**
 - Prominent systemic signs: **fever (2–4 days)**, **myalgia, malaise, headache**

- Diagnosis
 - Virus can be isolated from nasopharynx early in course.
 - Rapid diagnostic test: ELISA
 - Can be confirmed serologically with acute and convalescent titers or PCR

- Treatment
 - Rest and adequate fluid intake
 - Control of fever
 - **Antiviral drugs**: decrease severity and duration if administered within first 48 hours of symptoms

- Complications—otitis media, pneumonia; secondary bacterial infection, myocarditis
Coxsackievirus

A 2-year-old infant is brought to the clinic with a vesicular rash in his mouth and on his palms and soles. Examination reveals a rash on his buttocks.

- Etiology/Risk Factors—due to infection with coxsackievirus A16
- Clinical diagnosis: Characteristic lesions—seen anywhere but especially on the oral mucosa, hands and feet; hand-foot-mouth disease. Rash on the buttocks is common.
- Coxsackievirus B also responsible for viral myocarditis
- Treatment is supportive care

Adenovirus

A 12-year-old patient presents with fever, sore throat, and follicular conjunctivitis.

- Etiology/Risk Factors—DNA virus responsible for URIs in infants and children
- Clinical Presentation—Fever, pharyngitis, conjunctivitis, and diarrhea are common.
 - Less common features include pharyngoconjunctival fever, myocarditis, and intussusception.
- Diagnosis—serology, viral culture, or PCR, but not usually necessary
- Treatment—supportive

Poliovirus

- Etiology/Risk Factors—lives in gastrointestinal track
- Clinical Presentation—can cause URI symptoms
 - Paralytic polio
 - Asymmetric flaccid paralysis
- Prevent with vaccination
Acquired Immunodeficiency Syndrome (AIDS)

An 18-month-old has failure to thrive and developmental delay. The patient also has a history of recurrent ear infections, oral thrush, and chronic diarrhea. The patient on physical examination today is noted to have lymphadenopathy.

- Etiology/Risk Factors
 - Most are children born in developing countries; acquired at birth from an HIV-positive mother
 - Breastfeeding in developing countries is an important route of transmission.
 - Pregnant females in United States and other developed countries are routinely screened for HIV infection in prenatal labs, unless the patient refuses.
 - Early treatment and prevention of neonatal infection through anti-retroviral therapy and preventive measures during delivery/postpartum period

- Clinical presentation
 - HIV-infected newborns: rapid onset of symptoms and AIDS in first few months of life
 - Initial symptoms may include
 - Lymphadenopathy
 - Hepatosplenomegaly
 - Failure to thrive
 - Chronic diarrhea
 - Interstitial pneumonia
 - Oral thrush
 - Children > adults: recurrent bacterial infections, chronic parotid swelling, lymphocytic interstitial pneumonitis, early progressive neurological deterioration

- Infections
 - Recurrent bacterial infections with encapsulated organisms and other gram-positive and gram-negative organisms
 - Opportunistic infections; most common is PCP (onset of fever, tachypnea, dyspnea, and marked hypoxemia)
 - *Mycobacterium avian-intracellulare complex*: disseminated disease in severely compromised
 - Oral candidiasis and other invasive fungal infections
 - Viral infections, especially herpes group

- Other problems
 - CNS disease
 - Cardiomyopathy
 - Enteropathy
 - Wasting syndrome, nephropathy
 - Many cutaneous manifestations
 - All hematologic manifestations, malignancies
• Diagnosis
 − HIV-DNA by PCR
 − Maternal HIV IgG antibodies cross the placenta
 o Screen will be positive in all newborns up to age 18 months so need 2 of 3 PCR for HIV in first month of life.
 − In any child >18 months of age: test for infection through IgG Ab by ELISA and then confirm with Western blot to establish the diagnosis.

• Treatment—infants born to HIV-infected mothers
 − Mother should be on perinatal triple anti-retroviral therapy and then IV ZDV at start of labor until cord is clamped
 − Infant should be started on ZDV (birth) until neonatal disease is excluded
 o Also start PCP prophylaxis (TMP-SMZ) at 1 month until disease excluded
 o Follow CBC, platelets, CD4 and CD8 counts
 o With symptoms or evidence of immune dysfunction, should be treated with antiretroviral therapy, regardless of age or viral load

• Prognosis
 − Best single prognostic indicator is the plasma viral load.
 − Mortality higher with CD4 count <15%
 − Poor prognosis with persistent fever and/or thrush, serious bacterial infection (meningitis), hepatitis, persistent anemia, and/or thrombocytopenia (30% die by age 3)
 − Children with opportunistic infection, encephalopathy, or wasting syndrome have the worst prognosis (75% die by age <3)

Clinical Recall

Which of the following best supports a diagnosis of coxsackie virus A?

A. New rash after treatment with amoxicillin
B. Diffuse rash with ulcerative lesions in the mouth
C. Myalgias, fever, and dry cough of abrupt onset
D. Chest pain and myocardial infection
E. Diarrhea and pharyngitis

Answer: B
HELMINTHIC DISEASES

Ascariasis

A child is brought to the physician's office because his mother found a "worm" while changing his diaper. He also has a chronic cough with pinkish sputum.

- Etiology/Pathogenesis—*Ascaris lumbricoides*; nematode (roundworm)
 - Most prevalent human helminth in the world
 - High prevalence in poor socioeconomic status countries, with use of human waste as fertilizer, and with geophagia (highest in preschool age)
 - Travels to the small intestines → releases larvae → migrates through venous circulation to lungs and causes pulmonary ascariasis (Loeffler syndrome) → through alveoli and bronchi to trachea and are swallowed mature in intestine to adult worms
- Clinical Presentation—most asymptomatic or mild
 - Most common symptom is pulmonary disease—cough and blood-stained sputum
 - Followed by obstructive intestinal or biliary tract disease
 - May have colicky abdominal pain or bile-stained emesis
 - CBC reveals significant blood eosinophilia
 - Can be identified on fecal smear
- Treatment—*albendazole*, mebendazole, or pyrantel pamoate

Hookworm

A 5-year-old girl is brought to the physician due to lack of appetite, abdominal pain, and diarrhea. On physical examination a yellow-green pallor is noted.

- Etiology/Risk Factors—*Ancylostoma duodenale* and *Necator americanus* are nematodes transmitted through warm, moist soil; usually in rural areas where human waste is used as fertilizer.
 - Penetrate through the skin (leads to intense pruritis at site of entry) or are ingested
 - Migration through veins to lungs and are swallowed → have teeth to attach to mucosa and can remain up to 5 years, where they mate and produce eggs
- Clinical Presentation—Morbidity from blood loss
 - Iron deficiency anemia
 - Hypoalbuminemia → edema, anasarca
 - Also, cough, colicky abdominal pain, anorexia, diarrhea
 - Physical growth retardation, cognitive and intellectual deficits
 - Green-yellow skin discoloration known as *chlorosis* and seen in chronic infection
 - Labs reveal significant blood eosinophilia.
 - Eggs can be identified on fecal smear.
- Treatment—*mebendazole* or *albendazole* is drug of choice; pyrantel pamoate an alternative
 - *Ferrous sulfate* if iron deficient

Note

Loeffler syndrome = pulmonary ascariasis plus hemoptysis

Note

Most parasites, ova, and cysts can be identified on fecal smear.
Enterobiasis

A mother brings her 4-year-old child to the physician with a history of always scratching her anus. The mother is embarrassed by this behavior. The child attends daycare and loves to play in the sandbox.

- **Etiology**—*Enterobius vermicularis* is the parasite implicated in pinworm infection.
 - Small, white, threadlike nematodes
 - Most common helminth in the United States
 - Primarily in institutional/family settings that include children; highest at age 5–14
 - Eggs are ingested from being carried on fingernails, clothing, bedding, or house dust; after ingestion, adult worms within 1–2 months
 - Inhabits cecum, appendix, ileus, and ascending colon; **female migration at night to deposit eggs on perianal region and perineum**
- **Clinical Presentation**—most common symptoms include **itching and restless sleep** and **no eosinophilia**
- **Diagnosis**—history and use of **adhesive cellophane tape** (tape test) **at night when child is asleep**
- **Treatment**—infected person and entire family receive **single oral dose of mebendazole and repeat in 2 weeks**
Learning Objectives

- Describe the epidemiology including morbidity and mortality of diseases of adolescence
- Answer questions related to adolescent sexuality and sexually transmitted diseases
- Describe the causes and treatments of acne

MORTALITY/MORBIDITY, SEXUALITY, AND STIs

A 14-year-old girl who has not yet achieved menarche presents to the physician with her concerned mother. The mother is afraid that her daughter is not “normal.” Physical examination reveals a well-nourished girl in the 50th percentile for height and weight. Breast examination shows an enlarged areolar diameter but no separation of contours. Pubic hair is increased in amount and curled but not coarse in texture. The mother and her daughter wait anxiously for your opinion.

Adolescence and Puberty

Adolescence is the period bridging childhood and adulthood. It begins at age 11–12 years and ends at age 18–21. It includes puberty, which is the process when a child matures into an adult capable of sexual reproduction.

The physical and psychological changes that occur at this time include completed pubertal/somatic growth and social/cognitive/emotional development, moving from concrete to abstract thinking, establishing an independent identity, and preparing for a career.

All adolescents are at increased risk of mortality and morbidity.

- **Mortality:** accidents, especially motor vehicle; suicide (boys are more successful); homicide (more likely in blacks); and cancer (Hodgkin lymphoma, bone, CNS)
- **Morbidity:** unintended pregnancy; STIs; smoking; depression; crime

There are 3 stages of adolescence.

- **Early (age 10-14 years)**
 - Physical changes (puberty) including rapid growth, puberty including development of secondary sexual characteristics
 - Compare themselves to peers (develop body image and self-esteem)
 - Concrete thinkers and feel awkward
• **Middle (age 15-16 years)**
 - More independent and have sense of identity
 - Mood swings are common
 - Develop abstract thinking
 - Develop relationships that are one-sided and narcissistic

• **Late (age >17 years)**
 - Less self-centered
 - Develop relationships with individuals rather than groups
 - Contemplate future goals, plans, careers
 - Idealistic; have a sense of right and wrong

While puberty is irreversible, there is variability in its onset and duration. There is, however, no variability in the *order* of the changes, i.e., physical changes during this time reflect hormonal changes in the body.

Because puberty occurs at an individual rate, an accepted scale to determine progression is the **Tanner stage scale**, identifying stages of development rather than age.

Variants of development are normal and most cases require only **reassurance** to the patient and family. For example, breast asymmetry and gynecomastia are often seen in boys at Tanner stage 3, and irregular menses due to anovulatory cycles is often seen in girls starting to menstruate.

Table 23-1. Tanner Stages of Development (Sexual Maturity Rating)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Female</th>
<th>Both</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Breast</td>
<td>None</td>
<td>Childhood size</td>
</tr>
<tr>
<td>II</td>
<td>Breast bud</td>
<td>Sparse, long, straight</td>
<td>Enlargement of scrotum/testes</td>
</tr>
<tr>
<td>III</td>
<td>Areolar diameter enlarges</td>
<td>Darker, curling, increased amount</td>
<td>Penis grows in length; testes continue to enlarge</td>
</tr>
<tr>
<td>IV</td>
<td>Secondary mound; separation of contours</td>
<td>Coarse, curly, adult type</td>
<td>Penis grows in length/breadth; scrotum darkens, testes enlarge</td>
</tr>
<tr>
<td>V</td>
<td>Mature female</td>
<td>Adult, extends to thighs</td>
<td>Adult shape/size</td>
</tr>
</tbody>
</table>
Sexually Transmitted Infections

Gonorrhea

A 16-year-old girl presents with fever, chills, pain, and swelling in the small joints of her hands and a maculopapular rash on her upper and lower extremities.

- *Neisseria gonorrhoeae* usually infects mucosal membranes of the genitourinary tract and less commonly the oropharynx, rectum, and conjunctiva.
- Clinical presentation includes urethritis, cervicitis, and dysuria.
- Asymptomatic patients are at higher risk for dissemination, including fever, chills, and arthritis.
- Physical examination
 - Males present with dysuria and purulent penile discharge.
 - Females present with purulent vaginal discharge, cervicitis, abdominal pain, and/or dysuria.
 - Rectal gonorrhea may present with proctitis, rectal bleeding, anal discharge, and/or constipation.
- Tests: culture from discharge; blood culture if dissemination is suspected; Gram stain may show intracellular diplococci
- Check for other STIs, including syphilis and HIV infection.
- Treatment: single-dose ceftriaxone or azithromycin (treat partners); alternatively, doxycycline for 7 days but **not age < 9**

Chlamydia

A 16-year-old boy presents to the emergency department with a persistent penile discharge. The patient states that one week ago he saw his family physician for this same problem, and received an IM shot of penicillin. However, the discharge has not resolved, and he would like a second opinion.

- Cause of nongonococcal urethritis
- Intracellular obligate parasites
- Most common STI in developed countries
- Mucoid discharge (mostly females) or lymphogranuloma venereum
- Tests: nucleic acid amplification (PCR, ELISA); culture of infected tissue
- Treatment: single-dose azithromycin or doxycycline for 7 days; erythromycin if pregnant

Note

Untreated gonorrhea/Chlamydia may result in PID and/or infertility (due to tubal scarring).
Trichomonas

A 15-year-old presents to her physician with a yellow, foul-smelling vaginal discharge. On physical examination, she is noted to have a “strawberry cervix.”

- *Trichomonas vaginalis* is a protozoan resulting in vaginitis
- Girls with multiple sexual partners are at high risk (though this true of all STIs)
- Frothy, foul-smelling vaginal discharge; males asymptomatic
- “Strawberry cervix” due to hemorrhages in the mucosa
- In females, wet prep shows motile protozoans; in males, examine urine sediment after prostatic massage
- Treat with metronidazole

Herpes

A 17-year-old, sexually active boy presents to the physician because of painful ulcerations on his glans penis and on the shaft of his penis. He has multiple sexual partners and does not use condoms. Fever and inguinal adenopathy are also present.

- HSV 1: nongenital infections of mouth, eye, and lips most common
- HSV 2: genital, neonatal, oral
 - Cervix primary site in girls; penis in boys
 - Tzanck prep—giant multinuclear cells
 - ELISA testing
- Treat with acyclovir, valacyclovir, famciclovir

Table 23-2. Distinguishing Features of Vaginal Discharge

<table>
<thead>
<tr>
<th>Feature</th>
<th>Bacterial vaginosis</th>
<th>Trichomoniasis</th>
<th>Candida</th>
<th>Chlamydia/ gonorrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>Profuse, malodorous, “fishy”</td>
<td>Gray-green, frothy</td>
<td>Cottage cheese</td>
<td>Purulent</td>
</tr>
<tr>
<td>Wet prep</td>
<td>Clue cells, “whiff test” with KOH</td>
<td>Motile Trichomonads</td>
<td>Hyphae seen with KOH prep</td>
<td>WBCs</td>
</tr>
<tr>
<td>pH</td>
<td>>4.5</td>
<td>>5</td>
<td><4.5</td>
<td>—</td>
</tr>
<tr>
<td>STI</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Clinical Recall

An 18-year-old girl presents with abdominal pain and gray-green vaginal discharge. Motile trichomonads are visualized on wet prep. What is the treatment of choice?

A. Metronidazole
B. Acyclovir
C. Azithromycin
D. Ceftriaxone and azithromycin
E. Clotrimazole

Answer: A

ACNE

A mother brings her 15-year-old daughter to the dermatologist because she has developed pimples. The mother says that her daughter’s face “breaks out” because she drinks soda pop. The daughter is argumentative about this but admits that she does drink soda pop every day at lunch. The mother would like you to tell her daughter to stop drinking soda pop. On physical examination, the patient has open and closed comedones and pimples on her forehead, nose, and cheeks.

• Pathogenesis
 – Due to the bacteria—Propionibacterium acnes, which forms free fatty acids within the sebaceous follicle
 – Abnormal keratinization of follicular epithelium and impaction of keratinized cells in sebaceous follicles
 – Increased sebum production—At puberty, significant increase in sebum from increased adrenal androgens (mostly DHEAS with some role of testosterone and estrogen)
 – Inflammation from lysosomal enzymes, which phagocytose bacteria
• Description: an open comedone is a blackhead, while a closed comedone is a whitehead (more commonly becomes inflammatory)
 – If comedones rupture, inflammatory lesion and contents spill into adjacent dermis; if close to the surface, forms a papule or pustule; if deeper, forms a nodule
 – With suppuration → giant-cell reaction to keratin and hair; forms nodulocystic lesion
• Treatment must be individualized.
 – Cleansing of skin with mild soap
 – Topical therapy for treatment of comedones and papulopustular acne: benzoyl peroxide; tretinoin (Retin-A) most effective agent for comedonal acne; adapalene (Differin gel); antibiotics (erythromycin, clindamycin)
Systemic therapy for those who do not respond to topical agents.

- Antibiotics: especially tetracycline, minocycline, doxycycline, erythromycin, clindamycin
- Isotretinoin: for moderate to severe nodulocystic disease. Very teratogenic (contraindicated in pregnancy) and may cause increased triglycerides/cholesterol, so rule out liver disease beforehand and check triglycerides 4 wks post-treatment
- A trial of hormonal therapy can be used in those who are not candidates for isotretinoin.
- Corticosteroid injections to aid in healing painful nodulocystic lesions.
- Dermabrasion to decrease visible scarring.

Note
Isotretinoin is very teratogenic and contraindicated in pregnancy.
Index

A
Abdominal mass
 intussusception, 151
 neuroblastoma, 216
 obstructive uropathy, 156
 Wilms tumor, 215
Abdominal trauma, physical abuse, 65
Abetalipoproteinemia, 140
ABO antigens and jaundice, 11
Absence seizures, 223
Abuse and neglect, 63–67
 nutritional neglect, 39–40, 63
 requirement to report, 40, 63, 64, 66, 67
Achondroplasia, 26
Acidosis of meningococcemia, 239
Acne, 265–266
Acoustic neuromas, 226
Acquired heart disease and rheumatic fever, 134
Active immunizations, 53–55
 postexposure, 56
 rules and precautions, 53–55
 schedule of, 61
Acute chest syndrome, 203
Acute lymphoblastic leukemia (ALL), 211–212
Acute otitis media (AOM) and sinusitis, 111
Acute renal failure (ARF)
 acute poststreptococcal glomerulonephritis, 157–158
 hemolytic uremic syndrome, 159–160
 Adams test, 181
 Addison disease, 169
 Adenopathy. See Lymphadenopathy
 Adenosine deaminase (ADA), 197
 Adenovirus, 255
 diarrhea and, 138, 255
Adolescents
 acne, 265–266
 aortic outflow murmur, 119
 bone tumors, 184
 cardiac evaluation, 115
 diarrhea, 138
 growth, 31
 gynecomastia, 167
 Hodgkin lymphoma, 212
 hypertension, 136
 hypothyroidism, 169
 iron-deficiency anemia, 196
 lupus presentation, 188
 mortality and morbidity risks, 261
 Osgood-Schlatter disease, 181
 pertussis reservoirs, 241
 priapism of sickle cell anemia, 203
 prolactinoma, 167
 puberty, 261–262
 retinoblastoma history, 184
 scoliosis, 181
 sexually transmitted infections, 263–265
 sinusitis tenderness, 112
 slipped capital femoral epiphysis, 178–179, 180
 stages of adolescence, 261–262
 Tdap booster vaccine, 57
 testicular torsion, 163
 Adrenal hemorrhage, 239
 Adrenal hyperplasia, congenital, 171–172
 Adrenarche, premature, 167
 Age. See Chronological age
 AIDS–acquired immunodeficiency syndrome, 256–257
 Airway foreign body, 72, 110
 Alagille syndrome, 123
 Alcohol
 breastfeeding contraindication, 41
 fetus and, 28
 Allergies
 allergic rhinitis, 83–85
 allergic shiners, 83
 anaphylaxis, 87
 asthma, 90
 atopic dermatitis, 88–89
 breast milk benefits, 40
 egg allergies, 55
 epistaxis, 110–111
 food reactions, 85–86
 insect venom, 85
 Alpha globin chains, 206
 Alpha thalassemia, 205
 Alpha-fetoprotein, 219
 Alport syndrome, 5, 158–159
 Ambiguous genitalia, 171–172
 Amenorrhea
 acquired hypopituitarism, 165
 Cushing syndrome, 172
 cystic fibrosis, 79
 prolactinoma, 167
 Turner syndrome, 23
 Anal fissures and bleeding, 151
 Anaphylaxis, 87
 epinephrine as drug of choice, 85, 86, 87
 food allergies, 85
 insect venom allergy, 85
 selective IgA deficiency, 96
 Anemias
 acquired, 199
 acute lymphoblastic leukemia and, 211
 aplastic crisis, 200, 203
 autoimmune pernicious, 200
 congenital, 197–198
 hemolytic, 200–201
 hookworm, 258
 inadequate production, 195–197
 megaloblastic, 199–200
 sickle cell, 202–204
 thalassemias, 205–206
 Aneurysms
 coronary, 191
 intracranial, 161
 Angelman syndrome, 25
 Prader-Willi syndrome versus, 25
 Angioedema, 87
 complement deficiencies, 100
 food reactions, 86
 insect venom allergy, 85
 Aniridia, 3
 Wilms tumor association, 22
 Antibodies
 antiparietal cell, 200
 against clotting factor, 207
 against platelet surface, 209
 production defects, 95–98
 transplacental HIV IgG, 257
 transplacental lupus, 188, 190
Anus imperforate, 10
Aortic insufficiency, 119
Aortic outflow murmur, 119
Aortic stenosis, 123–124
heart sound, 117, 123, 124
Apgar score, 1
Aplastic crisis
erthema infectiosum, 251
sickle cell anemia, 203
spherocytosis/elliptocytosis, 200
Arachnodactyly, 26
Arbovirus and viral meningitis, 240
Arnold-Chiari malformation, 220, 221
vocal cord paralysis, 221
Arthralgia
acute rheumatic fever, 134
Henoch-Schönlein purpura, 193
infective endocarditis, 132
systemic lupus erythematosus, 189
Arthritis
Henoch-Schönlein purpura, 193
juvenile idiopathic, 185–188
Lyme disease, 244
septic, 182
Artificial heart valves and prophylaxis, 133
Ascariasis, 258
Aseptic meningitis, 238, 240
Ash-leaf macule, 227
Aspiration
foreign body, 72, 110
gastroesophageal reflux disease, 143
meconium, 7, 8–9
Aspirin
acute rheumatic fever, 134
hemophilia and, 208
Kawasaki disease and, 191, 192
sensitivity and nasal polyps, 111
Asthma, 89–92
bronchiolitis versus, 92
Astrocytoma, 214
Astrovirus diarrhea, 138
Asymmetric tonic neck reflex, 44
Ataxia
ataxia-telangiectasia, 98
cerebellar, 222
Dandy-Walker malformation, 222
Friedrich, 229
neuroblastoma or Horner syndrome, 215
Atake sudden death, 135
Atopic dermatitis, 88–89
food reaction, 86
Atrial septal defect (ASD), 121
Autistic spectrum disorder, 47
MMR non-association, 54
Autoimmune pernicious anemia, 200
Autoimmune polyglandular disease, 169
Azoospermia of cystic fibrosis, 79
B
Bacille Calmette-Guérin (BCG) vaccinations, 242, 243
Back to Sleep against SIDS, 81, 82
Bacteriuria, asymptomatic, 133
Balantidium coli diarrhea, 138
Barking cough, 69, 71
Bartonella, 214
Battered child syndrome, 64
B-cells
ataxia-telangiectasia, 98
common variable immunodeficiency, 95
immunodeficiency overview, 94
non-Hodgkin lymphoma, 213
selective IgA deficiency, 95–96
severe combined immunodeficiency, 96–97
Wiskott-Aldrich syndrome, 97
X-linked agammaglobulinemia, 95
Beckwith-Wiedemann syndrome, 24
Bedwetting, 49–50
Bee stings, 85
Behavioral disorders
brain tumors causing, 214
elimination disorders, 49–51
emotional deprivation of
hypopituitarism, 166
emotional lability of hyperthyroidism, 169
folic acid deficiency causing, 199
lead poisoning causing, 196
pernicious anemia causing, 200
pica, 49
sleep disorders, 51–52
Wilson disease causing, 229
Benign myoclonus of infancy, 224
Berger disease, 158
Beta thalassemia major, 206
Biliary atresia, 12, 14
Bilirubin, 10–14
Bilirubinuria, 10–14
Birth injuries, 2
Birth weight and gestational age, 6
“Black current jelly” stool, 150
Blackfan-Diamond anemia, 197–198
Bleeding disorders, 206–208
evaluation of, 206–207
Bleeding time, 206, 207
von Willebrand disease and, 208
Blood group antigens in jaundice, 11
Blood pressure, 136. See also Hypertension
Blueberry muffin spots, 16
BMI, 32
obesity, 40
type 2 diabetes, 174–175
Bold print in text, 4
Bone age, 32–37
Bone marrow transplant
Chédiak-Higashi syndrome, 99
graft-versus-host disease, 100
thalassemias, 205, 206
Wiskott-Aldrich syndrome, 97
Bone tumors, 184
Borrelia burgdorferi, 243–244
Botulism from honey, 42
Bowel obstruction
congenital, 145–148
Hirschsprung disease, 148, 152
jaundice, 14
Brachial palsy birth injury, 2
Brain tumors, 214–215
brain stem tumors, 214
Breast feeding, 40–41
AIDS transmission, 256
allergy benefits, 40, 83
contraindications, 41
ear infection benefits, 108
HBV maternal infection, 41
thrush association, 245
Breast milk
allergy benefits, 40, 83
cow milk versus, 41
ear infections and, 108
iron bioavailability, 40, 195
nutrition, 40, 41
Breastfeeding jaundice, 13, 14
Breast-milk jaundice, 13, 14
Breasts
gynecomastia, 167, 262
puberty, 262
Brief resolved unexplained episode (BRUE), 82
Bronchiolitis, 73
asthma versus, 92
Bronze baby syndrome, 13
Brudzinski sign, 237, 238
Bruises from physical abuse, 64
Brushteld spots, 21
Bruton agammaglobulinemia, 95
Burkitt lymphoma, 213, 253
Burns from physical abuse, 65
Café-au-lait spots, 226
Calicivirus diarrhea, 138
CALLA (common acute lymphoblastic leukemia antigen), 211
Campylobacter
diarrhea, 138, 139
hemolytic uremic syndrome, 159
Cancer. See Oncology
Cancer (maternal) and breastfeeding, 41
Candida albicans, 245–246
mucocutaneous candidiasis, 94, 169, 246
vaginal discharge, 264
Capital femoral epiphysis
necrosis, 178
slipped, 178–179, 180
Caput succedaneum birth injury, 2
Cardiac evaluation, 115–116
cardiomyopathy, hypertrophic
obstructive, 135
cardiomyopathy of Duchenne MD, 234
cardiomyopathy of Friedrich ataxia, 229
congenital anomalies, 119–131
“egg on string” x-ray, 128
fetal circulation, 116
heart block from maternal lupus, 190
heart murmur gradation, 116
heart murmurs, innocent, 118–119
heart murmurs not heard, 119
heart sounds, 117–119
heart sounds change with endocarditis, 132
heart valves, 134
hypertension, 136
infants of diabetic mothers, 6, 7, 128
infecive endocarditis, 132–133
Kawasaki disease, 190–192
left to right shunts, 119, 120–122
mitral valve prolapse, 131
mixed lesions, 129–131
rheumatic fever and acquired heart disease, 134–135
right to left shunts, 119, 126–129
stenotic lesions, 123–125
trisomy anomalies, 21, 22, 121
Turner syndrome, 23
viral myocarditis, 255
Cataracts, 16, 101
CATCH-22 syndromes, 96, 129
Catheter-related fungemia, 246
Cat-scratch disease, 241
Caudal regression syndrome, 7
Celiac disease, 141
Cellular immunity. See T-cells
Central nervous system anomalies. See also Seizures
cerebral palsy, 228
lead poisoning, 196
neural tube defects, 219–222
Rocky Mountain spotted fever, 245
tuberous sclerosis, 227–228
Cephalohematoma, 2, 14
Cerebellum
ataxia, 222
infratentorial tumors and, 214
Cerebral palsy, 228
Cervix
cervical lymphadenitis, 113
cervicitis of gonorrhea, 263
herpes, 264
“strawberry cervix,” 264
CHARGE association, 29
choanal atresia, 110
coloboma of iris, 101
DiGeorge syndrome, 96
Chédiak-Higashi syndrome, 99
Chelation, 197, 229
Chest radiography
“egg on string,” 128
“ground-glass,” 8
Chiari malformation, 220, 221
vocal cord paralysis, 72
Chicken pox. See Varicella
child abuse and neglect, 63–67
child maltreatment definition, 63
nutritional neglect, 39–40, 63
requirement to report, 40, 63, 64, 66, 67
Chlamydial infections, 263, 264
congenital, 102
conjunctivitis, 102
pneumonia, 75–77
Chlorosis, 258
Choanal atresia, 110
Cholelithiasis. See Gallstones
Cholesterol, 14
Cholestasis, 14
Cholesteatoma, acquired, 109
Child abuse and neglect, 63–67
child maltreatment definition, 63
nutritional neglect, 39–40, 63
requirement to report, 40, 63, 64, 66, 67
Chromosomal abnormalities, 21–24. See also Genetics
crude lymphoblastic leukemia, 211
DiGeorge syndrome, 96
epigenetic silencing, 24, 25
hyperpituitarism versus, 166
Chronic disease anemia, 199
Chronic granulomatous disease (CGD), 98–99
Chronic kidney disease, 215
Chromosome abnormalities, 21–24. See also Genetics
crude lymphoblastic leukemia, 211
DiGeorge syndrome, 96
epigenetic silencing, 24, 25
hyperpituitarism versus, 166
Chronic kidney disease, 215
Chronic granulomatous disease (CGD), 98–99
Chronic kidney disease, 215
chronological age
bone age and, 32–37
developmental assessment, 43, 44
growth assessment, 31–37
prematurity and assessment, 44, 47
Clavicular fracture birth injury, 2
Cleft lip and palate, 137
Clostridium difficile diarrhea, 138, 139
Clotting factors, 206, 207, 208
Clubbing
cardiac evaluation, 115
cystic fibrosis, 79
tetralogy of Fallot, 126
Clubbfoot, 180
Coagulopathies, 206–208
Coarctation of aorta, 124–125
Cobalamin deficiency, 200
Cocaine, maternal use, 19
Coccidioidomycosis, 247
Coloboma of iris, 3, 101
Comedone, open vs. closed, 265
Common variable immunodeficiency (CVID), 95
Complement deficiencies, 94, 99–100
Complex seizures, 223
Congenital anomalies
adrenal hyperplasia, 171–172
AIDS, 256–257
anemia, 197–198
bowel obstruction, 145–148
cleft lip and palate, 137
diaphragmatic hernia, 9
DiGeorge syndrome, 96
gastrointestinal, 9–10
genetic dysmorphologies, 24–29
heart block of lupus antibodies, 188, 190
heart disease, 119–131
heart fetal circulation for understanding, 116
heart sounds, 117
hypopituitarism, 165
hypothyroidism, 4, 168–169
infants of diabetic mothers, 6–7
intoing, 180
larynx, 72
myotonic dystrophy, 235
neural tube defects, 219–222
otitis media and, 108
pancytopenia, 198
respiratory, 7–9
rubella, 16, 18, 248, 252
syphilis, 17
varicella, 18, 250, 252
Congenital abnormalities, 102–103
Conjunctivitis
bacterial, 102, 103
chemical of newborn, 102
Chlamydia trachomatis, 102
follicular, 255
herpes simplex, 17, 18
Conjunctivitis (Continued)
- influenza, 254
- Kawasaki disease, 191
- measles, 248, 252
- parinaud oculoglandular syndrome, 241
- red eye, 102–103
- viral, 103, 255

Constipation, 151–152
- functional constipation vs. Hirschsprung, 152
- hypothyroidism, 168–169
- lead poisoning, 196
- retentive encopresis, 50–51

Constitutional growth delay, 32, 35, 38, 166
- Cooley anemia, 206
- Copper metabolism defect, 229
- Corneal abrasions, 104
- Coronary aneurysms, 191
- Cough bark-like, 69, 71
- Cow milk allergy, 85
- breast milk versus, 41
- iron bioavailability, 41, 42, 195–196
- not to infants under one year, 42
- Coxsackievirus, 255
- pharyngitis, 113
- Craniofacial synostosis, 38, 214
- Cremasteric reflex, 162
- “Cretinism,” 168
- Crigler-Najjar syndrome, 14
- Croup, 69, 71
- Crystalline spindle, 26
- Cryptococcus neoformans, 246
- Cryptosporidium diarrhea, 138, 139
- CT scans for head trauma, 65
- Cyanosis cardiac evaluation, 115
differential cyanosis, 125
- Eisenmenger syndrome, 120
- esophageal atresia/tracheoesophageal fistula, 141
- intermittent, 121
- mixed lesions, 129, 130
- pink when crying, 110
- right to left shunts, 126–129
- Cystic fibrosis (CF), 78–81
- small absorptions, 79, 140
- nasal polyps, 79, 111
- newborn screening, 4, 80
- Cystitis, 153–154
- Cytomegalovirus (CMV), 17, 18
- hearing loss cause, 5, 17, 18
- viral meningitis cause, 240

D
- Dacryostenosis, 102
- Dactylitis, acute distal, 202
- “Dancing eyes and dancing feet,” 215
- Dandy-Walker malformation, 222
- DASH (Dietary Approaches to Stop Hypertension) diet, 136
- Deafness. See Hearing
- Dennis lines, 83
- Dental procedures and endocarditis, 133
- Development abnormality possibilities, 47
- assessment, 43, 44
- basic principles, 43–44
- delay, 47
- delay and AIDS, 256
- delay and hypothyroidism, 168
- disorders, 43
- gestational age and size at birth, 6
- lead poisoning dysfunction, 196
- reflexes, 44
- stages of adolescence, 261–262
- Tanner stages, 262
- Developmental dysplasia of the hip (DDH), 177
- Diabetes mellitus, 173–175
chronic mucocutaneous candidiasis, 246
- diabetic ketoacidosis, 173, 174
- immunizations and, 54
- infants of diabetic mothers, 6–7, 128, 225
- maturity-onset diabetes of youth, 175
- type 1, 173–174
- type 2, 174–175
- Diamond-Blackfan anemia, 197–198
- Diaper rash, 246
- Diaphragmatic hernia, 9
- Diarrhea acute, 137–139
- adenovirus, 138, 255
- AIDS, 256
- antibiotic compound warning, 138
- bloody from hemolytic uremic syndrome, 159
- causes of, 138, 139
- chronic, 138, 139
- chronic and immunodeficiencies, 97
- chronic and malabsorption, 140–141
- folic acid deficiency, 199
- obstructive uropathy, 156
- pernicious anemia, 200

Diet. See Nutrition
- DiGeorge syndrome, 96
- hypoparathyroidism, 170
- live vaccines and, 55
- neonatal seizures, 96, 225
- Dihydrortrodamine 123 (DHR), 99
- Diphtheria, tetanus, and acellular pertussis (DTaP) vaccine, 53, 54, 57, 61
- Disaccharidase deficiency, 140
- Disseminated intravascular coagulation, 239
- Double bubble on x-ray, 144, 149
- Down syndrome, 21–22
- duodenal atresia risk, 144
- endocardial cushion defect risk, 121
- otitis media correlation, 108
- otitis media with effusion, 109
- Drug use by mother
- breastfeeding and, 41
- neonatal withdrawal, 19
- DTaP vaccine, 53, 54, 57, 61
- D-transposition, 117, 118
- Duchenne muscular dystrophy, 233–235
- Duke criteria of endocarditis, 133
- Duodenal atresia, 144, 145
- Dysmorphology, 24–29
- congenital rubella, 16, 18
- teratogens, 28, 266

Dyspnea bronchiolitis, 73
cardiac evaluation, 115
cystic fibrosis, 79
epiglottitis, 70
- food reactions, 86
- hypertrophic obstructive cardiomyopathy, 135
- pneumonia, 75, 77
- rarity of nocturnal, 115
tetralogy of Fallot, 126
- ventricular septal defect, 120
- Dystrophin cytoskeletal protein, 235

Dysuria
- cystitis, 153
gonorrhea, 263
- sexual abuse, 67

Ears, 107–109. See also Hearing infections and hearing loss, 107, 109
- newborn examination, 3
- newborn hearing test, 2, 5
- Eating disorder pica, 49
- Ebstein anomaly, 127–128
- Ectopia lentis, 26, 27, 101–102
- Ectopic ureter, 156
Eczema, 88–89
Edwards syndrome, 22
Egg allergies, 85
 vaccinations and, 55
Ehlers-Danlos syndrome, 27
 ectopia lentis, 27, 102
 mitral valve prolapse and, 27, 131
 primary osteoporosis and, 27
Eisenmenger syndrome, 120
Elbow subluxation, 182
 11-beta-hydroxylase deficiency, 171
Elimination disorders, 49–51
Elliptocytosis, hereditary, 200–201
Emotions
 deprivation and hypopituitarism, 166
 lability of hyperthyroidism, 169
Encephalitis
 insect venom allergy, 85
 measles, 248, 252
 meningitis, 240
 mumps, 252
 varicella, 250, 252
Encopresis, 50–51
Endocardial cushion defect, 121–122
Endocarditis, infective, 49–51
Endocrine disorders
 adrenal, 171–173
 diabetes mellitus, 173–175. See also Diabetes
 infants of diabetic mothers, 6–7, 128, 225
 parathyroid, 170–171
 pituitary, 165–168
 thyroid, 168–170
End-stage renal disease (ESRD)
 acute meningococcemia, 239
 glomerulonephritis of lupus, 188
 growth hormone approval, 166
 hemolytic uremic syndrome, 159, 160
 Henoch-Schönlein purpura, 193, 194
 polycystic kidney disease, 161
 posterior urethral valves, 157
 sickle cell anemia, 204
 vesicoureteral reflux and, 155
Entamoeba histolytica
 diarrhea, 138, 139
Enteric adenovirus diarrhea, 138
Enterobiasis, 259
Enterohemorrhagic circulation in newborn, 12
Enuresis, 49–50
Environmental agents of dysmorphology, 28
Eosinophilia vs. allergic rhinitis, 84
Ependymoma, 214
Epididymitis, 163
Epigenetic silencing, 24, 25
Epiglottitis, 70–71
Epilepsy, 222, 223
Episodic hemolytic anemia, 201
Epistaxis, 110–111
Epsiloma candidum, 253–254
 lymphoma, 212, 213, 253
 viral meningitis, 240
Erb-Duchenne palsy, 2
Erythema infectiosum, 251, 252
Erythema nodosum, tibial, 247
Erythema toxicum, 3
Erythroblastopenia of childhood, transient, 199
Erythromycin
 to newborn, 2, 102
Escherichia coli
 diarrhea and, 138, 139
 galactosemia predisposition, 4
 hemolytic uremic syndrome, 159
 Esophageal atresia (EA), 141–142
 Ewing sarcoma, 184
 Exanthema subitum, 249
 Exanthematosus viral diseases, 247–252
 Exophthalmos, 105, 169, 214–215
 Eyes
 abnormalities of structures, 101–104
 Alport syndrome and, 159
 brain tumors and vision, 214–215
 cataracts, 16, 101
 choriorretinitis, 15, 17
 edema and minimal change disease, 161
 Ehlers-Danlos syndrome, 27
 exophthalmos, 105, 169, 214–215
 herpes simplex, 17, 18
 injuries, 104
 macula cherry red, 230
 Marfan syndrome, 26
 newborn care, 2, 3
 optic nerve glioma, 214–215
 orbital cellulitis, 105
 parinaud oculoglandular syndrome, 241
 periocular cellulitis, 104
 proptosis, 105, 214–215
 sclera blue, 183
 “setting sun” sign of hydrocephalus, 221
 trisomy 21 findings, 21
F
Facial nerve palsy birth injury, 2
Facial nevus and Sturge-Weber syndrome, 227–228
Factitious disorder definition, 63
Failure to thrive
 AIDS, 256
 cystic fibrosis, 79
 endocardial cushion defect, 121
 folic acid deficiency, 199
 Hirschsprung disease, 152
 immunodeficiencies, 94, 97
 non-organic, 39–40
 nutritional neglect, 39–40, 63
 obstructive uropathy, 156
 organic, 38–39
 pernicious anemia, 200
 ventricular septal defect, 120
Familial nonhemolytic hyperbilirubinemia, 14
Familial short stature, 32, 37, 38, 166
Familial tall stature, 32, 38
Fanconi anemia, 198
Fat in milk, 41
Fat-soluble vitamin deficiency of cystic fibrosis, 79
Febrile seizures, 222–223
Femoral anteverision, 181
Femoral torsion, internal, 181
Fetal alcohol syndrome, 28
Fetal development
 fetal circulation, 116
 growth, 5–6
 growth and cytomegalovirus, 17
 large for gestational age, 6
 macrosomia, 6
 teratogens, 28, 252, 266
FEV1/FEC in asthma, 90
Fever
 febrile seizures, 222–223
 vaccinations and, 54
Fibrinogen
 to fibrin, 207
Fifth disease, 251, 252
Foam cells, 158
Folic acid
 deficiency and anemia, 199, 200
 periconceptional use and myelomeningocele, 220
Fontanelles
 hydrocephalus, 221
 hypothyroidism, 168
 meningitis, 238
 neonatal sepsis, 15
Food reactions, 85–86
 diarrhea, 138, 139, 140
Foreign body
 airway, 72
 eye, 104
 nose, 110
Formula feeding, 42
allergy risk factor, 40, 83
ear infections and, 108
iron bioavailability, 40, 42, 195
Forsheimer spots, 248, 252
Fractures
birth injuries, 2
fragile bones, 183
physical abuse, 65
Fragile X syndrome, 24
Fresh frozen plasma clotting factors, 208
Friedrich ataxia, 229
Functional constipation, 151
Hirschsprung disease versus, 152
Fungemia, catheter-related, 246
G
Galactosemia, 4, 101
Gallstones
beta thalassemia major, 206
hemolytic anemias, 200
sickle cell anemia, 203
Gangrene of Rocky Mountain spotted fever, 245
Gastroenteritis, 137–141
Gastroesophageal reflux disease (GERD), 143
Gastrointestinal disease
bleeding, 151
cleft lip and palate, 137
congenital bowel obstruction, 145–149
constipation, 151–152
double bubble on x-ray, 144, 149
gastroenteritis, 137–141
hematochezia, 150–151
infectants of diabetic mothers, 7
lead poisoning, 196
malabsorption, 79, 140–141
malrotation, 147, 149
newborn disorders, 9–14
vomiting, 141–144
Gastrochisis, 9
Generalized seizures, 223–224
tuberous sclerosis, 227, 228
Genetics
alpha thalassemia, 205
Alport syndrome, 5
Angelman syndrome, 25
ataxia-telangiectasia, 98
Beckwith-Wiedemann syndrome, 24
celiac disease, 141
CHARGE association, 29
Chédiak-Higashi syndrome, 99
chromosome abnormalities, 21–24
chronic granulomatous disease, 98
cleft lip and palate, 137
common variable immunodeficiency, 95
complement deficiencies, 99
connective tissue disorders, 26–27
cystic fibrosis, 78
DiGeorge syndrome, 96
Duchenne muscular dystrophy, 233
dysmorphology, 24–29
environmental agents, 28
glucose-6-phosphate dehydrogenase
hemolytic anemia, 201
hearing loss, 5
hemophilia, 207
hypoparathyroidism, 170
hypopituitarism, 165
leukocyte adhesion deficiency, 98
myotonic dystrophy, 235
Noonan syndrome, 123
osteochondrodysplasias, 26
Prader-Willi syndrome, 24–25
Robin sequence, 25
selective IgA deficiency, 95
severe combined immunodeficiency,
96–97
sickle cell anemia, 202
VACTERL association, 29
Wiskott–Aldrich syndrome, 97
X-linked agammaglobulinemia, 95
Genitourinary disorders. See also Renal disorders
ambiguous genitalia, 171–172
male, 162–163
obstructive uropathy, 156–157
posterior urethral valves, 157
rhabdomyosarcoma, 216–217
sexually transmitted infections,
263–265
ureteroceles, 157
ureteropelvic junction obstruction, 156
urethritis of gonorrhea, 263
urinary tract infection, 153–154
vaginal discharge, 264, 265
Wilms tumor, 215
German measles. See Rubella
Giardiasis diarrhea, 138, 139, 140
Glaucoma of Sturge-Weber syndrome, 228
Gliomerulonephritis, 157–160
diffuse proliferative of lupus, 188
poststreptococcal, 157–158
scarlet fever and, 252
Glossitis of pernicious anemia, 200
Glucose-6-phosphate dehydrogenase
(G6PD) hemolytic anemia, 201
Glucuronyl transferase, hepatic, 11, 12, 14
Gluten enteropathy, 140, 141
Goat milk and folate deficiency, 199, 200
Goiter, 168, 169
Gonadal dysgenesis, 23
Gonorrhea, 263, 264
Gower sign, 233, 234
Graft-versus-host disease, 100
immunodeficiencies, 94, 96, 97
Granulomatous meningitis, 238
Gras reflex, 44
Graves disease, 169–170
“Ground-glass” x-ray, 8, 79
Growth. See also Fetal development; Short stature; Tall stature
assessment of, 31–37
basic principles, 31
craniofacial dysostosis, 31
deceleration of hypothyroidism, 169
disorders of, 38–40
failure and hypopituitarism, 165–166
growth velocity, 32
Growth hormone deficiency, 32, 36
growth hormone approval, 166
hypopituitarism, 165–166
Guillain-Barré syndrome, 233
meningococcal vaccination and, 54
varicella sequelae, 250
Gynecomastia, physiologic, 167, 262
H
HACEK organisms, 133
Haemophilus influenzae type B (HiB)
vaccine, 53, 58, 61
“Hair on end” skull x-ray, 205, 206
Hamartomas
neurofibromatosis, 226
precocious puberty in boys, 167
tuberous sclerosis, 227
Hand-foot syndrome, 202
Hand-foot-mouth disease, 113, 255
Haploid state of epigenetic silencing, 25
Happy puppet syndrome, 25
Hashimoto disease, 169
Head
newborn examination, 3
trauma CT scan, 65
trauma of physical abuse, 65
Headache
brain tumors, 214
coccidioidomycosis, 247
hydrocephalus, 221
influenza, 254
meningitis, 240
mononucleosis, 253
mumps, 249
Rocky Mountain spotted fever, 245
Index

Hearing
Alport syndrome, 5, 158–159
congenital rubella, 16
cytomegalovirus hearing loss, 5, 17, 18
ear infections and, 107, 109
genetics of hearing loss, 5
herpes simplex hearing loss, 17
kernicterus hearing loss, 10
language delay and, 47
meningitis hearing loss, 5, 239
mumps hearing loss, 17
neurofibromatosis acoustic neuromas, 226
newborn test, 2, 5
osteogenesis imperfecta deafness, 183
trisomy 21 loss, 21
Heart embryology, 116
Heart failure
atrial septal defect, 121
cardiac evaluation, 115–116
coection of aorta, 124–125
endocardial cushion defect, 121–122
Friedrich ataxia, 229
hypoplastic left heart syndrome, 130–131
infective endocarditis, 132–133
muscular dystrophy, 235
nephrotic syndrome, 162
patent ductus arteriosus, 122
poststreptococcal glomerulonephritis, 158
pulmonary stenosis, 123
tetralogy of Fallot, 126–127
total anomalous pulmonary venous return, 129–130
truncus arteriosus, 129
ventricular septal defect, 120–121
Heart sounds, 117–119
congenital anomalies, 117
endocarditis changing, 132
innocent murmurs, 118–119
murmur gradient, 116
Height assessment, 31–37.

See also Growth; Tall stature
Heinz bodies, 201
Helminthic diseases, 258–259
Hemangioma, 3
Hemarthroses, 207
Hematochezia, 150–151
Hematology
anemia, congenital, 197–198
anemias, acquired, 199
anemias, hemolytic, 200–201
anemias of inadequate production, 195–197
hemorrhagic disorders, 206–208
immune thrombocytopenic purpura, 209
liver disease, 208
sickle cell anemia, 202–204
thalassemias, 205–206
vitamin K deficiency, 208
Hematuria, 157–160
sickle cell anemia, 202
Hemolysis
anemias, 200–201
hemolytic uremic syndrome, 159
jaundice of newborn, 14
sickle cell anemia, 202–204
Hemophilia, 207–208
von Willebrand versus, 206
Hemorrhagic disorders, 206–208
bleeding evaluation, 206–207
Henoch-Schönlein purpura (HSP), 159, 193–194
Hepatitis A vaccine, 53, 58, 61
postexposure, 56
Hepatitis B vaccine, 53, 57, 61
breastfeeding and, 41
demyelinating disorders and, 54
Hepatobiliary system, 10–14
Hepatosplenomegaly
acute lymphoblastic leukemia, 211–212
AIDS, 256
beta thalassemia major, 206
biliary atresia, 12
cardiac evaluation, 115
genetics of hearing loss, 5
cytomegalovirus, 17, 18
not immune thrombocytopenic purpura, 209
Rocky Mountain spotted fever, 245
toxoplasmosis, 15
Hepatitis A vaccine, 53, 58, 61
Hypothyroidism, 168–169
Hypertrophic obstructive cardiomyopathy (HOCM), 135
Hypokalemic periodic paralysis, 140
Hypoparathyroidism, 169, 170
Hypopituitarism, 165–166
Hypothyroidism, 168–169
Hypokalemic periodic paralysis, 140
Hypoparathyroidism, 169, 170
Hypopituitarism, 165–166
Hypothyroidism, 168–169
Hypopituitarism, 165, 166
Hypoxic ischemic encephalopathy, 225
Hyperrhythmia, 224
I

IgA nephropathy, 158
Ileal atresia, 144, 145

Immune system. See also B-cells; T-cells about immunodeficiencies, 94 antibody production defects, 95–96 breastfeeding and, 40 Chédiak-Higashi syndrome, 99 combined immunodeficiencies, 96–98 complement deficiencies, 99–100 DiGeorge syndrome, 96 graft-versus-host disease, 100 immunization, 53–61 immunization and immune dysfunction, 54 immunization contraindications, 54–55 immunization postexposure, 56 immunization schedule, 61 immunotherapy, 85. See also Allergies jaundice of newborn, 13 phagocytic disorders, 98–99 phagocytic disorders and live vaccines, 55 severe combined immunodeficiency, 96–97

Immune thrombocytopenic purpura (ITP), 209

Imperforate anus, 10

Inactivated poliovirus (IPV) vaccine, 53, 57, 61

Infants. See also Newborn anal fissures and bleeding, 151 asthma medications nebulized, 91 atopic dermatitis patterns, 88 cardiac evaluation, 115–116 diabetic mothers, 6–7, 128, 225 diarrhea, causes of, 138 heart murmurs not heard, 119 no cow milk, 42 no honey, 42 respiratory disorders, 7–9. See also Respiratory diseases

J

Janeway lesions, 132 Jaundice breastfeeding vs. breast-milk jaundice, 13 duodenal atresia, 144 galactosemia, 4 hypothyroidism, 168 newborn, 10–14 pernicious anemia, 200 physiologic vs. pathologic, 10, 13 Jejunal atresia, 144, 145 Jones criteria, 134 Juvenile idiopathic arthritis (JIA), 185–188 Juvenile pilocytic astrocytoma, 214 Juxtaductal coarctation, 124

K

Kaposi varicelliform, 89 Kawasaki disease, 190–192 Kayser-Fleischer rings, 229 Kernicterus, 10 Kernig sign, 237, 238 Kluneberg-Welander disease, 231 Kwashiorkor, 39

L

Ladd bands, 145, 147, 149 Large for gestational age (LGA), 6, 7 Laryngomalacia, 72 Larynx, 72 Lead poisoning, 196–197 Left to right shunts, 119, 120–122 Legg-Calvé-Perthes disease, 178
Lens of eye, 101–102
 Alport syndrome and, 159
 Ehlers-Danlos ectopia lentis, 27
 Marfan syndrome subluxation, 26
Lesch-Nyhan disease, 230
Leukemia, 211–212
 neurofibromatosis and, 226
Leukocoria, 101
Leukocyte adhesion deficiency, 98
Lithium and Ebstein anomaly, 127
Live attenuated vaccines, 53, 54, 55
Liver disease
 bleeding disorders, 208
 Wilson disease, 229
Loffler syndrome, 258
Low birth weight definition, 6
Lumbar puncture, 15, 212, 225, 238
Lupus
 drug-induced, 189
 lupus anticoagulant, 189, 190, 207
 lupus band test, 188
 MD Soap ‘n Hair, 189
 neonatal, 190
 systemic lupus erythematosus, 188–190
Lyme disease, 243–244
Lymphadenopathy
 AIDS, 256
 Bartonella, 241
 coxsackie, 113
 Epstein-Barr virus, 212, 213, 253
 herpes, 264
 hyperthyroidism, 169
 infectious mononucleosis, 253
 Kawasaki disease, 191
 lymphomas, 212, 213
 not immune thrombocytopenic purpura, 209
 parinaud oculoglandular syndrome, 241
 rubella, 248
Lymphoblastic leukemia, acute, 211–212
Lymphomas, 212–213, 253
 immunodeficiency and, 95
M
 Macula cherry red, 230
 Malabsorption, 140–141
 chronic diarrhea, 140–141
 cystic fibrosis, 79, 140
 megaloblastic anemias, 199, 200
 Male genitourinary disorders, 162–163
 Malignancy. See Oncology
 Malnutrition
 indications of, 31–32
 kwashiorkor, 39
 non-organic failure to thrive, 39–40
 nutritional neglect, 39–40, 63
 organic failure to thrive, 38
 Malrotation, 147, 149
 malabsorption and, 140
 Mantoux test, 242
 Marfan syndrome, 26
 ectopia lentis, 26, 102
 mitral valve prolapse and, 26, 131
 primary osteoporosis and, 27
 Marie-Charcot-Tooth disease, 232
 Maturity-onset diabetes of youth (MODY), 175
 McCune-Albright syndrome, 27
 Megaloblastic anemias, 199–200
 Menarche, premature, 167
 Meningitis
 acute bacterial, 237–239
 encephalitis and mental status, 240
 granulomatous, 238
 hearing loss cause, 5, 239
 immunodeficiencies and, 94, 97
 meningococemia, acute, 239
 TB meningitis, 242
 viral, 238, 240
 Meningocele, 219
 Meningococcal rash, 239
 Meningococcal vaccine, 53, 59, 61
 Guillain-Barré and, 54
 Meningococcemia, acute, 239
 Meningoencephalitis
 common variable immunodeficiency, 95
 herpes, 18
 Meningoencephalomyelitis, 249
 Mercury in thimerosal, 249
 Metabolic syndrome, 174
 Metastasis
 neurobloma, 216
 rhabdomyosarcoma, 217
 sarcomas, 184
 Metatarsus adductus, 180
 Milk
 allergy, 85
 allergy benefits of breast milk, 40
 breast vs. cow, 41
 ear infection benefits of breast milk, 108
 iron bioavailability, 40, 42, 195–196
 nutrition, 40, 41
 Minerals in milk, 41
 Minimal change disease, 161–162
 Mitral insufficiency, 119, 122, 135
 Mitral valve prolapse, 131
 heart sounds, 117, 131
 Mixed lesion heart diseases, 129–131
 Mixing studies for clotting, 207
 hemophilia, 208
 MMR, 53, 55, 58, 61
 autism non-association, 54
 egg allergies and, 55
 Mongolian spots, 3
 Mononucleosis, infectious, 253
 Epstein-Barr virus and, 253
 Morbilliform rash, 247, 248
 Moro reflex, 44
 Mucocutaneous candidiasis, 94, 169
 chronic, 246
 Mucosal neumroma syndrome, 169
 Multicystic kidney disease, 156
 Multiple endocrine neoplasias (MEN), 169
 Mumps, 249, 252
 vaccination, 53, 55, 58, 61
 vaccination postexposure, 56
 Muscular dystrophy (MD), 233–235
 myotonic dystrophy versus, 236
 Myasthenia gravis, 231–232
 transient neonatal myasthenia, 231
 Mycobacterial infections, 242–243
 Mycobacterium avian-intracellulare complex, 256
 Myotic infections, 245–247
 Myelination
 completion age, 31
 demyelination and hepatitis B vaccination, 54
 Myelomeningocele, 220–221
 Myocarditis
 heart sounds, 118
 Kawasaki disease, 191
 Myoclonic seizures, 224
 Myotonic dystrophy, 235
 muscular dystrophy versus, 236
N
 Nasal polyps, 111
 cystic fibrosis, 79, 111
 Nasolacrimal duct obstruction, 102
 Natural killer cell deficiency, 96
Necrotizing enterocolitis (NEC), 10
Neglect and abuse, 63–67
 nutritional neglect, 39–40, 63
 requirement to report, 40, 63, 64, 66, 67
Neonatal seizures, 224–225
Neonatal sepsis, 15
Neonates. See Newborn
Neonatorum, 3
Nephroblastoma, 215
Nephrotic syndrome, 161–162
Neonatal seizures, 224–225
Neonatal sepsis, 15
Neonates. See Newborn
Neonatorum, 3
Nephroblastoma, 215
Nephrotic syndrome, 161–162
Neural tube defects, 219–222
Neuroblastoma, 215–216
 pheochromocytoma versus, 216
Neurocutaneous syndromes, 226–228
Neurofibromatosis, 226–227
 optic nerve glioma, 214–215
 pheochromocytoma association, 216, 226
 rhabdomyosarcoma and, 217, 226
Neurology. See also Seizures
 brain tumors, 214–215
 cerebral palsy, 228
 lead poisoning and, 196
 neural tube defects, 219–222
 neuroblastoma, 215–216
 neurodegenerative disorders, 229–230
 neurofibromatosis, 226–227
 neuromuscular diseases, 231–236
 pernicious anemia and, 200
 Rocky Mountain spotted fever, 245
 tuberculous sclerosis, 227–228
Neutrophils
 hypersegmented, 199
Nevus simplex, 3
 facial nevus of Sturge-Weber syndrome, 227–228
Newborn
 Apgar score, 1
 birth injuries, 2
 cyanotic lesions, most common, 126, 128
 diabetic mothers, 6–7
 duodenal/jejunal/ileal atresia, 144, 145
 feeding, 40–42, 137
 gastrointestinal disorders, 9–14
 gestational age and size at birth, 6 growth, 31
 gynecomastia, 167
 heart murmurs not heard, 119
 Hirschsprung bowel obstruction, 148, 152
 hypertension, 136
 infections, 15–18
 initial care, 2
 jaundice, 9–14
 lupus, 190
 ophthalmia neonatorum, 102
 physical examination, 3, 115
 physiologic anemia of infancy, 195
 pulmonic stenosis as R–L shunt, 126
 reflexes, 44
 respiratory disorders, 7–9
 screening tests, 2, 4–5, 204
 seizures, 224–225
 T-cell count necessity, 96
 transient neonatal myasthenia, 231
 tuberculosis, 243
 vitamin K, 2, 40, 208
 weight loss in first week, 31
 withdrawal from substances, 19
Nightmares, 52
Nocturnal dyspnea rarity, 115
Nodules of acne, 265
Nodulocystic lesion, 265
Non-Hodgkin lymphoma, 213
Noonan syndrome, 123, 125
Norovirus diarrhea, 138
Nose, 110–112
 orbital cellulitis, 105
 Ophthalmia neonatorum, 102
Nutrition
 breast feeding, 40–41
 folic acid, 199, 200
 formula feeding, 42, 83
 hypertension diet, 136
 iron and newborns, 40, 41, 42
 iron deficiency and pica, 49
 iron-deficiency anemia, 195–196
 kwashiorkor, 39
 malabsorption, 140–141
 malnutrition indications, 31–32
 megaloblastic anemias, 199–200
 newborn feeding, 40–42, 83, 137
 non-organic failure to thrive, 39–40
 nutritional neglect, 39–40, 63
 solid food introduction, 42
Nystagmus of optic nerve glioma, 214
O
 Obesity, 40
 hypertension, 136
 large for gestational age, 6, 7
 pseudogynecomastia, 167
 slipped capital femoral epiphysis, 178–179, 180
 type 2 diabetes, 174–175
 Ocular muscle abnormalities, 102
 ocular ptosis of myasthenia gravis, 231
 Oligoarthritis, 186
 Oligohydramnios of Potter sequence, 29
 Omphalocele, 9, 22, 24
Oncology
 adrenocortical tumor, 172
 bone tumors, 184
 brain tumors, 214–215
 breastfeeding and maternal cancer, 41
 Epstein-Barr virus, 212, 213
 external otitis, 107
 immunodeficiency and, 94, 95, 96, 97, 98
 intraocular tumor, 104
 intussusception, 150
 leukemia, 211–212
 lymphomas, 212–213, 253
 multiple endocrine neoplasias, 169
 neuroblastoma, 215–216
 pancytopenia risks, 198
 retinoblastoma, 104
 rhabdomyosarcoma, 216–217
 seminoma, 162
testes, 163
 thyroid, 169
 underscored testes and, 162
 Wilms tumors, 215
 Ophthalmia neonatorum, 102
 Opiates, maternal use, 19
 Opportunistic infections of AIDS, 256, 257
 Osmophecyclusus, 215
 Optic nerve glioma, 214–215
 Oral thrush, 245
 AIDS, 256, 257
 Orbital cellulitis, 105
 Orthopedic disorders
 birth injuries, 2
 bone tumors, 184
 hip, 177–180
 intoeing, 180–181
 nursemaid elbow, 182
 Osgood-Schlatter disease, 181
 osteogenesis imperfecta, 27, 183
 osteomyelitis, 182
 scoliosis, 181
 septic arthritis, 182
 Orthopnea rarity, 115
 Osteoscholastic disease, 181
 Osler nodes, 132
 Osteoporosis, 27
 physical abuse versus, 65
 Osteomyelitis, 182
 sickle cell anemia risk, 203
 Osteoporosis, 27
 osteogenesis imperfecta and, 27, 183
Index

Otitis externa, 107
Otitis media (OM), 107–108
 acute and sinusitis, 111
measles, 248, 252
Otitis media with effusion (OME), 5
Otorrhea, purulent, 108
Oxidant ingestion and G6PD, 201

P
Pain. See also Headache
 acute lymphoblastic leukemia, 211
 Guillain-Barré syndrome, 233
 neuroblastoma, 216
 sickle cell anemia, 202–203, 204
Pancreatic insufficiency, 140
Pancytopenia, congenital, 198
Panhypopituitarism, 214
Papilledema, 214, 216, 221
Papules of acne, 265
Parachute reflex, 44
Paralysis
 Guillain-Barré syndrome, 233
 poliovirus, 255
 spine lesions and, 220
 vocal cord, 72
Parasites diarrhea, 138, 139, 140, 258
Parasomnias, 51–52
Parathyroid hormone deficiency, 170
Parinaud oculoglandular syndrome, 241
Partial seizures, 223
Patent ductus arteriosus (PDA), 122
Pathologic fractures vs. physical abuse, 65
Pathologic short/tall stature, 38
Pathologic vs. physiologic jaundice, 10, 13
Pauwarcular JIA, 186, 188
Peak expiratory flow (PEF), 90
Peanut hazards, 72, 85, 87
Penis
 discharge of chlamydia, 263
 discharge of gonorrhea, 263
 herpes ulcerations, 264
 priapism of sickle cell anemia, 203
 puberty, 262
Peptic ulcer disease and bleeding, 151
Perinatal tuberculosis, 243
Periorbital cellulitis, 104
Peritonsillar abscess, 113–114
Pernicious anemia, 200
Pertussis, 240–241
 vaccination, 53, 54, 57, 241
Petit mal seizures, 223
Phagocytic disorders, 55, 98–99
Pharyngitis
 acute, 112–114
 adenovirus, 255
 infectious mononucleosis, 253
Phenylketonuria (PKU), 4
Pheochromocytoma, 216
 neuroblastoma versus, 216
 neurofibromatosis and, 216, 226
Physical abuse, 63, 64–66
 nutritional neglect, 39–40, 63
 requirement to report, 40, 63, 64, 66, 67
Physical examination of newborn, 3
Physiologic anemia of infancy, 195
Physiologic vs. pathologic jaundice, 10, 13
Pica, 49
PID from untreated STI, 263
Pierre Robin sequence, 25
Pimples, 265–266
Pinworm, 259
Placenta-crossing agents. See Transplacental agents
Placing reflex, 44
Platelet dysfunction
 bleeding evaluation, 206–207
 bleeding time, 206
 immune thrombocytopenic purpura, 209
 platelet aggregation studies, 207
 platelet count, 206
 ristocetin as cause, 207
 von Willebrand disease, 208
Pneumatosis intestinalis, 10
Pneumonia, 74–78
 AIDS, 256
 Cryptococcus neoformans, 246
 pneumococcal vaccines, 53, 58, 61, 204
 varicella pneumonia, 250
 viral vs. bacterial, 74–75
Poliovirus, 255
 vaccine, 53, 57, 61, 255
Polyarticular JIA, 186–188
Poly cystic kidney disease, 160–161
 tuberous sclerosis, 227
Polycythemia, 6, 7, 14
Polydactyly, 3
Polydipsia, 173, 174
Polyglandular disease, autoimmune, 169, 170
Polyostotic fibrous dysplasia, 27
Polyphagia, 173
Posterior urethral valves, 157
Poststreptococcal glomerulonephritis, 157–158

Post-term delivery, 6
Potter sequence, 29
 obstructive uropathy, 157
 polycystic kidney disease, 160
PPD test, 162, 242, 243
Prader-Willi syndrome, 24–25
 Angelman syndrome versus, 25
 growth hormone approval, 166
Preaural tags/pits, 3
Pregnancy
 cat litter and, 15
 gestational age and size at birth, 6
 herpes simplex infection, 17
 HIV screening, 256
 illicit drug use, 19
 rubella during, 16, 248, 252
 systemic lupus erythematosus during, 188, 190
 teratogens, 28, 252, 266
 tuberculosis at delivery, 243
 vaccination after disease exposure, 56
 varicella peripartum, 18, 250
 vitamin B12 deficiency, 200
Prematurity
 developmental assessment, 44, 47
 gestational age and size at birth, 6
 necrotizing enterocolitis risk factor, 10
 neonatal sepsis risk factor, 15
 patent ductus arteriosus, 122
 physiologic anemia of infancy, 195
 premature definition, 6
 preterm definition, 6
 retinopathy of prematurity, 103
 vaccinations, 54
Preterm birth definition, 6
Priapism of sickle cell anemia, 203
Prolactinoma, 167
Prophylaxis
 antibiotics in newborn care, 2
 artificial heart valves, 133
 asplenia, 204
 dental procedures and endocarditis, 133
 hemophilia, 208
 hepatitis A vaccine, 58
 HIV patients for Cryptococcus neoformans, 246
 rheumatic fever, 135
 sickle cell anemia, 204
 tetanus in wound management, 57
Proptosis of eye, 105, 169, 214–215
Protein
 breast milk vs. cow milk, 41
 kwashiorkor, 39
Proteinuria, 161–162
Pruritic rashes, 88, 250
Pseudogynecomastia, 167
Pseudostrabismus, 102
Psychological disorders. See Behavioral disorders
Psychological maltreatment, 63
Psychosocial dwarfism, 166
PT, 206, 207
PTT, 206, 207
hemophilia, 208
von Willebrand disease, 208
Puberty, 261–262
incomplete precocious, 167
precocious, 167
Pulmonary ascariasis, 258
Pulmonary disorders. See Respiratory diseases
Pulmonary hypoplasia
diaphragmatic hernia, 9
obstructive uropathy, 157
polycystic kidney disease, 160
Potter sequence, 29
Pulmonic insufficiency, 119
Pulmonic stenosis, 123
heart sounds, 117, 118, 123
peripheral, 118
Pupil abnormalities, 101
Purine metabolism disorder, 230
Purpura
fulminans, 239
Henoch-Schönlein, 159, 193–194
immune thrombocytopenic, 209
Pustules of acne, 265
Pyelonephritis
obstructive uropathy, 156
urinary tract infection, 153
vesicoureteral reflux and, 155
Pyloric stenosis, 143
Pyruvate kinase hemolytic anemia, 11, 13, 201
Rashes
after ampicillin or amoxicillin, 253
“bulls-eye,” 243–244
cephalic spreading caudal, 248
diaper rash, 246
maculopapular, 247, 249, 263
meningococcal, 239
morbilliform, 247, 248
pruritic, 88, 250
red “slapped” cheeks and lacy on trunk, 251
rose-colored, 244
rose-colored papules, 249
sandpaper, 113, 252
vesicular of mouth, hands, feet, buttocks, 255
Raynaud’s phenomenon and lupus, 189
RBCs and hyperbilirubinemia, 10–14
Recurrent infections and immunodeficiencies, 94, 97, 98, 99, 100
Red eye, 102–103
Reed-Sternberg cell, 212
Reflexes, 44
spine lesions and, 220
Regurgitant heart disease, 119, 131
heart sounds, 117, 118, 123
Renal disorders. See also End-stage renal disease; Glomerulonephritis
anemia of, 199
hematuria, 157–160
hypertension and, 136
hypertension of neurofibromatosis, 226
infants of diabetic mothers, 7
lupus, 189, 190
obstructive uropathy, 156–157
polycystic kidney disease, 160–161
Potter sequence, 29
proteinuria, 161–162
sickle cell anemia and, 202, 204
tubular sclerosis, 227
urinary tract infection, 153–154
vesicoureteral reflux, 155–156
Wilms tumor, 215
Reporting requirement for abuse, 40, 63, 64, 66, 67
Respiratory diseases
acute chest syndrome, 203
airway foreign body, 72, 110
bronchiolitis, 73
coccidioidomycosis, 247
croup, 69, 71
Cryptococcus neoformans, 246
cystic fibrosis, 78–81
epiglottitis, 70–71
larynx congenital anomalies, 72
newborn, 7–9
non-Hodgkin lymphoma, 213
pneumonia, 74–78
pulmonary ascariasis, 258
pulmonary hypoplasia, 9, 29, 157, 160
sudden infant death syndrome, 81–82
tuberculosis, 242–243
Respiratory distress syndrome (RDS), 7, 8
Respiratory syncytial virus (RSV), 73, 74, 77, 92
Retina
chorioretinitis, 15, 17
hemorrhages from abuse, 65
pheochromocytoma, 216
retinoblastoma, 101, 104, 184
retinopathy of prematurity, 103
Roth spots, 132
tuberous sclerosis, 227
Retinoic acid and fetus, 28
Rheuetic syndrome
Kawasaki disease and aspirin, 191
Kawasaki disease and influenza vaccine, 192
otitis media and aspirin, 108
Rh antigens and jaundice, 11, 13, 14
Rhabdomyoma of heart, 227
Rhabdomyosarcoma, 216–217
neurofibromatosis and, 217, 226
Rheumatic fever, acute, 134–135
acute pharyngitis treatment and, 113
scarlet fever and, 252
Rheumatoid factor, 185, 186–187
Rib notching of coarctation of aorta, 125
Rickets, 171
Rickettsia rickettsii, 245
Right to left shunts, 119, 126–129
pulmonary stenosis as, 126
Ristocetin platelet dysfunction, 207
Robin sequence, 25
Rocky Mountain spotted fever, 244–245
Rooting reflex, 44
Roseola, 249, 252
Rotavirus
diarrhea, 138, 139
vaccine, 53, 59, 61
Roth spots, 132
Rubella, 248, 252
congenital, 16, 18, 248, 252
patent ductus arteriosus association, 18, 122
vaccination postexposure, 56
Rubeola. See Measles
Salmon patch on skin, 3
Salmonella
diarrhea, 138, 139
hemolytic uremic syndrome, 159
San Joaquin fever, 247
Scarcoma, 184
Scalding burns as abuse, 65
Scarlet fever, 113, 252
Schilling test, 200
Schmidt syndrome, 169
Scleral blue, 183
Schwachman-Diamond syndrome, 140
Scalp, 200
Scoliosis, 181
 Duchenne muscular dystrophy, 233, 234
Screening tests
 development, 43, 44
 growth assessment, 31–37
 newborn, 2, 4–5, 204
 pregnant patients for HIV, 256
 sickle cell anemia, 204
 T-cell count, 96
Sebaceous adenoma, 227
Seizures, 222–225
 brain tumors, 214
 DiGeorge syndrome, 96
 hypoparathyroidism, 170
 Sturge-Weber syndrome, 227–228
 tuberous sclerosis, 227–228
Selective IgA deficiency, 95–96
Self-mutilation and Lesch-Nyhan disease, 230
Seminoma, 162
Sepsis, neonatal, 15
Septic arthritis, 182
Septic shock of meningococcemia, 239
“Setting sun” sign of hydrocephalus, 221
17-Alpha hydroxyl/17,20 lyase deficiency, 171
Severe combined immunodeficiency (SCID), 96–97
Sexual abuse, 67
 definition, 63
Sexually transmitted infections (STIs), 263–265
 congenital syphilis, 17
 sexual abuse, 67
Shagreen patch, 227
Shigella
 diarrhea, 138, 139
 hemolytic uremic syndrome, 159
Short bowel syndrome, 149
 malabsorption and, 140
 short stature, 32, 37, 38
 congenital anemia, 197
 congenital pancytopenia, 198
 craniopharyngioma, 38, 214
 growth hormone approval, 166
 osteogenesis imperfecta, 183
Sickle cell anemia, 202–204
Simple seizures, 223
Sinopulmonary infections and immuno deficiency, 94, 95, 98
Sinusitis, 111–112
Skeletal maturity, 32
 maturation delay and hypopituitarism, 166
 slipped capital femoral epiphysis, 178
Skin. See also Rashes
 atopic dermatitis, 86, 88–89
 blueberry muffin spots, 16
 cat-scratch disease, 241
 diaper dermatitis, 246
 greenish-brown complexion, 206
 immunodeficiencies and, 94, 97
 impetigo, 94, 157
 Mantoux test, 242
 neurocutaneous syndromes, 226–228
 newborn examination, 3
 sebaceous adenoma, 227
 shagreen patch, 227
 yellow-green pallor, 258
Skull fractures
 birth injury, 2
 head trauma CT scan, 65
 physical abuse, 65
 Skull “hair on end” x-ray, 205, 206
Sleep disorders, 51–52
 sleep terrors, 52
 Sleepwalking, 52
Slipped capital femoral epiphysis (SCFE), 178–179, 180
Small left colon syndrome, 7
Smoking
 allergic rhinitis risk factor, 83
 ear infections factor, 108
 SIDS risk factor, 82
Sphingolipidoses, 230
Spina bifida occulta, 219
Spinal muscle atrophy (SMA), 231
Spine disorders
 neural tube defects, 219–222
 scoliosis, 181
Spirometry, 90
Splenic autoinfarction, 203
Splenic sequestration, acute, 203
Splenic autoinfarction, 203
Splenic autoinfarction, 203
Splenic sequestration, acute, 203
Spinal muscle atrophy (SMA), 231
Spine disorders
 neural tube defects, 219–222
 scoliosis, 181
 SIDS risk factor, 82
 Sphingolipidoses, 230
 Spina bifida occulta, 219
 Splenic autoinfarction, 203
 Splenic sequestration, acute, 203
 Spinal muscle atrophy (SMA), 231
 Spine disorders
 neural tube defects, 219–222
 scoliosis, 181
 Spirometry, 90
 Splenic autoinfarction, 203
 Splenic sequestration, acute, 203
 Splenomegaly. See also
 Hepatosplenomegaly
 beta thalassemia major, 206
 hyperthyroidism, 169
 infectious mononucleosis, 253
 infective endocarditis, 132
 pyrurate kinase deficiency, 201
 Splinter hemorrhage, 132
 Staphylococcus aureus diarrhea, 139
 Stature assessment, 32. See also
 Short stature: Tall stature
 Statorrhea, 140
 rectal prolapse, 79
 Stem cell transplantation
 B-cell defects, 95
 chronic granulomatous disease, 99
 congenital anemia, 198
 graft-versus-host disease, 100
 leukocyte adhesion deficiency, 98
 neuroblastoma, 216
 severe combined immunodeficiency, 97
 sickle cell anemia, 204
 Stenotic heart disease, 123–125
 heart sounds, 117
 pulmonic stenosis, 118, 123
 Sterility
 bilateral mumps, 249
 untreated STI, 263
 Still’s murmur, 118–119
 STIs. See Sexually transmitted infections
 Strabismus, 102
 optic nerve glioma, 214
 retinoblastoma, 104
 Strawberry cervix, 264
 Strawberry tongue, 112, 191, 252
 Strep pharyngitis, 112
 poststreptococcal glomerulonephritis, 157–158
 Stroke and sickle cell anemia, 203, 204
 Strongyloides diarrhea, 138
 Sturge-Weber syndrome, 227–228
 Subarachnoid hemorrhage and hydrocephalus, 221
 Subglottic stenosis, 72
 Substance withdrawal, neonates, 19
 Sudden death of athletes, 135
 Sudden infant death syndrome (SIDS), 81–82
 sudden unexplained infant death syndrome (SUIDS), 81
 Suppurative adenitis, 94
 Supratentorial tumors, 214–215
 Surfactant, 8
 Suture lines in birth injuries, 2
 Swimmer’s ear, 107
 Sydenham’s chorea, 134
 Synovitis
 juvenile idiopathic arthritis, 185–188
 transient, 179
 Syphilis, congenital, 17, 18
 Systemic lupus erythematosus (SLE), 188–190
 lupus anticoagulant, 189, 190, 207
T
 Talipes equinovarus, 180
 Tall stature, 32, 38
 hyperpituitarism, 166
 Marfan syndrome, 26
 Tanner stages of development, 262
 Tay-Sachs disease, 230
T-cells
- allergy tests and, 86
- ataxia-telangiectasia, 98
- DiGeorge syndrome, 96
- immunodeficiency overview, 94
- mucocutaneous candidiasis, 94, 246
- non-Hodgkin lymphoma, 213
- severe combined immunodeficiency, 96–97
- Wiskott-Aldrich syndrome, 97

Td vaccine, 57, 60

Tdap vaccine, 57, 61

Teratogens, 28
- congenital rubella, 252
- isotretinoin, 266

Testes
- acute lymphoblastic leukemia, 211, 212
- epididymitis, 163
- puberty, 162
- retractile, 162
- torsion, 163
- torsion of appendix testes, 163
- tumors, 163
- undescended, 162

Tetanus
- prophylaxis in wound management, 57 vaccination, 53, 61

Tetanus, diphtheria, and acellular pertussis (Tdap) vaccine, 57, 61

Tethered cord, 219

Tetralogy of Fallot, 126–127

Thalassemias, 205–206

S-beta, 202–204

Thelarche, premature, 167

Thimerosal vaccine preservative, 54

3-Beta-hydroxysteroid deficiency, 171

Throat, 112–114

esophageal atresia, 141–142

Thrombin time, 207

Thrombocytopenia, 206

acute lymphoblastic leukemia, 211

Thrush, 245

AIDS, 256, 257

Thumbs
- absent or hypoplastic, 198
- triphalangeal, 197

Thymic hypoplasia, 96

Thyroid disorders, 168–170

Tibial torsion, internal, 180

Tibial tubercle traction apophysitis, 181

Tick bites
- Lyme disease, 243–244
- Rocky Mountain spotted fever, 244–245
- viral meningitis, 240

Tongue
- glossitis of pernicious anemia, 200
- hypothyroidism and, 168
- strawberry tongue, 112, 191, 252

Tonic-clonic seizures, 224

TORCH infections, 15–18

neonatal seizures, 225

Total anomalous pulmonary venous return (TAPVR), 129–130

Toxoplasmosis, 15–16, 18

Tracheoesophageal fistula (TEF), 141–142, 144

Traction apophysitis of tibial tubercle, 181

Transient erythroblastopenia of childhood (TEC), 199

Transient hypoplastic anemia, 199

Transient synovitis, 179

Torticollis, 116

infants of diabetic mothers, 6

Transplacental agents
- congenital syphilis, 17
- galactose, 4
- HIV IgG antibodies, 257
- intrauterine infections (TORCH), 15–18
- lupus antibodies, 188, 190
- T-cells, 97
- teratogens, 28, 252, 266
- thyroid drugs and hypothyroidism, 168
- thyrotropin and hypothyroidism, 168

Transplacental intrauterine infections. See TORCH infections

Transposition of the great arteries (TGA), 128–129

Trichomonas, 264

Trichomoniasis, 264

Trichuris trichiura
- diarrhea, 138

Tricuspid atresia, 127

Tricuspid insufficiency, 119, 128

Tricuspid valve heart sounds, 117

Triphalangeal thumbs, 197, 198

Trisomy 13, 22

Trisomy 18, 22

Trisomy 21, 21–22

duodenal atresia risk, 144
- endocardial cushion defect risk, 121
- otitis media correlation, 108
- otitis media with effusion, 109

Truncus arteriosus, 129

Trunk incurvation reflex, 44

Tuberculosis, 242–243

bacille Calmette-Guérin vaccinations, 242, 243

Mantoux test, 242

perinatal, 243

TB meningitis, 242

Tuberous sclerosis, 227–228

Tubular hypoplasia, 124–125

Tumors
- acoustic neuromas, 226
- brain, 214–215
- brain stem, 214
- craniopharyngioma, 38, 214
- hyperpituitarism, 166
- non-Hodgkin lymphoma, 213
- optic nerve glioma, 214–215
- osteoid osteoma, 184
- pheochromocytoma, 216
- pituitary adenoma, 166, 172
- prolactinoma, 167
- tumor lysis syndrome, 212
- Wilms, 215

Turner syndrome (XO), 23
- coarctation of aorta and, 124
- growth hormone approval, 166
- pathologic short stature, 38

21-Hydroxylase deficiency, 171–172, 173

Typanic membrane
- bulging, 107, 108
- otitis media, 107, 108
- otitis media with effusion, 108, 109
- retraction, 108

Type I and 2 diabetes, 173–175

Umbilical cord delayed separation, 98

Umbilical hernia, 9
- hypothyroidism and, 168

Undescended testes, 162

Ureteroceles, 157

Ureteropelvic junction obstruction, 156

Urethral valves, posterior, 157

Urethritis of gonorrhea, 263

Urinary tract infection (UTI), 153–154
- obstructive uropathy, 156–157

Urogenital disorders. See Genitourinary disorders; Renal disorders

Uropathy, obstructive, 156–157

Urticaria, 87
- allergies, 85, 86

Vaccines, 53–61

bacille Calmette-Guérin, 242, 243
- contraindications, 54–55
- poliovirus, 53

postexposure, 56
- rules and precautions, 53–55
- schedule of immunization, 61
- thimerosal preservative, 54
Index

VACTERL association, 29, 141
Vagina
- discharge, 264, 265
- discharge yellow, foul-smelling, 264
- gonorrhea discharge, 263
- "grapes" growing out of, 216–217
Vaginosis, bacterial, 264
Valley fever, 247
Valproate and fetus, 28
Valves of heart
- artificial and prophylaxis, 133
- rheumatic fever and, 134
Varicella, 18, 250, 252
- congenital, 18, 250, 252
- vaccine, 53, 55, 58, 61, 250
- vaccine postexposure, 56
- varicella–zoster meningitis, 240
Vegan diet and pernicious anemia, 200
Venom immune therapy, 85
Venous hum murmur, 119
Ventricular septal defect (VSD), 120–121
Vesicoureteral reflux (VUR), 155–156
- grading scale, 155, 156
Viral infections
- adenovirus, 255
- AIDS, 256–257
- coxsackievirus, 255
- diarrhea, acute, 138
- Epstein-Barr virus, 212, 213, 253–254
- exanthematous disease, 247–252
- immunodeficiency overview, 94
- influenza, 254
- meningitis, 238, 240
- pharyngitis, 113
- pneumonia, 74–76
- poliovirus, 255
Vision. See also Eyes
- brain tumors, 214–215
- craniopharyngioma, 38, 214
- optic nerve glioma, 214–215
- toxoplasmosis impairments, 16
- Vitamin B12 deficiency anemia, 200
- Vitamin D deficiency, 171
- Vitamin K, 2, 40, 208
- Vocal cord paralysis, 72
- Voiding cystourethrogram (VCUG), 154
- Volvulus, 147, 149
- Vomiting, 141–144
- Von Recklinghausen disease. See Neurofibromatosis
- Von Willebrand disease, 208
- hemophilia versus, 206
W
- WAGR syndrome, 22
- Wilms tumor, 215
- Warfarin and fetus, 28
- WASP (Wiskott-Aldrich Syndrome Protein), 97
- WBC of acute lymphoblastic leukemia, 211–212
- Weight disorders, 38–40
- growth assessment, 31–32
- loss in first week, 31
- low birth weight definition, 6
- nutritional neglect, 39–40, 63
- Werdnig-Hoffman disease, 231
- Whooping cough, 241
- Wilms tumor, 215
- aniridia association, 22
- Beckwith-Wiedemann syndrome, 24
- neurofibromatosis association, 226
- Wilson disease, 229
- Wiskott-Aldrich syndrome, 97
- Wolff-Parkinson-White syndrome, 128
X
- X-linked aqammoglobulinemia (XLA), 95
- X-ray
 - chest with “egg on string,” 128
 - double bubble, 144, 149
 - “ground-glass,” 8, 79
 - skull “hair on end,” 205, 206
Y
- Yellow fever vaccine, 53
- Yersinia diarrhea, 138, 139
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME), neither of which sponsors or endorses this product.

This publication is designed to provide accurate information in regard to the subject matter covered as of its publication date, with the understanding that knowledge and best practice constantly evolve. The publisher is not engaged in rendering medical, legal, accounting, or other professional service. If medical or legal advice or other expert assistance is required, the services of a competent professional should be sought. This publication is not intended for use in clinical practice or the delivery of medical care. To the fullest extent of the law, neither the Publisher nor the Editors assume any liability for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this book.

© 2019 by Kaplan, Inc.

Published by Kaplan Medical, a division of Kaplan, Inc.
750 Third Avenue
New York, NY 10017

All rights reserved. The text of this publication, or any part thereof, may not be reproduced in any manner whatsoever without written permission from the publisher.

10 9 8 7 6 5 4 3 2 1

Course ISBN: 978-1-5062-5513-2

Retail Kit ISBN: 978-1-5062-5511-8
This item comes as a set and should not be broken out and sold separately.

Kaplan Publishing print books are available at special quantity discounts to use for sales promotions, employee premiums, or educational purposes. For more information or to purchase books, please call the Simon & Schuster special sales department at 866-506-1949.
Editors

Psychiatry

Alina Gonzalez-Mayo, MD
Psychiatrist
Dept. of Veteran’s Administration
Bay Pines, FL

Patient Safety and Quality Improvement

Ted A. James, MD, MS, FACS
Chief, Breast Surgical Oncology
Vice Chair, Academic Affairs
Department of Surgery
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA

The editors would like to acknowledge Brandon Peplinski, MPH, MD and Karen Reimers, MD for their contributions.
We want to hear what you think. What do you like or not like about the Notes? Please email us at medfeedback@kaplan.com.
Table of Contents

Part I. Psychiatry

Chapter 1: Mental Status Examination .. 3

Chapter 2: Defense Mechanisms .. 7

Chapter 3: Childhood Disorders .. 11

Chapter 4: Depressive, Bipolar, and Related Disorders 19

Chapter 5: Schizophrenia and Other Psychotic Disorders 25

Chapter 6: Anxiety Disorders .. 31

Chapter 7: Somatic Symptom and Related Disorders 35

Chapter 8: Neurocognitive Disorders 41

Chapter 9: Dissociative Disorders 49

Chapter 10: Adjustment Disorders 53

Chapter 11: Substance-Related and Addictive Disorders 55

Chapter 12: Impulse Control Disorders 59

Chapter 13: Eating Disorders .. 63

Chapter 14: Personality Disorders 67

Chapter 15: Normal Sleep and Sleep Disorders 71

Chapter 16: Human Sexuality .. 79

Chapter 17: Psychopharmacology 83

Chapter 18: Suicide .. 89

Chapter 19: Psychotherapies .. 91
Part II. Epidemiology & Ethics

Chapter 20: Epidemiology .. 95
Chapter 21: Biostatistics .. 129
Chapter 22: Ethics .. 145
Chapter 23: Interpretation of Medical Literature 153

Part III. Patient Safety and Quality Improvement

Chapter 24: Clinical Applications of Patient Safety and
Quality Improvement .. 187
Chapter 25: Population Health Management 215

Index .. 227

Additional resources available at
www.kaptest.com/usmlebookresources
PART I

Psychiatry
Learning Objectives

- List the steps required to perform a mental status examination

The mental status examination is used to describe the clinician’s observations and impressions of the patient during the interview. In conjunction with the history of the patient, it is the best way to make an accurate diagnosis.

General Description
- **Appearance**: grooming, poise, clothes, body type (disheveled, neat, childlike, etc.)
- **Behavior**: quantitative and qualitative aspects of the patient’s motor behavior (restless, tics, etc.)
- **Attitude toward the examiner**: (cooperative, frank, and seductive)

Mood and Affect
- **Mood**: emotions perceived by the patient (depressed, anxious, angry, etc.)
- **Affect**: patient’s present emotional responsiveness (blunted, flat, labile, etc.)
- ** Appropriateness**: in reference to the context of the subject (appropriate or inappropriate)

Speech: physical characteristics of speech (relevant, coherent, fluent, etc.)

Perceptual disturbances: experienced in reference to self or the environment (hallucinations, illusions)
- Hallucinations: false sensory perceptions without a stimulus: **auditory** (psychotic disorders), **visual** (drugs, organic diseases), **tactile** (cocaine intoxication, alcohol withdrawal), **olfactory** (seizures)
- Illusions: sensory misperception with a stimulus

Thought
- **Form of thought**: way in which a person thinks (flight of ideas, loose associations, tangentiality, circumstantiality, etc.)
- **Content of thought**: what the person is actually thinking about (delusions, paranoia, and suicidal ideas)
Sensorium and Cognition

- Alertness and level of consciousness (awake, clouding of consciousness, etc.)
- Orientation: time, place, and person
- Memory: recent, remote, recent past, and immediate retention and recall
- Concentration and attention: serial sevens, ability to spell backwards.
- Capacity to read and write: Ask patient to read a sentence and perform what it says.
- Visuospatial ability: copy a figure
- Abstract thinking: similarities and proverb interpretation
- Fund of information and knowledge: calculating ability, name past presidents

Impulse Control: estimated from history or behavior during the interview

Judgment and Insight: ability to act appropriately and self-reflect

Reliability: physician’s impressions of the patient’s ability to accurately assess his situation

Interviewing Techniques

Open-Ended Questions: Allow the patient to speak in his own words as much as possible.

“Can you describe your pain?”

Closed-Ended Questions: Ask for specific information without allowing options in answering.

“Are you hearing voices?”

Facilitation: Help the patient continue by providing verbal and nonverbal cues.

“Yes, please continue.”

Confrontation: Point something out to the patient.

“You seem very upset today.”

Leading: Provide the answer in the question.

“Are the voices telling you to hurt yourself?”
Practice Questions

1. A 20-year-old man presents to your office complaining of auditory hallucinations for approximately 7 months in duration. He reports hearing his father’s voice and at times his mother’s voice as well. The patient appears distressed by the hallucinations and wants your help. Which of the following would be the most appropriate statement at this time?

 (A) “What do the voices say?”
 (B) “Have you taken medication?”
 (C) “Why do you think you hear voices?”
 (D) “How is your relationship with your parents?”
 (E) “Tell me about the voices.”

2. A 30-year-old woman comes to see you after her mother’s death approximately 3 weeks ago. Since then she has complained of depressed mood and feelings of helplessness. While in your office, she begins to cry. Which of the following would be the next step in the management of this patient?

 (A) Say, “I will come back when you stop crying.”
 (B) Say, “Do you feel guilty about your mother’s death?”
 (C) Offer tissue and remain silent
 (D) Say, “Go ahead; it is normal to cry.”
 (E) Refer to a psychiatrist for further evaluation

1. **Answer: E.** The ideal interviewing technique is to begin with an open-ended question and conclude with closed-ended questions. Choices A, C, D, and E are all open-ended questions. However, the best open-ended question for this patient and the reason he came to see you is choice E.

2. **Answer: C.** One should always express empathy and then give the patient control. By staying silent and offering a tissue, you are doing just that. Choice E is always incorrect.
Learning Objectives

- List the types of defense mechanisms and the situations in which they are most likely to occur
- Describe the most common psychological and intelligence tests and their purpose

Defence Mechanisms

Id: Drives (instincts) present at birth. The 2 most important drives are sex and aggression.

Ego: Defense mechanisms, judgment, relationship to reality, object relationships, developed shortly after birth

Superego: Conscience, empathy, and morality are formed during latency period, right vs. wrong

Defense Mechanisms

Defense mechanisms are the way and means that the ego wards off anxiety and controls instinctive urges and unpleasant emotions. They are unconscious (except suppression), discrete, dynamic, and irreversible and may be adaptive or maladaptive.

Types of Defense Mechanisms

Projection: Attributing your own wishes, thoughts, or feelings onto someone else.

“I’m sure my wife is cheating on me.”

Denial: Used to avoid becoming aware of some painful aspect of reality.

“I know I do not have cancer.”

Splitting: External objects are divided into all good or all bad.

“The morning staff is perfect, the evening staff is terrible.”

Blocking: Temporary block in thinking.

“I have known him for years but can never seem to remember his name.”
Regression: Return to an earlier stage of development, most immature.

"Ever since my divorce, my 5-year-old has begun to wet the bed."

Somatization: Psychic derivatives are converted into bodily symptoms.

"Just thinking of the exam I get butterflies in my stomach."

Introjection: Features of the external world are taken and made part of the self.

"The resident physician dresses like the attending whom he admires."

Displacement: An emotion or drive is shifted to another that resembles the original in some aspect.

"I had to get rid of the dog since my husband kicked it every time we had an argument."

Repression: An idea or feeling is withheld from consciousness; unconscious forgetting.

"I do not remember having had a dog."

Intellectualization: Excessive use of intellectual processes to avoid affective expression or experience.

"It is interesting to note the specific skin lesions which seem to arise as a consequence of my end-stage disease."

Isolation: Separation of an idea from the affect that accompanies it.

"As she arrived at the station to identify the body, she appeared to show no emotion."

Rationalization: Rational explanations are used to justify unacceptable attitudes, beliefs, or behaviors.

"I did not pass the test because it was harder this year than ever before."

Reaction formation: An unacceptable impulse is transformed into its opposite; results in the formation of character traits.

"Listen to him tell his family he was not afraid, when I saw him crying."

Undoing: Acting out the reverse of an unacceptable behavior; consists of an act.

"I need to wash my hands whenever I have these thoughts."

Acting out: Behavioral or emotional outburst.

"My 10-year-old started getting into trouble right after his mother and I got divorced."

Humor: Permits the expression of feelings and thoughts without personal discomfort.

“So,” said the 300-pound man, “they expected me to place my head between my legs in the event of a plane crash when the best I could manage was placing my chin on my chest.”
Sublimation: Impulse gratification has been achieved, but the aim or object has been changed from unacceptable to acceptable; allows instincts to be channeled. Most mature of the defenses.

Jack the Ripper becomes a surgeon.

Suppression: Conscious forgetting; only conscious defense mechanism.

“I would rather talk about my operation after the party is over.”

Dissociation: Splitting off of the brain from conscious awareness.

“I hardly remember getting to the hospital after my husband was hit by a car.”

Practice Question

A nurse, working in a hospice, has been ignoring an elderly female patient who has terminal cancer. When asked why she has been ignoring the patient, the nurse replied, “She wants to be left alone.” Which of the following defense mechanisms best explains her response?

(A) Rationalization
(B) Isolation of affect
(C) Intellectualization
(D) Projection
(E) Denial

Answer: D. The nurse is projecting her wishes by stating that the patient wants to be left alone, when in reality it is she who wants to be left alone. Rationalization (A) is making excuses for your behavior. Had that been the answer, she would have made excuses, such as she’s too busy, etc.

TESTS

Intelligence Tests

Intelligence Quotient (IQ) measures academic performance. Mean IQ is 100 (SD = 15).

\[
IQ = \frac{MA}{CA} \times 100
\]

Adults: Wechsler Adult Intelligence Scale Revised (WAIS-R)

Children: Wechsler Intelligence Scale for Children Revised (WISC-R), Stanford-Binet

Personality Tests

Objective tests use simple stimuli, do not need much clinical experience: Minnesota Multiphasic Personality Inventory (MMPI).

Projective tests use ambiguous stimuli, need clinical experience, not diagnostic: Rorschach test (inkblot), Thematic Apperception Test (TAT), sentence completion tests, family drawings.
Learning Objectives

- Describe the degrees of intellectual disability and expected level of function
- List the different types of learning disorders
- Describe the presentation of autism spectrum disorder
- Describe the diagnosis and treatment of childhood disorders likely to present to a psychiatrist, including attention deficit hyperactivity disorder, childhood conduct disorder, oppositional defiant disorder, childhood anxiety, and Tourette syndrome
- List the approaches to treating childhood enuresis

INTELLECTUAL DISABILITY (ID)

Definition. Formerly called mental retardation. Significantly subaverage intellectual function (IQ <70), as measured by a variety of IQ tests. Must be accompanied by concurrent impairment in adapting to demands of school, work, social, and other environments. Onset is age <18.

Risk Factors/Etiology. Associated genetic and chromosomal abnormalities include inborn errors of metabolism (e.g., lipidoses, aminoacidurias, glycogen storage diseases) and chromosomal abnormalities (e.g., cri du chat, Down, fragile X syndromes). Associated intrauterine infections include rubella, cytomegalovirus, and other viruses. Intrauterine exposure to toxins and other insults such as alcohol, hypoxia, or malnutrition may be causal. Postnatal causes include exposure to toxins and infection, poor prenatal care, postnatal exposure to heavy metals, physical trauma, and social deprivation.

Presenting Symptoms

- Prevalence: 1% of the population. Occurs at a 1.2:1 male-to-female ratio.
- Mild ID (IQ 50–69): Attain academic skills to approximately the sixth-grade level, often live independently in the community or with minimal supervision, may have problems with impulse control and self-esteem, and may have associated conduct disorder, substance-related disorder, or attention deficit hyperactivity disorder.
- Moderate ID (IQ 35–50): Attain academic skills to second-grade level, may be able to manage activities of daily living, work in sheltered workshops, live in residential community settings; have significant problems conforming to social norms (those with Down’s syndrome are at high risk for early development of Alzheimer’s).
• **Severe (IQ 20–35) and profound ID (IQ <20):** Have little or no speech and very limited abilities to manage self-care; require highly supervised care setting.

Physical Examination. Evidence of underlying disorder or injury.

Diagnostic Tests. Amniocentesis: May reveal chromosomal abnormalities associated with ID in high-risk pregnancies (mother age >35).

Treatment. Primary prevention includes genetic counseling, good prenatal care, and safe environments. Treatment of associated general medical conditions may improve overall level of cognitive and adaptive function. Special education techniques may improve ultimate level of function. Behavioral guidance and attention to promoting self-esteem may improve long-term emotional adjustment.

Differential Diagnosis. Includes learning and communication disorders, sensory impairment, autism spectrum disorder, borderline intellectual functioning (IQ 70–100), and environmental deprivation.

LEARNING DISORDERS

Definition. Characterized by learning achievement in specific areas that is substantially below expectations, given the patient’s age, intelligence, sensory abilities, and educational experience. Types of learning disorder are reading disorder (most common), mathematics disorder, and disorder of written expression.

Risk Factors/Etiology. Some cases are due to the effects of coexisting general medical conditions such as cerebral palsy on central nervous system (CNS) function. Some general medical conditions and substance-induced conditions are associated with learning disorders, including lead poisoning and fetal alcohol syndrome. Many cases have no obvious etiology.

Presenting Symptoms

- Prevalence: 5% of school-age children
- Onset: usually during elementary school
- Perceptual–motor problems
- Conduct disorder, oppositional defiant disorder, and ADHD
- Poor self-esteem and social immaturity
- School failure and behavioral disturbances

Deficits sometimes persist into adulthood and interfere with occupational function.

Diagnostic Tests. IQ testing and academic achievement tests are the major diagnostic tools.

Treatment. Special education to ensure general learning and maximize skills in the deficient areas is the mainstay of treatment. Counseling of patients and families to improve self-esteem, social behavior, and family functioning is helpful.

Differential Diagnosis. Major rule-outs are environmental deprivation, hearing or vision impairment, and ID.
AUTISM SPECTRUM DISORDERS (ASD)

Definition. A group of disorders characterized by problems with social interaction, behavior, and language.

Risk Factors/Etiology. The cause is CNS damage due to known or unknown factors. Sites of CNS damage specifically associated with ASD are unknown. General medical conditions associated with ASD include encephalitis, maternal rubella, PKU, tuberous sclerosis, fragile X syndrome, and perinatal anoxia. There is no obvious etiology in many cases.

Presenting Symptoms
- Prevalence: 0.08% of the general population. Occurs at a 5:1 male-to-female ratio.
- Onset: before age 3
- Social symptoms: lack of peer relationships and a failure to use nonverbal social cues
- Communication symptoms: absent or bizarre use of speech
- Behavioral symptoms: odd preoccupation with repetitive activities, bizarre mannerisms, and rigid adherence to purposeless ritual
- ID is present in 75% of patients with ASD.
- Physical findings: higher incidence of abnormal electroencephalograms (EEGs), seizures, and abnormal brain morphology
- Course: Approximately 30% of individuals with ASD become semi-independent in adulthood, but almost all have severe residual disabilities.
- Predictors of a poor outcome are associated ID and failure to develop useful speech.
- Seizures develop by adulthood in 25% of autistic individuals.

Physical Examination. Self-injuries caused by head banging or biting sometimes present.

Treatment. The major treatment is family counseling, special education, and newer antipsychotic medications to control episodes of severe agitation or self-destructive behavior.

Differential Diagnosis. Major rule-outs are ID, hearing impairment, environmental deprivation, selective mutism, and Rett syndrome.

ATTENTION DEFICIT HYPERACTIVITY DISORDER (ADHD)

Definition. Characterized by inattention, hyperactivity, and impulsivity that interfere with social or academic function. Symptoms last for ≥6 months, and onset occurs age <12. Symptoms are present in multiple settings. Subtypes are based on the predominance of symptoms of inattention or of hyperactivity and impulsivity.

Risk Factors/Etiology. No specific etiologies have been identified. Other CNS pathology and disadvantaged family and school situations are sometimes present.

Prevalence. 5% of school-age children and 2.5% of adults. Male-to-female ratio is 2:1 in children and 1.6:1 in adults.

Family history. ADHD, mood and anxiety disorders, substance-related disorders, and antisocial personality disorder.

Onset. Usually first recognized when a child enters school, and symptoms usually persist throughout childhood. ADHD, particularly the attention deficit, persists into adulthood in most but not all affected individuals. Hyperactivity tends to diminish in adolescence and adulthood.
Symptoms. Short attention span, constant fidgeting, inability to sit through cartoons or meals, inability to wait in lines, failure to stay quiet or sit still in class, disobedience, shunning by peers, fighting, poor academic performance, carelessness, and poor relationships with siblings.

Common Associated Problems. Low self-esteem, mood lability, conduct disorder, learning disorders, clumsiness, communication disorders, drug abuse, school failure, and physical trauma as a result of impulsivity.

Physical Examination. Perceptual: motor problems and poor coordination may be present.

Diagnostic Tests. IQ tests and various structured symptom-rating scales for use by teachers and parents are often used.

Differential Diagnosis. Major rule-outs are age-appropriate behavior, response to environmental problems, ID, ASD, and mood disorders.

Treatment. Target symptoms are defined before initiating treatment. Psychological, social, and educational interventions include adding structure and stability to home and school environments. Specialized educational techniques include the use of multiple sensory modalities for teaching, instructions that are short and frequently repeated, immediate reinforcement for learning, and minimization of classroom distractions. Pharmacotherapy of choice is stimulant medications, such as methylphenidate and dextroamphetamine. Non-stimulants such as atomoxetine may also be used. They are usually effective in decreasing hyperactivity, inattention, and impulsivity. Other medications include antidepressants and clonidine.

CONDUCT DISORDER

Definition. Persistent violations ≥6 months in 4 areas: aggression, property destruction, deceitfulness or theft, and rules.

Risk Factors/Etiology. Genetic influences play a role by affecting temperament. Stressful family and school environments have also been implicated.

Prevalence. 4% of school-age children. Seen more in males.

Family History. Antisocial personality disorder, conduct disorder, ADHD, mood disorders, and substance-related disorders

Onset. Most often during late childhood or early adolescence. In most individuals, symptoms gradually remit.

Key Symptoms. Bullying, fighting, cruelty to people or animals, rape, vandalism, fire-setting, theft, robbery, running away, school truancy

Complications. Substance-related disorders and school failures

Outcome. Often, antisocial personality disorder, somatic symptom disorders, depressive disorders, and substance-related disorders

Differential Diagnosis. Major rule-outs are environmental problems, ADHD, and oppositional defiant disorder.

Treatment. Healthy group identity and role models are provided by structured sports programs and other programs (e.g., Big Brothers Big Sisters). Structured living settings that place value on group identification and cooperation are useful. Punishment and incarceration are not often effective.
OPPOSITIONAL DEFIANT DISORDER

Definition. Persistent pattern lasting at least 6 months of negativistic, hostile, and defiant behaviors toward adults, including arguments, temper outbursts, vindictiveness, and deliberate annoyance.

Risk Factors/Etiology. High reactivity and increased motor behavior are innate features of temperament that may predispose to this disorder. Inconsistent or poor parenting may also contribute.

Prevalence. 3% of school-age children. Male-to-female ratio is 1:1 after puberty but boys > girls before puberty.

Onset. Usually in latency or early adolescence and may start gradually. Onset later in girls.

Associated Problems. Family conflict and school failure, low self-esteem and mood lability, early onset of substance abuse, ADHD and learning disorders

Course. Family conflict often escalates after the onset of symptoms.

Outcome. Conduct disorder may follow.

Treatment. Parents should be advised to spend time interacting with a child, to reward desired behavior and not simply punish undesired behavior, and to be consistent in statements and deeds. Alternative caregivers may be indicated in some cases.

Differential Diagnosis. Conduct disorder

CHILDHOOD ENURESIS

Definition. Characterized by repeated voiding of urine into the patient’s clothes or bed in a child age ≥5. It is diagnosed only if the behavior is not due to a medical condition.

Risk Factors/Etiology. Current psychologic stress, family history of enuresis, and urinary tract infections

Prevalence. 3–5% of children aged 10. Slightly more common in boys. May occur only at night, only during daytime, or both. Often causes emotional turmoil in the child or parents.

Physical Examination. Assessment for urinary tract infection or abnormalities should occur.

Treatment. Appropriate toilet training and avoiding large amounts of fluids before bed are important, as are decreasing emotional stressors. A bell-pad apparatus is the best treatment. Pharmacotherapy includes imipramine and desmopressin (DDAVP) for short-term treatment.
CHILDHOOD ANXIETY

Definition. Normal childhood anxiety:

- **Stranger anxiety:** fear of strangers in unfamiliar contexts that is present from age 6 months to approximately 2 years
- **Separation anxiety:** fear of separation from the caregiver that is present from approximately 1 to 3 years of age

Risk Factors/Etiology. Excessively close-knit families, excessive expectations of children, and innate temperamental anxiety

Prevalence. 5% of school-age children

Key Symptoms. Prominent physical complaints such as stomachaches and malaise, unrealistic fears (e.g., monsters) and nightmares, phobias such as school phobia and fear of animals or the dark, difficulty sleeping, and self-mutilation such as scratching, nail-biting, and hair-pulling.

Physical Examination. Evidence of nail biting and scratching is sometimes present.

Treatment. Family therapy helps parents recognize and lessen childhood anxiety. Cognitive behavioral therapy is useful to decrease anxiety in older children.

Complications. Social avoidance, low self-esteem, and inhibited social development may occur.

TOURETTE DISORDER

Definition. Childhood onset of multiple motor and vocal tics

Risk Factors/Etiology. Autosomal dominant transmission may occur in some cases. There are associations between ADHD (50%) and obsessive compulsive disorder (OCD) (40%). Abnormalities in the dopaminergic and adrenergic system have been implicated.

Prevalence. 3 per 1,000. More common in males.

Onset. Average age 7 years, with motor tics and vocal tics typically appearing at age 11 years

Course. Vocal and motor tics wax and wane over time.

- **Motor tics:** May present as twitching of face, trunk, or extremities or may involve complex behaviors such as pacing, spinning, or touching.
- **Vocal tics:** Usually grunts; coprolalia (cursing) occurs in about 10% of cases.

Associated Problems. ADHD and obsessive-compulsive disorder are each present in about one-third of cases. ADHD occurs before tics whereas OCD symptoms occur after the tics.

Course. Lifelong, with remissions and exacerbations

Treatment. Antipsychotic drugs, including pimozide, haloperidol, olanzapine and risperidone are treatments of choice. Clonidine and clonazepam are sometimes useful.
A 13-year-old boy is referred by his junior high school principal for evaluation of his short attention span and inability to sit quietly in class or on the school bus. He has a quick temper at school and at home, and his peers tease him about his temper. Which of the following is most likely to be an associated finding in this case?

(A) Affectual blunting
(B) Autistic mannerisms
(C) Conduct disturbances
(D) Grandiosity and inflated self-esteem
(E) Intellectual disability

Answer: C. The symptoms are suggestive of ADHD. Conduct disturbances are a common associated finding in individuals with ADHD; drug abuse is also more common. Affect tends to be more labile, and low self-esteem is common. Although ID is seen more often in children with ADHD than in the general population, it is not a common associated finding, and this boy is at the expected grade level for his age. ASD is rarely diagnosed in individuals with ADHD.
Learning Objectives

- List the diagnostic criteria and treatment approaches for major mood disorders, including major depressive, bipolar, cyclothymic, and persistent depressive disorders
- Describe the presentation of mood disorders related to triggering phenomenon, including seasonal pattern, grief, peri/postpartum, and death/dying

MAJOR DEPRESSIVE DISORDER (MAJOR DEPRESSION)

A 70-year-old woman was recently admitted after her son informed the doctor that she had been doing very poorly over the past few months. The patient reports a 30-pound weight loss, decreased concentration, feelings of helplessness and hopelessness, decreased energy, depressed mood, and decreased sleep.

Definition. Mood disorder that presents with at least a 2-week course of symptoms that is a change from the patient’s previous level of functioning. Must have depressed mood or anhedonia (inability to enjoy oneself).

Risk Factors/Epidemiology. Major depression is seen more frequently in women due to several factors, such as hormonal differences, great stress, or simply a bias in the diagnosis. The typical age of onset is age 40. There is also a higher incidence in those who have no close interpersonal relationships or are divorced or separated. Many studies have reported abnormalities in serotonin, norepinephrine, and dopamine. Other risk factors include family history, exposure to stressors, and behavioral reasons, such as learned helplessness.

Presenting Symptoms

- Depressed mood most of the day
- Anhedonia during most of the day
- Significant weight loss (>5% of body weight)
- Insomnia
- Psychomotor agitation or retardation
- Fatigue or loss of energy nearly every day
- Feelings of worthlessness or guilt
- Diminished ability to concentrate
- Recurrent thoughts about death
Physical Examination. Usually within normal limits; however, may find evidence of psychomotor retardation, such as stooped posture, slowing of movements, slowed speech, etc. May also find evidence of cognitive impairment, such as decreased concentration and forgetfulness.

May also include:

- **Psychotic features**: worse prognosis
- **Atypical features**: increased weight, appetite, and sleep

Treatment. Must first secure the safety of the patient, given that suicide is such a high risk. Pharmacotherapy includes antidepressant medications such as SSRIs. Tricyclic antidepressants (TCAs), or monoamine oxidase inhibitors (MAOIs). Electroconvulsive therapy (ECT) may be indicated if patient is suicidal or intolerant to medications. Individual psychotherapy is indicated to help the patient deal with conflicts, sense of loss, etc. Another form of therapy is cognitive therapy, which will change the patient’s distorted thoughts about self, future, world, etc.

Differential Diagnosis

- **Medical disorders**: hypothyroidism, Parkinson’s disease, dementia, medications such as hypertensives, pseudodementia, tumors, cerebrovascular accidents
- **Mental disorders**: other mood disorders, substance disorders, and grief

BIPOLAR I DISORDER

A 19-year-old college student is taken to the school counselor after he fails several classes. The patient is enrolled in numerous classes, most of which have conflicting times. His grades are poor, yet he seems undisturbed by this. He is also enrolled in numerous organizations, such as the chess club, drama club, student government, sports, and at least 2 fraternities. His speech is pressured and he has psychomotor agitation.

Definition. A mood disturbance in which the patient typically experiences symptoms of mania or elevated mood, for at least 1 week that cause significant distress or impairment in her level of functioning.

Risk Factors/Epidemiology. Bipolar disorder affects men and women equally and has a mean age of onset of about 18 years. More prevalent among high socioeconomic status. Considered to be the illness with the greatest genetic linkage. Coexisting disorders may include anxiety, alcohol dependence, and substance-related disorders.

Presenting Symptoms

- Abnormal or persistently elevated mood lasting at least 1 week
- Increased self-esteem or grandiosity
- Distractibility
- Excessive involvement in activities
- More talkative than usual
- Psychomotor agitation
- Flight of ideas
- Increased sexual activity
- Increase in goal-directed activity
Physical Examination. Usually within normal limits; however, may find evidence of psychomotor agitation and pressured speech.

Treatment. Must assess patient safety to determine the need for hospitalization. Pharmacotherapy will include mood stabilizers, benzodiazepines, and antipsychotics.

Differential Diagnosis

- Mental disorders: Schizophrenia, personality disorders, and bipolar II disorder (includes major depressive episodes and hypomanic but not manic episodes)
- Medical disorders: CNS infections, tumors, hyperthyroidism, and medications

PERSISTENT DEPRESSIVE DISORDER (DYSTHYMIA)

Mr. Smith complains of poor appetite, low energy, poor concentration, and difficulty in making decisions, which affects his ability to complete his assignments at work. These symptoms have been present for more than 2 years.

Definition. A chronic disorder characterized by a depressed mood that lasts most of the day and is present on most days for at least 2 years.

Risk Factors/Epidemiology. Patients typically have other psychiatric disorders, such as anxiety, substance abuse, and/or borderline personality disorders.

Treatment. Hospitalization is usually not indicated. Patients may benefit from psychotherapy to help overcome long-term sense of despair and resolve conflicts from childhood. If medications are indicated, SSRIs, TCAs, or MAOIs are usually preferred.

Differential Diagnosis. Differential diagnosis is essentially the same as for major depression.

CYCLOTHYMIC DISORDER

Mrs. McDonald has experienced a 12-year history of periods of feeling great followed by periods of feeling lousy. During her feeling-great periods, she experiences increased sexual drive, euphoric mood, and increased irritability. During her feeling-lousy periods, she experiences insomnia, fatigue, and low self-esteem.

Definition. A chronic disorder characterized by many periods of depressed mood and many periods of hypomanic mood for at least 2 years.

Risk Factors/Epidemiology. Many patients have interpersonal and marital difficulties. It frequently coexists with borderline personality disorder and is seen more frequently in women. Many patients have family history of bipolar disorder. Alcohol and substance abuse are common.

Treatment. Antimanic drugs such as lithium, carbamazepine, and valproic acid are typically the drugs of choice. Psychotherapy will help patients gain insight into their illness and how to cope with it.
Differential Diagnosis

- **Medical**: seizures, substances, and medications
- **Mental**: other mood disorders, personality disorders, medications

MAJOR DEPRESSIVE DISORDER WITH SEASONAL PATTERN

A young woman from Minnesota complains of depressed mood and sleep disturbances every winter. Her symptoms resolve in the spring and summer.

Definition. A disorder characterized by depressive symptoms found during winter months and absent during summer months. Believed to be caused by abnormal melatonin metabolism (decreased MSH).

Treatment. Phototherapy

GRIEF, POSTPARTUM DEPRESSION, DEATH AND DYING

Grief

Table I-4-1. Grief Versus Depression

<table>
<thead>
<tr>
<th>Grief or Bereavement</th>
<th>Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadness, tearfulness, decreased sleep, decreased appetite, decreased interest in the world</td>
<td>Sadness, tearfulness, decreased sleep, decreased appetite, decreased interest in the world</td>
</tr>
<tr>
<td>Symptoms wax and wane</td>
<td>Symptoms pervasive and unremitting</td>
</tr>
<tr>
<td>Shame and guilt less common</td>
<td>Shame and guilt are common</td>
</tr>
<tr>
<td>Threaten suicide less often</td>
<td>Threaten suicide more often</td>
</tr>
<tr>
<td>Symptoms can last up to 1 year</td>
<td>Symptoms continue for more than 1 year</td>
</tr>
<tr>
<td>Usually return to baseline level of functioning within 2 months</td>
<td>Patients do not return to baseline level of functioning</td>
</tr>
<tr>
<td>Treatment includes supportive psychotherapy</td>
<td>Treatment includes antidepressant medication</td>
</tr>
</tbody>
</table>
Peripartum Mood Disorders

Table I-4-2. Postpartum Reactions

<table>
<thead>
<tr>
<th>Onset</th>
<th>Disorder</th>
<th>Symptoms</th>
<th>Mother’s Feelings Toward Baby</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset of mood symptoms within 2 wks after delivery</td>
<td>Postpartum blues or baby blues</td>
<td>Sadness, mood lability, tearfulness</td>
<td>No negative feelings</td>
<td>Supportive, usually self-limited</td>
</tr>
<tr>
<td>Onset of mood symptoms occurs during pregnancy or in the 4 wks following delivery</td>
<td>Depressive disorder with peripartum onset</td>
<td>Depressed mood, weight changes, sleep disturbances, and excessive anxiety</td>
<td>May have negative feelings toward baby</td>
<td>Antidepressant medications</td>
</tr>
<tr>
<td>Onset of mood and/or psychotic symptoms occurs during pregnancy or in the 4 wks following delivery</td>
<td>Bipolar disorder with peripartum onset Brief psychotic disorder with peripartum onset</td>
<td>Symptoms of depression, mania along with delusions, hallucinations and thoughts of harm</td>
<td>May have thoughts of harming baby</td>
<td>Antipsychotic medication, lithium, and possible antidepressant</td>
</tr>
</tbody>
</table>

Death and Dying

Through her work with dying hospital patients, psychiatrist Elizabeth Kubler-Ross identified 5 stages she believed were experienced by those nearing death. The stages do not have to occur in order.

Stage 1: Shock and denial
Stage 2: Anger
Stage 3: Bargaining
Stage 4: Depression
Stage 5: Acceptance
Practice Questions

1. A 50-year-old woman is taken to the hospital after neighbors find her wandering the streets mumbling to herself and gesturing. When approached, she begins to cry and expresses thoughts about hurting herself. Examination reveals scratch marks on both her forearms and questionable lacerations on her throat. When questioned, she reports feeling depressed since her husband died 5 months ago. She reports a decrease in concentration and feelings of helplessness, hopelessness, and anhedonia, which resulted in her quitting her job and staying at home. She now has begun to hear her husband’s voice asking her to “join” him. Which of the following would be the next step in management?
 (A) Begin a trial of antidepressant medications
 (B) Refer to psychiatry
 (C) Refer for electroconvulsive therapy
 (D) Assess for thoughts about suicide
 (E) Refer to the outpatient department for follow-up

2. Assuming you decide to begin treatment, which of the following is most indicated as initial treatment?
 (A) Individual psychotherapy
 (B) Behavioral therapy
 (C) Fluoxetine
 (D) Risperidone
 (E) Phenelzine

3. A 32-year-old woman was recently diagnosed with advanced breast cancer. Which of the following reactions would you expect to see first?
 (A) Shock and denial
 (B) Anger
 (C) Bargaining
 (D) Depression
 (E) Any of the above

1. **Answer: D.** The most important thing to assess in patients suffering from depression is their suicidal status, which of course determines her prognosis and whether or not you will admit her to the hospital for treatment. You will probably begin a course of pharmacotherapy, but you need to assess suicidal status first. “Refer to psychiatry” will always be wrong on a test, given that you need to know what to do in these situations. Electroconvulsive therapy might be indicated in her condition but is usually not the first line of treatment.

2. **Answer: D.** Patients with both mood and psychotic symptoms respond to both antidepressants as well as to antipsychotic medication. However, you must treat the worst symptom first. In this case, the antipsychotic would be most indicated to reduce her psychotic symptoms. Choice D is an atypical antipsychotic medication with minimal side effects.

3. **Answer: E.** Because the stages can occur in any order, any one of the above could be the answer.
Learning Objectives

- List the diagnostic criteria and treatment approaches to schizophrenia and other psychotic disorders

SCHIZOPHRENIA

Definition. A thought disorder that impairs judgment, behavior, and ability to interpret reality. Symptoms must be present for at least 6 months to be able to make a diagnosis.

Risk Factors/Etiology. Men have an earlier onset, usually at age 15–25. Many theories have evolved regarding the cause of schizophrenia.

- Schizophrenia has been associated with high levels of dopamine and abnormalities in serotonin.
- Because there is an increase in the number of schizophrenics born in the winter and early spring, many believe it may be viral in origin.

Schizophrenia is more prevalent in low socioeconomic status groups, either as a result of downward drift or social causation.

Prevalence

<table>
<thead>
<tr>
<th>Group</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td>1%</td>
</tr>
<tr>
<td>One schizophrenic parent</td>
<td>12%</td>
</tr>
<tr>
<td>Monozygotic twin</td>
<td>47%</td>
</tr>
<tr>
<td>Two schizophrenic parents</td>
<td>40%</td>
</tr>
<tr>
<td>Dizygotic twin</td>
<td>12%</td>
</tr>
<tr>
<td>First-degree relative</td>
<td>12%</td>
</tr>
<tr>
<td>Second-degree relative</td>
<td>5–6%</td>
</tr>
</tbody>
</table>

Physical and Psychiatric Presenting Symptoms

- Hallucinations (mostly auditory)
- Delusions (mostly bizarre)
- Disorganized speech or behavior
- Catatonic behavior
- Negative symptoms
- Social and/or occupational dysfunction
- Physical exam usually unremarkable, but may find saccadic eye movements, hypervigilance, etc.
Brain Imaging Findings
- **CT**: lateral and third ventricular enlargement, reduction in cortical volume (associated with the presence of negative symptoms, neuropsychiatric impairment, increased neurologic signs, and poor premorbid adjustment)
- **MRI**: increased cerebral ventricles
- **PET**: hypoactivity of the frontal lobes and hyperactivity of the basal ganglia relative to the cerebral cortex

Psychologic Tests
- **IQ tests**: Will score lower on all IQ tests, maybe due to low intelligence at the onset or to deterioration as a result of the disease
- **Neuropsychologic**: Tests usually are consistent with bilateral frontal and temporal lobe dysfunction, including deficits in attention, retention time, and problem-solving ability.
- **Personality**: may give abnormal findings, such as bizarre ideations, etc.

Treatment. Hospitalization is usually recommended for either stabilization or safety of the patient. If you decide to use medications, antipsychotic medications are most indicated to help control both positive and negative symptoms. If no response, consider using clozapine after other medications have failed. The suggested psychotherapy will be supportive psychotherapy with the primary aim of having the patient understand that the therapist is trustworthy and has an understanding of the patient, no matter how bizarre.

Differential Diagnosis
- **Substance-induced**: Psychostimulants, hallucinogens, alcohol hallucinosis, barbiturate withdrawal, etc. Consider urine drug screen to rule out.
- **Epilepsy**: temporal lobe epilepsy
- **Other psychotic disorders**: schizoaffective, schizophreniform, brief reactive psychosis, delusional disorder
- **Malingering and factitious disorder**: must assess whether the patient is in control of the symptoms and whether there is an obvious gain
- **Mood disorders**: Look at duration of mood symptoms; these tend to be brief in schizophrenia.
- **Medical**: HIV, steroids, tumors, CVAs, etc. Need medical work-up to rule out.
- **Personality disorders**: Schizotypal, schizoid, and borderline personality disorders have the most similar symptoms. Must look at duration of symptoms as well as patient’s level of functioning.

OTHER PSYCHOTIC DISORDERS

Brief Psychotic Disorder

A 35-year-old female Chinese immigrant is brought in by neighbors after she was found wandering in the streets yelling out someone’s name. She appears disheveled and grossly disorganized. You learn that she arrived in the U.S. several days ago and upon her arrival, witnessed the death of her 3-year-old son. While in the waiting room, she appears to be responding to internal stimuli. Her symptoms of psychosis resolve fully within 1 month.
Presenting Symptoms

- Hallucinations
- Delusions
- Disorganized speech
- Grossly disorganized or catatonic behavior
- Symptoms more than 1 day but less than 30 days

Risk Factors. Seen most frequently in the low socioeconomic status as well as in those who have preexisting personality disorders or the presence of psychological stressors.

Treatment. Hospitalization is warranted if the patient is acutely psychotic, to assure the safety of her/himself or of others. Pharmacotherapy will include both antipsychotics and benzodiazepines. The benzodiazepines may be used for short-term treatment of psychotic symptoms.

Schizophreniform Disorder

Mrs. Jones is evaluated at a nearby clinic after she was noticed to be acting inappropriately at work. According to her coworkers, she began acting strangely 3 months ago. At that time she began wearing a hard hat to work and when asked why, replied, “I will not let you read my mind.” She also believed that others were talking about her and routinely asked them to stop. On several occasions, she had to be escorted out of the room because she started to argue with others whom she believed were controlling her mind.

Presenting Symptoms

- Hallucinations
- Delusions
- Disorganized speech
- Grossly disorganized or catatonic behavior
- Negative symptoms
- Social and/or occupational dysfunction
- Symptoms are present more than 1 month but less than 6 months
- Most of the patients return to their baseline level of functioning

Risk Factors. Suicide is a risk factor given that the patient is likely to have a depressive episode after the psychotic symptoms resolve.

Treatment. Must assess whether the patient needs hospitalization, to assure safety of patient and/or others.

Antipsychotic medication is indicated for a 3–6-month course. Individual psychotherapy may be indicated to help the patient assimilate the psychotic experience into his life.
Schizoaffective Disorder

A 25-year-old woman is found walking nude in the shopping mall. When asked why, she replies, “I am making it easy for others to have sex with me since I know they all want me.” She states she heard a voice telling her she was irresistible and everyone wanted her. When she speaks, she cannot focus on one topic at a time. Her mood is euphoric and her affect labile. She recounts an episode last year, where, although she did not have an elevated or depressed mood, she heard voices she could not describe and believed others were following her. These symptoms lasted for 6+ months and caused her to lose her job.

Presenting Symptoms

- Uninterrupted period of symptoms meeting criteria for major depressive episode, manic episode, or mixed episode
- Symptoms for schizophrenia
- Delusions or hallucinations for at least 2 weeks in the absence of mood symptoms

Prognosis. Better prognosis than patients with schizophrenia. Worse prognosis than patients with affective disorders.

Treatment. First determine if hospitalization is necessary. Use antidepressant medications and/or anticonvulsants to control the mood symptoms. If not effective, consider antipsychotics to help control the ongoing symptoms.

Delusional Disorder

Mr. Smith has been married for 10 years, and during most of those years he believed his wife was trying to poison him to get his money. He frequently complains of stomach pain, which he believes is due to the poison in the food. His thoughts are logical and coherent. He denies any hallucinations. His wife, an independently wealthy woman, does not understand her husband’s logic because she has more money than he does.

Presenting Symptoms

- Nonbizarre delusions for at least 1 month
- No impairment in level of functioning
- The patients are usually reliable unless it is in relationship to their delusions.
- Types include erotomanic, jealous, grandiose, somatic, mixed, unspecified.

Risk Factors. Mean age of onset is about age 40. Seen more commonly in women, and most are married and employed. Has been associated with low socioeconomic status as well as recent immigration. Can usually see conditions in limbic system or basal ganglia, if medical causes are determined to be the cause of the delusions.
Treatment. Outpatient treatment is usually preferred, but the patient may need hospitalization while you rule out medical causes. Pharmacotherapy consists of antipsychotic medications, but studies indicate that many patients do not respond to treatment. Individual psychotherapy is recommended, having the patient trust the physician to point out how the delusions interfere with normal life.

Practice Questions

1. A 23-year-old woman was seen today after she complained that her neighbors were talking about her. According to the neighbors, her behavior started 3 weeks ago after she was involved in a car accident. She was not injured in the accident. Since then, she has been following the neighbors for several days and harassing them at work. She believes that the neighbors are putting poison in her food and want to kill her. When asked why, she is unable to give a clear explanation but insists that what she is saying is true. She states that the voice in her head told her it is true and that you should stop asking questions. While in the waiting room, you observe her to be dressed bizarrely and laughing inappropriately. Which of the following is most indicated in management?
 (A) Haloperidol
 (B) Clozapine
 (C) Lorazepam
 (D) Risperidone
 (E) Fluphenazine decanoate

2. If her symptoms do not improve within the next week, which of the following is she at greatest risk of developing?
 (A) Schizophrenia, paranoid type
 (B) Schizoaffective disorder
 (C) Schizophreniform disorder
 (D) Schizotypal personality disorder
 (E) Delusional disorder

1. Answer: D. The patient clearly has psychotic symptoms; therefore, you would want to give her medication with the fewest side effects. Choices A and E are typical antipsychotics with many side effects. Choices B and D are atypical antipsychotics; however, clozapine is not used first line in the treatment of psychotic symptoms. Lorazepam is not an antipsychotic medication. However, it can be used in psychotic patients to reduce agitation.

2. Answer: C. Because her symptoms have occurred for only 3 weeks, this patient has a diagnosis of brief psychotic disorder. But should the symptoms persist for >1 month, her diagnosis would be schizophreniform disorder. Schizophrenia is given when the symptoms are present for >6 months.
Learning Objectives

- Describe the presentation, diagnostic criteria, and treatment approaches to anxiety disorders, including panic, phobic, obsessive-compulsive, acute stress, post-traumatic stress, and generalized anxiety disorders

ANXIETY

Anxiety is a syndrome with psychologic and physiologic components. Psychologic components include worry that is difficult to control, hypervigilance and restlessness, difficulty concentrating, and sleep disturbance. Physiologic components include autonomic hyperactivity and motor tension.

Psychodynamic theory posits that anxiety occurs when instinctual drives are thwarted. Behavioral theory states that anxiety is a conditioned response to environmental stimuli originally paired with a feared situation. Biologic theories implicate various neurotransmitters (especially gamma-aminobutyric acid [GABA], norepinephrine, and serotonin) and various CNS structures (especially reticular activating system and limbic system).

PANIC DISORDER

Definition. Recurrent, unexpected panic attacks that take place out of the blue. Panic attacks are attacks of intense anxiety that often include marked physical symptoms, such as tachycardia, hyperventilation, dizziness, and sweating. Attacks involve worry about having more attacks.

Risk Factors/Etiology. History associated with panic disorder includes separations during childhood and interpersonal loss in adulthood. A majority of individuals with panic disorder, unlike other individuals, have panic symptoms in response to “panicogens” (lactate CO₂, yohimbine, caffeine, and other substances). Studies of twins suggest a genetic component.

Presenting Symptoms

- Prevalence: 2% of the population; women > men 2:1
- Onset: often during decade 3
- Course: Severity of symptoms may wax and wane, and may be associated with intercurrent stressors.
- Key symptoms: Attacks usually last a few minutes.
- Associated problems: depression, generalized anxiety, and substance abuse
• **Agoraphobia** is fear or avoidance of places from which escape would be difficult in the event of panic symptoms (public places, being outside alone, public transportation, crowds). Women > men. Often leads to severe restrictions on the individual’s travel and daily routine.

Treatment. Pharmacologic interventions include SSRIs, alprazolam, clonazepam, imipramine, and MAOIs (e.g., phenelzine). Psychotherapeutic interventions include relaxation training for panic attacks and systematic desensitization for agoraphobic symptoms.

PHOBIC DISORDERS

Phobic disorders are characterized by an irrational fear and avoidance of objects and situations.

Types of Phobias

• **Specific phobia:** Fear or avoidance of objects or situations other than agoraphobia or social phobia. Commonly involves animals (e.g., carnivores, spiders), natural environments (e.g., storms), injury (e.g., injections, blood), and situations (e.g., heights, darkness).

• **Social anxiety disorder:** Fear of humiliation or embarrassment in either general or specific social situations (e.g., public speaking, “stage fright,” urinating in public restrooms).

Treatment. Cognitive-behavioral therapies for phobias include systematic desensitization and assertiveness training. Pharmacotherapy includes SSRIs, buspirone, and beta-blockers (for stage fright).

OBSESSIVE-COMPULSIVE DISORDER (OCD)

Definition. OCD is characterized by recurrent obsessions or compulsions that are recognized by the individual as unreasonable. Obsessions are anxiety-provoking, intrusive thoughts, commonly concerning contamination, doubt, guilt, aggression, and sex. Compulsions are peculiar behaviors that reduce anxiety, commonly hand-washing, organizing, checking, counting, and praying.

Risk Factors/Etiology. May be associated with abnormalities of serotonin metabolism

Presenting Symptoms

• **Prevalence:** 2% of population; men = women 1:1

• Some evidence of heritability

• **Onset:** insidious and occurs during childhood, adolescence, or early adulthood

• **Course:** Symptoms usually wax and wane, and depression, other anxieties, and substance abuse are common.

Physical Examination. Chapped hands when handwashing compulsion is present.

Treatment. Behavioral psychotherapies are relaxation training, guided imagery, exposure, paradoxical intent, response prevention, thought-stopping techniques, and modeling. Pharmacotherapy includes SSRIs, TCAs, MAOIs, and SNRIs.
ACUTE STRESS DISORDER/POST-TRAUMATIC STRESS DISORDER

Definition. These disorders are characterized by severe anxiety symptoms and follow a threatening event that caused feelings of fear, helplessness, or horror.

- When the anxiety lasts <1 month (but >2 days) and symptoms occur within 1 month of stressor, it is diagnosed as acute stress disorder (ASD).
- When the anxiety lasts >1 month, it is diagnosed as post traumatic stress disorder (PTSD).

Risk Factors/Etiology. Traumatic events precipitate ASD and PTSD. Premorbid factors, such as personality traits, play an uncertain role.

Presenting Symptoms
- May occur at any age. About 50% of cases resolve within 3 months.
- Usually begin immediately after trauma, but may occur after months or years.
- Three key symptom groups
 - Reexperiencing of traumatic event: dreams, flashbacks, or intrusive recollections
 - Avoidance of stimuli associated with the trauma or numbing of general responsiveness
 - Increased arousal: anxiety, sleep disturbances, hypervigilance
- Anxiety, depression, impulsivity, and emotional lability are common.
- “Survivor guilt”: A feeling of irrational guilt about an event sometimes occurs.

Treatment. Counseling after a stressful event may prevent PTSD from developing. Group psychotherapy with other survivors is helpful. Pharmacotherapy includes SSRIs, other antidepressants, and benzodiazepines. Prazosin has been used to reduce nightmares.

GENERALIZED ANXIETY DISORDER

Definition. Excessive, poorly controlled anxiety about life circumstances that continues for >6 months. Both psychologic and physiologic symptoms of anxiety are present. General worry is accompanied by somatic symptoms such as irritability, decreased sleep, and poor concentration.

Risk Factors/Etiology. May be a genetic predisposition for an anxiety trait.

Presenting Symptoms
- Prevalence: 5% of the population. Occurs at a 2:3 male-to-female ratio.
- Onset: often during childhood but can occur later
- Course: usually chronic, but symptoms worsen with stress
- Associated problems: depression, somatic symptoms, and substance abuse

Treatment. Behavioral psychotherapy includes relaxation training and biofeedback. Pharmacotherapy includes SSRIs, venlafaxine, buspirone, and benzodiazepines.
A 31-year-old local politician has a sudden onset of extreme anxiety, tremulousness, and diaphoresis immediately before his first scheduled appearance on national television, and he is unable to go on the air. For the next week he is paralyzed by fear each time he faces an audience, and he cancels all of his scheduled public appearances. Which of the following is the most likely diagnosis?

(A) Acute stress disorder
(B) Adjustment disorder with anxious mood
(C) Panic disorder
(D) Social anxiety disorder
(E) Specific phobia

Answer: D. This presentation is most suggestive of social anxiety disorder. In this case, exposure to public speaking precipitated intense anxiety. Panic disorder is also characterized by intense anxiety attacks; however, there is no clear precipitant. Specific phobia, situational type, is a less likely diagnosis, because there is no specific cause of the fear other than social exposure. Acute stress disorder is characterized by the presence of intrusive recollections and emotional numbing that follow a life-threatening event. Adjustment disorder with anxious mood is characterized by an adaptation problem that follows a psychologic stressor, of which there is no evidence in this case.
Learning Objectives

- Differentiate conversion disorder, factitious disorder, and malingering
- Answer questions about somatic symptom, illness anxiety, and body dysmorphic disorders

SOMATOFORM DISORDERS

Somatoform disorders are characterized by the presentation of physical symptoms with no medical explanation. The symptoms are severe enough to interfere with one’s ability to function in social or occupational activities.

SOMATIC SYMPTOM DISORDER

Mrs. Smith has been married for 10 years, and during all of those years she remembers being sick all of the time. According to her husband, she constantly takes medications for all of her ailments. She has visited numerous physicians and none have been able to correctly diagnose her condition. Today she presents in your office complaining of shortness of breath, chest pain, abdominal pain, back pain, double vision, difficulty walking due to weakness in her legs, headaches, constipation, bloating, decreased libido, and tingling in her fingers.

Definition. A disorder where 1 or more somatic symptoms that are distressing result in problems in functioning.

Risk Factors/Etiology. Somatization disorder affects women more than men and is usually inversely related to SES. Usually begins by the age of 30. Data suggest that there may be a genetic linkage to the disorder. Within families, male relatives tend to have antisocial personality disorder, whereas female relatives tend to have histrionic personality disorder.

Physical and Psychiatric Presenting Symptoms

- Many physical symptoms affecting many organ systems
- Excessive thoughts, feelings, or behaviors related to the somatic symptoms
- Long, complicated medical histories
• Interpersonal and psychologic problems are usually present.
• Patients will usually seek out treatment and have significant impairment in their level of functioning.
• Commonly associated with major depressive disorder, personality disorders, substance-related disorders, generalized anxiety disorders, and phobias

Treatment. Must have a single identified physician as the primary caretaker. Patient should be seen during regularly scheduled brief monthly visits. Should increase the patient’s awareness of the possibility that the symptoms are psychological in nature. Individual psychotherapy is needed to help patients cope with their symptoms and develop other ways of expressing their feelings.

Differential Diagnosis
- **Medical:** MS, myasthenia gravis, SLE, AIDS, thyroid disorders, and chronic systemic infections
- **Psychiatric:** major depression, generalized anxiety disorder, schizophrenia

CONVERSION DISORDER

A recently married woman presents to the emergency department unable to move her lower extremities. A full workup is done, and no abnormalities are found. When further questioned, she reports being beaten by her husband that morning.

Definition. A disorder in which the individual experiences 1 or more neurologic symptoms that cannot be explained by any medical or neurologic disorder.

Risk Factors/Etiology. Seen more frequently in young women. Also more common among the lower SES, rural populations, low IQs, and military personnel. Commonly associated with passive-aggressive, dependent, antisocial, and histrionic personality disorder.

Psychiatric and Physical Presenting Symptoms
- One or 2 neurologic symptoms affecting voluntary or sensory function
- Must have psychologic factors associated with the onset or exacerbation of the symptoms
- Mutism, blindness, and paralysis are the most common symptoms.
- **Sensory system:** Anesthesia and paresthesia
- **Motor system:** Abnormal movements, gait disturbance, weakness, paralysis, tics, jerks, etc.
- **Seizure system:** Pseudoseizures
- **Primary gain:** Keeps internal conflicts outside patient’s awareness
- **Secondary gain:** Benefits received from being “sick”
- **La belle indifference:** Patient seems unconcerned about impairment.
- **Identification:** Patients usually model their behavior on someone who is important to them.

Treatment. Psychotherapy to establish a caring relationship with treater and focus on stress and coping skills. Brief monthly visits with partial physical examinations.
Differential Diagnosis
- **Neurologic:** dementia, tumors, basal ganglia disease, and optic neuritis
- **Psychiatric:** schizophrenia, depressive disorders, anxiety disorders, factitious
- **Other:** malingering

ILLNESS ANXIETY DISORDER

A 22-year-old woman presents to the doctor convinced that she has a brain tumor. She reports frequent headaches that are not alleviated with aspirin. She has been to numerous physicians and all have told her that there is nothing wrong with her. She expects that you can help her because she knows that there is something wrong and that you can adequately treat her condition.

Definition. A disorder characterized by the patient’s belief that he/she has some specific disease. Despite constant reassurance, the patient’s belief remains the same. Symptoms must occur for >6 months.

Risk Factors/Etiology. Men and women are affected equally. Most common onset is age 20–30.

Physical and Psychiatric Presenting Symptoms
- Preoccupation with diseases
- The preoccupation persists despite constant reassurance by physicians.
- The belief is not delusional.
- The preoccupation affects the individual’s level of functioning.
- Duration at least 6 months

Treatment. Psychotherapy to help relieve stress and help cope with illness. Frequent, regularly scheduled visits to patient’s medical doctor(s).

BODY DYSMORPHIC DISORDER

The mother of a 20-year-old man presents to your office in tears. She insists that you come to her house and see her son, who has been homebound for several years. Her son refuses to leave the house because he believes he is ugly and people will laugh at him. He feels deformed and refuses to let others see him. When you arrive at the house, you find an attractive young man with no observable deformities.

Definition. Characterized by the belief that some body part is abnormal, defective, or misshapen.

Risk Factors/Etiology. Affects women more than men, typically ages 15–20. These women are unlikely to be married. Other disorders that may be found include depressive disorders, anxiety disorders, and psychotic disorders. Family history of depressive disorders and OCDs. May involve serotonergic systems.
Physical and Psychiatric Presenting Symptoms
- Most common concerns involve facial flaws
- Constant mirror-checking
- Attempt to hide the alleged deformity
- Housebound
- Avoids social situations
- Causes impairment in their level of functioning

Treatment. Individual psychotherapy to help deal with stress of alleged imperfections as well as reality testing. Pharmacotherapy may include the use of SSRIs, TCAs, or MAOIs.

Differential Diagnosis
- Medical: some types of brain damage, such as neglect syndrome
- Psychiatric: anorexia, narcissistic personality disorder, OCD, schizophrenia, delusional disorder

FACTITIOUS DISORDER

A 2-year-old girl was hospitalized after her mother complained that the girl had multiple episodes of apnea in the middle of the night. The mother was given an apnea monitor to take home and when she returned, there were numerous episodes registering on the monitor. While in the hospital, the girl had no episodes of apnea. However, shortly after her mother’s visit, there were numerous episodes recorded on the monitor.

Definition. A disorder characterized by the conscious production of signs and symptoms of both medical and mental disorders. The main objective is to assume the sick role and eventually hospitalization. Usually diagnosed with physical or psychological symptoms or both. Consists of 2 main types: imposed on self and imposed on others.

Etiology. Seen more commonly in women and in hospital and health care workers. As children, many of the patients suffered abuse that resulted in frequent hospitalizations, thus their need to assume the sick role.

Physical and Psychiatric Presenting Symptoms
- Typically demand treatment when in the hospital
- If tests return negative, they tend to accuse doctors and threaten litigation.
- Become angry when confronted

Treatment. Usually involves management rather than cure. Must be aware of countertransfer-ence when the physician suspects factitious disorder.

Differential Diagnosis. Psychiatric: other somatoform disorders, antisocial personality disorder, histrionic personality disorder, schizophrenia, substance abuse, malingering, and Ganser syndrome.
MALINGERING

A 40-year-old homeless man presents to the hospital on a cold night complaining of auditory hallucinations telling him to kill himself. When asked about past psychiatric history, he is unable to give any detailed information. He seems concerned about being admitted immediately and refuses all medications, when offered.

Definition. Characterized by the conscious production of signs and symptoms for an obvious gain (money, avoidance of work, free bed and board, etc.). It is not a mental disorder.

Risk Factors/Etiology. Seen more frequently in men, especially in prisons, factories, the military, etc.

Physical and Psychiatric Presenting Symptoms

• Most express subjective symptoms.
• Tend to complain a lot and exaggerate its effect on their functioning and lives
• Preoccupied more with rewards than with alleviation of symptoms

Treatment. Allow the patient to save face by not confronting the patient and by allowing the physician–patient relationship to work. If confronted, patient will become angry and more guarded and suspicious.

Differential Diagnosis. Psychiatric: somatoform disorders

Practice Question

A 40-year-old woman presents to your office and demands to be seen immediately. She schedules appointments to see you on a regular basis as well as irregularly. She routinely goes to the emergency department when she knows you are at the hospital. She calls your service every night and demands that you call her at home. Her frequent complaints include headache, shortness of breath, double vision, burning at urination, weakness in her arms and legs, tingling in her fingers, and palpitations. All of her medical workups have been negative so far. Which of the following would be the next step in management?

(A) Tell her it is all in her head
(B) Assure her there is nothing wrong with her
(C) Refer her to a psychiatrist
(D) Begin a trial of lorazepam
(E) Schedule regular office visits

Answer: E. Patients with somatic symptom disorder should have only 1 physician, and that physician must see the patient on a regular basis given that there might be something physically wrong in the future. Also, by limiting the patient’s care to one physician, the likelihood of unnecessary tests and treatment is reduced.
Neurocognitive Disorders

Learning Objectives

- Differentiate delirium, dementia, and psychosis
- List the causes of delirium and describe the diagnostic work-up
- Define neurocognitive disorder and mild neurocognitive disorder

NEUROCOGNITIVE DISORDERS

Cognition includes memory, language, orientation, judgment, problem solving, interpersonal relationships, and performance of actions. Cognitive disorders have problems in these areas as well as behavioral symptoms.

Definition. Characterized by the syndromes of delirium, neurocognitive disorder, and amnesia, which are caused by general medical conditions, substances, or both.

Risk Factors/Etiology. Very young or advanced age, debilitation, presence of specific general medical conditions, sustained or excessive exposure to a variety of substances.

Presenting Symptoms (Key Symptoms)
- Memory impairment, especially recent memory
- Aphasia: failure of language function
- Apraxia: failure of ability to execute complex motor behaviors
- Agnosia: failure to recognize or identify people or objects
- Disturbances in executive function: impairment in the ability to think abstractly and plan such activities as organizing, shopping, and maintaining a home

DELIRIUM

Delirium is characterized by prominent disturbances in alertness, as well as confusion and a short, fluctuating course. It is caused by acute metabolic problems or substance intoxication.

Risk Factors/Etiology. Commonly associated with general medical conditions such as systemic infections, metabolic disorders, hepatic/renal diseases, seizures, head trauma. Also associated with high, sustained, or rapidly decreasing levels of many drugs, especially in the elderly and severely ill.
Presenting Symptoms. Delirium occurs in >40% of elderly, hospitalized patients. Key symptoms include agitation or stupor, fear, emotional lability, hallucinations, delusions, and disturbed psychomotor activity.

Physical Examination. Motor abnormalities commonly present, include incoordination, tremor, asterixis, and nystagmus. Incontinence is common. There is often evidence of underlying general medical conditions or substance-specific syndromes.

Diagnostic Tests. EEG often shows generalized slowing of activity, fast-wave activity, or focal abnormalities. Abnormal findings from neuroimaging and neuropsychiatric testing may be present.

Treatment. Correction of physiologic problems is essential. Frequent orientation and reassurance are helpful. Consider protective use of physical restraints and antipsychotic medications.

Differential Diagnosis. Neurocognitive disorder, substance intoxication or withdrawal, and psychotic disorders are the major rule-outs.

NEUROCOGNITIVE DISORDER

Neurocognitive disorder is characterized by slight (mild) or prominent (severe) memory disturbances coupled with other cognitive disturbances that are present even in the absence of delirium. It is caused by CNS damage and likely to have a protracted course.

Risk Factors/Etiology.

- Neurodegenerative disease such as Alzheimer’s, Parkinson, Huntington, Pick, and other fronto-temporal degeneration, and Creutzfeldt-Jakob disease are common causes.
- Cerebrovascular disease, intracranial processes such as CNS infections (e.g., HIV), traumatic brain injuries, radiation, and/or tumors should be considered.
- Seizure disorders, metabolic disorders (e.g., disease of protein, lipid, and carbohydrate metabolism; diseases of myelin; Wilson disease; uremic encephalopathy), and endocrinopathies (e.g., hypothyroidism) are often associated with neurocognitive disorder.
- Nutritional deficiencies, including beriberi (thiamine [vitamin B1] deficiency), pellagra (niacin deficiency), and/or pernicious anemia (cobalamin [vitamin B12] deficiency), should be considered.
- Toxins that cause neurocognitive disorder include alcohol, inhalants, sedative-hypnotics, anxiolytics, anticonvulsants, antineoplastic medications, heavy metals, insecticides, and solvents.

Prevalence. 5% of the population age >65 and >20% of the population age >85

Heritability. Some types of neurodegenerative neurocognitive disorders (e.g., Huntington disease).

Key Symptoms. Increasing disorientation, anxiety, depression, emotional lability, personality disturbances, hallucinations, and delusions

Associated Findings. Abnormal findings from neuroimaging and neuropsychiatric testing.

Course. Depending on the etiology, function may stabilize or deteriorate further.

Physical Examination. Evidence of CNS motor pathology is often present. There may be evidence of underlying general medical conditions or substance-specific syndromes.
Chapter 8 ● Neurocognitive Disorders

Diagnostic Tests. EEG may show specific focal abnormalities. Neuroimaging and neuropsychiatric testing may show specific abnormal findings. Folstein Mini-Mental Status Exam is used to detect neurocognitive disorder. Basic laboratory examination for neurocognitive disorder includes B12 and folate levels, RPR, CBC with SMA, and thyroid function tests.

Treatment. Correction or amelioration of underlying pathology is essential. Medication that further impairs cognition should be avoided. Provision of familiar surroundings, reassurance, and emotional support is often helpful.

Differential Diagnosis. Delirium and less severe, age-related cognitive decline must be ruled out.

Specific Neurocognitive Disorders
All neurocognitive disorders may be mild or severe.

Neurocognitive disorder due to Alzheimer’s disease
• Occupy more than 50% of nursing-home beds
• Found in 50–60% of patients with neurocognitive disorder
• Risk factors: female, family history, head trauma, Down syndrome
• Neuroanatomic findings: cortical atrophy, flattened sulci, and enlarged ventricles
• Histopathology: senile plaques (amyloid deposits), neurofibrillary tangles, neuronal loss, synaptic loss, and granulovacuolar degeneration of neurons
• Associated with chromosome #21 (gene for the amyloid precursor protein)
• Decreased Ach and NE
• Deterioration is generally gradual; average duration from onset to death is ~8 years.
• Focal neurologic symptoms are rare
• Treatment includes long-acting cholinesterase inhibitors such as donepezil, rivastigmine, galantamine, and memantine.
• Antipsychotic medications may be helpful when psychotic symptoms present but contraindicated to control behavior.

Vascular neurocognitive disorder (multi-infarct neurocognitive disorder)
• Found in 15–30% of patients with neurocognitive disorder
• Risk factors: male, advanced age, hypertension, or other cardiovascular disorders
• Affects small and medium-sized vessels
• Examination may reveal carotid bruits, fundoscopic abnormalities, and enlarged cardiac chambers.
• MRI may reveal hyperintensities and focal atrophy suggestive of old infarctions.
• Deterioration may be stepwise or gradual, depending on underlying pathology.
• Focal neurologic symptoms (pseudobulbar palsy, dysarthria, and dysphagia are most common)
• Abnormal reflexes and gait disturbance are often present.
• Treatment is directed toward the underlying condition and lessening cell damage.
• Control of risk factors such as hypertension, smoking, diabetes, hypercholesterolemia, and hyperlipidemia is useful.
Table I-8-1. Alzheimer’s Versus Vascular Neurocognitive Disorder

<table>
<thead>
<tr>
<th>Alzheimer’s</th>
<th>Vascular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>Older age of onset</td>
<td>Younger than Alzheimer’s patients</td>
</tr>
<tr>
<td>Chromosome 21</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Linear or progressive deterioration</td>
<td>Stepwise or patchy deterioration</td>
</tr>
<tr>
<td>No focal deficits</td>
<td>Focal deficits</td>
</tr>
<tr>
<td>Supportive treatment</td>
<td>Treat underlying condition</td>
</tr>
</tbody>
</table>

Frontotemporal neurocognitive disorder (Pick disease)

- Neuroanatomic findings: atrophy in the frontal and temporal lobes
- Histopathology: Pick bodies (intraneuronal argentophilic inclusions) and Pick cells (swollen neurons) in affected areas of the brain
- Etiology is unknown.
- Most common in men with family history of Pick disease
- Difficult to distinguish from Alzheimer’s
- May see features of Klüver-Bucy syndrome (hypersexuality, hyperphagia, passivity)

Neurocognitive disorder due to prion disease

- Rare spongiform encephalopathy is caused by a slow virus (prion).
- Presents with neurocognitive disorder, myoclonus, and EEG abnormalities (e.g., sharp, triphasic, synchronous discharges and, later, periodic discharges)
- Symptoms progress over months from vague malaise and personality changes to neurocognitive disorder and death.
- Findings include visual and gait disturbances, choreoathetosis or other abnormal movements, and myoclonus.
- Other prions that cause neurocognitive disorder (e.g., Kuru) may exist.

Neurocognitive disorder due to Huntington disease

- A rare, progressive neurodegenerative disease that involves loss of GABA-ergic neurons of the basal ganglia, manifested by choreoathetosis, neurocognitive disorder, and psychosis.
- Caused by a defect in an autosomal dominant gene located on chromosome 4
- Atrophy of the caudate nucleus, with resultant ventricular enlargement, is common.
- Clinical onset usually occurs at approximately age 40.
- Suicidal behavior is fairly common.
Neurocognitive disorder due to Parkinson disease
- Common, progressive, neurodegenerative disease involving loss of dopaminergic neurons in the substantia nigra
- Clinical onset is usually age 50–65.
- Motor symptoms include resting tremor, rigidity, bradykinesia, and gait disturbances.
- Neurocognitive disorder occurs in 40% of cases, and depressive symptoms are common.
- Destruction of dopaminergic neurons in the substantia nigra is a key pathogenic component and may be caused by multiple factors, including environmental toxins, infection, genetic predisposition, and aging.
- Treatment includes dopamine precursors (e.g., levodopa, carbidopa), dopamine agonists (e.g., bromocriptine), anticholinergic medications (e.g., benztropine, trihexyphenidyl), amantadine, and selegiline.
- Antiparkinsonian medications can produce personality changes, cognitive changes, and psychotic symptoms.

Neurocognitive disorder with Lewy bodies
- Hallucinations, parkinsonian features, and extrapyramidal signs
- Antipsychotic medications may worsen behavior
- Patients typically have fluctuating cognition, as well as REM sleep behavior disorder

Neurocognitive disorder due to HIV infection
- HIV directly and progressively destroys brain parenchyma; becomes clinically apparent in at least 30% of those with AIDS, beginning with subtle personality changes
- Diffuse and rapid multifocal destruction of brain structures occurs, and delirium is often present
- Motor findings: gait disturbance, hypertonia and hyperreflexia, pathologic reflexes (e.g., frontal release signs), and oculomotor deficits
- Mood disturbances: apathy, emotional liability, or behavioral disinhibition

Wilson disease
- Ceruloplasmin deficiency
- Hepatolenticular degeneration
- Kayser-Fleischer rings in the eye
- Asterixis

Normal pressure hydrocephalus
- Enlarged ventricles, normal pressure
- Neurocognitive disorder, urinary incontinence, and gait apraxia
- Treatment includes shunt placement

Note
(LBD) 1 yr ← PD → 1 yr (PDD)
Pseudodementia

- Typically seen in elderly patient who has a depressive disorder but appears to have symptoms of neurocognitive disorder; should improve after being treated with antidepressants
- Can usually date the onset of their symptoms

Table I-8-2. Pseudodementia versus Neurocognitive Disorder

<table>
<thead>
<tr>
<th>Pseudodementia</th>
<th>Neurocognitive Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute onset</td>
<td>Insidious onset</td>
</tr>
<tr>
<td>Family aware</td>
<td>Family unaware at first</td>
</tr>
<tr>
<td>Answers “I don’t know” when asked questions</td>
<td>Confabulates when asked questions</td>
</tr>
<tr>
<td>Will talk about deficits when asked</td>
<td>Will minimize deficits</td>
</tr>
<tr>
<td>Treat with antidepressants</td>
<td>Will not improve with antidepressants</td>
</tr>
</tbody>
</table>

Table I-8-3. Delirium Versus Neurocognitive Disorder

<table>
<thead>
<tr>
<th>Delirium</th>
<th>Neurocognitive Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute onset</td>
<td>Insidious onset</td>
</tr>
<tr>
<td>Fluctuating course</td>
<td>Chronic course</td>
</tr>
<tr>
<td>Lasts days to weeks</td>
<td>Lasts months to years</td>
</tr>
<tr>
<td>Recent memory problems</td>
<td>Recent then remote memory problems</td>
</tr>
<tr>
<td>Disrupted sleep-wake cycle</td>
<td>Less disorientation at first</td>
</tr>
<tr>
<td>Disorientation</td>
<td>Normal sleep-wake cycle</td>
</tr>
<tr>
<td>Hallucinations common</td>
<td>Hallucinations, sundowning</td>
</tr>
<tr>
<td>Treat underlying condition</td>
<td>Supportive treatment</td>
</tr>
</tbody>
</table>

MILD NEUROCOGNITIVE DISORDER DUE TO SUBSTANCE/MEDICATION OR ANOTHER MEDICAL CONDITION

Definition. Characterized by prominent memory impairment in the absence of disturbances in level of alertness or the other cognitive problems that are present with delirium or neurocognitive disorder.

Risk Factors/Etiology (General Medical Conditions). Commonly associated with bilateral damage to diencephalic and mediotemporal structures (e.g., mammillary bodies, fornix, hippocampus). It may also be caused by conditions such as thiamine deficiency associated with alcohol dependence, head trauma, cerebrovascular disease, hypoxia, local infection (e.g., herpes encephalitis), ablative surgical procedures, and seizures.

Risk Factors/Etiology (Substances). Alcohol is likely the most common cause.
Table I-8-4. Wernicke Versus Korsakoff Syndromes

<table>
<thead>
<tr>
<th></th>
<th>Wernicke</th>
<th>Korsakoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Acute</td>
<td>Chronic</td>
</tr>
<tr>
<td>Reversibility</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Presentation</td>
<td>Ataxia, nystagmus, and ophthalmoplegia</td>
<td>Confusion, psychosis, anterograde and retrograde amnesia</td>
</tr>
<tr>
<td>Treatment</td>
<td>Thiamine</td>
<td>Thiamine</td>
</tr>
</tbody>
</table>

Physical Examination. Evidence of chronic alcohol abuse is often present.

Treatment. Correction of the underlying pathophysiology (e.g., administration of thiamine in alcohol-induced amnestic disorder) may be effective in reversing or slowing the progression of symptoms.

Differential Diagnosis. Delirium, neurocognitive disorder, and dissociative amnesia are the common rule-outs.
Practice Question

A 65-year-old woman is found by the police in a filthy apartment after they were called by neighbors complaining of an unpleasant odor. Police find spoiled food in the kitchen, clogged sinks and toilets, and a severe infestation of cockroaches. The woman angrily refuses to leave with the police, stating that her neighbors have threatened her with attack and she fears that they will rob her apartment in her absence. Emergency room assessment reveals a very frail and unkempt woman who is completely alert and attentive. She believes it is 10 years earlier than it actually is, and she seems confused about her current finances and social contacts. She is unable to give the current addresses or phone numbers of her children and cannot find her phone book or purse. Physical exam is WNL. Which of the following disturbances is the most likely diagnosis?

(A) Vascular neurocognitive disorder
(B) Wernicke’s syndrome
(C) Pseudodementia
(D) Delirium
(E) Neurocognitive disorder due to Alzheimer’s disease

Answer: E. The woman presents with evidence of memory disturbance and severe problems managing her activities. This presentation is most consistent with neurocognitive disorder, which is characterized by memory impairment and other cognitive deficits. Vascular neurocognitive disorder often shows motor deficits on physical exam. Wernicke’s shows more cognitive disturbance than just memory impairment. Pseudodementia occurs quickly and patients are aware of the symptoms. Delirium is characterized by problems with arousal and attention in addition to cognitive disturbance.
Learning Objectives

- Define depersonalization and derealization
- Describe the presentation of dissociative amnesia with and without fugue
- Recognize dissociative identity disorder

Dissociation
Dissociation is the fragmentation or separation of aspects of consciousness, including memory, identity, and perception. Some degree of dissociation is always present; however, if an individual's consciousness becomes too fragmented, it may pathologically interfere with the sense of self and ability to adapt. Presenting complaints and findings of dissociative disorders include amnesia, personality change, erratic behavior, odd inner experiences (e.g., flashbacks, déjà vu), and confusion.

Dissociative Amnesia

Definition. Significant episodes in which the individual is unable to recall important and often emotionally charged memories. Dissociative amnesia with fugue also involves purposeful travel or bewildered wandering.

Risk Factors/Etiology. Psychological stress. More common in women and younger adults. Onset is usually detected retrospectively by the discovery of memory gaps of extremely variable duration.

Symptoms. Amnesia that may be general or selective for certain events. The amnesia may suddenly or gradually remit, particularly when the traumatic circumstance resolves, or may become chronic.

Associated Problems. Mood disorders, conversion disorder, and personality disorders are commonly present.

Treatment. Diagnostic evaluation for general medical conditions (e.g., head trauma, seizures, cerebrovascular disease) or substances (e.g., anxiolytic and hypnotic medications, alcohol) that may cause amnesia. Hypnosis, suggestion, and relaxation techniques are helpful. The patient should be removed from stressful situations when possible. Psychotherapy should be directed at resolving underlying emotional stress.

Differential Diagnosis. Major rule-outs are amnestic disorder due to a general medical condition, substance-induced amnestic disorder, and other dissociative disorders.
DISSOCIATIVE IDENTITY DISORDER

Definition. Formerly called multiple personality disorder. Presence of multiple, distinct personalities that recurrently control the individual's behavior, accompanied by failure to recall important personal information.

Risk Factors/Etiology. Childhood sexual abuse has been postulated as a risk factor.

Prevalence. More common in women

Onset. Usually occult; clinical presentation is several years later when disturbances in interpersonal functioning are present.

Key Symptoms. Presence of distinct personalities is often subtle; in some cases, it is discovered only during treatment for associated symptoms.

Associated Problems. Chaotic interpersonal relationships, impulsivity and self-destructive behavior, suicide attempts, substance abuse

Comorbidity. Borderline personality disorder, PTSD, major depressive disorder and other mood disorders, substance-related disorders, sexual disorders, and eating disorders

Course. Symptoms may fluctuate or be continuous.

Differential Diagnoses. Borderline personality disorder and other personality disorders, bipolar disorder with rapid cycling, factitious disorder, and malingering

Treatment. Psychotherapy to uncover psychologically traumatic memories and to resolve the associated emotional conflict

DEPERSONALIZATION AND DEREALIZATION DISORDER

Definition. Persistent or recurrent feeling of being detached from one's mental processes or body, accompanied by intact sense of reality

Risk Factors/Etiology. Psychologic stress

Prevalence. Episodes of depersonalization are common.

Onset. Usually in adolescence or early adulthood. Stressful events may precede the onset of the disorder.

Key Symptoms

• Depersonalization: often described as an “out-of-body experience”

• Derealization: Perception of the environment is often distorted or strange during episodes of depersonalization, accompanied by a feeling of being detached from physical surroundings. Jâniais vu (a sense of familiar things being strange), déjà vu (a sense of unfamiliar things being familiar), and other forms of perceptual distortion may occur.

Associated Symptoms. Are often during episodes

Treatment. Psychotherapy directed at decreasing anxiety

Differential Diagnosis. Major rule-outs are substance-induced mental disorders with dissociative symptoms, including intoxication, withdrawal, hallucinogen-induced persisting dissociative disorder, panic disorder, and PTSD.
Practice Question

A 19-year-old man is brought to the emergency room by volunteers from a homeless shelter. The man claims that he cannot remember who he is. He says that he found himself in Los Angeles but that he cannot remember where he comes from, the circumstances of his trip, or any other information about his life. He has neither identification nor money, but he has a bus ticket from New York. Physical exam and laboratory testing are unremarkable. Which of the following is the most likely diagnosis?

(A) Depersonalization disorder
(B) Dissociative amnesia
(C) Dissociative amnesia fugue
(D) Dissociative identity disorder
(E) Substance-induced amnestic disorder

Answer: C. The symptoms of amnesia, unexplained travel, and identity confusion are most suggestive of dissociative fugue. Because of the generalized nature of his amnesia and negative physical findings, substance-induced amnestic disorder an unlikely diagnosis. There is insufficient evidence of distinct alternative personalities to diagnose dissociative identity disorder.
Learning Objectives

- Recognize and describe treatment approaches to adjustment disorders

ADJUSTMENT DISORDERS

Adjustment disorders are maladaptive reactions to an identifiable psychosocial stressor. They are caused by environmental stressors having an effect on functioning. The risk that a stressor will cause an adjustment disorder depends on one's emotional strength and coping skills.

Prevalence. Extremely common; all age groups

Onset is typically within 3 months of the initial presence of the stressor, and it lasts ≤6 months once the stressor is resolved. If the stressor continues and new ways of coping are not developed, it can become chronic.

Key Symptoms. Complaints of overwhelming anxiety, depression, or emotional turmoil associated with specific stressors

Associated Problems. Social and occupational performance deteriorate; erratic or withdrawn behavior

Treatment

- Remove or ameliorate the stressor.
- Brief psychotherapy to improve coping skills
- Pharmacotherapy: Anxiolytic or antidepressant medications are used to ameliorate symptoms if therapy is not effective.

Differential Diagnosis. Normal reaction to stress. Disorders that occur following stress (e.g., GAD, PTSD, major depressive disorder).

Types

- Depressed mood
- Anxiety
- Mixed anxiety and depressed mood
- Disturbance of conduct
- Mixed disturbance of emotions and conduct
Practice Question

A 28-year-old woman without previous behavioral problems becomes angry and bitter after her husband of 5 years leaves her to live with his female business partner. One week later, the woman quits her job without giving notice and begins drinking heavily. For the next several weeks, the woman telephones friends and tearfully expresses her feelings. She also makes several threatening calls to her husband's new girlfriend. Which of the following is the most likely diagnosis?

(A) Adjustment disorder
(B) Alcohol-induced mood disorder
(C) Bipolar I disorder
(D) Bipolar II disorder
(E) Borderline personality disorder

Answer: A. Depression and erratic behavior after an interpersonal stressor are most suggestive of adjustment disorder with mixed disturbance of emotions and conduct. The cause of the symptoms is most likely the stressor and not the physiologic result of alcohol. Bipolar disorders I and II are unlikely diagnoses for an individual who has no history of mood episodes. Borderline personality disorder is a less likely diagnosis for an individual who has no history of past behavioral and interpersonal difficulties.
Learning Objectives

- Describe the neuroanatomy of substance-related and addictive disorders
- Present the epidemiology of addictive disorders
- Describe the behavioral and pharmacologic approaches to treating addicts

SUBSTANCE ABUSE AND ADDICTION

Definitions

- **Substance use disorder**: negative behavioral, cognitive, and/or physiologic symptoms due to use of a substance, yet use continues despite these adverse consequences
- **Intoxication**: reversible substance-specific syndrome due to recent use of a substance
- **Withdrawal**: substance-specific behavioral, cognitive, and/or physiologic change due to the cessation or reduction in heavy or prolonged substance use

Physical and Psychiatric Examination

- **Substance abuse history**: includes the substance(s) used, dosage(s), effects, duration and social context of use, and prior experiences with substance detoxification, rehabilitation, and relapse prevention
- **Medical history**: includes complications of substance abuse
- **Psychiatric history**: includes other primary psychiatric diagnoses and past treatments
- **Mental status examination**: includes signs of substance-induced disorders
- **Physical examination**: includes signs of substance use

Risk Factors/Etiology

- **Family history**: Biological sons of alcoholics are more likely to develop alcoholism than the general population.
- **Physiology**: Individuals who are innately more tolerant to alcohol may be more likely to develop alcohol abuse.
- **Developmental history**: poor parenting, childhood physical or sexual abuse, and permissive attitudes toward drug use
- **Environmental risk factors**: exposure to drug use through peers or certain occupations, economic disadvantage, and social isolation
- **Psychiatric disturbances**: conduct disorder, ADHD, depression, and low self-esteem
• **Self-medication hypotheses:** Individuals with certain psychologic problems may abuse substances in an effort to alleviate symptoms (e.g., a person suffering from an anxiety disorder uses alcohol to decrease innate anxiety).

Diagnostic Tests

CAGE. Affirmative answers to any 2 of the following questions (or to the last question alone) are suggestive of alcohol abuse:

- Have you ever felt that you should Cut down your drinking?
- Have you ever felt Annoyed by others who have criticized your drinking?
- Have you ever felt Guilty about your drinking?
- Have you ever had a morning drink (Eye-opener) to steady your nerves or alleviate a hangover?

Urine drug screen: typically tests for amphetamines, barbiturates, benzodiazepines, cannabinoids, cocaine, methadone, methaqualone, opiates, phencyclidine

Hair testing: typically tests for cocaine, amphetamines, methamphetamines, opiates, PCP, marijuana

Breath: typically tests for alcohol

Blood: increased AST, ALT, and GGT for alcohol abuse

Types of treatment

- **Pharmacotherapy:** medications that work on the reward center, such as naltrexone, varenicline, and bupropion
- **Psychotherapy:** preferably group therapy such as Alcoholics Anonymous, Narcotics Anonymous
- **Behavioral modification techniques:** disulfiram (aversive conditioning), patch, gum, inhaler (fading)
- **Detoxification units:** typically 5-10 days, provide medications to assure safe withdrawal from substances
- **Rehabilitation programs:** typically 28-day programs, learn about relapse prevention and identification of triggers

Table I-11-1. Blood Alcohol Level and Effect on Behavior

<table>
<thead>
<tr>
<th>Blood Alcohol Level</th>
<th>Behavioral Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05%</td>
<td>Thought, judgment, and restraint are loosened and disrupted</td>
</tr>
<tr>
<td>0.1%</td>
<td>Motor actions become clumsy</td>
</tr>
</tbody>
</table>
| 0.2% | • Motor area of the brain is depressed
 | • Emotional behavior is affected |
| 0.3% | Confused or stuporous |
| 0.4–0.5% | • Coma
<pre><code> | • At higher levels, death may occur due to respiratory depression |
</code></pre>
<table>
<thead>
<tr>
<th>Substance</th>
<th>Signs and Symptoms of Intoxication</th>
<th>Treatment of Intoxication</th>
<th>Signs and Symptoms of Withdrawal</th>
<th>Treatment of Withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Talkativeness, sullenness, gregariousness, moodiness, etc.</td>
<td>Mechanical ventilation, if severe</td>
<td>Tremors, hallucinations, seizures, delirium tremens</td>
<td>Benzodiazepines Thiamine Multivitamin Folic acid</td>
</tr>
<tr>
<td>Amphetamines, cocaine</td>
<td>Euphoria, hypervigilance, autonomic hyperactivity, weight loss, papillary dilatation, perceptual disturbances</td>
<td>Short-term use of antipsychotics, benzodiazepines, vitamin C to promote excretion in urine, anti-hypertensives</td>
<td>Anxiety, tremulousness, headache, increased appetite, depression, risk of suicide</td>
<td>Antidepressants</td>
</tr>
<tr>
<td>Anabolic steroids</td>
<td>Irritability, aggression, mood changes, psychosis, heart problems, liver problems, etc.</td>
<td>Symptomatic, abstinence</td>
<td>Depression, risk of suicide</td>
<td>SSRIs</td>
</tr>
<tr>
<td>Bath salts</td>
<td>Headache, palpitations, hallucinations, paranoia, violence, increased heart rate and blood pressure</td>
<td>Supportive, benzodiazepines</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>Inappropriate sexual or aggressive behavior, impairment in memory or concentration</td>
<td>Flumazenil</td>
<td>Autonomic hyperactivity, tremors, insomnia, seizures, anxiety</td>
<td>Benodiazepines</td>
</tr>
<tr>
<td>Cannabis</td>
<td>Impaired motor coordination, slowed sense of time, social withdrawal, conjunctival injection, increased appetite, dry mouth, tachycardia</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>Euphoria, mild psychedelgia, hyponatremia, seizures, death, rhabdomyolysis, increased heart rate, blood pressure, and temperature</td>
<td>Cyproheptadine, benzodiazepines, dantrolene</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Hallucinogens</td>
<td>Ideas of reference, perceptual disturbances, impaired judgment, dissociative symptoms, pupillary dilatation, tremors, incoordination</td>
<td>Supportive counseling (talking down), antipsychotics, benzodiazepines</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Table I-11-2. Substances of Abuse (Cont’d)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Signs and Symptoms of Intoxication</th>
<th>Treatment of Intoxication</th>
<th>Signs and Symptoms of Withdrawal</th>
<th>Treatment of Withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalants</td>
<td>Belligerence, apathy, assaultiveness, impaired judgment, blurred vision, stupor or coma</td>
<td>Antipsychotics if delirious or agitated</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Opiates</td>
<td>Apathy, dysphoria, papillary constriction, drowsiness, slurred speech, impairment in memory, coma or death</td>
<td>Naloxone</td>
<td>Fever, chills, lacrimation, runny nose, abdominal cramps, muscle spasms, insomnia, yawning</td>
<td>Clonidine, methadone</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>Belligerence, assaultiveness, psychomotor agitation, nystagmus, hypertension, seizures, coma, hyperacusis</td>
<td>Talking down, benzodiazepines, antipsychotics</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Practice Question

A 29-year-old man is brought in by judicial order for evaluation of his continued involvement with heroin use. The man denies that he is addicted but is willing to enter treatment to avoid more severe criminal penalties. Which of the following is essential to determine the presence of heroin use disorder in this individual?

(A) A family history of substance abuse
(B) Numerous arrests for dealing heroin
(C) He vehemently denies that his use of heroin causes him any problems
(D) He spends all his time trying to obtain heroin and can’t stop himself from using it
(E) He is not cooperative with treatment planning

Answer: D. Substance use disorder is characterized by the presence of a constellation of symptoms that suggest compulsive substance use, monopolization of time by substance-related activities, social and occupational consequences, and physiologic changes including tolerance and withdrawal. A family history of substance abuse, arrests for drug dealing, denial of substance-related problems, and cooperation with treatment may all occur in individuals with substance dependence, but are not diagnostic when occurring by themselves.
Learning Objectives

- Describe the presentation of intermittent explosive disorder, kleptomania, pyromania, gambling disorder, and trichotillomania
- Describe the treatment approaches for impulse control disorders

IMPULSE CONTROL

In impulse control disorders, patients are unable to resist a negative impulse. Before the act they have increased anxiety and after the act they feel a reduction in anxiety. Impulse control is mediated by the serotonergic system.

INTERMITTENT EXPLOSIVE DISORDER

The police arrest a 24-year-old man after he beats up an older man, causing severe injury to his head and neck area and requiring more than 100 stitches. When asked why he assaulted the older man, he replies, “He took my potato chips.”

Definition. A disorder characterized by discrete episodes of failure to resist aggressive impulses that result in serious assaultive acts or destruction of property. The degree of the aggressive act is typically out of proportion to the stressor. The attacks may occur within minutes or hours and tend to resolve spontaneously.

Risk Factors/Epidemiology. Affects men more than women, especially men in prisons and women in psychiatric facilities. May have genetic linkage because it is seen frequently among first-degree relatives. Patients may have had a history of head trauma, seizures, encephalitis, hyperactivity, or other brain dysfunction. May be linked to low levels of 5HIAA, abnormalities in the limbic system, or testosterone. The symptoms lessen as the patients age.

Physical and Psychiatric Presenting Symptoms

- Neurologic examination may reveal soft signs, such as right–left ambivalence
- EEG usually normal
- Psychologic tests often normal
- Poor work histories
Marital difficulties
• Problems with the law

TREATMENT. Pharmacotherapy consisting of anticonvulsants, antipsychotics, beta-blockers, or SSRIs has been somewhat helpful. Psychotherapy, although not the preferred treatment, may be beneficial. When psychotherapy is used, it must be with pharmacotherapy and in a group setting.

DIFFERENTIAL DIAGNOSIS
• Medical: Epilepsy, brain tumors, degenerative disease, and endocrine disorders
• Psychiatric: Antisocial personality disorder, borderline personality disorder, schizophrenia, and substance intoxication

KLEPTOMANIA

A 25-year-old woman has a history of more than 20 arrests for stealing small items. She comes from a wealthy family and her parents do not understand her behavior. At home she has numerous salt and pepper shakers, napkin rings, and ashtrays, none of which she needs.

definition. A disorder characterized by the recurrent failure to resist impulses to steal objects that the patient does not need. There is increased anxiety prior to the act, followed by release of anxiety after the act. The act of stealing is the goal.

RISK FACTORS/EPIDEMIOLOGY. Appears to be more common in women. Symptoms may be linked to stress in the patient’s life. Often associated with mood disorders, OCDs, and eating disorders, such as bulimia nervosa. It has been linked to brain disease and ID.

PHYSICAL AND PSYCHIATRIC PRESENTING SYMPTOMS. May have signs of anxiety and depression. Feel guilty or ashamed of their actions.

TREATMENT. Insight-oriented therapy may be indicated to help the patients understand their behavior. Behavioral therapy, including aversive conditioning and systematic desensitization, has been helpful in some patients. If pharmacotherapy is indicated, consider SSRIs or anticonvulsants.

DIFFERENTIAL DIAGNOSIS
• Medical: none
• Psychiatric: antisocial personality disorder, malingering, mania, and schizophrenia

PYROMANIA

A 19-year-old teen with mild ID is arrested after he is found setting the neighbor’s garbage cans on fire. Neighbors had observed him in the past starting fires in his own backyard, staring at them for hours, watching them burn.

Definition. A disorder characterized by deliberate fire-setting on more than one occasion. There is anxiety before the act and a release of anxiety after the act, sometimes followed by fascination and gratification. Must rule out arson.
Risk Factors/Epidemiology. Seen more frequently in men who are mildly retarded and may have a history of alcohol abuse. Many have histories of truancy and cruelty to animals.

Physical and Psychiatric Presenting Symptoms. Many watch fires in their neighborhoods and/or set off fire alarms. Lack remorse for the consequences of their actions, and show resentment toward authority figures. May become sexually aroused by the fire.

Treatment. Because no treatment has been proven to be beneficial, incarceration may be indicated.

Differential Diagnosis
- **Medical:** brain dysfunctions
- **Psychiatric:** antisocial personality disorder, conduct disorder, mania, and schizophrenia

GAMBLING DISORDER

A 40-year-old married man and father was fired from his job because of embezzlement of company funds, which he used to gamble with. When found, he did not have the money on him and admitted to losing it at a casino. His wife left him 2 months ago, and he has not seen his wife or children since then.

In DSM-5, this is now included under Substance-related and Addictive Disorders.

Definition. A disorder characterized by persistent and recurrent gambling behavior that includes a preoccupation with gambling, a need to gamble with more money, attempts to stop gambling and/or to win back losses, illegal acts to finance the gambling, or loss of relationships due to gambling.

Risk Factors/Epidemiology. More common in men, and seen in their parents as well. Increased incidence of alcohol dependence. May be predisposed by death, loss of a loved one, poor parenting, exposure to gambling behavior, and/or divorce. May be linked to mood disorders, OCDs, panic disorder, agoraphobia, and ADHD.

Physical and Psychiatric Presenting Symptoms
- May engage in antisocial behavior to obtain money for gambling
- Appear overconfident
- Suicide attempts
- Multiple arrests and/or incarceration

Treatment. Gamblers anonymous (GA) is the most effective treatment. It involves public confessions, peer pressure, and sponsors. Although pharmacotherapy is usually not indicated, some studies have shown some efficacy with SSRIs.

Differential Diagnosis
- **Medical:** none
- **Psychiatric:** mania, antisocial personality disorder
TRICHOTILLOMANIA

A 20-year-old woman is rushed to the hospital after she complains of severe abdominal pain. She appears thin and withdrawn and is missing a lot of hair from both her scalp and eyebrows. A physical examination reveals an intestinal obstruction.

In DSM-5, this is now included under Obsessive-Compulsive and Related Disorders.

Definition. A disorder characterized by pulling one’s own hair, resulting in hair loss. There is anxiety before the act and a release of anxiety after the act.

Risk Factors/Epidemiology. Affects women more than men. Associated disorders include OCD, obsessive-compulsive personality disorder, and depressive disorders.

Physical and Psychiatric Presenting Symptoms
- Hair loss is significant over all areas of the body.
- Area most affected is the scalp.
- May eat the hair, resulting in bezoars, obstruction, and malnutrition
- Head-banging, nail-biting, and gnawing may be present.
- Examination of the scalp reveals short, broken hairs along with long hairs.

Treatment. Treatment usually consists of behavior-modification techniques to decrease patient’s anxiety; as well as pharmacotherapy, such as SSRIs, anticonvulsants, or antipsychotics to help decrease the urges.

Differential Diagnosis
- **Medical:** alopecia areata, tinea capitis (biopsy would be indicated)
- **Psychiatric:** OCD, factitious disorder

Practice Question

A 22-year-old woman was recently seen at her college graduation hoarding food in her purse and briefcase. When asked why, she replied, “I might be hungry later.” She appeared to be of average height and weight, but with poor dentition. She has numerous calluses on the backs of both hands. Which of the following disorders is she at risk for developing?

(A) Trichotillomania
(B) Kleptomania
(C) Gambling disorder
(D) Pyromania
(E) Intermittent explosive disorder

Answer: B. Patients with bulimia nervosa have an increased incidence of kleptomania. These patients will steal things they do not need.
Learning Objectives

- List the diagnostic criteria for anorexia nervosa, bulimia nervosa, and binge eating disorder
- Describe treatment approaches for the various eating disorders
- List criteria for admission of a patient with an eating disorder

ANOREXIA NERVOSA

Definition. Characterized by failure to maintain a normal body weight, fear and preoccupation with gaining weight and unrealistic self-evaluation as overweight. Subtypes are restricting (no binge-eating or purging) and binge-eating/purging (regularly engaged in binge-eating/purging).

Risk Factors/Etiology. Biologic factors are suggested by higher concordance for illness in monozygotic twins and the fact that amenorrhea may precede abnormal eating behavior. Psychologic risk factors include emotional conflicts concerning family control and sexuality. A cultural risk factor may be an emphasis on thinness.

Prevalence. 0.5%. Occurs at a 1:10 male-to-female ratio.

Onset. Average age is 17 years. Very late-onset anorexia nervosa has a poorer prognosis. Onset is often associated with emotional stressors, particularly conflicts with parents about independence, and sexual conflicts.

Key Symptoms

- Restricted food intake and maintaining diets of low-calorie foods. Weight loss may also be achieved through purging (i.e., vomiting or taking laxatives, diuretics, or enemas) and exercise.
- Great concern with appearance. Significant amount of time spent examining and denigrating self for perceived signs of excess weight.
- Denial of emaciated conditions
- With binge-eating/purging: self-induced vomiting; laxative and diuretic abuse

Associated Symptoms. Excessive interest in food-related activities (other than eating), obsessive-compulsive symptoms, depressive symptoms

Course. Some individuals recover after a single episode, and others develop a waxing-and-waning course.
Outcome. Long-term mortality rate of individuals hospitalized for anorexia nervosa is 10%, resulting from the effects of starvation and purging or suicide.

Physical Examination. Signs of malnutrition include emaciation, hypotension, bradycardia, lanugo (i.e., fine hair on the trunk), and peripheral edema. Signs of purging include eroded dental enamel caused by emesis and scarred or scratched hands from self-gagging to induce emesis. There may be evidence of general medical conditions caused by abnormal diets, starvation, and purging.

Diagnostic Tests
- Signs of malnutrition: normochromic, normocytic anemia, elevated liver enzymes, abnormal electrolytes, low estrogen and testosterone levels, sinus bradycardia, reduced brain mass, and abnormal EEG
- Signs of purging: metabolic alkalosis, hypochloremia, and hypokalemia caused by emesis; metabolic acidosis caused by laxative abuse

Treatment. Initial treatment should be correction of significant physiologic consequences of starvation with hospitalization if necessary. Behavioral therapy should be initiated, with rewards or punishments based on absolute weight, not on eating behaviors. Family therapy designed to reduce conflicts about control by parents is often helpful. Antidepressants may play a limited role in treatment when comorbid depression is present.

Differential Diagnosis. Major rule-outs are bulimia nervosa, general medical conditions that cause weight loss, major depressive disorder, schizophrenia, OCD, and body dysmorphic disorder.

BULIMIA NERVOSA AND BINGE EATING DISORDER

Definition. Characterized by frequent binge-eating and a self-image that is unduly influenced by weight. Types:
- Bulimia nervosa: binge-eating and purging behavior
- Binge-eating disorder: binge-eating but no purging behavior

Risk Factors/Etiology. Psychologic conflict regarding guilt, helplessness, self-control, and body image may predispose. Biologic factors are suggested by frequent association with mood disorders.

Prevalence. 2% in young adult females. Occurs at a 1:9 male-to-female ratio.

Onset. Usually during late adolescence or early adulthood and often follows a period of dieting.

Course. May be chronic or intermittent.

Outcome. 70% of cases have remitted after 10 years. Co-occurring substance abuse is associated with a poorer prognosis.

Key Symptoms
- Recurrent episodes of binge-eating in both binge-eating disorder and bulimia. Obsession with dieting but followed by binge-eating of high-calorie foods. Binges are associated with emotional stress and followed by feelings of guilt, self-recrimination, and compensatory behaviors.
- Recurrent, inappropriate compensatory behavior in bulimia but not in binge-eating disorder. After a binge, attempts to prevent weight gain through self-induced vomiting, misuse of laxatives, diuretics, enemas, or other medications; fasting; or excessive exercise.
• Self-evaluation is unduly influenced by body shape and weight in bulimia. Self-castigation for mild weight gain or binges. Attempts to conceal binge-eating or purging, or lies about behaviors.

Associated Problems. Depressive symptoms, substance abuse, and impulsivity (e.g., kleptomania)

Comorbid Disorders. Borderline personality disorder present in about 50%

Physical Examination. Evidence of purging

Diagnostic Tests. Evidence of laxative or diuretic abuse

Treatment. Cognitive and behavioral therapy are major treatment. Psychodynamic psychotherapies are useful for accompanying borderline personality traits. Antidepressant medications, particularly SSRIs, are usually employed.

Differential Diagnosis. Major rule-outs are anorexia nervosa, binge-eating/purging, major depressive disorder with atypical features, and borderline personality disorder.

Practice Question

A 19-year-old woman is hospitalized for dehydration caused by severe, laxative-induced diarrhea. She is depressed about the recent breakup of a romantic relationship. She admits that she uses laxatives because she has been binge-eating frequently and is worried about gaining weight. Although the woman has BMI 16, she believes that she is overweight. Which of the following is the most likely diagnosis?

(A) Anorexia nervosa
(B) Brief psychotic disorder
(C) Bulimia nervosa
(D) Delusional disorder, somatic type
(E) Major depressive disorder

Answer: A. The patient presents with low body weight, a distorted body image, a fear of obesity, and amenorrhea, all of which strongly suggest anorexia nervosa. Bingeing and purging behavior is commonly present with this disorder. Because this individual has the essential features of anorexia nervosa, the diagnosis of bulimia nervosa is not made. Because the woman shows no evidence of delusions, brief psychotic disorder or delusional disorder are unlikely diagnoses. Although depression commonly accompanies eating disorders, it does not appear to be the primary problem in this woman’s case.
Learning Objectives

- List the most common personality criteria and their diagnostic criteria

PERSONALITY DISORDERS

Personality disorders (PDs) are characterized by personality patterns that are pervasive, inflexible, and maladaptive. There are 3 clusters:

- **Cluster A:** peculiar thought processes, inappropriate affect
- **Cluster B:** mood lability, dissociative symptoms, preoccupation with rejection
- **Cluster C:** anxiety, preoccupation with criticism or rigidity

Risk Factors/Etiology. PDs are the product of the interaction of inborn temperament and subsequent developmental environment. Risk factors include innate temperamental difficulties, such as irritability; adverse environmental events, such as child neglect or abuse; and personality disorders in parents.

Prevalence. All are relatively common. More males have antisocial and narcissistic PDs, more females have borderline and histrionic PDs.

Onset. Usually not diagnosed until late adolescence or early adulthood

Course. Usually very chronic over decades without treatment. Symptoms of paranoid, schizoid, and narcissistic PD often worsen with age; symptoms of antisocial and borderline PD often ameliorate.

Key Symptoms. Long pattern of difficult interpersonal relationships, problems adapting to stress, failure to achieve goals, chronic unhappiness, low self-esteem

Associated Diagnoses. Mood disorders

Treatment. Psychotherapy is the mainstay of treatment. Intensive and long-term psychodynamic and cognitive therapy are treatments of choice for most PDs. Use of mood stabilizers and antidepressants is sometimes useful for Cluster B PDs.

Differential Diagnosis. Major rule-outs are mood disorders, personality change due to a general medical condition, and adjustment disorders.
Cluster A
Paranoid PD: Distrust and suspiciousness. Individuals are mistrustful and suspicious of the motivations and actions of others and are often secretive and isolated. They are emotionally cold and odd.

A 57-year-old man living in a condominium complex constantly accuses his neighbors of plotting to avoid payment of their share of maintenance. He writes angry letters to other owners and has initiated several lawsuits. He lives alone and does not socialize.

Schizoid PD: Detachment and restricted emotionality. Individuals are emotionally distant. They are disinterested in others and indifferent to praise or criticism. Associated features include social drifting and dysphoria.

A 24-year-old man lives alone and works nights as a security guard. He ignores invitations from coworkers to socialize and has no outside interests.

Schizotypal PD: Discomfort with social relationships; thought distortion; eccentricity. Individuals are socially isolated and uncomfortable with others. Unlike Schizoid PD, they have peculiar patterns of thinking, including ideas of reference and persecution, odd preoccupations, and odd speech and affect. DSM-5 includes this PD in both psychotic disorders and personality disorders.

A 30-year-old man is completely preoccupied with the study and the brewing of herbal teas. He associates many peculiar powers with such infusions and says that plants bring him extra luck. He spends all of his time alone, often taking solitary walks in the wilderness for days at a time, collecting plants for teas. He has no history of disorganized behavior. At times he believes that songs on the radio are about his life.

Cluster B
Histrionic PD. Usually characterized by colorful, exaggerated behavior and excitable, shallow expression of emotions; uses physical appearance to draw attention to self; sexually seductive; and is uncomfortable in situations where he or she is not the center of attention.

A 30-year-old woman presents to the doctor’s office dressed in a sexually seductive manner and insists that the doctor comment on her appearance. When the doctor refuses to do so, she becomes upset.
Borderline PD. Usually characterized by an unstable affect, mood swings, marked impulsivity, unstable relationships, recurrent suicidal behaviors, chronic feelings of emptiness or boredom, identity disturbance, and inappropriate anger. If stressed, may become psychotic. Main defense mechanism is splitting.

A 20-year-old nurse was recently admitted after reporting auditory hallucinations, which have occurred during the last few days. She reports marriage difficulties and believes her husband is to blame for the problem. She has several scars on her wrists and has a history of substance abuse.

Antisocial PD. Usually characterized by continuous antisocial or criminal acts, inability to conform to social rules, impulsivity, disregard for the rights of others, aggressiveness, lack of remorse, and deceitfulness. These have occurred since the age of 15, and the individual is at least 18 years of age.

A 22-year-old man was recently arrested after he set his mother’s house on fire. He has had numerous problems with the law, which started at an early age when he was sent to a juvenile detention center for his behavior at both home and school. He lacks remorse for setting the fire and expresses a desire that his mother would have died in the fire.

Narcissistic PD. Usually characterized by a sense of self-importance, grandiosity, and preoccupation with fantasies of success. This person believes he is special, requires excessive admiration, reacts with rage when criticized, lacks empathy, is envious of others, and is interpersonally exploitative.

A famous actor is outraged when a director questions his acting abilities during rehearsal for a play. The actor responds by walking off the stage and not returning to the stage unless the director apologizes publicly for her behavior.

Cluster C

Avoidant PD. Individuals have social inhibition, feelings of inadequacy, and hypersensitivity to criticism. They shy away from work or social relationships because of fears of rejection that are based on feelings of inadequacy. They feel lonely and substandard and are preoccupied with rejection.

A 43-year-old man dreads an upcoming company holiday party because he believes that he is incapable of engaging in social conversation or dancing. He believes that he will become an object of pity or ridicule if he attempts such things. He anticipates yet another lonely holiday.
Dependent PD: Submissive and clinging behavior related to a need to be taken care of. Individuals are consumed with the need to be taken care of. They have clinging behavior and worry unrealistically about abandonment. They feel inadequate and helpless and avoid disagreements with others. They usually focus dependency on a family member or spouse and desperately seek a substitute should this person become unavailable. Associated features include self-doubt, excessive humility, poor independent functioning, mood disorders, anxiety disorders, adjustment disorder, and other PDs.

A 26-year-old man is brought into the emergency room after sustaining severe rectal lacerations during a sadistic sexual episode with his partner. The patient is extremely concerned that the police not be informed because he doesn’t want to upset his partner and cause the partner to leave.

Obsessive-Compulsive PD. Individuals are preoccupied with orderliness, perfectionism, and control. They are often consumed by the details of everything and lose their sense of overall goals. They are strict and perfectionistic, overconscientious, and inflexible. They may be obsessed with work and productivity and are hesitant to delegate tasks to others. Other traits include being miserly and unable to give up possessions. This PD should not be confused with OCD, a separate disorder. Associated features include indecisiveness, dysphoria, anger, social inhibition, and difficult interpersonal relationships.

A 37-year-old woman seeks psychotherapy as a result of an impending divorce. She states that her demands to keep the house spotless, to maintain an extremely detailed and fixed work and recreational schedule, and to observe rigid dietary habits have driven her spouse away.
Learning Objectives

- Identify the normal sleep cycles
- Describe EEG, ENG, and physiologic phenomenon associated with each stage of sleep
- Categorize different sleep disorders and describe what is known about their causes

NORMAL SLEEP

Sleep is divided into 2 stages: nonrapid eye movement (NREM) and rapid eye movement (REM). There are numerous differences between them.

NREM

NREM is a state of sleep characterized by slowing of the EEG rhythms, high muscle tone, absence of eye movements, and thoughtlike mental activity. The brain is inactive while the body is active. NREM is made up of 4 stages.

Table I-15-1. NREM

<table>
<thead>
<tr>
<th>Stage</th>
<th>EEG Findings</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Disappearance of alpha wave and appearance of theta wave</td>
<td>5%</td>
</tr>
<tr>
<td>Stage 2</td>
<td>k complexes and sleep spindles</td>
<td>45%</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Appearance of delta wave</td>
<td>12%</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Continuation of delta wave</td>
<td>13%</td>
</tr>
</tbody>
</table>
REM
REM is a stage of sleep characterized by aroused EEG patterns, sexual arousal, saccadic eye movements, generalized muscular atony (except middle-ear and eye muscles), and dreams. The brain is active and the body is inactive.

Table I-15-2. REM

<table>
<thead>
<tr>
<th>Stage</th>
<th>EEG Findings</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM</td>
<td>Bursts of sawtooth waves</td>
<td>25%</td>
</tr>
</tbody>
</table>

Sleep Facts
Table I-15-3. Sleep Facts (Stage 2–REM)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Fact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Longest of all the sleep stages</td>
</tr>
<tr>
<td>Stages 3 and 4</td>
<td>Also called slow wave or delta sleep</td>
</tr>
<tr>
<td></td>
<td>Hardest to arouse</td>
</tr>
<tr>
<td></td>
<td>Tends to vanish in the elderly</td>
</tr>
<tr>
<td>REM</td>
<td>Easiest to arouse</td>
</tr>
<tr>
<td></td>
<td>Lengthens in time as night progresses</td>
</tr>
<tr>
<td></td>
<td>Increased during the second half of the night</td>
</tr>
</tbody>
</table>
A wake-low voltage-random fast-beta waves

Drowsy-8 to 12 cps-alpha waves

Stage 1-3 to 7 cps theta waves

Stage 2-12 to 14 cps-sleep spindles and K complexes

Delta sleep-1/2 to 2 cps-delta waves>75

REM sleep-low voltage-random, fast with sawtooth waves

Figure I-15-1. Sleep Architecture Diagram Showing Stages of Sleep in Sequence
Sleep Latency. The time needed before you actually fall asleep. Typically less than 15 minutes in most individuals; however, may be abnormal in many disorders, such as insomnia, etc.

REM Latency. The period lasting from the moment you fall asleep to the first REM period. Lasts approximately 90 minutes in most individuals. However, several disorders will shorten REM latency; these disorders include depression and narcolepsy.

Characteristics of Sleep from Infancy to Old Age
- Total sleep time decreases.
- REM percentage decreases.
- Stages 3 and 4 tend to vanish.

Neurotransmitters of Sleep
- Serotonin: increased during sleep; initiates sleep
- Acetylcholine: increased during sleep; linked to REM sleep
- Norepinephrine: decreased during sleep; linked to REM sleep
- Dopamine: increased toward end of sleep; linked to arousal and wakefulness

Chemical Effects on Sleep
- Tryptophan: increases total sleep time
- Dopamine agonists: produce arousal
- Dopamine antagonists: decrease arousal, thus produce sleep
- Benzodiazepines: suppress Stage 4 and, when used chronically, increase sleep latency
- Alcohol intoxication: suppresses REM
- Barbiturate intoxication: suppresses REM
- Alcohol withdrawal: REM rebound
- Barbiturate withdrawal: REM rebound
- Major depression: shortened REM latency, increased REM time, suppression of delta, multiple awakenings, and early morning awakening

SLEEP DISORDERS

Narcolepsy
A 35-year-old man was recently hospitalized for the tenth time after he crashed his car into a post. When questioned, he did not remember the cause of the accident and had just had his license suspended. His friends reported occasions when he fell asleep during dinner and during conversations with them.

Definition. A disorder characterized by excessive daytime sleepiness and abnormalities of REM sleep for a period of greater than 3 months. REM sleep occurs in less than 10 minutes. Patients feel refreshed upon awakening.
Physical and Psychiatric Presenting Symptoms

- **Sleep attacks**: most common symptom
- **Cataplexy**: Pathognomonic sign, consisting of a sudden loss of muscle tone which may have been precipitated by a loud noise or intense emotion. If short episode, the patient remains awake.
- **Hypnagogic and hypnopompic hallucinations**: Hallucinations that occur as the patient is going to sleep and is waking up from sleep, respectively.
- **Sleep paralysis**: Most often occurs during awakening, when the patient is awake but unable to move.
- Report falling asleep quickly at night

Treatment. Forced naps at a regular time of day are usually the treatment of choice. When medications are given, psychostimulants are preferred. If cataplexy is present, antidepressants such as TCAs are preferred. Gamma-hydroxybutyrate (GHB) is also used for narcolepsy–cataplexy by improving the quality of nighttime sleep.

Sleep Apnea

An overweight man reports having difficulties in his marriage because of his snoring at night. During the day, he reports feeling tired despite sleeping for 8 hours at night.

Definition. A disorder characterized by the cessation of airflow at the nose or mouth during sleep. These apneic episodes usually last longer than 10 seconds each. Characterized by a loud snore followed by a heavy pause. Considered pathologic if the patient has more than 5 episodes an hour or more than 30 episodes during the night. In severe cases, patients may experience more than 300 apneic episodes during the night.

Physical and Psychiatric Presenting Symptoms

- Usually seen in obese, middle-aged males
- Sometimes associated with depression, mood changes, and daytime sleepiness
- Spouses typically complain of partner’s snoring, and of partner’s restlessness during the night
- Complain of dry mouth in the morning
- May have headaches in the morning
- Complain of being tired during the day
- May develop arrhythmias, hypoxemia, pulmonary hypertension, and sudden death

Types of Sleep Apnea

- **Obstructive**: muscle atonia in oropharynx; nasal, tongue, or tonsil obstruction
- **Central**: lack of respiratory effort
- **Mixed**: central at first, but prolonged due to collapse of the airway

Treatment. Continuous positive nasal airway pressure is the treatment of choice. Other treatment includes weight loss, surgery. Sleeping on one’s side instead of one’s back will help keep the airways open.
Insomnia

While studying over the past week for an important exam, Michael, a third-year medical student, has been unable to sleep for the past several days. At night, he lies awake and imagines himself doing poorly on the exam and failing medical school. During the day, he is tired and frequently falls asleep during his classes.

Definition. A disorder characterized by difficulties in initiating or maintaining sleep.

Risk Factors/Epidemiology. Typically associated with some form of anxiety or anticipatory anxiety. Many patients have underlying psychiatric disorders, such as depression, etc. If due to a psychiatric disorder, seen more frequently in women. Other conditions include PTSD, OCD, and eating disorders.

Physical and Psychiatric Presenting Symptoms
- Predominant complaint is difficulty initiating or maintaining sleep
- Affects the patient’s level of functioning
- Frequent yawning and tiredness during the day

Treatment. Consider good sleep hygiene techniques, such as arising at same time of the day, avoiding daytime naps, avoiding evening stimulation, discontinuing CNS-acting drugs, taking hot baths near bedtime, eating meals at regular times, using relaxation techniques and maintaining comfortable sleeping conditions. If these do not work, consider behavioral modification techniques such as stimulus control. If medications are to be used, consider zolpidem, eszopiclone, or zaleplon.

Differential Diagnosis
- Medical: pain, CNS lesions, endocrine diseases, aging, brain-stem lesions, alcohol, diet, medications
- Psychiatric: anxiety, tension, depression, and environmental changes, other sleep disorders
Parasomnias

Table I-15-4. Parasomnias

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Sleep Stage</th>
<th>Characteristics</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightmares (dream anxiety disorder)</td>
<td>REM</td>
<td>• Memory of the event upon awakening</td>
<td>• Usually none indicated, but may use REM suppressants such as TCAs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increases during times of stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reported by 50% of the population</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Usually none indicated, but may use REM suppressants such as TCAs</td>
<td></td>
</tr>
<tr>
<td>Night terror (sleep terror disorder)</td>
<td>Stages 3 and 4</td>
<td>• Awakened by scream or intense anxiety</td>
<td>• Treatment rarely required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No memory of the event the following day</td>
<td>• If medication is needed, consider benzodiazepines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Seen more frequently in children</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More common in boys</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Runs in families</td>
<td></td>
</tr>
<tr>
<td>Sleeptalking</td>
<td>All stages of sleep</td>
<td>• Common in children</td>
<td>• No treatment is necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Usually involves a few words</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May accompany night terrors and sleepwalking</td>
<td></td>
</tr>
<tr>
<td>Sleepwalking</td>
<td>Stage 3 and 4</td>
<td>• Sequence of behaviors without full consciousness</td>
<td>• Need to assure patient safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May perform perseverative behaviors</td>
<td>• Use medication such as benzodiazepines to suppress stages 3 and 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Usually terminates in awakening followed by confusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May return to sleep without any memory of the event</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Begins at a young age</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More common in boys</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May find neurologic condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sleep deprivation may exacerbate</td>
<td></td>
</tr>
</tbody>
</table>
Practice Questions

1. An overweight man of average height presents to his doctor’s office complaining of feeling tired during the day. He has missed several days of work due to this problem. Which of the following is the most likely diagnosis?
 (A) Narcolepsy
 (B) Insomnia
 (C) Sleep apnea
 (D) Normal sleep pattern
 (E) Hypersomnia

2. Which of the following is the most likely explanation for a young man suddenly falling down but not losing consciousness?
 (A) Syncope
 (B) Cataplexy
 (C) Sleep paralysis
 (D) Medication toxicity
 (E) Hypotensive episode

3. Which of the following is the treatment of choice for insomnia?
 (A) Long-term use of benzodiazepines
 (B) Behavioral techniques
 (C) Drinking coffee before bedtime
 (D) Regular exercises before bedtime
 (E) Frequent naps during the day

1. **Answer:** C. Patients with sleep apnea have multiple episodes of waking up in the middle of the night. Therefore, they are tired during the day. These patients are typically unaware that they wake in the middle of the night.

2. **Answer:** B. Cataplexy is the sudden loss of muscle tone without loss of consciousness. It is differentiated from syncope in that syncope typically includes loss of consciousness. Patients with narcolepsy are usually young and do not have any blood pressure abnormalities.

3. **Answer:** B. Although benzodiazepines are regularly used for the treatment of insomnia, the best treatment includes behavioral techniques such as stimulus control. The patient leaves the bed whenever he is unable to fall asleep, therefore conditioning himself that the bed is only used for sleeping. Choices C, D, and E will tend to cause insomnia.
Learning Objectives

- Present epidemiologic information about masturbation and homosexuality
- List the types of sexual dysfunction and differentiating factors
- Describe paraphilic disorder and gender dysphoria

SEXUALITY

Sexual identity is based on a person’s sexual characteristics, such as external and internal genitalia, hormonal characteristics, and secondary sexual characteristics. Sexual orientation is based on a person’s choice of a love object: heterosexual (opposite sex), homosexual (same sex), bisexual (both sexes), or asexual (no sex).

Gender identity is based on a person’s sense of maleness or femaleness; it is established by age 3. Gender role is based on the external behavioral patterns that reflect a person’s inner sense of gender identity.

MASTURBATION

Masturbation is a normal precursor of object-related sexual behavior. All men and women masturbate.

- Genital self-stimulation begins in early childhood.
- As puberty arrives, sexual interest peaks and masturbation increases.
- Adolescents and adults typically have sexual fantasies while masturbating.
- Commonly seen among adolescents, married couples, and the elderly
- Excessive only if it interferes with daily functioning

HOMOSEXUALITY

Homosexuality was removed from the DSM in 1980 as a mental illness. It is considered a variant of human sexuality, not a pathologic disorder.

- Most homosexuals report feelings toward same-sex individuals since adolescence.
- Recent studies indicate it may be due to genetic and biologic causes.
- Greater incidence among monozygotic versus dizygotic twins
- No difference in the sexual practices from those exhibited by heterosexuals
Male–male relationships may be less stable than female–female relationships.
Equal incidence of mental illness when compared with heterosexuals.
Exceptions (normal during adolescence):
 - Visual comparison of genitalia
 - Mutual masturbation
 - Group exhibitionism
 - Handholding, kissing, etc.

SEXUAL DYSFUNCTIONS
A group of disorders related to a particular phase of the sexual response cycle. These disorders can be psychologic, biologic, or both, and include, desire, arousal, orgasm, and pain.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Characteristics</th>
<th>Disorder</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desire</td>
<td>Focuses on the patient’s drives, motivation, and desires</td>
<td>Hypoactive sexual desire: patients have a decrease or absence of sexual fantasies, desires, etc.</td>
<td>Address issues with patient, such as feelings of guilt, poor self-esteem, homosexual impulses, etc. Couples therapy may be indicated if due to marital conflict.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sexual aversion: a complete aversion to all sexual contact</td>
<td></td>
</tr>
<tr>
<td>Arousal</td>
<td>Consists of a sense of sexual pleasure with accompanying physiologic changes</td>
<td>Female sexual arousal: persistent failure to achieve or maintain adequate lubrication during the sexual act</td>
<td>Address issues of guilt, anxiety, and fear. Evaluate for use of medications that cause vaginal dryness, such as antihistamines or anticholinergics. Instruct in relaxation techniques. Must rule out if organic versus psychological. Consider plethysmography or postage stamp test.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impotence: persistent or recurrent inability to attain or maintain adequate erection until completion of the sexual act</td>
<td></td>
</tr>
<tr>
<td>Orgasm</td>
<td>Physiologic state in which sexual tension is released and contractions are produced in various organs.</td>
<td>Female orgasmic disorder and delayed ejaculation: recurrent or persistent inability to achieve an orgasm either through masturbation or sexual intercourse</td>
<td>Address issues of guilt, fear of impregnation, etc. Treatment includes use of vibrators, education, and fantasy. Consider behavioral techniques such as squeeze and stop-and-go. Address issues of anxiety about the sexual act. Consider the use of SSRIs to delay ejaculation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Premature ejaculation: Ejaculation before the man wishes to do so, before penetration, or just after penetration</td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>Subjective sense of pain associated with the sexual act. Most likely due to dynamic factors.</td>
<td>Genito-pelvic pain disorder: Pain associated with sexual intercourse in either male or female. Not diagnosed when organic cause has been found or if due to lack of vaginal lubrication. Penetration disorder: involuntary constriction of the outer one-third of the vagina that interferes with the sexual act</td>
<td>Help the woman deal with issues of anxiety and tension about the sexual act. Behavioral techniques, such as the use of dilators and relaxation. Address issues of fear of impregnation, strict upbringing, religion, etc.</td>
</tr>
</tbody>
</table>

Table I-16-1. Sexual Dysfunctions
PARAPHILIC DISORDER

A 20-year-old man was caught outside his neighbor’s window, looking in as she disrobed. Before his arrest, he would wander the subway stations and rub himself up against women as well as expose himself to women who were nearby. All of these activities produced sexual pleasure in the patient.

Definition. A group of disorders that is recurrent and sexually arousing. Usually focus on humiliation and/or suffering and the use of nonliving objects and involve nonconsenting partners. Typically occur for >6 months and are usually distressing and cause impairment in patient’s level of functioning.

Risk Factors/ Epidemiology. Affects men more than women. Peak incidence is age 15–25. Tend to have other paraphilias, and as the patient ages, the frequency decreases.

Physical and Psychiatric Presenting Symptoms
- Sexual activity is ritualistic.
- Fantasy is typically fixed and shows very little variation.
- Intense urge to carry out the fantasy

Treatment. Individual psychotherapy is indicated to help the patient understand the reasons why the paraphilia developed. Patient also becomes aware of daily activities and how they are related to the paraphilic behavior. Behavioral techniques, such as aversive conditioning, may be indicated in some situations. Pharmacotherapy consists of antiandrogens or SSRIs to help reduce patient’s sexual drive.

Differential Diagnosis. Must distinguish between experimentation and actual paraphilias.

Types of Paraphilic Disorders
- **Exhibitionism:** recurrent urge to expose oneself to strangers
- **Fetishism:** involves the use of nonliving objects usually associated with the human body
- **Frotteurism:** recurrent urge or behavior involving touching or rubbing against a non-consenting partner
- **Pedophilia:** recurrent urges or arousal toward prepubescent children. Most common paraphilia.
- **Voyeurism:** recurrent urges or behaviors involving the act of observing an unsuspecting person who is engaging in sexual activity, disrobing, etc. Earliest paraphilia to develop.
- **Masochism:** recurrent urge or behavior involving the act of humiliation
- **Sadism:** recurrent urge or behavior involving acts in which physical or psychologic suffering of a victim is exciting to the patient.
- **Transvestic fetishism:** recurrent urge or behavior involving cross-dressing; usually found in heterosexual men
GENDER DYSPHORIA

Billy, a 5-year-old boy, was found in his parent’s bedroom wearing his mother’s clothes. He has been observed going to the bathroom to urinate while sitting on the toilet as well as playing with dolls instead of his trucks and guns. He prefers to wear dresses and hates being a boy.

Definition. Also called gender identity dysphoria. A disorder characterized by a persistent discomfort and sense of inappropriateness regarding the patient’s assigned sex.

Risk Factors/Epidemiology. Seen more frequently in men than in women. Cause is unknown. Many believe it may be due to biologic reasons, such as hormones, etc.

Physical and Psychiatric Presenting Symptoms

- Children will have preference for friends of the opposite sex.
- Preoccupied with wearing opposite gender’s clothes
- Refuse to urinate sitting down, if a girl, or standing up, if a boy
- Believe they were born with the wrong body
- Routinely request medications or surgery to change their physical appearance
- Women may bind their breasts, have mastectomies, take testosterone to deepen the voice.
- Men may have electrolysis to remove body hair and take estrogens to change the voice and may have surgeries to remove the penis and create a vagina.

Practice Questions

1. What is the treatment of choice for premature ejaculation?
 (A) Plethysmography
 (B) Dilators
 (C) Squeeze technique
 (D) Postage stamp
 (E) Aversive conditioning

2. What is the most common cause of erectile dysfunction due to a medical condition?
 (A) Pancreatitis
 (B) Diabetes
 (C) Cirrhosis
 (D) Myocardial infarction
 (E) UTI

1. Answer: C. The treatment of premature ejaculation typically consists of behavioral techniques aimed at prolonging the time before ejaculation occurs. These include the squeeze-and-go technique. Choices A and D are for the diagnosis of erectile dysfunction. Choice B is for the treatment of pain/penetration disorder.

2. Answer: B. Diabetes has been known to be a common cause of erectile dysfunction. Alcohol has been proven to be a common cause of erectile dysfunction in men of all ages.
Learning Objectives

- Describe the classes of drug, mechanism of action, and common adverse effects of typical antipsychotic, atypical antipsychotic, antidepressant, mood-stabilizing, and anxiolytic medications
- Describe the indications and procedural steps for electroconvulsive therapy

ANTIPSYCHOTIC MEDICATION

Antipsychotic medications (APMs) are used to treat manifestations of psychosis and other psychiatric disorders. The precise mechanism of action is unknown; however, APMs block several populations of dopamine (D2, D4) receptors in the brain. The newer APMs also block some serotonin receptors (5HT), a property that may be associated with increased efficacy.

APMs also variably block central and peripheral cholinergic, histaminic, and alpha-adrenergic receptors.

There are 2 types of APMs:

- **Typical**: work mostly on dopamine receptors, treat the positive symptoms (hallucinations and delusions) and have many side effects (haloperidol, fluphenazine, chlorpromazine, etc.)
- **Atypical**: work mostly on dopamine and serotonin receptors, treat both positive and negative symptoms (flat affect, poor grooming, social withdrawal, anhedonia, etc.), and have fewer side effects; always used as first-line agents (risperidone, olanzapine, etc.)

Side Effects

There are several general groups of side effects.

- **Sedation**: due to antihistaminic activity
- **Hypotension**: effect due to alpha-adrenergic blockade and most common with low-potency APMs
- **Anticholinergic Symptoms**: dry mouth, blurred vision, constipation, urinary retention, flushed skin and delirium. Effects may be additive if given with other anticholinergics. They block parasympathetic receptors. Avoid in the elderly.
- **Endocrine Effects**: gynecomastia, galactorrhea, and amenorrhea
Dermal and Ocular Syndromes: photosensitivity, abnormal pigmentation, cataracts

Other Effects: cardiac conduction abnormalities (especially with thioridazine), agranulocytosis with clozapine

There are several groups of side effects having to do with movement.

Acute Dystonia. (Dystonic Reaction).

- Presentation: spasms of various muscle groups
- Can be dramatic and frightening to patient
- Can be a major contributing factor to subsequent noncompliance with treatment
- Young men may be at higher risk, seen in 10% patients.
- Treatment: anticholinergics, such as benztropine, diphenhydramine, or trihexyphenidyl
- Can occur within hours after treatment

Akathisia

- Presenting Symptoms: motor restlessness, “ants in your pants”
- Differential Diagnosis: often mistaken for anxiety and agitation
- Treatment: lowering the dose, adding benzodiazepines or beta-blockers, switching to other antipsychotic medication
- Can occur several weeks after treatment

Tardive Dyskinesia (TD).

- Characterized by choreoathetosis and other involuntary movements
- Movements often occur first in the tongue or fingers and later involve the trunk.
- Etiology may be a form of “chemical denervation hypersensitivity,” which is caused by chronic dopamine blockade in the basal ganglia.
- Patients who take high doses of older antipsychotic medication for long periods of time are at highest risk, and movements gradually worsen with continued use.
- Treatment: Use newer antipsychotic medications.
- Seen more frequently in elderly females
- Can occur after 3–6 months after treatment

The primary adverse effect of antipsychotic medication use is neuroleptic malignant syndrome. It is a fairly rare and potentially life-threatening condition characterized by muscular rigidity, hyperthermia, autonomic instability, and delirium. CPK will be elevated.

- Usually associated with high dosages of high-potency antipsychotic medication.
- Treatment: Immediate discontinuation of the medication and physiologic supportive measures; dantrolene or bromocriptine may be used.

ATYPICAL ANTIPSYCHOTIC MEDICATIONS

- Clozapine: gold standard for the treatment of schizophrenia; not used as first-line agent; may cause agranulocytosis (<1%) so monitoring of WBC is essential
- Risperidone: increased risk of movement disorders and elevation of prolactin
- Olanzapine: increased risk of weight gain, metabolic syndrome, diabetes, etc.
- Quetiapine: lowest risk of movement disorders
• Paliperidone: active metabolite of risperidone; fewer side effects than risperidone
• Ziprasidone: prolongation of QT interval
• Aripiprazole: partial dopamine agonist at low doses, may be used as adjunct for depression
• Asenapine: sedation, akathisia
• Iloperidone: hypotension, dizziness, somnolence
• Lurasidone: somnolence, akathisia, weight gain

How to treat psychotic symptoms:

- First-line: always use atypical agents
- Emergency room: use short-acting intramuscular agent such as haloperidol, fluphenazine, olanzapine, or ziprasidone
- Nonadherent patient: use long-acting antipsychotic medication such as haloperidol, fluphenazine, risperidone, paliperidone, or olanzapine
- Last resort: clozapine
- All meds ineffective: may consider ECT

ANTIDEPRESSANT (AD) MEDICATIONS

Clinical Guidelines

- Overall efficacy for treatment of major depressive disorder is around 70%.
- Newer ADs should be considered first because of better safety profile.
- Difficult to predict which patient will respond to which antidepressant, so trials of several antidepressants may be necessary before an effective one is found.
- Individual antidepressants differ greatly in their side-effect profiles and must be matched to patient preference and ability to tolerate.
- Older antidepressants are extremely dangerous when an overdose is ingested. When used to treat individuals with depressive symptoms, clinicians should generally prescribe in small quantities and only after determining the absence of suicidal intent.
- If no response to treatment after 4 weeks, or if patient cannot tolerate current antidepressant, switch to another.
- Treatment should continue for 6 months to 1 yr after favorable response.

Untoward Effects

- **Sedation:** due to histamine blockade
- **Hypotension:** due to alpha blockade
- **Anticholinergic effects:** dry mouth, blurry vision, urinary retention, confusion
- **Cardiac:** conduction abnormalities most marked with TCAs
- **Seizures:** bupropion (Wellbutrin)
- **Sexual dysfunction:** anorgasmia and decreased libido with SSRIs; priapism with trazodone (Desyrel)
SSRIs
Inhibit reuptake of serotonin
- **Types**: Fluoxetine (Prozac), paroxetine (Paxil), and sertraline (Zoloft), fluvoxamine (Luvox), citalopram (Celexa), escitalopram (Lexapro)
- Reduced number of serious side effects
- Simple dosing schedules
- Significant incidence of agitation, nausea, vomiting, headache, diarrhea, and sexual dysfunction

“Hybrid” Antidepressants
- Venlafaxine: inhibit reuptake of NE and S, used for depression and anxiety, may cause hypertension, blurry vision, diaphoresis, etc.
- Desvenlafaxine: inhibit reuptake of NE and S, active metabolite of venlafaxine therefore fewer side effects
- Duloxetine: inhibit reuptake of NE and S, approved for depression and neuropathic pain
- Bupropion: inhibits reuptake of NE and dopamine, approved for depression and smoking cessation; may cause seizures so avoid using in patients with eating disorders, alcohol withdrawal seizures, or seizure disorders
- Trazodone: S agonist and reuptake inhibitor, approved for depression and insomnia; may cause priapism (prolonged and painful erection)
- Mirtazapine: classified as tetracyclic antidepressant, approved for depression and insomnia; weight gain is main side effect

TCAs
- Inhibit reuptake of NE, S, and dopamine
- Include nortriptyline, amitriptyline, imipramine, desipramine, clomipramine, etc.
- Adverse effects: (especially tertiary TCAs) significant sedation, orthostatic hypotension, and anticholinergic effects. They are the most dangerous antidepressants in overdose.

MAOIs
- Inhibit MAO-A and/or MAO-B in the CNS and have antidepressant efficacy
- Differ by the type of inhibition (i.e., reversible or irreversible), the severity of adverse effects, and the specificity of inhibition (MAO-A or B)
- Include phenelzine, tranylcypromine, and isocarboxazid
- **Selegiline**: selective inhibitor of MAO-B; currently approved only for treatment of Parkinson’s disease
- **Indications**: second-line treatment for major depressive disorder, depressive disorders with atypical features, and some anxiety disorders
- **Hypertensive crisis**: May occur with tyramine-rich foods or if certain other medications are ingested, including nasal decongestants, antiasthmatic medications, and amphetamines. Avoid red wine, aged cheese, and chocolate.
- **Adverse effects**: sedation, weight gain, orthostatic hypotension, liver toxicity (with hydrazine MAOIs), and sexual dysfunction
ELECTROCONVULSIVE THERAPY (ECT)

Indications
- Major depressive episodes that have not responded to antidepressant medication or mood stabilizers
- Major depressive episodes with high risk for immediate suicide
- Major depressive episodes in patients with contraindications to using antidepressant medication
- Major depressive episodes in patients who have responded well to ECT in the past

Untoward effects and contraindications
- Transient memory disturbance: increases in severity over the course of ECT and then gradually resolves over several weeks
- Complications of associated anesthesia and induced paralysis
- Transiently increased intracranial pressure. Therefore, the presence of space-occupying intracranial lesions requires extreme caution.

MOOD-STABILIZING MEDICATIONS

Lithium

Indications
- Bipolar and schizoaffective disorders: first-line medication for treatment and prophylaxis of mood episodes
- Adjunctive treatment of major depressive disorder: may augment responsiveness to antidepressant medications in some patients

Untoward Effects
- Dose-related: tremor, gastrointestinal (GI) distress, headache
- Dermatologic problems: acne; interferes with patient compliance
- Weight gain: may interfere with patient compliance
- Cardiac conduction: electrocardiogram (ECG) changes usually benign
- Hypothyroidism: 5% of patients develop thyroid problems
- Leukocytosis: usually occurs and seems to be benign
- Polyuria: diabetes insipidus is common and may be troublesome to patients
- Teratogenicity: associated with cardiac abnormalities; contraindicated in first trimester, Ebstein's anomaly (tricuspid valve)
- Nephrotoxic

Toxicity Management
- Keep plasma levels <1.5 mEq/L; optimal 1.0 mEq/L
- Dehydration and hyponatremia predispose to lithium toxicity by increasing serum lithium levels.
- Tremor at therapeutic levels may respond to decreased dosage.
- Lithium levels may increase with ACE inhibitors, NSAIDs, loop and thiazide diuretics
Divalproex
• Treatment of choice for rapid-cycling bipolar disorder, or when lithium is ineffective, impractical, or contraindicated.
• Increasingly popular in emergency settings, may give loading dose
• Time course of treatment response is similar to lithium.
• Efficacy for prophylaxis is unclear.
• Untoward effects: sedation, cognitive impairment, tremor, GI distress, hepatotoxicity, weight gain, possible teratogenicity (spina bifida), and alopecia.

Carbamazepine
• Second-line choice for treatment of bipolar disorder when lithium and divalproex are ineffective or contraindicated.
• Rare but serious hematologic and hepatic side effects and significant sedation make carbamazepine less useful.
• May cause agranulocytosis.

Lamotrigine
• Approved for bipolar depression
• May cause Steven-Johnson syndrome

ANXIOLYTIC MEDICATIONS
There are 2 types of anxiolytic medications: benzodiazepines, which facilitate transmission of GABA, and buspirone, which is an S receptor partial agonist.

Benzodiazepines
• Avoid abrupt changes in benzodiazepine dosage.
• Use lower dosages for the elderly.
• Do not mix with alcohol or other sedative-hypnotic medications.
• Consider dependency potential.
• May cause confusion, problems with memory, and falls (especially in the elderly).
• Abrupt discontinuation may cause seizures.

Buspirone
• Effective in the treatment of generalized anxiety disorder and social phobia.
• Lag time of about 1 week before clinical response.
• No additive effect with sedative-hypnotics.
• No withdrawal syndrome.
• No sedation or cognitive impairment.
• Headache may occur.
Learning Objectives

- Describe the epidemiology and biological indicators associated with suicide and suicidal gestures
- Describe the steps required to evaluate a patient’s risk of suicide

SUICIDE

Presentations
- Recent suicide attempt
- Complaints of suicidal thoughts
- Admission of suicidal thoughts upon questioning
- Demonstration of possible suicidal behavior

Risk Factors for Suicidal Behavior
- History of suicide threats and attempts
- Perceived hopelessness (demoralization)
- Presence of psychiatric illness/drug abuse
- Males
- Elderly
- Social isolation
- Low job satisfaction
- Chronic physical illness

Emergency Assessment
- Detain until the emergency evaluation is completed
- Take all suicide threats seriously
- Question about suicide ideation, intent, and plan
- Get information from third parties
- Don’t identify with the patient
- Emergency treatment decisions about suicidal behavior are based on clinical presentation and presence of risk factors.
Learning Objectives

- Describe and compare the major forms of psychotherapy and behavioral therapy used in practice today

Table I-19-1. Psychotherapies

<table>
<thead>
<tr>
<th>Type of Therapy</th>
<th>Goal</th>
<th>Selection Criteria</th>
<th>Duration</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoanalysis</td>
<td>Resolution of neurosis</td>
<td>Psychologically minded</td>
<td>4–5× per week for years</td>
<td>Free association, defense analysis, interpretation of transference</td>
</tr>
<tr>
<td>Insight oriented</td>
<td>Focus on interpersonal goals</td>
<td>Intact reality testing, capacity for insight</td>
<td>1–3× per week for months to years</td>
<td>Defense analysis, interpretation of transference</td>
</tr>
<tr>
<td>Supportive</td>
<td>Support reality testing, provide ego support</td>
<td>Healthy patients in time of crises or very ill patients</td>
<td>Days to months to years</td>
<td>Problem solving, suggestion, reinforcement</td>
</tr>
<tr>
<td>Behavioral</td>
<td>Modify learned behavior patterns</td>
<td>Those with maladaptive behaviors or psychophysiologic disorders</td>
<td>Time limited</td>
<td>Relaxation techniques, aversive therapy, systematic desensitization, flooding, token economy</td>
</tr>
<tr>
<td>Group</td>
<td>Alleviation of symptoms, change relationships, alter family-couple dynamics</td>
<td>Groups target specific disorders, family and couples, personality disorders, etc.</td>
<td>1× per week for weeks to years</td>
<td>Group specific</td>
</tr>
<tr>
<td>Cognitive</td>
<td>Change distorted views of self, world, and others</td>
<td>Depressive disorders</td>
<td>1× per week for 15–25 weeks</td>
<td>Assigned readings, homework, behavioral techniques, identification of irrational beliefs and attitudes</td>
</tr>
</tbody>
</table>
PART II

Epidemiology & Ethics
Learning Objectives

- Define incidence, prevalence, specific rates, adjusted rates, and other statistical measures, as they relate to morbidity and mortality
- Perform survival analysis including accounting for potential life lost
- Describe the types of prevention
- Show how prevalence, sensitivity, and specificity relate to the value of screening tests
- Answer questions about study design and bias in research

OVERVIEW

Epidemiology is the study of the distribution and determinants of health-related states within a population. It refers to the patterns of disease and the factors which influence those patterns.

- **Endemic:** The usual, expected rate of disease over time; the disease is maintained without much variation within a region.
- **Epidemic:** Occurrence of disease in excess of the expected rate; usually presents in a larger geographic span than endemics (epidemiology is the study of epidemics).
- **Pandemic:** worldwide epidemic
- **Epidemic curve:** Visual description (commonly histogram) of an epidemic curve is disease cases plotted against time; classic signature of an epidemic is a “spike” in cases during a period of time.

Incubation period is the period of time from the point of infection to the onset of clinical illness.
Part II ● Epidemiology and Ethics

Figure II-20-1. Measles Outbreak

Reported measles cases by date of rash onset, Elgin, Illinois, April 15 to July 28, 1985

Figure II-20-2. Food-Borne Outbreak

Onsets of illness in patrons and employees: hepatitis A outbreak on a floating restaurant, Florida.
Health service interventions are evaluated using the following concepts/metrics:

- **Efficacy**: performance of an intervention under optimal conditions, e.g., prophylactic medications in a clinical trial
- **Effectiveness**: actual results in the real world, e.g., treatment outcomes in the community
- **Efficiency**: a ratio of the benefit compared to the cost associated with an intervention (high efficiency would deliver a greater benefit at minimal cost)

Upper and lower bounds account for uncertainty of the estimate (most commonly 95% confidence intervals).

TYPES OF PREVENTION

The goals of prevention in medicine are to promote health, preserve health, restore health when it is impaired, and minimize suffering and distress. These goals aim to minimize both morbidity and mortality.

- **Primary prevention** is the promotion of health at both individual and community levels; this is done by facilitating health-enhancing behaviors, preventing the onset of risk behaviors, and diminishing exposure to environmental hazards. **Primary prevention efforts decrease disease incidence.**
- **Secondary prevention** is the screening for risk factors and early detection of asymptomatic or mild disease, permitting timely and effective intervention and curative treatment. **Secondary prevention efforts decrease disease prevalence.**
- **Tertiary prevention** is the reduction of long-term impairments and disabilities and prevention of repeated episodes of clinical illness. The goals of tertiary prevention are to prevent recurrence and slow progression.

Note

- **Prevalence** is the proportion of population affected by a disease (disease burden).
- **Resource allocation** is often directed at disease prevalence.
Primordial prevention is a newer concept in disease prevention. It targets the most distal determinants of health (social, economic, environmental, and cultural).

Some examples of prevention for cardiovascular disease are as follows:

- **Primary prevention**: health education programs to promote healthy lifestyle and prevent onset of heart disease risk factors, e.g., Hearty Heart nutrition program for elementary school children or smoking cessation program
- **Secondary prevention**: community screening for blood pressure, peripheral artery disease
- **Tertiary prevention**: graded aerobic physical activity program prescribed to patients during recovery from first myocardial infarction

Practice Questions

Response options for Questions 1–4:

A. Quaternary prevention
B. Primary prevention
C. Secondary prevention
D. Tertiary prevention
E. Palliative care

1. **Breast self-examination**
2. **Physical therapy/rehabilitation and ergonomic training program for blue-collar workers recovering from severe back strain injury sustained on the job**
3. **School-based sexual health education program for middle school students**
4. **Confidential PPD testing to detect latent TB infection conducted at community clinics by county health department personnel**

2. **Answer**: D. Rehabilitation following an episode of injury with a concurrent focus on preventing subsequent injury.
3. **Answer**: B. Prevention of onset of risky sexual behaviors.
4. **Answer**: C. Screening to detect TB infection, to be followed by therapy to prevent progression to active TB.
MEASURES OF MORBIDITY AND MORTALITY

Rate
Rate is the frequency of occurrence of epidemiologic events in populations. It is used to compare epidemiologic events among populations.

- Rates allow direct comparisons of “events per identical number of people” in 2+ populations.
- Rates permit comparisons of epidemiologic events occurring in a single population assessed at several points in time.

The rate equation is:

\[
\text{Rate} = \frac{\text{Numerator}}{\text{Denominator}} \times \text{Multiplier}
\]

where the numerator is the number of epidemiologic events, the denominator is the number of people in the population of interest, and the multiplier is selected so that the result of the rate computation generally yields a number from 1–100 (rather than a decimal).

- For major vital statistics, such as birth rate, death rate, and infant mortality rate, the preferred multiplier is 1,000. The result is expressed as a rate per 1,000.
- For individual diseases, the most common multiplier is 100,000. The result is expressed as a rate per 100,000.
It is **essential** that the numerator units are matched with the denominator. Match on person, place, and time characteristics.

\[
\text{Rate} = \frac{\text{Epidemiologic events occurring in a population of persons at a given place at a given time}}{\text{Defined population of persons at a given place at a given time}} \times \text{Multiplier}
\]

SPECIFIC AND ADJUSTED RATES

Specific Rates

Specific rates specify a subset of the total population that is singled out for special examination or comparison with other subsets of the population. Use the following formula:

\[
\text{Specific rate} = \frac{\text{All events in specified subpopulation}}{\text{Specified subpopulation}} \times \text{Multiplier}
\]

Common demographic variables used for specific rates are age group, gender, race/ethnicity, highest level of education attained, marital status, and socioeconomic status. Populations can be stratified on 2+ demographic variables at a time.

Matching the numerator and denominator is the most important concept for computing a specific rate. For example:

- **“Event” of interest:** Cancer deaths
- **Place:** State of Nevada
- **Time:** Calendar year, 2006
- **Rate of interest:** Age-specific rate (rate for a specified age group) for ages 45–64

 Deaths from cancer among persons ages 45–64 in Nevada during 2006

 \[
 \frac{\text{Deaths from cancer among persons ages 45–64 in Nevada during 2006}}{\text{Population of Nevada residents ages 45–64, midyear 2006}} \times 100,000
 \]

Adjusted Rates (or Standardized)

Adjusted rates are rates calculated after using statistical procedures, in order to minimize demographic differences between populations being compared. Comparisons of rates between 2 groups may be misleading if the composition of the groups differs on important demographic characteristics. Adjustment improves the validity of the comparison, when there is an imbalance of risk factors among 2 populations. In the following example, rate adjustment is clearly essential.
In the same city, the rate of alcoholism and alcohol abuse is found to be higher among workers in an automobile assembly plant compared with same-age workers at a textile mill.

Adjustment for gender differences is warranted. First, the 2 populations differ on a demographic characteristic: Automotive workers tend to be men; textile workers tend to be women. Second, the disorder is related to the same demographic: Alcohol problems are more prevalent in men. The higher observed rate in automotive workers may be due to the marked differences in gender in the 2 employee populations.

In the same company, the rate of lung cancer is found to be higher among male factory workers age 50–64 than among male computer programmers age 50–64.

Adjustment for level of education is warranted. First, the 2 populations differ on a demographic characteristic: Factory workers tend to have a low level of education; computer programmers are likely to be college graduates. Second, the disease/disorder is related to the same demographic. The major cause of lung cancer is cigarette smoking. People with lower levels of education have higher smoking rates; college graduates have the lowest smoking rates. The differences in lung rates may reflect expected differences in smoking prevalence rates for workers with different levels of education.

Properties of a board-style adjusted rate problem:
- A significant difference in the rate of disease is declared to exist between 2 groups. The compared rates are unadjusted.
- The groups differ on a key demographic variable.
- The disease is known to be related to the same demographic variable.
- Adjustment will tend to make the observed difference between unadjusted rates disappear.

Table II-20-1. Disease Rates Positively Correlated with Age

<table>
<thead>
<tr>
<th>Disease Rate by Age Group</th>
<th>Population A</th>
<th>Population B</th>
<th>Population C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Younger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1,000</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Older</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3/1,000</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Crude Rates</td>
<td>2.3</td>
<td>2.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Practice Questions

8. In the United States, the crude (unadjusted) suicide rate for physicians is significantly higher than it is for the general population. What is the most appropriate interpretation of this finding?

A. Higher suicide rates in physicians are likely to be related to job stress, including life-and-death decision making for patients in the care of the physician.
B. Higher rates of suicide in physicians are likely to be related to constant exposure to human suffering, trauma, and death.
C. Physicians have higher rates of suicide than the general population; no further interpretation is possible from the information presented.
D. While the unadjusted rate of suicide is higher for physicians, failure to adjust for differences between physicians and the general population on socioeconomic status precludes meaningful
E. The finding of statistical significance proves that physicians are at higher risk for suicide than nonphysicians.

8. Answer: D. When a significant relationship is stated but the comparison groups have some obvious demographic difference, look for the answer that suggests conclusions may be invalid unless rates are adjusted to compensate for those differences. Here, physicians are generally a higher socioeconomic status (SES) group relative to the general population. Suicide rates are elevated for high-SES people. Once adjusted for SES differences, the finding of higher suicide rates in physicians no longer stands.

MEASURES OF MORBIDITY

Prevalence and Incidence

Prevalence is the number of individuals with a disease divided by the total number of individuals in a population. This can be measured at one point in time (point prevalence) or as the proportion of individuals who had the disease during a time period of interest (period prevalence). A chronic condition such as hypertension or diabetes tends to carry a high prevalence in the population, because once someone acquires it he is not usually cured of it.

The numerator refers to all individuals who have the illness at the time(s) in question.

\[
\text{Prevalence} = \frac{\text{Persons with existing disease at a given place at a given time}}{\text{Population of persons at risk for disease at a given place at a given time}} \times \text{Multiplier}
\]

The incidence rate is the rate of new disease events in a population at risk during a period of time. It can be calculated only over a period of time, not at a single point.

\[
\text{Incidence rate} = \frac{\text{Persons with disease onset at a given place during a specified period of time}}{\text{Population of persons at risk for the disease at a given place during a specified period of time}} \times \text{Multiplier}
\]
Attack rate is a type of incidence rate which focuses on a known exposure or risk. If 10 of 100 children who attend daycare A, and 40 of 100 children who attend daycare B develop diarrhea, the attack rate would be 10% for attendance at daycare A and 40% for attendance at daycare B.

Prevalence Pot

A “prevalence pot” is often used to understand prevalence and its relationship to incidence. At the first moment of observation, the count of cases “in the pot” provides an estimate of point prevalence. Incident cases are observed over time. These new cases are added to the pre-existing cases. As long as clinical illness persists, cases remain in the pot.

Prevalence can be estimated when disease incidence and duration are known:

Prevalence = Incidence × Duration (conceptual formula only)

A disease may have low incidence but long duration, causing prevalence to be higher.

![Figure II-20-4. Prevalence Pot Diagram](image)

Cases leave the prevalence pot in one of 2 ways: recovery or death. Changes in prevalence over time can be determined by monitoring trends in incidence, recovery, and death.

The factors affecting prevalence are as follows:

Increase

- Increase in incidence cases, e.g., improved screening methods
- Longer disease duration, e.g., diabetes
- Better treatment of disease, which results in patients with chronic illness but not “cured,” e.g., diabetics

Decrease

- Decrease in incidence cases, e.g., vaccination program
- Shorter disease duration, e.g., high case fatality rate
- Improved treatment of disease, which results in “cured” patients
Practice Questions

9. A pharmaceutical company completes trials on a vaccine for a severe strain of influenza virus demonstrating high vaccine efficacy. The FDA approves the vaccine for use in the United States. As the influenza pandemic approaches U.S. borders, the CDC launches a campaign to vaccinate the population using local public health department personnel throughout the country to ensure the vaccine is available, free of charge, to all people. Assuming a high degree of vaccine coverage is achieved, what is the expected impact of this major public health initiative?
 A. Decreased duration of influenza illness leading to decreased prevalence
 B. Decreased incidence of influenza illness leading to decreased prevalence
 C. Decreased incidence offset by increased duration: no change in prevalence
 D. No change in observed incidence or duration: no change in prevalence
 E. Effects on prevalence cannot be determined from the information provided

10. A new, effective treatment for a common disease, leading to complete cure, is developed. Which of the following impacts on disease occurrence is expected?
 A. Decreased duration of illness, leading to decreased prevalence
 B. Decreased incidence of illness, leading to decreased prevalence
 C. Decreased incidence and duration of illness, leading to decreased prevalence
 D. No change in observed incidence or duration: no change in prevalence
 E. Effects on prevalence cannot be determined from the information provided

11. Which term is used when cost/benefit ratio analysis is used to evaluate public health service interventions?
 A. Efficacy
 B. Effectiveness
 C. Efficiency
 D. Equity
 E. None of the above

9. Answer: B. Vaccination decreases the likelihood of development of new infection and clinical disease. In turn, the prevalence during the peak of the influenza season will be decreased. Efficacy reflects how well an intervention performs under ideal circumstances.

10. Answer: A. An effective treatment will move people more quickly toward recovery. Average duration of illness will decrease. Prevalence—the proportion of people ill with the disease at a point in time—will also decrease. This will apply to both acute and chronic diseases. Effectiveness refers to how well an intervention performs in real conditions. Under ideal circumstances, some interventions are relatively efficacious, but less effective in reality.

11. Answer: C. Efficiency is the term used to evaluate public health interventions using cost/benefit ratio analysis.
Practice Questions

Questions 12–15
Among 245 college students who dedicated 1 month of summer break to building homes for Habitat for Humanity, 12 developed back strains on the job. Based on the diagram of these 12 episodes of back strain, answer the following questions:

Response options for Questions 12–15:
A. 2/242 E. 3/245 I. 10/244
B. 2/244 F. 8/242 J. 10/245
C. 2/245 G. 8/244 K. 12/245
D. 3/242 H. 8/245

12. What is the point prevalence on July 15, 12:01 am?
Answer: C. On July 15, there were 2 students with symptoms of back strain (E, K).

13. What is the point prevalence on July 31, 11:59 pm?
Answer: E. On July 31, there were 3 students with symptoms of back strain (B, G, I).

14. What is the incidence rate for the period July 15–July 31?
Answer: H. Eight new cases of back strain had onset between July 15 and July 31 (A, B, D, F, G, I, J, L).

15. What is the period prevalence for July 15–July 31?
Answer: J. A total of 10 students had symptoms of back strain at some time from July 15–31, including 2 with onset prior to July 15 (E, K) and 8 with onset during the period July 15–31 (A, B, D, F, G, I, J, L).
VITAL STATISTICS AND RATES

Birth Rate
Birth rate (also called crude birth rate) is the rate of live births in a population during a time period (usually the calendar year).

Simple formula: \(\frac{\text{Live births}}{\text{Population}} \times 1,000 \)

This can be interpreted as births per 1,000 population. The U.S. birth rate (in 2010) was 13.0 births/1,000 population.

Fertility Rate
Fertility rate is the rate of live births among women of childbearing age (age 15–49) in a population during a time period (usually the calendar year).

Simple formula: \(\frac{\text{Live births}}{\text{Women of childbearing age}} \times 1,000 \)

This can be interpreted as births per 1,000 women of child-bearing age. The U.S. fertility rate (in 2010) was 64.1 births/1,000 women of child-bearing age.

Mortality Rate
Mortality rate (also called death rate or crude death rate) is the rate of deaths in a population during a time period (usually the calendar year).

Simple formula: \(\frac{\text{Deaths}}{\text{Population}} \times 1,000 \)

This can be interpreted as deaths per 1,000 population. Mortality rate may be affected by the age structure in different populations, so be sure to account for age structure before comparing mortality rates in different countries. The U.S. mortality rate (in 2010) was 8.4 deaths/1,000 population.

Infant Mortality Rate
Infant mortality rate is the yearly rate of deaths among children age <1 in relation to the number of live births during the same year. Within a population, the infant mortality rate is a key indication of the population’s health status.

Simple formula: \(\frac{\text{Infant deaths}}{\text{Live births}} \times 1,000 \)

This can be interpreted as infant deaths per 1,000 live births. The U.S. infant mortality rate (in 2010) was 6.14 infant deaths/1,000 live births.

Neonatal mortality rate: \(\frac{\text{Infant deaths prior to day 28}}{\text{Live births}} \times 1,000 \)

Postneonatal mortality rate: \(\frac{\text{Infant deaths from day 28–365}}{\text{Live births}} \times 1,000 \)
Infant mortality rate: neonatal mortality rate + postneonatal mortality rate

Perinatal mortality rate: \(\frac{\text{Stillbirths} + \frac{\text{deaths in the first week of life}}{\text{Live births}} \times 1,000}{\text{Live births}} \)

Infant Mortality

The top 3 causes of infant mortality are birth defects (24%), low birth weight (<1,500 g)/respiratory distress (18%), and SIDS (16%). SIDS rates can be reduced sharply if infants are prevented from sleeping on their stomachs.

Other facts about infant mortality:
- Native Americans have highest rates of SIDS.
- Blacks have highest rates of infant mortality due to low birth weight and infections; number 1 killer of black infants is low birth weight.
- Hispanic profile is similar to whites, but slightly higher.

Sociologic risk factors for children include:
- Maternal immaturity: risk of premature birth increases dramatically below age <19
- Poverty: major risk factor for prematurity and other unfavorable outcomes
- Single-parent family: correlated with child abuse, childhood suicide, truancy, and delinquency

Maternal Mortality Ratio

Maternal mortality ratio is the ratio of deaths in women from all causes associated with childbirth in relation to the number of live births during the same year. The denominator is per live births.

Simple formula: \(\frac{\text{Maternal deaths}}{\text{Live births}} \times 100,000 \)

This can be interpreted as maternal deaths per 100,000 live births; this is an important index of maternal care. The U.S. maternal mortality ratio (in 2010) was 7.1 maternal deaths/100,000 live births.

Case Fatality Rate

Case fatality rate (CFR) is the percentage of cases of an illness or medical condition that result in death within a specified time period.

Simple formula: \(\frac{\text{Deaths}}{\text{Cases}} \times 100 \)

This can be interpreted as proportion of cases which end in death (fatality). For instance, in a population of 200 people, 25 become ill, and 5 die from the illness. Therefore, CFR is 5 deaths/25 cases × 100 = 20%.
Part II ● Epidemiology and Ethics

Proportionate Mortality Rate

Proportionate mortality rate (PMR) is the percentage of deaths from all causes that are due to a specified cause during a specified time period.

Simple formula: \[
\frac{\text{Deaths from a specified cause}}{\text{Total deaths}} \times 100
\]

This can be interpreted as **proportion of deaths from a specific cause**. The PMR is used for the most common causes of death in a population.

Table II-20-2. Types of Measured Rates

<table>
<thead>
<tr>
<th>Type of Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude mortality rate</td>
<td>Deaths per population</td>
</tr>
<tr>
<td>Cause-specific mortality rate</td>
<td>Deaths from a specific cause per population</td>
</tr>
<tr>
<td>Case-fatality rate</td>
<td>Deaths from a specific cause per number of persons with the disease</td>
</tr>
<tr>
<td>Proportionate mortality rate (PMR)</td>
<td>Deaths from a specific cause per all deaths</td>
</tr>
</tbody>
</table>

Practice Questions

Response options for Questions 16–18:

A. Birth rate
B. Fertility rate
C. Infant mortality rate
D. Maternal mortality ratio
E. Age-adjusted rate
F. Case-fatality rate
G. Sex-adjusted rate
H. Proportionate mortality rate
I. Age-specific rate
J. Sex-specific rate
K. Age- and sex- and race/ethnicity-specific rate

16. Rate of live births among women of childbearing age
17. Proportion of cases of a disease that die from that disease
18. Rate of homicide in black men, age 15–24

16. **Answer:** B. Restatement of definition of fertility rate
17. **Answer:** F. Restatement of definition of case-fatality rate
18. **Answer:** K. Homicide rate restricted to black men in the age range 15–24
Practice Questions

Questions 19 and 20 are based on the following table

<table>
<thead>
<tr>
<th>Age</th>
<th>Disease A</th>
<th>Disease B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Cases</td>
<td>Deaths</td>
<td>Cases</td>
</tr>
<tr>
<td>0–12</td>
<td>2</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>13–24</td>
<td>101</td>
<td>34</td>
<td>267</td>
</tr>
<tr>
<td>25–64</td>
<td>50</td>
<td>42</td>
<td>1,042</td>
</tr>
<tr>
<td>>64</td>
<td>0</td>
<td>0</td>
<td>986</td>
</tr>
<tr>
<td>Totals</td>
<td>153</td>
<td>77</td>
<td>2,595</td>
</tr>
</tbody>
</table>

19. The case-fatality rate for Disease A is
 A. \(\frac{77}{120,000} \times 1,000 \)
 B. \(\frac{77}{120,000} \times 100,000 \)
 C. \(\frac{153}{120,000} \times 100,000 \)
 D. \(\frac{153}{498} \times 100 \)
 E. \(\frac{77}{153} \times 100 \)

20. The proportionate mortality rate for Disease B is
 A. \(\frac{98}{120,000} \times 100,000 \)
 B. \(\frac{2,595}{120,000} \times 100,000 \)
 C. \(\frac{98}{2,595} \times 100 \)
 D. \(\frac{98}{498} \times 100 \)
 E. Cannot be determined

19. Answer E. For CFR, denominator is total cases of disease A.
20. Answer D. For proportionate mortality, denominator is total deaths.

YEARS OF POTENTIAL LIFE LOST AND SURVIVAL ANALYSIS

YPLL is an indicator of premature death. The YPLL for a particular cause of death is the sum, over all persons dying from the cause, of the years that those persons would have lived had they experienced normal life expectancy.

Assume life expectancy is 75 years. A person who dies at age 65 would be dying 10 years prematurely (75 − 65 = 10 YPLL). For 100 such people, the YPLL calculation would be 100 \(\times (75 - 65) = 1,000 \) YPLL.

In the United States, the leading cause of YPLL age 65 is unintentional injury.
Survival Analysis

Survival analysis is a class of statistical procedures for estimating the proportion of people who survive in relation to the length of survival time. The starting point is 100% survival. In 2000, the median survival time was age 78.

A survival curve is a curve that starts with 100% of the study population and shows the percentage of the population still surviving at successive times for as long as information is available.

![Figure II-20-5. Survival Curve](image)

![Figure II-20-6. Percentage of Survivors at Specified Ages, 1901 and 1980](image)
SCREENING TESTS

Screening is the process of using tests to permit early detection of risk factors, asymptomatic infection, or early stages of clinical disease, thus permitting early diagnosis and early intervention/treatment. Screening is usually applied to populations of apparently healthy individuals. Illness, if present, is asymptomatic (subclinical, inapparent).

- Screening tests allow for earlier detection and earlier diagnosis. Hopefully, earlier treatment will effect a more favorable clinical course. Good screening tests usually require high sensitivity (low false-negative rate, almost everyone who has disease tests positive), because the consequences of missing a positive disease state may be severe. Therefore you can rule a disease out if a screening test is negative. Positive screening tests can be followed up with confirmatory tests.

Confirmatory tests are performed after a screening test results positive. The goal is to be certain that the individual has the disease, which means that a high specificity is desired (low false-positive rate, almost everyone who does not have the disease would test negative). Therefore a disease can be ruled in if a confirmatory test is positive.

- Screening test results are classified as positive (presumed by the test to be diseased) or negative (presumed by the test to be healthy).

Classic 2 × 2 Table

The 2 × 2 table is the standard form for displaying screening test results in relation to disease status. Disease status categories (diseased and healthy) are diagrammed in the vertical columns. Screening test results (positive, negative) are diagrammed in the horizontal dimension.

<table>
<thead>
<tr>
<th>Disease</th>
<th>No Disease</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True Positive [TP]</td>
<td>False Positive [FP]</td>
</tr>
<tr>
<td>Negative</td>
<td>False Negative [FN]</td>
<td>True Negative [TN]</td>
</tr>
<tr>
<td>Totals</td>
<td>TP + FN</td>
<td>TN + FP</td>
</tr>
</tbody>
</table>

In the 2 × 2 table, positive (P) and negative (N) refer to the actual screening test results, while true (T) and false (F) refer to the agreement of screening test results with the gold standard.

- True Positives: diseased people correctly classified as positive
- True Negatives: healthy people correctly classified as negative
- False Positives: healthy people misclassified as positive
- False Negatives: diseased people misclassified as negative

Table II-20-4. Screening Results in a 2 × 2 Table

<table>
<thead>
<tr>
<th>Disease</th>
<th>Present</th>
<th>Absent</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening Test Results</td>
<td>TP = 80</td>
<td>FP = 40</td>
<td>TP + FP = 120</td>
</tr>
<tr>
<td>Positive</td>
<td>FN = 20</td>
<td>TN = 60</td>
<td>TN + FN = 80</td>
</tr>
<tr>
<td>Negative</td>
<td>TP + FN = 100</td>
<td>TN + FP = 100</td>
<td>TP + TN + FP + FN = 200</td>
</tr>
</tbody>
</table>

Note

On the exam, do not rely on a certain orientation of the table to locate TP, TN, FP, or FN. Tables may be presented in any orientation. Familiarize yourself with the data and remember how these concepts are defined.
Measures of Screening Test Performance

Sensitivity is the number of people with the disease who test positive divided by the total number of people with the disease. In other words, “Out of all the people who have the disease, how many tested positive?”

Highly sensitive tests identify most, if not all, cases of the disease. Sensitivity is particularly important to have when the consequences of missing a disease are severe, e.g., missing an early detection of cancer before it progresses to an advanced stage.

- Sensitivity = TP/All people with disease
- Sensitivity = TP/(TP + FN) (in the example above, 80/80 + 20 = 80/100 or 80%)

Specificity is the number of people without the disease who test negative divided by the total number of people without the disease. In other words, “Out of all the people who do not have the disease, how many tested negative?”

Highly specific tests are used to confirm a diagnosis (“rule in”) because there are very few FP results.

- Specificity = TN/All healthy people
- Specificity = TN/(TN + FP) (in the example above, 20/20 + 80 = 20/100 or 20%)

Sensitivity and specificity are fixed characteristics of the screening test. They will change as you vary the cut-off point, but they are not changed or affected by the prevalence of disease. Sensitivity and specificity are 2 elements of test validity.

Predictive value represents the percentage of test results that match the diagnosis of the patient. It is affected by the disease prevalence in the given population.

- **Positive predictive value (PPV)** is the proportion of people with a positive screening test result who are diseased. (i.e., that a person with a positive test is a true positive). **Increased specificity means increased PPV, because FP will be fewer. As prevalence increases, PPV will increase.**
 - PPV = TP/All people with a positive test result
 - PPV = TP/(TP + FP)

- **Negative predictive value (NPV)** is the proportion of people with a negative screening test result who are well. (i.e., that a person with a negative test is a true negative). In a 2 × 2 table, NPV is located on the bottom row. **Increased sensitivity means increase NPV, because FN will be fewer. As prevalence decreases, PPV will increase.**
 - NPV = TN/All people with a negative test result
 - NPV = TN/(TN + FN)

Increased prevalence of a disease will increase PPV and decreased NPV. Decreased prevalence of a disease will decrease PPV and increase NPV.

- Prevalence = (TP + FN)/(TP + TN + FN + FP)

Likelihood ratio is the expression of how much more (or less) likely a test result is to be found in nondiseased (or diseased) compared with diseased (or nondiseased).

- Positive likelihood ratio (LR+) is the proportion of diseased people to that of nondiseased people with a positive test result.

\[
\text{LR}^+ = \frac{\text{Sensitivity}}{1 - \text{specificity}} \text{ OR } \frac{\text{Sensitivity}}{\text{FP}/(\text{TN} + \text{FP})} \text{ OR } \frac{\text{Sensitivity}}{\text{FP rate}}
\]
• Negative likelihood ratio (LR−) is the proportion of diseased people to that of non-diseased people with a negative test result.

\[
LR^- = \frac{1 - \text{sensitivity}}{\text{Specificity}} \text{ or } \frac{\text{FN}/(\text{TP} + \text{FN})}{\text{Specificity}} \text{ or } \frac{\text{FN rate}}{\text{Specificity}}
\]

Screening Test Diagram

The screening test diagram displays the distributions of the screening test measure separately for people with disease and people with no disease. The cutoff point (threshold) divides screened people into test-positive and test-negative categories.

• People with no disease are either correctly classified as TN or misclassified as FP.
• People with disease are either correctly classified as TP or misclassified as FN.

The screening test diagram is a useful model of the real world in which values of screening test measures (such as blood glucose) are generally different for diseased (diabetic) and nondiseased (non-diabetic) people, but the distributions overlap. For example, a random blood glucose >200 may be considered the cutoff point to diagnose diabetes. However, a few individuals who are non-diabetic may have a random blood glucose >200, and some diabetics will have a random blood glucose <200.

The measures of screening test performance can be displayed on the screening test diagram by identifying the appropriate areas under the curves. For example, the numerator for sensitivity is TP, whereas the denominator is everyone under the curve labeled “disease.”

Sensitivity and specificity are fixed characteristics of the screening test; they are both elements of test validity.

Note that changing the cutoff point changes the sensitivity and specificity of the test.
This is a graphical representation of sensitivity and specificity in a screening test. The area under the curve for the false-negative rate is very low, which implies very high sensitivity. Likewise, the area under the curve for the false-positive rate is low, implying a high specificity.

Reliability indicates the degree of reproducibility (consistency) of screening tests. In other words, does the test yield the same results when performed under the same circumstances by the same personnel? Reliability is sometimes referred as **precision**.

Validity indicates the degree in which a test distinguishes healthy from diseased individuals. Sensitivity and specificity are both elements of validity. Validity is sometimes referred as **accuracy**.

Receiver operating characteristic (ROC) curves are a way of depicting and comparing the sensitivity and specificity of different clinical tests used for the same disease. Sensitivity is plotted on the y-axis and 1-specificity is plotted on the x-axis. The “curve” for a given test is produced as the cutoff point is varied, showing the range of sensitivity and specificity you would get at various cutoff points.

Ideal tests approach 100% sensitivity and specificity, which would produce a curve very close to the left upper corner of the ROC plot. In general, the farther to the upper left corner that a curve reaches, the better (more valid) a test will be.

Sometimes data is collected by human “observers” with some degree of subjectivity, e.g., radiologists may not always agree on x-ray interpretations, and pathologists may not always agree on a histologic diagnosis. In these cases it is beneficial to characterize how much agreement or variation exists between different observers, using the **kappa statistic** (κ). Kappa statistic is defined as the **degree of agreement between 2 observers**. The maximum value is 1.0, which would represent perfect agreement. Generally, $\kappa < 0.40$ represents poor agreement, $\kappa 0.40-0.75$ represents moderate agreement, and $\kappa > 0.75$ represents excellent agreement.
Practice Questions

A new screening test is applied to a representative sample of 1,000 people in the population. Based on the data presented in the following table, calculate the requested screening test measures.

<table>
<thead>
<tr>
<th></th>
<th>Diseased</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>Negative</td>
<td>10</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>900</td>
</tr>
</tbody>
</table>

Response options for Questions 21–27:

A. 90/150 G. 840/850 M. 60/900
B. 90/100 H. 840/900 N. 60/150
C. 90/1,000 I. 900/1,000 O. 10/100
D. 90 J. 900/1,000 P. 10/850
E. 60 K. 100/1,000
F. 10 L. Cannot be calculated

21. What is the sensitivity of the screening test?
22. What is the specificity of the screening test?
23. What is the positive predictive value of the screening test?
24. What is the number of false negative tests?
25. What is the number of false positive test results?
26. What is the prevalence of disease, assuming screening of a representative sample?
27. What is the false positive rate?

21. Answer: B. Sensitivity = TP/All diseased people = 90/100
22. Answer: H. Specificity = TN/All healthy people = 840/900
23. Answer: A. PPV = TP/All test positives = 90/150
24. Answer: F. Diseased people misclassified by the test = 10
25. Answer: E. False positives = Healthy people who are misclassified by the test = 60
26. Answer: K. Prevalence = All diseased people/All screened people = 100/1,000
27. Answer: M. False positive rate = FP/All healthy people = 60/900
Practice Questions

Questions 28–33
The CDC is concerned about optimizing the detection of a disease which poses a serious public health threat. CDC health officials are considering lowering the usual screening test cutoff point from X to Y.

28. Moving cutoff in the manner being considered by the CDC causes the number of false positives to
A. increase
B. decrease
C. remain unchanged
D. cannot be determined

29. Moving the cutoff in the manner being considered by the CDC causes the positive predictive value to
A. increase
B. decrease
C. remain unchanged
D. cannot be determined

30. Moving the cutoff in the manner being considered by the CDC causes the accuracy to
A. increase
B. decrease
C. remain unchanged
D. cannot be determined

31. Moving the cutoff in the manner being considered by the CDC causes the sensitivity to
A. increase
B. decrease
C. remain unchanged
D. cannot be determined

(Continued)
32. Assuming that everyone who receives a positive test result is referred for medical follow-up, moving the cutoff in the manner being considered by the CDC will cause the numbers of screened people who are referred for follow-up to
 A. increase
 B. decrease
 C. remain unchanged
 D. Cannot be determined

33. At Cutoff Point X, sensitivity is
 A. 100%
 B. 85%
 C. 50%
 D. 25%
 E. 0%

28. **Answer:** A. At Y, FP will increase as more well people are misclassified.

29. **Answer:** B. Although there will be more TP at Cutoff Y, there will be a large increase in numbers of FP. The ratio, TP/(TP + FP), will decrease. A positive test result will be less predictive of actual disease.

30. **Answer:** B. X is the point of overlap and the point of maximal accuracy. Moving to Y will decrease accuracy.

31. **Answer:** A. At Y, more diseased people will receive a (correct) positive test result. They will be TP. TP, the numerator for sensitivity, will increase while the denominator (total people with disease) will be unchanged.

32. **Answer:** A. Larger numbers of people would be screened positive at Cutoff Y and referred for follow-up.

33. **Answer:** B. Notice that Cutoff Point X separates the curve of diseased people into 2 areas; above the cutoff point, approximately 85% of diseased people receive a (correct) positive test result. They are true positives. Sensitivity = TP / All people with disease.
Practice Questions

34. A physician interviews an 18-year-old woman who says she has just received a negative syphilis test result from the county health department. She describes her sense of relief. She discloses that she is a sex worker who “works the street” 4–5 nights a week. She has been doing this for the past 18 months. Typically, she has oral or vaginal sex with 5–8 customers per night. For a higher fee she will have sex without requiring her customer to wear a condom. On the basis of these findings, the physician is likely to be most concerning with which of the following screening test measures?

A. Sensitivity
B. Specificity
C. Positive predictive value
D. Negative predictive value
E. Accuracy

35. A 55-year-old man visits his primary care physician with a complaint of urinary infrequency. Examination finds a 1-cm nodule on his prostate gland. The physician orders a prostate-specific antigen (PSA) serum test. By common standards, a PSA level >4 ng/mL is considered abnormal. Using this standard, this test has a sensitivity of 80% and a specificity of 90%. A recently published epidemiologic article found that in a cross-sectional study, 10% of men of this age have prostate cancer. The patient’s PSA is tested to be 7 ng/mL. What is your best estimate of the likelihood that this man actually has prostate cancer?

A. 2
B. 53
C. 98
D. 47%
E. Insufficient information

34. Answer: D. Disease prevalence affects the predictive value of the test. The greater the prevalence, the higher the PPV of the test. Screening tests are generally performed in high-risk populations (where the PPV is greater). NPV is the proportion of individuals who test negative who are actually free from disease. When the prevalence of disease is high, the negative predictive value will be low. As a result, her negative results are concerning because she is part of a high prevalence group, and the predictive value of her negative test is low.

35. Answer: D. Here, you have to recreate a 2x2 table. You are provided a disease prevalence of 10%. This information can be used to create the lower border of the table using hypothetical numbers. You are also given a sensitivity of 80%, therefore 80% of 10 = 8 for upper right quadrant cell. For the given specificity of 90%, 90% of 90 = 81. Then, fill in the blank fields by deduction.

<table>
<thead>
<tr>
<th>Test Result</th>
<th>Disease Present</th>
<th>Disease Absent</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>8</td>
<td>9</td>
<td>PPV = $\frac{8}{8+9} = \frac{8}{17} = 47%$</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
<td>81</td>
<td>NPV = $\frac{81}{81+2} = \frac{81}{83} = 98%$</td>
</tr>
<tr>
<td>Equation</td>
<td>10</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>
STUDY DESIGNS

When epidemiologists observe the relationship between exposures and disease outcomes in free-living populations, they are conducting observational studies. When epidemiologists or clinicians test interventions aimed at minimizing the disease-producing exposures and optimizing health-promoting exposures or factors, they are performing experimental studies.

- In observational studies, nature is allowed to take its course; no intervention; not randomized
- In experimental studies, there is an intervention and the results of the study assess the effects of the intervention

Observational Studies

A case report is a brief, objective report of a clinical characteristic or outcome from a single clinical subject or event, n = 1; for example, a 23-year-old man with treatment-resistant TB. No control group. A case series report is an objective report of a clinical characteristic or outcome from a group of clinical subjects, n >1, i.e., patients at local hospital with treatment-resistant TB. No control group.

In a cross-sectional study, the presence or absence of disease (and other variables) is determined in each member of the study population or in a representative sample at a particular time. The co-occurrence of a variable and the disease can be examined.

- Disease prevalence rather than incidence is recorded.
- The temporal sequence of cause and effect cannot usually be determined in a cross-sectional study, e.g., who in the community now has treatment-resistant TB.

A case-control study identifies a group of people with the disease and compares them with a suitable comparison group without the disease. It is almost always retrospective, e.g., comparing cases of treatment-resistant TB with cases of nonresistant TB. A case-control study is very useful for studying conditions with very low incidence or prevalence.

- Cannot assess incidence or prevalence of disease
- Can help determine causal relationships

Figure II-20-8. Differentiating Study Types by Time

In a cohort study, a population group who has been exposed to the risk factor is identified and followed over time and compared with a group not exposed to the risk factor. Outcome
is disease incidence in each group, e.g., following a prison inmate population and marking the development of treatment-resistant TB. Cohort studies are **used for more common diseases**.

- Allows you to evaluate whether potential risk factors are related to subsequent outcomes
- Prospective subjects tracked forward in time (may occasionally be retrospective; risk factor exposure/nonexposure is followed over time past-present)
- Can determine incidence and causal relationships
- Must follow population long enough for incidence to appear
- Historical examples: Framingham study, a long-term study started in 1948, now in the third generation

Analyzing observational studies

For cohort studies, use relative risk and/or attributable risk to measure effect.

Relative risk (RR): Comparative probability asking how much more likely the exposed person is going to get the disease compared to the non-exposed.

- Incidence rate of exposed group **divided by** the incidence rate of the unexposed group. How much greater chance does one group have of contracting the disease compared with the other group?
- For example, if infant mortality rate in whites is 8.9 per 1,000 live births and 18.0 in blacks per 1,000 live births, then the RR of blacks versus whites is 18.0 divided by 8.9 = 2.02. Compared with whites, black infants are 2× as likely to die in the first year of life. **Infant mortality is not a true rate.** The calculation for RR remains unaffected in this calculation.

Attributable risk (AR) (also called absolute risk reduction): Comparative probability asking how many more cases in one group.

- Incidence rate of exposed group minus the incidence rate of the unexposed group
- Using the same example, attributable risk is equal to 18.0 – 8.9 = 9.1. Of every 1,000 black infants, there were 9.1 more deaths than were observed in 1,000 white infants. In this case, attributable risk gives the excess mortality.
- Note that both RR and AR tell us if there are differences but do not tell us why those differences exist.

\[
\text{AR percentage} = \frac{\text{Incidence in exposed} - \text{Incidence in unexposed}}{\text{Incidence in exposed}}
\]

This implies that 51% of the excess infant mortality is seen in African American infants.

For case-control studies, use odds ratio.

Odds ratio (OR) (also called relative odds) looks at the increased odds of getting a disease with exposure to a risk factor versus non-exposure to that factor. OR can be calculated from a cohort or case control study.

- Odds of exposure for cases divided by odds of exposure for controls
- Odds that a person with lung cancer was a smoker versus the odds that a person without lung cancer was a smoker
Table II-20-5. Odds Ratio

<table>
<thead>
<tr>
<th></th>
<th>Lung Cancer</th>
<th>No Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>659 (A)</td>
<td>984 (B)</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>25 (C)</td>
<td>348 (D)</td>
</tr>
</tbody>
</table>

$$\text{OR} = \frac{A/C}{B/D} = \frac{AD}{BC}$$

Use $$\text{OR} = AD/BC$$ as the working formula. For the above example:

$$\text{OR} = \frac{659 \times 348}{984 \times 25} = 9.32$$

The odds of having been a smoker are more than 9x greater for someone with lung cancer compared with someone without lung cancer.

The interpretation of OR is as follows:
- OR <1: exposure negatively associated with disease
- OR = 1: exposure not related to disease
- OR >1: exposure more related to disease

Practice Questions

36. How would you analyze the data from this case-control study?

<table>
<thead>
<tr>
<th></th>
<th>No Colorectal Cancer</th>
<th>Colorectal Cancer</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history of colorectal cancer</td>
<td>120</td>
<td>60</td>
<td>180</td>
</tr>
<tr>
<td>No family history of colorectal cancer</td>
<td>200</td>
<td>20</td>
<td>220</td>
</tr>
<tr>
<td>TOTALS</td>
<td>320</td>
<td>80</td>
<td>400</td>
</tr>
</tbody>
</table>

36. **Answer**: The odds of having colorectal cancer are 5x greater for those who have a family history.

$$\text{OR} = \frac{AD}{BC} = \frac{(60)(200)}{(120)(20)} = 5.0$$
Table II-20-6. Differentiating Observational Studies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cross-Sectional Study (Prevalence Study)</th>
<th>Case-Control Study</th>
<th>Cohort Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>One time point</td>
<td>Retrospective</td>
<td>Prospective (sometimes retrospective)</td>
</tr>
<tr>
<td>Incidence</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Causality</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Role of disease</td>
<td>Measure disease</td>
<td>Begin with disease</td>
<td>End with disease</td>
</tr>
<tr>
<td>Assesses</td>
<td>simultaneous assessment of risk factor and disease</td>
<td>Many risk factors for single disease</td>
<td>Single risk factor affecting many diseases</td>
</tr>
<tr>
<td>Data analysis</td>
<td>Chi-square to assess association</td>
<td>Odds ratio to estimate association</td>
<td>May calculate relative risk or attributable risk</td>
</tr>
</tbody>
</table>

Table II-20-7. Computational Measures by Type of Observational Study

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cross-Sectional Study Prevalence Study</th>
<th>Case-Control Study</th>
<th>Cohort Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of disease</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Prevalence of exposure</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Odds ratio</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Incidence rate in the exposed</td>
<td>No</td>
<td>No*</td>
<td>Yes</td>
</tr>
<tr>
<td>Incidence rate in the nonexposed</td>
<td>No</td>
<td>No*</td>
<td>Yes</td>
</tr>
<tr>
<td>Relative risk</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Attributable risk</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*In a case control study, calculate the proportion (not incidence) of patients with disease who were exposed.

Experimental Studies: Clinical Trials

Clinical trials (intervention studies) use research which involves the administration of a test regimen to evaluate its safety and efficacy. In clinical trials, subjects who do not receive the intervention under study are called the control group. The goal is to have a source of comparison to ensure the experiment group is being affected by the intervention and not by other factors (most often a placebo group). To reduce confounding, control group subjects must be as similar as possible to intervention group subjects.

To obtain approval from the FDA, 3 phases of clinical trials must be passed:

- **Phase 1**: testing safety in healthy volunteers
- **Phase 2**: testing protocol and dose levels in small group of patient volunteers
Phase 3: (considered the definitive test): testing efficacy and occurrence of side effects in larger group of patient volunteers

In a randomized controlled clinical trial (RCT), subjects are randomly allocated into “intervention” and “control” groups to receive (or not) receive an experimental procedure or intervention. RCTs are generally regarded as the most scientifically rigorous studies available in epidemiology.

Double-blind RCT is the type of study least subject to bias, but also the most expensive to conduct. Double-blind means that neither subjects nor researchers who have contact with them know whether the subjects are in the treatment or comparison group.

Community trials are experiments in which the unit of allocation to receive a preventive or therapeutic regimen is an entire community or geographical area, such as a city, village, or school. Does the treatment work in real world circumstances? This type of study is also important when it is impossible to randomize or assign just one individual to treatment or control, because the intervention “bleeds” or affects everyone around them. For example, if you wanted to assess whether a physician having access to an online database will help to improve evidence-based care, you cannot randomize physicians working in the same hospital because they will likely share the resource and information. Instead, you must randomize different entire hospitals to either receive access to the database or not.

Crossover studies are studies in which each group functions as the intervention and the control, but at different times. This is best utilized for a condition that has chronic symptoms which respond immediately to a therapy, and with an intervention that is short-acting. A common example is asthma. Suppose a new inhaler is tested on 40 individuals with severe persistent asthma: 20 receive the new inhaler and 20 receive a placebo for 1 week and symptoms are monitored. The medications are then stopped for 2 days (“wash-out” period). The groups then switch and receive the new inhaler/placebo for 1 more week.

Table II-20-8. Comparison of Case-Control and Cohort Studies

<table>
<thead>
<tr>
<th>Case-Control Study</th>
<th>Cohort Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small number of subjects</td>
<td>Large number of subjects</td>
</tr>
<tr>
<td>Lower cost</td>
<td>Higher cost</td>
</tr>
<tr>
<td>Short time period</td>
<td>Longer time period</td>
</tr>
<tr>
<td>One disease: multiple past exposures</td>
<td>One exposure: multiple future diseases</td>
</tr>
<tr>
<td>Low prevalence or high prevalence diseases</td>
<td>High incidence diseases only</td>
</tr>
<tr>
<td>Potential for recall bias</td>
<td>Potential for selection bias</td>
</tr>
</tbody>
</table>

STUDY DESIGNS: BIAS IN RESEARCH

Bias versus Confounding

A bias is defined as any systematic error in a study which causes an inaccuracy in the estimation of association between risk factor (exposure) and disease. This can be caused by a problem in the design, execution, data collection, or data analysis.
Confounders (confounding variables) are variables which may cause a bias in a study (confounding bias). In the simplest definition, a confounder is a variable associated with the exposure and outcome of interest that causes us to mistake our assessment of the relationship between the exposure and outcome of interest.

- We are interested in assessing the effect of exposure A on disease X, and observe that A is associated with X.
- Exposure B is a known risk factor for disease X.
- B and A are associated with each other but do not cause each other.
- Therefore, A is associated with B, and B causes X, so it falsely appears to us that A causes X.

For example, we observe that coffee drinkers have a higher risk for lung cancer than non-coffee drinkers, and interpret that coffee might contribute to causing lung cancer. However, people who drink coffee also tend to smoke cigarettes, and we may see that there is a much higher rate of smoking in the coffee drinking group than in the non-coffee drinking group. Cigarette smoking is a known risk factor for lung cancer, and because there are far more smokers in the coffee drinking group, this causes confounding in our observation of the association between drinking coffee and developing lung cancer.

Confounders may be “known” or “unknown.” If the confounders are known, we can account for them by making sure our intervention and control groups are matched with respect to the confounder, prior to beginning the study (e.g., equal proportions of age, sex, smoking status). We can also account for known confounders in data analysis by stratification/adjustment; that is, comparing outcomes in equivalent groups. Multivariable linear or logistic regression models allow us to adjust for several variables simultaneously.

The problem is that there will almost always be unknown confounders: we don’t know what they are and therefore we can’t adjust for them. This is minimized by randomization, because we assume that the randomization process will evenly distribute all known and unknown confounding variables between the intervention and control groups. Therefore the confounding variables will not be overrepresented in one group, and we will be able to observe the effect of the exposure on the outcome.

There are ways to handle confounding in studies.

Prior to beginning the study:
- Match the control and intervention groups with respect to confounding variables that we know about (sex, smoking status, family history of diabetes, etc.)
- Randomize patients to control or intervention groups, so that any confounders are likely to be evenly distributed between groups, and we won’t need to worry about any known or unknown confounders

When analyzing data after the study is complete:
- Analyze stratified or adjusted data; that is, split the groups up according to the known confounding variables and only compare outcomes within the same strata (e.g., compare outcomes between elderly people and compare outcomes between young people)
Types of Bias

Selection bias (sampling bias): the sample selected is not representative of the population. For example:
- Predicting rates of heart disease by gathering subjects from a local health club
- Using only hospital records to estimate population prevalence (Berkson’s bias)
- People included in study are different from those who are not (nonrespondent bias)

Measurement bias (or information bias): information is gathered in a manner which distorts the information. For example:
- Measuring patients’ satisfaction with their respective physicians by using leading questions, such as, “You don’t like your doctor, do you?”
- Subjects’ behavior is altered because they are being studied (Hawthorne effect). This is a factor only when there is no control group in a prospective study.

Experimenter expectancy (Pygmalion effect): experimenter’s expectations are inadvertently communicated to subjects, who then produce the desired effects. Can be avoided by double-blind design, where neither the subject nor the investigators know which group receives the intervention under study and which group is the control.

Lead-time bias: gives a false estimate of survival rates. For example, patients seem to live longer with the disease after it is uncovered by a screening test. Actually, there is no increased survival, but because the disease is discovered sooner, patients who are diagnosed seem to live longer.

Recall bias: subjects fail to accurately recall events in the past. For example, how many times last year did you kiss your mother? This is a likely problem in retrospective studies.

Late-look bias: individuals with severe disease are less likely to be uncovered in a survey because they die first. For example, a recent survey found that persons with AIDS reported only mild symptoms.

Figure II-20-9. Diagnosis, Time, and Survival
Table II-20-9. Type of Bias in Research and Important Associations

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Definition</th>
<th>Important Associations</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Sample not representative</td>
<td>Berkson’s bias, nonresponder bias</td>
<td>Random, independent sample</td>
</tr>
<tr>
<td>Measurement</td>
<td>Gathering the information distorts it</td>
<td>Hawthorne effect</td>
<td>Control group/placebo group</td>
</tr>
<tr>
<td>Experimenter expectancy</td>
<td>Researcher’s beliefs affect outcome</td>
<td>Pygmalion effect</td>
<td>Double-blind design</td>
</tr>
<tr>
<td>Lead-time</td>
<td>Early detection confused with increased survival</td>
<td>Benefits of screening</td>
<td>Measure “back-end” survival</td>
</tr>
<tr>
<td>Recall</td>
<td>Subjects cannot remember accurately</td>
<td>Retrospective studies</td>
<td>Confirm information with other sources</td>
</tr>
<tr>
<td>Late-look</td>
<td>Severely diseased individuals are not uncovered</td>
<td>Early mortality</td>
<td>Stratify by severity</td>
</tr>
</tbody>
</table>

Practice Questions

Response options for Questions 37–41:

A. 520/695
B. 600/1,000
C. 520/600
D. 695/1,000
E. 80/305
F. (520/695)/(80/305)
G. (520 × 225)/(175 × 80)
H. (520/695) – (80/305)
I. Cannot be determined for this type of study

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>520</td>
<td>175</td>
</tr>
<tr>
<td>Nonexposed</td>
<td>80</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>400</td>
</tr>
</tbody>
</table>

37. Assume the table represents a cross-sectional study: What is the relative risk?
38. Assume the table represents a case-control study: What is the odds ratio?
39. Assume the table represents a cross-sectional study: What is the prevalence of disease?
40. Assume the table represents a disease outbreak investigation: What is the attack rate for people who did not eat the food?

(Continued)
Practice Questions (continued)

41. A study compares the effectiveness of a new medication for treatment of latent TB infection with the standard medication, isoniazid. Subjects with latent TB infection are sorted with equal likelihood of selection to receive the new medication or isoniazid. Neither the subjects themselves nor the clinicians know the treatment condition for each patient. This study is best described as a

A. double-blind randomized cohort study
B. randomized controlled trial with crossover design
C. double-blind randomized clinical trial
D. double-blind randomized clinical trial with crossover design
E. double-blind quasi-experimental trial

37. Answer: I. Cannot calculate relative risk from a cross sectional study. Relative risk is calculated from a cohort study.

38. Answer: G. Odds ratio = A*D/B*C = 520*225/175*80

39. Answer: B. Add exposed and non-exposed with disease for numerator; denominator is population at risk = 600/1000.

40. Answer: E. Attack rate for those who did not eat the food = number of people who did not eat the food who became ill over the total number at risk = 80/305

41. Answer C: This is the classic description of a double-blinded randomized clinical trial. “sorted with equal likelihood of selection” = randomized

Practice Questions

42. A group of 200 hypertensive subjects and a comparable group of 200 normotensive subjects are recruited and enrolled into a longitudinal study to examine the effect of a diagnosis of hypertension on subsequent occurrence of coronary heart disease. Study subjects are followed for 5 years. Final data are presented below. What is the attributable risk for hypertension? Indicate answer per 1,000.

<table>
<thead>
<tr>
<th></th>
<th>CHD</th>
<th>No CHD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>25</td>
<td>175</td>
<td>200</td>
</tr>
<tr>
<td>No hypertension</td>
<td>10</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>365</td>
<td>400</td>
</tr>
</tbody>
</table>

A. 75/100
B. 250/1,000
C. 35/1,000
D. 125/1,000
E. Cannot be computed for this type of study

(Continued)
Practice Questions (continued)

43. A study is conducted relating percentage of calories from fat in the habitual diet to subsequent incidence of clinical diabetes mellitus. Four groups of initially well persons are selected from the community to represent persons within each of 4 categories of fat intake. The percentages of daily calories from fat are: <20%, 20.40%, 35.49%, >50%. The groups are followed longitudinally for 5 years and assessed annually for diabetes. The type of study design is best described as a
 A. case-series trial
 B. case-control study
 C. cross-sectional study
 D. cohort study
 E. community trial

44. Alcohol consumption and cigarette smoking both contribute causally to the occurrence of esophageal cancer. These risk factors are not independent; in fact, they operate synergistically. A study of cigarette smoking in relation to esophageal cancer that fails to stratify or otherwise control for level of alcohol consumption would be guilty of which of the following threats to validity?
 A. Ascertainment bias
 B. Confounding
 C. Design bias
 D. Lead time bias
 E. Observer bias
 F. Recall bias
 G. Response bias
 H. Selection bias

42. Answer: A.
43. Answer: D.
44. Answer: B.
Learning Objectives

- List the basic principles of probability and describe the connection to statistics
- Demonstrate how to calculate mode, mean, median, standard error, and standard deviation, and describe how they differ
- Describe the purpose of inferential statistical tests, such as student T test, chi-square, and analysis of variance
- Select an appropriate statistical test for a set of data to be analyzed

PROBABILITY

Independent events: the occurrence of one event does not affect the occurrence of another. For instance, the chance of a child being born with brown eyes is 0.75, and the chance of a child being born with blue eyes is 0.25. The eye color of the first-born child does not affect the eye color of the second-born.

- Calculate the probability of multiple independent events occurring by multiplying each individual probability together.
- For instance, the probability of having one child with brown eyes and one child with blue eyes is $0.75 \times 0.25 = 0.1875$ (18.75%).

Nonindependent events: the occurrence of one event affects the occurrence of another. For instance, a box has 5 white and 5 black balls inside. When picking the first ball, the probability of white is 0.5 and black is 0.5. If the first ball is black, the probability of the second ball being white is $5/9 = 0.56$ and black is $4/9 = 0.44$.

- Calculate the probability of multiple nonindependent events by multiplying each new probability, given that each previous event has occurred.
- For instance, the probability of choosing 2 black balls in a row followed by a white ball is $5/10 \times 4/9 \times 5/8$.

Mutually exclusive events: the occurrence of one event precludes the occurrence of another, i.e., both cannot happen. For instance, if a coin flip lands heads, it cannot land tails.

- Determine the combined probability of mutually exclusive events by addition.
- For instance, the probability of a coin flip landing heads or tails is $0.5 + 0.5 = 1.0$ (100%).
Non-mutually exclusive events: determine the combined probability (chance of either occurring) of two events by adding the two individual probabilities together and subtracting their product. If the chance of having diabetes is 10%, and the chance of someone being obese is 30%, the chance of meeting someone who is obese or had diabetes is $0.1 + 0.30 - (0.1 \times 0.30) = 0.37$ (or 37%).

Practice Questions

Survival Rates After Surgery

<table>
<thead>
<tr>
<th>N</th>
<th>1 Year</th>
<th>2 Year</th>
<th>3 Year</th>
<th>4 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>90%</td>
<td>75%</td>
<td>50%</td>
<td>40%</td>
</tr>
</tbody>
</table>

1. What is the average life expectancy after surgery?
2. If a patient survives for 2 years, what is the chance of surviving for 3 years?
3. In an effort to evaluate healthy lifestyle influences at home, a study is conducted to see how many pediatric patients have parents who exercise regularly. Parents at pediatric offices are questioned and it is concluded that 40% of pediatric patients have parents who exercise regularly. Assuming the events are independent, what is the probability that 2 pediatric patients with parents who exercise regularly will come into the office on the same day?

(A) 0.16
(B) 0.4
(C) 0.8
(D) 0.96
(E) 0.08
(F) 0.04

1. 3 years
2. 50/75
3. **Answer: A.** This requires the multiplication rule.
DESCRIPTIVE STATISTICS

Measures of Center
Measures of center identify a value in the middle of a distribution (data set), around which the rest of the data are centered.

Mean (or average) is the sum of the values of the observations divided by the number of observations.

\[
\text{Mean} = \frac{\text{Sum of the observed measurements}}{\text{Number of observations}}
\]

Median is the observed measurement at which point half the observations are larger and half the observations are smaller (50th percentile).

Mode is the most frequently occurring value in a set of observations.

For example, if we used a data set of the number of haircuts in the past year in a 3rd grade class of 11 students: 1 2 3 3 3 5 6 6 7 9 14.

\[
\text{Mean} = \frac{1 + 2 + 3 + 3 + 3 + 5 + 6 + 6 + 7 + 9 + 14}{11} = 5.4
\]

Median = 5
Mode = 3

Normal Distribution
Normal distribution is continuous frequency distribution of infinite range, defined by a specific mathematical function with the following properties:
- A continuous, symmetrical distribution; both tails extend to infinity
- Arithmetic mean, mode, and median are identical
- Shape is completely determined by the mean and standard deviation
- Also called Gaussian distribution or “bell-shaped” curve

Note
If a distribution is skewed, increasing the sample size will not affect the “skewness.”
Dispersion of Data

The dispersion of data helps us identify the spread, or the variation, of a data set.

Range is the difference between the largest and smallest values in a distribution.

Variance is a measure of the variation shown by a set of observations, defined by the sum of the squares of deviations scores of each value divided by the number of degrees of freedom in the set of observations or $n - 1$.

Standard deviation (s or sd) is the most widely used measure of dispersion of a frequency distribution. It is equal to the positive square root of the variance. Whereas the mean tells where the group of values are centered, the standard deviation is a summary of how widely dispersed the values are around the center.

\[
 s = \sqrt{\frac{\sum(X - \overline{X})^2}{n - 1}}
\]

Negative skewed is also called left skewed tail (in the negative direction). Mean is less than median. **Positive skewed** is also called right skewed tail (in the positive direction). Mean is greater than the median.

Figure II-21-2. Skewed Distribution Curves
Figure II-21-3. Comparison of 2 Normal Distributions with the Same Means, but Different Standard Deviations

Figure II-21-4. Comparison of 3 Normal Distributions with the Same Standard Deviations, but Different Means
The sd is stated in score units. The normal curve has the property that within 1 sd a certain proportion of the cases is included. The property is as follows:

- Between the mean and the value of 1 sd from the mean in either direction, there will be 34% of the cases; there will be 68% of the cases between the score at 1 sd above and 1 sd below the mean.
- Within 2 sd of the mean are 95.5% of the cases.
- Between 1 sd and 2 sd from the mean in either direction, there will be 13.5% of the cases, or 27% for both.
- Within 3 sd of the mean are 99.7% of the cases.
- And between 2 sd and 3 sd from the mean there will be almost 2.5% of the cases, 4.7% for the two extremes together.

There will be a few cases, of course, 0.3%, beyond 3s from the mean both above and below the mean.

You must know these figures for the exam. For example: What percentage of the cases are below 2s below the mean? (2.5%)

Note
On the exam you will not be asked to calculate sd and variance, but you must know what they are and how they relate to the normal curve.

INFERENTIAL STATISTICS
Since investigators are not able to study all members of a population, they must select a sample from which to study and use results to make an estimate for the larger population. To make the best estimate, attempts are made to select a sample that is representative of the population.
larger population; however, because it is only a sample, estimates may be off. Inferential statistics helps us to assess how uncertain we are about our results, i.e., how confident are we that the result from our sample truly reflects the overall population. It also allows us to say how likely it is that our results occurred only by random chance, rather than being a true reflection of the population.

Confidence Intervals

Confidence intervals are a way of admitting that any measurement from a sample is only an estimate of the population. Although the estimate given from the sample is likely to be close, the true values for the population may be above or below the sample values.

Confidence interval of the mean

The confidence interval is calculated with 2 parts: the Z score and the standard error. The confidence interval of the mean can be calculated as follows:

\[
\text{Mean} \pm \text{Z-score} \times \text{standard error of the mean} = \bar{X} \pm Z \left(\frac{S}{\sqrt{N}} \right)
\]

Standard error of the mean is the standard deviation divided by the square root of the sample size. Represents how much the sample mean may deviate from the true population mean.

- If the sd is larger, the chance of error in the estimate is greater.
- If the sample size is larger, the chance of error in the estimate is less.

The **Z-score or sd score** is a score from a normal distribution with a mean of 0 and a standard deviation of 1. Any distribution can be converted into a Z-score distribution using the formula:

\[
Z = \frac{(\bar{X} - \mu)}{\sigma} = \frac{\text{Sample mean} - \text{population mean}}{\text{Standard deviation}}
\]

The Z-score distribution is easy to use for calculations because it has simple values. All points in a Z-score distribution are represented in sd units. Positive scores are above the mean, while negative scores are below the mean. Therefore, a Z-score of +2.0 is exactly 2 standard deviations above the mean; a Z-score of -1.5 is exactly 1.5 standard deviations below the mean.

Z-scores are used in computing confidence intervals to set the level of confidence. Recall that in a normal distribution, 95.5% of the cases are within 2 standard deviations (2 sd) of the mean. To calculate 95% or 99% confidence intervals, all we need to know is what symmetric Z-score to use to contain exactly 95% and 99% of the cases.

- For 95% confidence = 1.96; for calculation purposes, use **Z-score of 2.0**
 (most commonly used)
- For 99% confidence = 2.58; for calculation purposes, use **Z-score of 2.5**

The more confidence desired, the wider the interval becomes. Therefore, a 99% confidence interval will always be wider than a 95% interval.
Confidence intervals for RR and odds ratios
If the given confidence interval contains 1.0, then there is no statistically significant effect of exposure. For example:

<table>
<thead>
<tr>
<th>Relative Risk</th>
<th>95% Confidence Interval</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57</td>
<td>(1.1−2.25)</td>
<td>Statistically significant (increased risk); 57% increased risk with the intervention</td>
</tr>
<tr>
<td>1.65</td>
<td>(0.89−2.34)</td>
<td>Not statistically significant (risk is the same); the confidence interval includes 1 (null value)</td>
</tr>
<tr>
<td>0.76</td>
<td>(0.56−0.93)</td>
<td>Statistically significant (decreased risk); 24% reduced risk with the intervention</td>
</tr>
</tbody>
</table>

Hypothesis Testing
A hypothesis is a statement that postulates a difference between 2 groups. Inferential statistics is used to evaluate the possibility that this difference occurred by chance.

- **Null hypothesis** says the findings are the result of chance or random factors. If you want to show that a drug works, the null hypothesis will be that the drug does not work. The p value (see below) is the chance of getting the result assuming the null hypothesis is true.
 - **One-tailed**, i.e., **directional** or 1-sided such that one group is greater than or less than the other. For example, Group A is not < Group B, or Group A is not > Group B.
 - **Two-tailed**, i.e., **nondirectional** or 2-sided such that 2 groups are not the same. For example, Group A = Group B. (most commonly used)
- **Alternative hypothesis** says what is left after defining the null hypothesis. In this example, the drug actually does work.

To test your hypothesis, you would draw a random sample from a population (e.g., men with hypertension) make observations on the data of interest (e.g., blood pressure), perform a statistical test, and make an inference. For example, the mean systolic blood pressure of hypertensive men who also smoke was x1 = 161. The mean systolic blood pressure of hypertensive men who do not smoke was x2 = 155. The difference between means of these groups is therefore x1 – x2 = 6, and you can apply a statistical test to decide whether this difference is statistically significant.

Interpretation

p-value
Both the p-value and alpha level symbolize significance, and they are very similar (usually set at 0.05). They are only slightly different in that p-value measures the strength or magnitude (i.e., significance) of the data against the null hypothesis, whereas alpha level represents risk and is independent of data.

A p-value is used to interpret output from a statistical test; focus on the p-value. The p-value refers to 2 things: first, it is a standard against which we compare our results, and second, it is a result of computation. The **computed p-value is compared with the p-value criterion to**
test statistical significance. If the computed value is less than the criterion, we have achieved statistical significance. In general, the smaller the p the better. The p value of a 1-sided t test is exactly half the p value of a 2-sided t test. One-sided t tests are not commonly used.

The p-value criterion is traditionally set at $p \leq 0.05$. (Assume that these are the criteria if no other value is explicitly specified.) Using this standard:

- **Possible Outcome #2**
 - $p = 0.13$ (computed p value)
 - Do NOT Reject Null Hypothesis
 - Risk of Type II, β error

- **Possible Outcome #1**
 - $p = 0.02$ (computed p value)
 - Reject Null Hypothesis
 - Risk of Type I, α error

Figure II-21-6. Making Decisions Using p-Values

- If $p \leq 0.05$, reject the null hypothesis (reached statistical significance).
- If $p > 0.05$, do not reject the null hypothesis (has not reached statistical significance).

Therefore:
- If $p = 0.13$, fail to reject the null hypothesis, i.e., decide that the drug does not work.
- If $p = 0.02$, reject the null hypothesis, i.e., decide that the drug works.

Types of error

Just because we reject the null hypothesis, we are not certain that we are correct. For some reason, the results given by the sample may be inconsistent with the full population. If this is true, any decision we make on the basis of the sample could be in error. There are 2 types of error we could make:

- **Type I error** (α error): rejecting the null hypothesis when it is really true, i.e., assuming a statistically significant effect on the basis of the sample when there is none in the population or asserting that the drug works when it does not.
 - The chance of a type I error is given by the p-value. If p (or a) = 0.05, then the chance of a Type I error is 5 in 100, or 1 in 20.

- **Type II error** (β error): failing to reject the null hypothesis when it is really false, i.e., declaring no significant effect on the basis of the sample when there really is one in the population or asserting the drug does not work when it really does.
 - The chance of a Type II error cannot be directly estimated from the p-value.

The alpha level criterion can also be considered the probability of making a type I error. The alpha level criterion is set up in advance of the test. Beta is the probability of making a type II error.
Power is the capacity to detect a difference if there is one. Increasing sample size \((n)\) increases power. The general standard for power in a study is 80% or greater.

\[
\text{Power} = 1 - \beta
\]

When a study with low power finds a non-statistically significant result, it is difficult to interpret, i.e., perhaps the study was not designed with enough power to detect a difference. The study result is then better termed inconclusive. In other words, when a study with higher power finds no association, one is more confident with the results of the study.

Meaning of the p-value

- Provides criterion for making decisions about the null hypothesis
- Quantifies the chances that a decision to reject the null hypothesis will be wrong
- Tells statistical significance, not clinical significance or likelihood of benefit
- Generally, p-value is considered statistically significant if it is equal to or less than 0.05.

Limits to the p-value

- Does not tell us the chance that an individual patient will benefit
- Does not tell us the percentage of patients who will benefit
- Does not tell us the degree of benefit expected for a given patient

Types of Scale

To convert the world into numbers, we use 4 types of scale: nominal, ordinal, interval, and ratio scales.

<table>
<thead>
<tr>
<th>Type of Scale</th>
<th>Description</th>
<th>Key Words</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal (Categorical)</td>
<td>Different groups</td>
<td>This or that</td>
<td>Gender, comparing among treatment interventions</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Groups in sequence</td>
<td>Comparative quality, rank order</td>
<td>Olympic medals, class rank in medical school</td>
</tr>
<tr>
<td>Interval</td>
<td>Exact differences among groups</td>
<td>Quantity, mean, and standard deviation</td>
<td>Height, weight, blood pressure, drug dosage</td>
</tr>
<tr>
<td>Ratio</td>
<td>Interval + true zero point</td>
<td>Zero means zero</td>
<td>Temperature measured in degrees Kelvin</td>
</tr>
</tbody>
</table>

A nominal scale puts people into boxes without specifying the relationship between the boxes. Sex is a common example, with 2 groups: male and female. Any time you can say it’s either this or that, you are dealing with a nominal scale.

Numbers can also be used to express ordinal or rank-order relations. For example, we say Ben is taller than Fred. Now we know more than just the category in which to place someone.
We know something about the relationship between the categories (quality). What we do not know is how different the 2 categories are (quantity). Class rank in medical school and medals at the Olympics are examples of ordinal scales.

An interval scale (or numeric scale) uses a scale graded in equal increments. In the scale of length, we know that 1 inch is equal to any other inch. Interval scales allow us to say not only that two things are different, but by how much. If a measurement has a mean and a standard deviation, treat it as an interval scale.

The best measure is the ratio scale. This scale orders things and contains equal intervals, as do the previous 2 scales, but it has one additional quality: a true zero point. In a ratio scale, zero is a floor, i.e., you cannot go any lower. Measuring temperature using the Kelvin scale yields a ratio scale measurement.

SELECTING A STATISTICAL TEST

Table II-21-2. Types of Scales and Basic Statistical Tests

<table>
<thead>
<tr>
<th>Name of Statistical Test</th>
<th>Variables</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interval</td>
<td>Nominal</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Chi-square</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>t-test</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>One-way ANOVA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Matched pairs t-test</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Repeated measures ANOVA</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Meta-analysis is a statistical way of combining the results of many studies to produce one overall conclusion. It is a mathematic literature review.

Correlation Analysis (r, ranges from −1 to +1)

A positive value means that 2 variables go together in the same direction, e.g., MCAT scores have a positive correlation with medical school grades. A negative value means the presence of one variable is associated with the absence of another variable, e.g., there is a negative correlation between age and quickness of reflexes.

- The further from zero, the stronger the relationship \((r = 0)\).
- A zero correlation means that 2 variables have no linear relation to one another, e.g., height and success in medical school.

There are 2 types of correlation:

- **Pearson correlation** compares 2 interval level variables
- **Spearman correlation** compares 2 ordinal level variables

Correlation, by itself, does not mean causation. A correlation coefficient indicates the degree to which 2 measures are related, not why they are related.

Correlation does not mean that one variable necessarily causes the other.
To graph a correlation using a scatterplot, know that a scatterplot will show points that approximate a line. Be able to interpret scatter plots of data: positive slope, negative slope, and which of a set of scatterplots indicates a stronger correlation.

t-Tests

A t-test is used to compare the mean values of continuous data between 2 groups. The output of a t-test is a t-statistic, which is converted to a p value. It is used for 2 groups only, i.e., compares 2 means. For example, do patients with MI who are in psychotherapy have a reduced length of convalescence compared with those who are not in therapy?

- **Pooled t-test**: regular t-test, assuming the variances of the 2 groups are the same
- **Matched pairs t-test**: if each person in one group is matched with a person in the second; applies to before and after measures and linked data

Figure II-21-7. Scatter Plots and Correlations

- **Strong, Positive Correlation**
- **Weak, Positive Correlation**
- **Strong, Negative Correlation**
- **Weaker, Negative Correlation**
- **Zero Correlation** (\(r = 0 \))
Chapter 21 ● Biostatistics

Analysis of Variance
Output from an analysis of variance (ANOVA) is one or more “F” statistic, which is converted to a \(p \) value.

- **One-way** compares means of many groups (2+) of a single nominal variable using an interval variable. Significant \(p \)-value means that at least 2 of the tested groups are different.
- **Two-way** compares means of groups generated by 2 nominal variables using an interval variable. Can test effects of several variables at the same time.
- Repeated measures ANOVA: multiple measurements of same people over time

Chi-Square
Chi-square tests to see whether 2 nominal variables are independent, e.g., testing the efficacy of a new drug by comparing the number of recovered patients given the drug with those who are not.

- Nominal data (or categorical data) only
- Any number of groups

Chi-square is an example of nonparametric test. T test is an example of parametric test, i.e., it involves scores or measurements that come from normal distributions. Nonparametric testing is used for categorical data.

Table II-21-3. Chi-Square Analysis for Nominal Data

<table>
<thead>
<tr>
<th></th>
<th>New Drug</th>
<th>Placebo</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovered</td>
<td>45</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>Not Recovered</td>
<td>15</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Totals</td>
<td>60</td>
<td>60</td>
<td>120</td>
</tr>
</tbody>
</table>

Figure II-21-8. Comparison of the Distributions of 2 Groups
Practice Questions

1. The American Medical Association commissions a health study of a representative sample of U.S. physicians. Enrolled physicians complete detailed surveys and undergo an extensive battery of medical tests. For a number of analyses, physicians are classified by subspecialty. Although numerous physiologic measures are assessed, the following questions describe analyses of just one of these, mean fasting plasma glucose. Select the appropriate statistical test for a comparison of mean fasting plasma glucose values for representative samples of surgeons and cardiologists.

A. t-test
B. Matched pairs t-test
C. One-way ANOVA
D. Two-way ANOVA
E. Chi-square

2. An experimenter conducts a test of a new medication compared with the current standard medication. Alpha is selected to be 0.05. At the conclusion of the trial, the sample of patients receiving the new medication shows more improvement than the comparison group on the standard medication. The p-value is 0.002. What will the experimenter conclude?

A. Do not reject the null hypothesis.
B. The new medication has more clinical benefits than the standard medication.
C. The likelihood that a type I error has actually been committed is less than the maximum risk the experimenter was willing to accept.
D. The result is not significant.
E. A type II error has been committed.

3. Body mass index (BMI) is found to correlate to the following physiologic measures. For which measure is the correlation the strongest?

A. Physical activity ($r = -0.56$)
B. Percentage of calories from complex carbohydrates ($r = -0.32$)
C. Systolic blood pressure ($r = +0.43$)
D. Triglycerides ($r = +0.37$)
E. LDL cholesterol ($r = +0.49$)

4. A new treatment for elevated cholesterol is piloted on a sample of 100 men, ages 45–59 with total serum cholesterol in the range of 260–299 mg/dL at entry. Following 3 months on the medication, the mean cholesterol for the treatment group was 250 mg/dL with a standard deviation of 20 mg/dL. What is the 95% confidence interval on the mean for this study?

A. 210–290 mg/dL
B. 230–270 mg/dL
C. 246–254 mg/dL
D. 248–252 mg/dL
E. 249–251 mg/dL
5. The Wechsler Adult Intelligence Scale–Revised (WAIS-R) is a standardized IQ test with a mean of 100 and a standard deviation of 15. A person with an IQ of 115 is at what percentile of IQ?

A. 50th
B. 68th
C. 84th
D. 95th
E. 99th

6. From a published article describing the results of the study presented above, the following data table is abstracted. This table presents the relative risks (RR) of clinical diabetes for each of the categories of fat intake relative to the baseline category of <20%. Interpret the study findings from the tabular data.

<table>
<thead>
<tr>
<th>% of Calories from Fat</th>
<th>RR for Diabetes</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline <20</td>
<td>1</td>
<td>——</td>
</tr>
<tr>
<td>Level 2 20–34</td>
<td>1.3</td>
<td>0.8–1.8</td>
</tr>
<tr>
<td>Level 3 35–49</td>
<td>2</td>
<td>1.6–2.6</td>
</tr>
<tr>
<td>Level 4 >50</td>
<td>3</td>
<td>2.7–3.3</td>
</tr>
</tbody>
</table>

A. Levels 2, 3, and 4 have significantly elevated risks for diabetes relative to baseline.
B. Levels 2 and 3 are significantly different from each other.
C. Levels 3 and 4 are significantly different from baseline and risk elevating.
D. Levels 3 and 4 are not significantly different from each other.
E. RR for levels 2, 3, and 4 are numerically different but not significantly different from baseline.

1. **Answer:** A. T test is used to compare means of glucose levels in these 2 groups. ANOVA is used for 3+ groups.

2. **Answer:** C. The p value <0.05 (less than 1 in 20) is the probability of obtaining this result based on chance alone assuming the null hypothesis is true.

3. **Answer:** A. R = −0.56 has the strongest negative correlation of the choices. Choose the number closest to −1.0 or +1.0.

4. **Answer:** C. 95% confidence interval can be estimated by mean + or −2*(standard deviation/square root n) 2*(20/square root 100) = 2*(20/10) = 4. 250 + or − 4 = 246 to 254 mg/dL

5. **Answer:** C.

6. **Answer:** C. Level 2 confidence intervals contain 1 (not statistically significant). Level 3 and 4 confidence intervals do not contain 1 (statistically significant).
Learning Objectives

- Identify some important Supreme Court cases related to medical ethics, and explain their significance
- Distinguish between the ethical and legal principles, and explain how they affect medical practice

SELECTED IMPORTANT COURT CASES

Karen Ann Quinlan: Substituted Judgment Standard

In the Quinlan case, Karen Ann was in a persistent vegetative state, being kept alive only by life support. Karen’s father asked to have her life support terminated according to his understanding of what Karen Ann would want. The court found that “if Karen herself were miraculously lucid for an interval . . . and perceptive of her irreversible condition, she could effectively decide upon discontinuance of the life support apparatus, even if it meant the prospect of natural death.”

The court therefore allowed termination of life support, not because the father asked, but because it held that the father’s request was most likely the expression of Karen Ann’s own wishes.

Substituted judgment begins with the premise that decisions belong to the competent patient by virtue of the rights of autonomy and privacy. In this case, however, the patient is unable to decide, and a decision-maker who is the best representative of the patient’s wishes must be substituted. In legal terms, the patient has the right to decide but is incompetent to do so. Therefore, the decision is made for the patient on the basis of the best estimate of his or her subjective wishes.

The key here is not who is the closest next of kin, but who is most likely to represent the patient’s own wishes.
Brother Fox (*Eichner vs Dillon*): Best Interest Standard

The New York Court of Appeals, in its decision of *Eichner vs Dillon*, held that trying to determine what a never-competent patient would have decided is practically impossible. Obviously, it is difficult to ascertain the actual (subjective) wishes of incompetents.

Therefore, if the patient has always been incompetent, or no one knows the patient well enough to render substituted judgment, the use of substituted judgment standard is questionable, at best.

Under these circumstances, decisions are made for the patient using the **best interest standard**. The object of the standard is to decide what a hypothetical “reasonable person” would decide to do after weighing the benefits and burdens of each course of action.

Note here the issue of who makes the decision is less important. All persons applying the best-interest standard should come to the same conclusions.

Infant Doe: Foregoing Lifesaving Surgery, Parents Withholding Treatment

As a general rule, parents cannot withhold life- or limb-saving treatment from their children. Yet, in this exceptional case they did.

Baby Boy Doe was born with Down syndrome (trisomy 21) and with a tracheoesophageal fistula. The infant’s parents were informed that surgery to correct his fistula would have “an even chance of success.” Left untreated, the fistula would soon lead to the infant’s death from starvation or pneumonia. The parents, who also had 2 healthy children, chose to withhold food and treatment and “let nature take its course.”

Court action to remove the infant from his parents’ custody (and permit the surgery) was sought by the county prosecutor. The court denied such action, and the Indiana Supreme Court declined to review the lower court’s ruling. Infant Doe died at 6 days of age, as Indiana authorities were seeking intervention from the U.S. Supreme Court.

This case is simply an application of the best-interest standard. The court agreed with the parents that the burdens of treatment far outweighed any expected benefits.

Roe vs Wade (1973): The Patient Decides

Known to most people as the “abortion legalizing decision,” the importance of this case is not limited to its impact on abortion.

Faced with a conflict between the rights of the mother versus the rights of the putative unborn child, the court held that in the first trimester, the mother’s rights are certainly paramount, and that states may, if they wish, have the mother’s rights remain paramount for the full term of the pregnancy.

Because the mother gets to decide, even in the face of threats to the fetus, by extension, all patients get to decide about their own bodies and the health care they receive. In the United States, the locus for decision-making about health care resides with the patient, not the physician.

Note that courts have held that a pregnant woman has the right to refuse care (e.g., blood transfusions) even if it places her unborn child at risk.
Tarasoff Decision: Duty to Warn and Duty to Protect

A student visiting a counselor at a counseling center in California states that he is going to kill someone. When he leaves, the counselor is concerned enough to call the police but takes no further action. The student subsequently kills the person he threatened. The court found the counselor and the center liable because they did not go far enough to warn and protect the potential victim.

The counselor should have called the police and then should also have tried in every way possible to notify the potential victim of the potential danger.

In similar situations, first try to detain the person making the threat, next call the police, and finally notify and warn the potential victim. All 3 actions should be taken, or at least attempted.

LEGAL ISSUES RELATED TO MEDICAL PRACTICE

This section lays out a set of rules that constitute the general consensus of legal opinion. Apply these rules to individual situations as they arise.

Rule #1: Competent patients have the right to refuse medical treatment.

Incompetent patients have the same rights, but must be exercised differently (via a surrogate).

- Patients have an almost absolute right to refuse. Patients have almost absolute control over their own bodies. The sicker the patient, the lesser the chance of recovery, the greater the right to refuse treatment.

Rule #2: If a patient is incompetent to make decisions, the physician may rely on advance directives.

Advance directives can be oral.

- Living will: written document expressing wishes
 - Care facilities must provide information at time of admission.
 - Responsibility of the institution, not the physician
 - Only applies to end-of-life care
- Health power of attorney: designating the surrogate decision-maker
 - “Speaks with the patient’s voice”
 - Beats all other decision rules

Rule #3: Assume the patient is competent unless clear behavioral evidence indicates otherwise.

Competence is a legal, not a medical issue.

- A diagnosis, by itself, tells you little about a patient’s competence.

- Clear behavioral evidence would be:
 - Patient is grossly psychotic and dysfunctional
 - Patient’s physical or mental state prevents simple communication

- If you are unsure, assume the patient is competent. The patient does not have to prove to you that he is competent. You have to have clear evidence to assume that he is not.
Rule #4: When surrogates make decisions for a patient, they should use the following criteria and in this order:

- Subjective standard
 - Actual intent, advance directive
 - What did the patient say in the past?
- Substituted judgment
 - Who best represents the patient?
 - What would patient say if he or she could?
- Best-interest standard
 - Burdens versus benefits
 - Interests of patient, not preferences of the decision-maker

Rule #5: Feeding tube is a medical treatment and can be withdrawn at the patient’s request.
A feeding tube is not considered killing the patient, but rather stopping treatment at a patient’s request.
- A competent person can refuse even lifesaving hydration and nutrition.

Rule #6: Do nothing to actively assist the patient to die sooner.
Active euthanasia and assisted suicide are on difficult ground.
- Passive, i.e., allowing to die = OK
- Active, i.e., killing = NOT OK
On the other hand, do all you can to reduce the patient’s suffering (e.g., giving pain medication).

Rule #7: The physician decides when the patient is dead.
If the physician thinks continued treatment is futile (the patient has shown no improvement), but the surrogate insists on continued treatment, the treatment should continue. If there are no more treatment options (the patient is cortically dead), and the family insists on treatment, there is nothing the physician can do; treatment must stop.

Rule #8: Never abandon a patient.
Lack of financial resources or lack of results are never reasons to stop treatment of a patient. An annoying or difficult patient is still your patient; you cannot ever threaten abandonment.

Rule #9: Keep the physician–patient relationship within bounds.
Intimate social contact with anyone who is or has been a patient is prohibited. AMA guidelines say, “for at least 2 years.”
- Do not date parents of pediatric patients or children of geriatric patients.
- Do not treat friends or family.
- Do not prescribe for colleagues unless a physician/patient relationship exists.
- If patients are inappropriate, gently but clearly let them know what acceptable behavior would be.
- Any gift from a patient beyond a small token should be declined.

Note
Family matters only to the degree that reflects the patient’s wishes. Family’s own wishes are not relevant.
Rule #10 Stop harm from happening
Beyond “do no harm,” you must stop anyone from hurting himself or others. Take whatever action is required to prevent harm.
- Harm can be spreading disease, physical assault, psychological abuse, neglect, infliction of pain or anything which produces notable distress.
- You must also protect your patient, or anyone not your patient, from being hurt by another.

Rule #11: Always obtain informed consent.
Full, informed consent requires that the patient has received and understood 5 pieces of information:
- Nature of procedure
- Purpose or rationale
- Benefits
- Risks
- Availability of alternatives

There are 4 exceptions to informed consent:
- Emergency
- Waiver by patient
- Patient is incompetent
- Therapeutic privilege (unconscious, confused, physician deprives patient of autonomy in interest of health)

- Gag clauses which prohibit a physician from discussing treatment options that are not approved violate informed consent and are illegal.
- Consent can be oral.
- A signed paper the patient has not read or does not understand does NOT constitute informed consent.
- Written consent can be revoked orally at any time.

Rule #12: Special rules apply with children.
Children younger than 18 years are minors and are legally incompetent.
- Exceptions: emancipated minors
 - If older than 13 years and taking care of self, i.e., living alone, treat as an adult.
 - Marriage makes a child emancipated, as does serving in the military.
 - Pregnancy or giving birth, in most cases, does not.
- Partial emancipation
 - Many states have special ages of consent: generally age 14 and older
 - For certain issues only:
 - Substance drug treatment
 - Prenatal care
 - Sexually transmitted disease treatment
 - Birth control
Rule #13: Parents cannot withhold life- or limb-saving treatment from their children. If parents refuse permission to treat child use the following guidelines:
 - If immediate emergency, go ahead and treat.
 - If not immediate, but still critical (e.g., juvenile diabetes), generally the child is declared a ward of the court and the court grants permission.
 - If not life- or limb-threatening (e.g., child needs minor stitches), listen to the parents
Note that the child cannot give permission. A child’s refusal of treatment is irrelevant.

Rule #14: For the purposes of the exam, issues governed by laws that vary widely across states cannot be tested. This includes elective abortions (minor and spousal rights differ by locality) and legal age for drinking alcohol (vary by state).

Rule #15: Good Samaritan Laws limit liability in nonmedical settings.
 - Not required to stop to help
 - If help offered, shielded from liability provided:
 - Actions are within physician’s competence.
 - Only accepted procedures are performed.
 - Physician remains at scene after starting therapy until relieved by competent personnel.
 - No compensation changes hands.

Rule #16: Confidentiality is absolute. Physicians cannot tell anyone anything about their patient without the patient’s permission. Additionally, the physician must strive to ensure that others cannot access patient information.
 - Getting a consultation is permitted, as the consultant is bound by confidentiality, too. However, watch the location of the consultation. Be careful not to be overheard (e.g., not elevator or cafeteria).
 - If you receive a court subpoena, show up in court but do not divulge information about your patient.
 - If patient is a threat to self or other, the physician MUST break confidentiality
 - Duty to warn and duty to protect (Tarasoff case)
 - A specific threat to a specific person
 - Suicide, homicide, and abuse are obvious threats.
 - Infectious disease should generally be treated as a threat, but be careful. Here issue is usually getting the patient to work with you to tell the person who is at risk
 - In the case of an STD, the issue is not really whether to inform a sexual partner, but how they should be told. Best advice: Have patient and partner come to your office.

Rule #17: Patients should be given the chance to state DNR (Do Not Resuscitate) orders, and physicians should follow them. DNR refers only to cardiopulmonary resuscitation.
 - Continue with ongoing treatments.
 - Most physicians are unaware of DNR orders.
 - DNR decisions are made by the patient or surrogate.
– Have DNR discussions as part of your first encounter with the patient.
– Do not ask the patient about “do not resuscitate” wishes. Explain what is entailed.

Rule #18: Committed mentally ill patients retain their rights.
Committed mentally ill adults legally are entitled to the following:
– They must have treatment available.
– They can refuse treatment.
– They can command a jury trial to determine “sanity.”

• They lose only the civil liberty to come and go.
• They retain their competence for conducting business transactions, marriage, divorce, voting, driving
• The words “sanity” and “competence” are legal, not psychiatric, terms. They refer to prediction of dangerousness, and medicopsychological studies show that health care professionals cannot reliably and validly predict such dangerousness.

Rule #19: Detain patients to protect them or others.
Emergency detention can be effected by a physician and/or a law enforcement person for 48 hours, pending a hearing. A physician can detain; only a judge can commit. With children, special rules exist. Children can be committed only if:
– They are in imminent danger to self and/or others.
– They are unable to care for their own daily needs.
– The parents have absolutely no control over the child, and the child is in danger (e.g., fire-setter), but not because the parents are unwilling to discipline a child.

Rule #20: Remove from patient contact any health care professionals who pose a risk to patients.
The patient, not professional solidarity, comes first.
• Types of risks
 – Infectious disease (TB)
 – Substance-related disorders
 – Depression (or other psychological issues)
 – Incompetence
• Actions
 – Insist that they take time off
 – Contact their supervisors if necessary

Rule #21: Focus on what is the best ethical conduct, not simply the letter of the law.
The best answers are those that are both legal and ethical.

Practice Questions
• Should physicians answer questions from insurance companies or employers? (Not without a release from the patient)
• Should physicians answer questions from the patient’s family without the patient’s explicit permission? (No)
Part II ● Epidemiology and Ethics

- What information can the physician withhold from the patient? (Nothing. If patient may react negatively, figure out how to tell patient to mitigate negative outcome.)

- What if the family requests that certain information be kept from the patient? (Tell the patient, but first find out why they don’t want the patient told.)

- Who owns the medical record? (Health care provider, but patient must be given access or copy upon request)

What should the physician do in each of these situations?

- Patient refuses lifesaving treatment on religious grounds? (Don’t treat)

- Wife refuses to consent to emergency lifesaving treatment for unconscious husband citing religious grounds? (Treat, no time to assess substituted judgment)

- Wife produces card stating unconscious husband’s wish to not be treated on religious grounds? (Don’t treat)

- Mother refuses to consent to emergency lifesaving treatment for her daughter on religious grounds? (Treat)

- What if the child’s life is at risk, but the risk is not immediate? (Court takes guardianship)

- From whom do you get permission to treat a girl who is 17 years old? (Her guardian)

From whom does the physician obtain consent in each case?

- A 17-year-old girl’s parents are out of the country and the girl is staying with a babysitter? (If a threat to health, the physician can treat under doctrine of *in locum parentis*)

- A 17-year-old girl who has been living on her own and taking care of herself? (The girl herself)

- A 17-year-old girl who is married? (The girl herself)

- A 17-year-old girl who is pregnant? (Her guardian)

- A 16-year-old daughter refuses medication but her mother consents, do you write the prescription? (Yes)

- The 16-year-old daughter consents, but the mother refuses? (No)

- The mother of a minor consents, but the father refuses? (Yes, only one permission needed)

- When should the physician provide informed consent? (Always)

- Must informed consent be written? (No)

- Can written consent be revoked orally? (Yes)

- Can you get informed consent from a schizophrenic man? (Yes, unless there is clear behavioral evidence that he is incompetent)

- Must you get informed consent from a prisoner if the police bring in the prisoner for examination? (Yes)
Learning Objectives

- Critique a journal article, i.e., assess whether appropriate statistical tests were used, what biases or assumptions were inherent in the research study design, and what class of evidence was presented

INTRODUCTION

The purpose of this chapter is to provide you with an approach to reading and understanding research articles and pharmaceutical advertisements. It is based on principles of epidemiology.

An understanding of these concepts is fundamental to the comprehension of medical literature. We have sacrificed depth for brevity since our goal was to provide a few fundamental tools.
Research Abstract 1

Wedge Resection or Lobectomy: Comparison of Tumor Recurrence Rates and Overall Survival in NSCLC Patients Receiving Preoperative Chemotherapy

Wedge resection for non-small-cell lung cancer (NSCLC) stage I patients still remains controversial with many physicians. The primary outcomes of tumor recurrence and overall survival (OS) remain unclear when compared to complete lobectomy, which has traditionally been considered a far more effective procedure. However, a recent compilation of case reports and case series reports have validated impressive tumor recurrence and OS rates that were previously only believed to be seen in patients receiving lobectomy. Our primary objective was to compare and analyze the tumor recurrence rates and OS for both wedge resection and lobectomy in patients with stage 1 NSCLC following preoperative chemotherapy.

Methods
We systematically reviewed individual case reports and case series reports from 152 institutions in the United States for patients who first received preoperative chemotherapy and then underwent either wedge resection (248 patients) or lobectomy (329 patients). A propensity score algorithm was used to reduce the confounding that can occur when examining the effects and variables related to both treatment measures. Following the procedures, tumor recurrence and OS was assessed at 3 and 5 years in all patients.

Results
Preoperative mortality related to chemotherapy complications for patients scheduled to have wedge resection or lobectomy was 0.8% and 1.5%, respectively (P = 0.22). Perioperative mortality in patients undergoing lobectomy was 3.8% versus 0.8% in those receiving wedge resection (P = 0.02). During the predetermined follow-up times at 3 and 5 years, overall tumor recurrence (both locoregional and metastases) were assessed:

- At the 3 year follow-up, overall tumor recurrence was 5.9% for wedge resection and 4.2% for lobectomy (P = 0.41).
- At the 5-year follow-up, overall tumor recurrence was 6.3% for wedge resection and 6.1% for lobectomy (P = 0.29).

When comparing the OS for wedge resection with lobectomy the 3-year OS rates were 82% vs 71%, respectively; (P = .09) and 5-year OS rates were 69% v 68%, respectively; (P = .29). Wedge resection was not found to be an independent predictor of tumor recurrence (hazard ratio, 1.23; 99% CI, 0.96 to 1.15) or OS (hazard ratio, 1.43; 99% CI, 0.92 to 1.23).

Conclusion
Wedge resection and lobectomy are associated with similar overall tumor recurrence and overall survival rates when performed after preoperative chemotherapy. However, perioperative complications and mortality are significantly lower in patients receiving wedge resection compared to lobectomy. Since patients generally maintain superior overall lung function with wedge resection, we recommended that wedge resection be performed in all eligible patients with Stage 1 NSCLC unless there is a compelling reason to perform a lobectomy.
Practice Questions

1. Information from the abstract most strongly supports which of the following conclusions?
 (A) Both wedge resection and lobectomy have lower mortality and tumor recurrence rates when patients first receive preoperative chemotherapy.
 (B) Perioperative mortality was lower in patients undergoing wedge resection.
 (C) Postoperative complications were lower in patients undergoing wedge resection.
 (D) Pulmonary function tests at 1 year were significantly higher in patients receiving wedge resection.
 (E) The overall survival for wedge resection at 3 years was proven to be higher than that of lobectomy.

The correct answer is choice B. Of the answer choices, choice B is most supported by the information provided in the drug abstract. The statement, “Perioperative mortality was lower in patients undergoing wedge resection” is supported by the data provided in the Results section. We are told that perioperative mortality in those receiving lobectomy was 3.8% versus 0.8% for those receiving wedge resection (P = 0.02). This data shows that mortality in those receiving a lobectomy was almost 5x higher than seen in those receiving wedge resection. Furthermore, the p value is 0.02, which shows statistical significance.

The stated objective of the researchers was to “compare and analyze the tumor recurrence rates and OS for both wedge resection and lobectomy in patients with stage I NSCLC following preoperative chemotherapy.” In other words, researchers assessed tumor recurrence and OS in patients receiving 2 different surgical procedures. Since all patients received preoperative chemotherapy, one cannot draw a conclusion about the impact of preoperative chemotherapy based on the information presented (choice A). Remember, there would have to be a subset of patients who did not receive preoperative chemotherapy in order for a comparative analysis to be performed.

Postoperative complications (choice C) were not discussed in the abstract.

A clinician could reasonably conclude that pulmonary function tests would be higher at 1 year in patients receiving wedge resection when compared with lobectomy (choice D). However, this “reasonable assumption” is not supported, as data regarding lung function at 1 year was not presented in the abstract.

Choice E states “The overall survival for wedge resection at 3 years was proven to be higher than that of lobectomy.” In the Results section of the abstract, it says, “When comparing the OS for wedge resection with lobectomy, the 3-year OS rates were 82% vs 71%, respectively; (P = .09).” At first glance it may appear to be a correct statement; however, the p value is 0.09. Therefore, the 2 percentages are not statistically different.
2. Which of the following best describes the type of study performed?
 (A) Case-control study
 (B) Crossover study
 (C) Meta-analysis
 (D) Propensity-matched analysis
 (E) Randomized, controlled clinical trial

The correct answer is choice D. You are asked to determine what type of study/analysis the researchers performed. The researchers reviewed individual case reports and case series reports from a number of institutions. After reviewing and compiling the data, they used an algorithm to reduce confounding variables and subsequently analyze the data. Based on this information, we can conclude that the researchers performed a propensity-matched analysis. Propensity score matching (PSM) is used in the statistical analysis of observational data. PSM is a statistical matching technique which attempts to approximate the effect of a treatment by accounting for the covariates that predict receiving a given treatment. This type of statistical analysis is used to reduce bias caused by confounding variables. Propensity scores (obtained from a propensity-matched analysis) are valuable when attempting to draw causal conclusions from observational studies (such as case reports) where the “treatment” or “independent variable” was not originally randomly assigned.

Case-control studies (choice A) are retrospective observational studies used to identify risk factors that are believed to be associated with a particular disease or condition. Subjects are initially classified as having or not having the disease in question and then their histories are explored to identify the presence or absence of any risk factors. Data are usually analyzed by means of an odds-ratio, and interpreted such that if something occurs in the history of the diseased group, but not in the non-diseased group, then it will be identified as a risk factor.

Cross-over studies (choice B) are clinical trials in which 2 comparison groups (for example) both receive the drug being tested and the comparative intervention (often a placebo) at different times. This interventional study will generally begin with one group (group A) receiving the investigational drug while a comparison group (group B) receives a placebo. Then, at some predetermined time, there will be a washout period and then Group A is switched to the placebo, while the Group B is given the investigational drug. This study design allows comparison of those on and off the drug, but also satisfies the ethical requirement that everyone in the study is exposed to whatever benefit the experimental drug may provide.

A meta-analysis (choice C) will meticulously examine several interventional clinical studies on a particular disease state (or treatment measure) and then combine the results using an acceptable statistical methodology. The results will be presented as if they were from 1 large study. The classical meta-analysis compares 2 types of treatment measures while multiple treatment meta-analysis (or network meta-analysis) can provide estimates of treatment efficacy of multiple treatment regimens, even when direct comparisons are unavailable. One of the key differences between a meta-analysis and a propensity matched analysis is that a meta-analysis is used with interventional studies, and a propensity-matched analysis is used with observational reports or studies.

A randomized, controlled clinical trial (choice E) is a type of interventional study where a researcher will administer a medication or treatment measure to one group of participants and evaluate its effects against a control group who receives another treatment measure or placebo. Subjects in the study are randomly allocated into “intervention” and “control” groups to receive or not receive an experimental preventive or therapeutic procedure or intervention. In the “wedge resection” analysis, researchers compiled the results from several observational
The data evaluated was derived from case reports where patients were NOT originally assigned to receive either a wedge resection or lobectomy.

3. The next step in follow-up of these research results would be to conduct which type of study?
 (A) Case-control study
 (B) Cohort study
 (C) Cross sectional study
 (D) Randomized, controlled clinical trial
 (E) Replication in a different biological model

The correct answer is D. In the current study, researchers reviewed and compiled the data from numerous case reports and case series reports. They then attempted to draw causal conclusions from these observational studies where the treatment was not originally randomly assigned. Using this approach, researchers are able to determine if further investigation is warranted. In this particular analysis, researchers identified a higher than expected overall survival rate and lower than expected tumor recurrence rate associated with a procedure (wedge resection) that is believed to be associated better postoperative lung function as compared to lobectomy. Since the results of their analysis essentially showed no real difference in overall tumor recurrence rates and overall survival rates, the next step would be to further validate these results with an interventional study, such as a prospective, randomized controlled trial (RCT). In an RCT, researchers will likely randomly assign patients to receive either wedge resection or lobectomy following preoperative chemotherapy. Researchers will then be able to determine if there is a statistical difference between the 2 treatment options.

Case-control studies (choice A) are retrospective observational studies used to identify risk factors that are believed to be associated with a particular disease or condition. Subjects are initially classified as having or not having the disease in question and then their histories are explored to identify the presence or absence of any risk factors.

Cohort studies (choice B) are observational studies in which subjects are classified as having or not having a risk factor and then followed forward in time so incidence rates for the 2 groups can be compared. Although cohort studies are a type of prospective study, the next step would be to use an “interventional” prospective study, such as a randomized controlled clinical trial.

Cross sectional studies (choice C) are observational studies used to assess the prevalence of a disease in a given population and the factors which co-occur with that disease at a particular time.

Replication in a different model (choice E) is a type of study generally used in early animal testing of experimental medications. For example, early animal testing for a new compound may involve a small number of rats. Once data is obtained from a single animal test, there is still a lot of information that needs to be obtained and questions that need answered before this new compound (experimental drug) can be considered for human trials. Therefore, researchers often perform several different types of animal tests using a variety of rat species followed by testing in other animal models.
Mekanib Improved Overall Survival and Decreased Vemurafenib-Resistance in BRAF-mutated Metastatic Melanoma

BRAF mutations have been observed in approximately 50% of all malignant melanomas. The most predominant BRAF mutations found in melanoma are those that introduce an amino acid substitution at valine 600. Approximately 80–90% of these mutations are classified as BRAF V600E. Other predominant BRAF mutations include V600K, V600R and V600D. All of these mutations result in heightened BRAF kinase activity and amplified phosphorylation of downstream targets, which in particular includes MEK. BRAF inhibitor therapy (with vemurafenib or dabrafenib) is associated with well-documented clinical benefit in most patients with BRAF V600E-mutated melanoma (and other subtypes). However, resistance to these drugs and tumor progression generally occurs in patients within the first year. It is believed that BRAF mutations stimulate melanoma cell proliferation and survival predominantly through activation of MEK. The purpose of this study was to determine if the addition of the allosteric MEK1/MEK2 inhibitor mekanib (KAP071714) to vemurafenib delayed expected vemurafenib resistance as well as improved progression free survival (PFS) and overall survival (OS) in comparison to dacarbazine.

Methods
This was a phase 3, multicenter, double-blinded, randomized clinical trial comparing the effectiveness of mekanib (KAP071714) in 447 total participants with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned into 2 cohorts. Cohort A (222 participants): received dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks); Cohort B (225 participants): received vemurafenib (960 mg orally twice daily) + mekanib (150 mg orally daily). PFS was the primary end point and OS was a secondary end point.

Results
Median PFS was 11.6 months in the mekanib group and 2.3 months in the dacarbazine group (hazard ratio for disease progression or death in the mekanib group, 0.23; 95% confidence interval [CI], 0.18 to 0.28; P<0.007). At 15 months, the rate of overall survival was 78% in the mekanib group and 42% in the dacarbazine group (hazard ratio for death, 0.43; 95% CI, 0.33 to 0.53; P = 0.02). Elevated hepatic enzymes, rash, diarrhea, and hypertension were the most common toxic effects in the mekanib group. Nausea, vomiting alopecia, facial flushing, myalgia, leukopenia and hepatotoxicity were the most common toxic effects in the dacarbazine group. Eight patients in the mekanib group and 15 patients in the dacarbazine group withdrew from the study due to severe side effects. Secondary skin neoplasms were not observed in either group.

Conclusion
Mekanib, as compared with traditional dacarbazine chemotherapy, improved rates of PFS and OS among patients with the BRAF-mutated metastatic melanoma as well as delayed vemurafenib drug resistance. Mekanib should be considered for use in conjunction with vemurafenib for the treatment of BRAF-mutated metastatic melanoma.

(Funded by SMILE Pharmaceuticals, ClinicalTrials.gov number NCT0123456789101112)
Practice Questions

1. Information from the abstract above most strongly supports which of the following conclusions about mekanib?

 (A) In the treatment of select cases of metastatic melanoma, mekanib alone provides higher rates of PFS and OS than dacarbazine alone.

 (B) Mekanib does not produce severe side effects.

 (C) Mekanib produces fewer side effects than dacarbazine.

 (D) Metastatic melanoma patients with BRAF V600K mutations have improved PFS and OS rates when taking vemurafenib + mekanib versus dacarbazine.

 (E) Most metastatic melanoma patients appropriately prescribed vemurafenib and mekanib are likely to complete their treatment regimen.

The correct answer is choice E. You are being asked to determine which answer choice is most supported by the information provided in the abstract. While several answer choices might "look good," you will be able to eliminate the incorrect answer choices once you examine the meaning of each statement. Of the answer choices, choice E is most supported by the information provided in the drug abstract. The Results section indicates that “Eight patients in the mekanib group and 15 patients in the dacarbazine group withdrew from the study due to severe side effects.” Of the 225 patients originally enrolled in the mekanib + vemurafenib arm of the study, 217 persons or 96% of the original study group completed the study. Hence, you can reasonably conclude that most metastatic melanoma patients appropriately prescribed vemurafenib and mekanib are likely to complete their treatment regimen.

The statement, "In the treatment of select cases of metastatic melanoma, mekanib alone provides higher rates of PFS and OS than dacarbazine alone" can be eliminated (choice A) since the study was not designed to evaluate mekanib versus dacarbazine. This study evaluated mekanib PLUS vemurafenib versus dacarbazine.

“Mekanib does not produce severe side effects” (choice B) is an incorrect statement because the abstract only lists a few of the most common side effects. It does not mention the severe (and less common) side effects. These findings are likely to be found in the body of the published study. Remember, this is an abstract and only provides limited information.

“Mekanib produces fewer side effects than dacarbazine” (choice C) is incorrect because the abstract only lists a few of the most common side effects for both drugs. It does not outline the number and frequency of occurrence of side effects. These findings are likely to be found in the complete study.

The statement "Metastatic melanoma patients with BRAF V600K mutations have improved PFS and OS rates when taking vemurafenib + mekanib versus dacarbazine" can be eliminated (choice D), because the study was only performed in metastatic melanoma patients with BRAF V600E mutations. Hence, the reader cannot draw conclusions about the effect of vemurafenib plus mekanib in this patient population.
2. In the conclusion section of the abstract, the authors indicate that when mekanib was added to vemurafenib the drug delayed vemurafenib drug resistance. Which of the following is the most likely reason that the reader should question the validity of this claim?

(A) Insufficient follow-up of study participants
(B) Insufficient information on adverse effects and drug-drug interactions
(C) Lack of an appropriate control group
(D) Subject attrition
(E) Use of hazard ratio instead of relative risk

The correct answer is choice C. You are asked to determine the most likely reason why one should question the validity of the claim that mekanib delays vemurafenib-resistance. The correct answer is lack of an appropriate control group. In order for researchers to conclude that mekanib decreases vemurafenib resistance, the control group must be vemurafenib alone and the study group must be vemurafenib PLUS mekanib. In this study, the control group was dacarbazine and study group was vemurafenib plus mekanib; hence, there is not an appropriate control group to answer the question “Does mekanib delay vemurafenib resistance?” In other words, there is no data available to support the claim that the addition of mekanib did in fact decrease vemurafenib resistance. Furthermore, the background states that “resistance to these drugs (vemurafenib and dabrafenib) and tumor progression generally occurs in patients within the first year” and the Results section states that the median PFS was 11.6 months in the mekanib group. The median PFS is a little less than a year; hence, the reader should actually question if mekanib actually provided any benefit at all.

The Results section provides information about median PFS and survival rates at 15 months. The length of the study was sufficient to assess the effects it was designed to assess (choice A).

The Results section provides information on adverse effects but does not provide any information on drug-drug interactions (choice B). Although a drug interaction could potentially decrease the effectiveness of mekanib, the most likely reason to question the validity of the claim (in the question stem) is because of a lack of an appropriate control group.

The Results section states that “Eight patients in the mekanib group and 15 patients in the dacarbazine group withdrew from the study due to severe side effects.” Out of an original 447 patients, only 23 patients withdrew from the study. Hence, the subject attrition rate is low for this study (choice D).

By definition, the hazard ratio is a measure of relative risk over time in situations where the researchers are interested not only in the total number of events, but also in the timing of these events. For example, the event of interest may be subject death or it could be a non-fatal event such as readmission or symptom change. The use of a hazard ratio in this particular study is appropriate (choice E).
3. In the background section of the abstract, researchers state that the purpose of the study was to determine whether the addition of the allosteric MEK1/MEK2 inhibitor mekanib (KAP071714) to vemurafenib treatment would delay drug resistance as well as improve progression free survival (PFS) and overall survival (OS) in comparison to dacarbazine. Which of the following study design changes could have been made to appropriately evaluate all the specified outcomes?

(A) Add a vemurafenib-only cohort to the study
(B) Prescribe all 3 medications to each participant but at different dosage ranges
(C) Replace the dacarbazine cohort with a vemurafenib-only cohort
(D) Use a crossover study instead of a randomized clinical trial
(E) No changes were needed since the study was properly designed to meet the specified outcomes

The correct answer is choice A. You are asked to determine what changes could have been made to the original study design so that the 3 initial study outcomes could be appropriately evaluated. Based on the purpose outlined in the question stem, the 3 outcomes being evaluated are as follows:

1. Decreased vemurafenib resistance when mekanib is added
2. Improved PFS for vemurafenib + mekanib compared to dacarbazine
3. Improved OS for vemurafenib + mekanib compared to dacarbazine

The current study design appropriately evaluates PFS and OS between vemurafenib + mekanib AND dacarbazine because participants were administered either vemurafenib + mekanib OR dacarbazine. However, the only way to assess whether mekanib decreases vemurafenib-resistance is to evaluate this regimen against a vemurafenib-only cohort. Hence, in order to appropriately evaluate all 3 outcomes described in the question stem, there would need to be 3 cohorts:

1. Dacarbazine only
2. Vemurafenib only
3. Vemurafenib + mekanib

If researchers prescribed all 3 medications to each participant but at different dosage ranges (choice B), then none of the initial 3 outcomes could have been measured because there is no comparison against either dacarbazine only or vemurafenib only.

If researchers replaced the dacarbazine cohort with a vemurafenib-only cohort (choice C), then researchers would be able to assess the “resistance outcome.” However, they would not be able to assess the effects of mekanib + vemurafenib against dacarbazine.

In cross-over studies, all subjects receive both interventions unless it is a placebo-controlled study (then all participants receive treatment and placebo). If a crossover study design were used with the existing study, then group A (for example) would receive dacarbazine only, and group B would receive vemurafenib + mekanib. Then, at some predetermined point there would be a washout period, and group B would receive dacarbazine only and group A would receive vemurafenib + mekanib. This type of study design (choice D) would not be able to assess the “vemurafenib resistance outcome” as outlined above.
Research Abstract 3

Efficacy of Imiquimod in Sustained Lesion Clearance in Actinic Keratosis

Actinic keratosis (AK) is a UV light-induced precancerous lesion of thick, scaly or crusty skin that may progress to invasive squamous cell carcinoma. AK is the most common lesion with malignant potential to arise on the skin. Topical fluorouracil has traditionally been the treatment of choice. However, a number of case reports indicated recently that the topical immune response modifier imiquimod successfully detected and cleared both clinical and subclinical lesions across the entire sun-exposed fields of the face and/or balding scalp for a sustained period of time. The purpose of this study was to evaluate the efficacy of topical imiquimod 5% in the field directed treatment of AK against clinical and subclinical lesions, and to determine patient satisfaction with topical imiquimod in the treatment of AK.

Methods

Twenty seven AK patients (with lesions on the face and/or balding scalp) from 9 dermatology practices in Florida were treated with imiquimod 5% twice weekly at bedtime for a period of 12–18 weeks depending on physician preference. Information from their individual findings are summarized here. Lesions were counted before, during, and 3 months post-treatment. Patients compared the imiquimod 5% regimen with their previous AK therapies (if applicable) in terms of treatment duration and side effect profile.

Results

Nineteen of the 27 patients have previously used 1+ prior AK treatments including 5-fluorouracil, diclofenac, and photodynamic therapy. The patients had a median of 12 AK lesions on clinical presentation and a median Lmax (maximum lesion count during treatment) of 22. The Lmax initially increased in all patients once treatment stated since imiquimod unmasked previously invisible lesions. The median lesion count was zero 3 months after treatment was completed. At 6 and 12 months of follow-up, the median absolute reduction in AK lesions from Lmax with imiquimod 5% was 20 and 18, respectively. The median percentage reduction in lesions from Lmax to 6 and 12 months was 91% and 82%, respectively. All patients (when asked by the physician) indicated that imiquimod 5% was easy-to-use and that the duration of treatment was better than that of previous AK therapies. Nineteen of the patients considered the side-effect profile of this drug more favorable than that of their prior AK treatments (if applicable).

Conclusion

Imiquimod 5% dosed twice weekly for 12-18 weeks is able to successfully detect and eliminate both clinical and subclinical lesions across the entire sun-exposed fields of the face and balding scalp for sustained long-term efficacy. Imiquimod had a higher patient satisfaction rating than fluorouracil. Imiquimod 5% is thus recommended as a first-line treatment for patients with AK.
Practice Questions

1. Information from the abstract most strongly supports which of the following conclusions about the use of imiquimod in actinic keratosis (AK)?
 (A) Imiquimod had a higher patient satisfaction rating than fluorouracil.
 (B) Imiquimod is a first-line treatment for patients with AK.
 (C) Imiquimod is effective at detecting subclinical AK lesions.
 (D) Imiquimod is equally as effective as topical fluorouracil in the treatment of AK.
 (E) Imiquimod is more effective in the treatment of AK than topical fluorouracil.

The correct answer is choice C. Choice C is most supported by the information provided in the drug abstract. The statement, “Imiquimod is effective at detecting subclinical AK lesions” is supported by the data provided in the Introduction and Results section of the abstract. We are told that “a number of case reports indicated that the topical immune response modifier imiquimod successfully detected and cleared both clinical and subclinical lesions across the entire sun-exposed fields of the face and/or balding scalp for a sustained period of time.” The Results section states that “The Lmax initially increased in all patients once treatment stated since imiquimod unmasked previously invisible lesions.”

This abstract provides information based on individual case reports. Choices A, D, and E would generally be the findings of a randomized controlled clinical trial (RCT) where subjects are randomly allocated into “intervention” and “control” groups to receive or not receive an experimental procedure/intervention. RCTs are generally regarded as the most scientifically rigorous studies available in epidemiology.

Choice B may be a true statement, but the information presented in the abstract is based off of the findings of 27 individual case reports. Further study would be needed to justify this statement being true.

2. With respect to the development of invasive squamous cell carcinoma, the use of imiquimod in actinic keratosis (AK) patients as described in this abstract is considered to be what type of prevention?
 (A) Primary prevention
 (B) Secondary prevention
 (C) Tertiary prevention
 (D) Quaternary prevention
 (E) This is a form of curative treatment for squamous cell carcinoma.

The correct answer is A. Disease prevention and health promotion can take different forms. Health professionals and community officials often approach prevention in different ways, so the needs of each person as well as the general population are met. There are different types of prevention activities that can be considered when working with individual patients or with an entire community. It is important that both clinicians and community lead understanding the target population and what type of prevention are necessary to impact people at all levels.

Primary prevention employs the use of preventative measures so that a person does not contract the disease. Primary prevention will decrease both the incidence and prevalence of the disease. In this case, the disease is invasive squamous cell carcinoma. AK is a UV light-induced precancerous lesion of the skin that may progress to invasive squamous cell carcinoma. Preventative measures, such as treatment of a precancerous (AK) lesions, can be employed to prevent the onset of this
condition. Thus, by definition, imiquimod is classified as a primary preventative measure for invasive squamous cell carcinoma.

Secondary prevention (choice B) is a form of prevention that is used after the disease has occurred but before the person notices that anything is wrong. Screening for invasive squamous cell carcinoma in high risk individuals is an example of secondary prevention.

According to the CDC, tertiary prevention (choice C) targets the person who already has symptoms of the disease. The goals of tertiary prevention are to: (a) prevent damage and pain from the disease, (b) slow down progression of the disease, (c) prevent the disease from causing other complications, (d) give better care to patients with the given disease, and (e) increase the quality of life for a patient with the disease.

Quaternary prevention (choice D) is the use of methods to mitigate or avoid consequences of unnecessary or excessive interventions in the health system; the classic example is mitigating the use of antibiotics in children with viral illness.

In this abstract, imiquimod would be a curative treatment measure (choice E) for AK and a primary preventative measure for invasive squamous cell carcinoma.

3. Which of the following best describes the type of study performed in this abstract?
 (A) Case-control study
 (B) Case series report
 (C) Cross-over study
 (D) Meta-analysis
 (E) Randomized, controlled clinical trial

The correct answer is choice B. The researchers reviewed individual case reports from 9 dermatology practices in Florida. After reviewing and compiling the data from these cases, the authors of the abstract compiled the data from each of the case reports and “Information from their individual findings are summarized here” in this abstract. Based on this information, the information presented in the abstract was most likely derived from a case series report.

A case series report is a type of study that tracks subjects with a known exposure, such as patients who have received a similar treatment (imiquimod) or examines their medical records for exposure and outcome. Case series reports are objective reports of a clinical characteristic or outcome from a group of clinical subjects. For example, patients from 9 dermatology practices diagnosed with actinic keratosis and treated with imiquimod. In a case series report, there is no control group.

Case-control studies (choice A) are retrospective observational studies used to identify risk factors that are believed to be associated with a particular disease or condition. Subjects are initially classified as having or not having the disease in question and then their histories are explored to identify the presence or absence of any risk factors. Data are usually analyzed by means of an odds-ratio, and interpreted such that if something occurs in the history of the diseased group, but not in the non-diseased group, then it will be identified as a risk factor.

Cross-over studies (choice C) are clinical trials in which 2 comparison groups (for example) both receive the drug being tested and the comparative intervention (often a placebo) at different times. This interventional study will generally begin with one group (group A) receiving the investigational drug while a comparison group (group B) receives a placebo. Then, at some predetermined time, there will be a washout period and then group A is
switched to the placebo while group B is given the investigational drug. This study design allows comparison of those on and off the drug, but also satisfies the ethical requirement that everyone in the study is exposed to whatever benefit the experimental drug may provide.

A meta-analysis (choice D) will meticulously examine several interventional clinical studies on a particular disease state or treatment measure and then combine the results using an acceptable statistical methodology. The results will be presented as if they were from 1 large study. The classical meta-analysis compares 2 types of treatment measures while multiple treatment meta-analysis (or network meta-analysis) can provide estimates of treatment efficacy of multiple treatment regimens, even when direct comparisons are unavailable. A meta-analysis is a compilation of interventional studies while a case series report is a compilation of case reports.

In a randomized, controlled clinical trial (choice E), a researcher will administer a treatment measure to one group of participants and evaluate its effects against a control group who receives another treatment measure or placebo. Subjects are randomly allocated into “intervention” and “control” groups to receive or not receive an experimental procedure/intervention. In the “imiquimod” abstract, researchers compiled the results from several case reports and evaluated. In this study, patients were NOT originally assigned to receive either imiquimod or another treatment measure, such as fluorouracil.

4. The next step in following up the results presented in this abstract would be to conduct which type of study?
 (A) Case-control study
 (B) Cohort study
 (C) Cross-sectional study
 (D) Randomized, controlled clinical trial
 (E) Replication in a different biological model

The correct answer is D. In the current study, researchers reviewed and compiled the data from numerous case reports. They then attempted to draw causal conclusions from these individual case reports where the treatment was not originally randomly assigned. Using this approach, researchers are able to determine if further investigation is warranted. In this particular analysis, imiquimod successfully detected and eliminated both clinical and subclinical actinic keratosis lesions across the entire sun-exposed fields of the face and balding scalp for sustained long-term efficacy. Based on these results, the next step would be to further validate these findings with an interventional study, such as a prospective, randomized controlled trial (RCT). In an RCT, researchers will randomly assign patients to receive either imiquimod or some other existing treatment measure (such as fluorouracil). Researchers will then be able to determine if there is a statistical difference between the 2 treatment options.

Case-control studies (choice A) are retrospective observational studies used to identify risk factors that are believed to be associated with a particular disease or condition. Subjects are initially classified as having or not having the disease in question and then their histories are explored to identify the presence or absence of any risk factors. This type of study would not be an appropriate next step in research.

Cohort studies (choice B) are observational studies in which subjects are classified as having or not having a risk factor and then followed forward in time so incidence rates for the 2 groups can be compared. Although cohort studies are a type of prospective study, the next step would be to use an “interventional” prospective study (to determine the efficacy of imiquimod over fluorouracil), such as a randomized controlled clinical trial.
Cross sectional studies (choice C) are observational studies used to assess the prevalence of a disease in a given population and what factors co-occur with this disease at a particular time.

Replication in a different model (choice E) is generally used in early animal testing of experimental medications. For example, early animal testing for a new compound may involve a small number of rats. Once data is obtained from a single animal test, a lot of information still needs to be obtained before the new compound (experimental drug) could be considered for human trials. Therefore, researchers perform several types of animal testing using a variety of rat species and then other animal models.

5. Which of the following raises the most concern about the validity of the study results?
 (A) Expectancy bias
 (B) Late-look bias
 (C) Measurement bias
 (D) Proficiency bias
 (E) Recall bias
 (F) Selection bias

The correct answer is F. First determine the type of study here and then identify what bias is likely going to affect the reported results. This study would be best classified as a case series report. A case series report is a type of study that tracks subjects with a known exposure, such as patients who have received a similar treatment (imiquimod) or examines their medical records for exposure and outcome. Case series reports are objective reports of a clinical characteristic or outcome from a group of clinical subjects.

Case series reports are particularly susceptible to selection bias (sample selected is not representative of the general population). Examples of case series reports include those that report on a number of patients with a certain illness and/or a treatment of an illness with a single agent. Since case series reports are based on a limited number of individual case reports, they may not appropriately represent the wider population. Internal validity of case series studies is usually very low, due to the lack of a comparator group exposed to the same array of intervening variables.

Expectancy bias (choice A) exists when a researcher knows which subjects are in a treatment or a placebo group; this knowledge may cause the researcher, unwittingly, to interact with subjects differently. For example, if the researcher thinks a subject is receiving a better treatment, he is more likely to think the subject is getting better and may perceive effects over and above the physiologic effects of the drugs administered. The way to avoid expectancy bias is a double-blind design, where neither subjects nor the researchers know where each subject is placed. This is not the case here because the “visible” lesions are either present or absent.

Late-look bias (choice B) is a problem when gathering information about some types of severe diseases. The problem is that the most severe cases will die or become inaccessible before their information can be gathered. This is not the answer here because AK is a pre-malignant condition and mortality is not an issue.

With measurement bias (choice C), something about how the information is gathered affects the information collected. This can occur because survey questions use inappropriate wording that slants respondents to a particular answer, or because just knowing that they are being measured causes people to act differently than they would if they were not observed. The classic example of measurement bias is the Hawthorne effect where a subjects’ behavior is altered simply because they are being studied.
Proficiency bias (choice D) is an issue when comparing the effects of different treatments administered at multiple sites. Simply stated, the physicians at one site may have more skill with a given procedure than other physicians do. This means that the different skill level of the physicians delivering treatment might affect patient outcomes more than the treatment selection itself. This was not a comparative study and only one drug (imiquimod) was administered.

Recall bias (choice E) is a problem in retrospective studies, such as a case-control study, where people are asked to remember what happened in the past and report it in the present. If people do not remember, and say so, then there is missing data. But often, people will invent answers, either from a desire to please the researcher or because the memory of the past changes over time. In this case, the AK lesions are document by the physician and not “recalled” by the patient.

Type of Bias in Research and Important Associations

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Definition</th>
<th>Important Associations</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>Sample not representative</td>
<td>Berkson’s bias, nonresponder bias</td>
<td>Random, independent sample</td>
</tr>
<tr>
<td>Measurement</td>
<td>Gathering the information distorts it</td>
<td>Hawthorne effect</td>
<td>Control group/placebo group</td>
</tr>
<tr>
<td>Experimenter expectancy</td>
<td>Researcher’s beliefs affect outcome</td>
<td>Pygmalion effect</td>
<td>Double-blind design</td>
</tr>
<tr>
<td>Lead-time</td>
<td>Early detection confused with increased survival</td>
<td>Benefits of screening</td>
<td>Measure “back-end” survival</td>
</tr>
<tr>
<td>Recall</td>
<td>Subjects cannot remember accurately</td>
<td>Retrospective studies</td>
<td>Multiple sources to confirm information</td>
</tr>
<tr>
<td>Late-look</td>
<td>Severely diseased individuals are not uncovered</td>
<td>Early mortality</td>
<td>Stratify by severity</td>
</tr>
<tr>
<td>Confounding</td>
<td>Unanticipated factors obscure results</td>
<td>Hidden factors affect results</td>
<td>Multiple studies, good research design</td>
</tr>
<tr>
<td>Design</td>
<td>Parts of study do not fit together</td>
<td>Non-comparable control group</td>
<td>Random assignment</td>
</tr>
</tbody>
</table>
Part II ● Epidemiology and Ethics

Pharmaceutical Ad 1

For newly diagnosed and treatment-resistant EGFR-mutated NSCLC, an effective treatment is now available to improve progression-free survival (PFS)!

- Tazofect is indicated for treatment of EGFR-mutated NSCLC
- Tazofect has shown efficacy in PIK3CA, PTEN, and KRAS-mutated NSCLC

Tazofect has been proven to:

- Increase PFS by an average of 9 months in all NSCLC study participants (first-line and erlotinib resistant)
- Increase PFS by an average of 10 months in first line NSCLC study participants over those receiving Tarceva® (erlotinib)
- Almost double the PFS in carboplatin resistant NSCLC study participants over those receiving Tarceva® (erlotinib)

The side effect profiles for both Tazofect and erlotinib were similar.

- The effects of Tazofect (10-20 mg qd) and erlotinib (150-200 mg qd) in subjects with EGFR exon 19 deletions or exon 21 (L858R) substitution mutations are presented above. The results were taken from a phase 3, randomized, double blinded multicenter clinical trial. Per protocol, each of these agents was continued until clinically significant disease progression occurred plus an additional 2 months unless mortality occurred. The average follow-up time for patients who completed the study in both Tazofect groups was 17.3 months and 8.3 months in both erlotinib groups.

- Of the 800 initial participants enrolled in the phase 3, randomized, double blinded multicenter trial, 225 (of 398) participants completed the study in the Tazofect group and 388 (of 402) participants completed the study in the erlotinib group.

- Of the original number of study participants, 103 Tazofect patients and 102 erlotinib patients were classified as carboplatin-resistant.

Increased progression-free survival!

Additional product information provided below

Improved patient outcomes!
HIGHLIGHTS OF PRESCRIBING INFORMATION

Please see Tazofect (tanzopanib) drug package insert for complete prescribing information

Indications and Usage: Tazofect (tanzopanib) is a kinase inhibitor indicated for first-line treatment of NSCLC with EGFR exon 19 deletions and EGFR exon 21 (L858R) substitution mutations in patients age 18 years and older.

Mechanism of Action: Tanzopanib is a kinase inhibitor that acts by inhibiting intracellular tyrosine kinase domain of epidermal growth factor receptor (EGFR) thus resulting in cell cycle arrest and angiogenesis inhibition. Tanzopanib has an elimination half-life of approximately 28 hours in patients with normal hepatic and renal function.

Dosage and Administration: Treatment of NSCLC with EGFR exon 19 deletions and EGFR exon 21 (L858R) substitution mutations in patients aged 18 years and older with normal hepatic and renal function: 10-20 mg daily until clinically significant disease progression.

Contraindications: Hypersensitivity to tanzopanib; use in patients with severe hepatic impairment, active infection and thrombocytopenia.

Warnings and Precautions: May cause reactivation of tuberculosis and hepatitis B. Use caution in patients receiving other chemotherapeutic agents, thyroid disorders, dehydration, mild to moderate renal and hepatic dysfunction

Adverse Reactions:

- **Common (≥5%):** elevated AST & ALT (15%), diarrhea (15%), fatigue (13%), elevated bilirubin (12%), infection (10%), cough (8%), thrombocytopenia (7%)

- **Less common (<5%):** hepatorenal syndrome (2%), hepatotoxicity (2%), toxic epidermal necrolysis (1%), Stevens-Johnson syndrome (1%), acute renal failure (1%), hypothyroidism (1%), hemolytic anemia (<1%)
Practice Questions

1. The data provided in the drug advertisement most strongly supports which of the following conclusions?
 (A) In the treatment of cancer, Tazofect and erlotinib can be used interchangeably.
 (B) Tazofect is not indicated for treatment of EGFR exon 19 insertion in non-small cell lung cancer.
 (C) Tazofect should be considered for use in patients with PIK3CA mutated NSCLC.
 (D) The combination of Tazofect and erlotinib will improve the PFS to a greater extent than either agent alone.
 (E) The dose of Tazofect should be adjusted in patients with hepatic dysfunction.

 The correct answer is B. The key to answering this type of question is to first rapidly scan the drug ad and highlights of prescribing information so that you are able to obtain a general sense of how the content is arranged. Then read the question and quickly search for each of the answer choices in the body of the drug ad itself. In the Indications section of the prescribing information, the following is stated. “Tazofect (tantrapanib) is a kinase inhibitor indicated for first-line treatment of NSCLC with EGFR exon 19 deletions and EGFR exon 21 (L858R) substitution mutations in patients aged 18 years and older.” There is no mention of “EGFR exon 19 insertions.” That is not to say that the drug cannot be used in NSCLC patients with EGFR exon 19 insertions. However, Tazofect is not indicated (FDA approved) for use in these patients by the FDA. Hence this is a true statement and the correct answer.

 Both Tazofect and erlotinib are indicated for EGFR exon 19 deletions or exon 21 (L858R) substitution mutations. Also both drugs are noted to have similar side effect profiles (as indicated in the primary drug ad). However, erlotinib is also indicated for the treatment of pancreatic cancer. Since erlotinib has a broader range of clinical indications and choice A states “in the treatment of cancer,” these agents are not interchangeable. It should also be pointed out that almost half of the Tazofect patients dropped out of the trial. Without knowing the reasons why, it would not be advisable to interchange Tazofect with erlotinib. Choice A is a false statement.

 Choice C states that “Tazofect should be considered for use in patients with PIK3CA mutated NSCLC.” Although the main drug ad states that “Tazofect has shown efficacy in PIK3CA, PTEN and KRAS Mutated NSCLC,” there is no data in the prescribing information or drug ad itself to support this claim. Also what exactly does “shown efficacy” mean? The drug may be marginally effective in a small percentage of PIK3CA patients, for example. In other words, there is no data to support this claim in the drug ad. Choice C is an incorrect statement.

 Choice D states that “The combination of Tazofect and erlotinib will improve the PFS to a greater extent than either agent alone.” There is no information indicating whether the combination of the 2 agents will provide more benefit, less benefit or the same benefit as either agent used alone. Choice D is an incorrect statement.

 Choice E refers to making a dosing adjustment in patients with hepatic dysfunction. In the prescribing information section, there is a contraindication for use in severe hepatic impairment as well as a precaution about use in patients with mild-moderate hepatic dysfunction. However, there is no information provided in the drug ad related to a dosing adjustment in patients with hepatic dysfunction. Choice E is an incorrect statement.
2. Consider the following statement: “Tazofect was proven to provide approximately double the PFS in carboplatin resistant NSCLC study participants over those receiving Tarceva® (erlotinib).” When evaluating the drug ad and highlights of prescribing information, which of the following provides the best evidence that this statement is inaccurate?

(A) Number of patients treated in the carboplatin resistant group for both drugs
(B) The calculation of months of PFS for the carboplatin resistant graph
(C) The confidence interval for the carboplatin resistant graph
(D) The p value for the carboplatin resistant graph
(E) The y axis data points for the carboplatin resistant graph

The correct answer is **C**. You are asked to evaluate a statement found on the main drug ad and then indicate what information provided in the drug ad invalidates this statement. Of all the answer choices, the data provided on the confidence interval for the carboplatin resistant graph provides the best evidence that the statement is inaccurate. A confidence interval gives an estimated range of values which is likely to include an unknown parameter (such as actual PFS), the estimated range being calculated from a given set of sample data. In the original statement, the drug company claimed that their drug (Tazofect) was proven to provide approximately double the PFS in carboplatin resistant NSCLC study participants over those receiving Tarceva® (erlotinib). However, the confidence interval provided with the carboplatin resistant graph contains the number 1. If the 95% confidence interval for a study includes 1.0, then there is >1 in 20 chance that random variation in outcome incidence among the study groups (Tazofect-study and erlotinib-control) is what produced the observed correlation between treatment and outcome. In the instance the p value is also likely to be >0.05. In summary if the confidence interval contains the relative risk of 1.00, the result is not significant. As discussed, this should also lead the reader to believe that the P-value (provided on the same graph, choice D) is also inaccurate. However, without the data seen with the confidence interval, the reader would have no way of suspecting that the provided P-value is also likely inaccurate. Therefore, choice C is the best answer.

In the key under the 3 graphs, it is stated that 103 Tazofect patients and 102 erlotinib patients were classified as carboplatin resistant. This is a sufficient number of patients in each group (**choice A**).

The statement makes reference to the number of months of PFS in the Tazofect group being “almost double” the erlotinib group in carboplatin resistant patients. The PFS for Tazofect is 8.6 months and the PFS for erlotinib is 4.8 months. This statement could have been phrased differently, but is not completely inaccurate (**choice B**).

When comparing the data points on the y-axes of the 3 graphs, the y-axis on the carboplatin resistant group was clearly manipulated so that a more “profound graphical representation” of the actual results is evident. Although this should cause the reader to question the integrity of the authors, choice C is still the best answer.
3. Shortly after Tazofect is released for use in the general population, the FDA and drug manufacturer begin to receive numerous reports of complete treatment failure in both carboplatin resistant patients and first line therapy patients as well as higher than expected percentages of adverse events in all patients. Which of the following is the most likely reason for these reports on Tazofect?

(A) Insufficient follow-up of study participants
(B) Insufficient information on adverse effects
(C) Insufficient information on drug indications
(D) Subject attrition
(E) Type II error was committed

The correct answer is choice D. In the question stem we are told that shortly after the drug is used in the general population there are reports of treatment failure in both carboplatin resistant patients and first line treatment patients. We are also told that higher-than-expected percentages of adverse events are occurring. The question is asking for the most likely cause of this occurrence. The most likely reason based on the data provided in the drug ad and highlights of prescribing information is subject attrition. Under the 3 graphs it is stated that “Of the 800 initial participants enrolled in the phase 3, randomized, double blinded multicenter trial, 225 (of 398) participants completed the study in the Tazofect group and 388 (of 402) participants completed the study in the erlotinib group.” Approximately half (225/398 participants) of the original Tazofect study participants never completed the trial. Furthermore, the authors did not provide an explanation as to why they did not complete the study. Is it likely that they did not complete the trial because of severe adverse effects and/or death?

Without knowing the reasons why the participants never completed the trial, it is difficult to evaluate the safety and efficacy of Tazofect in both first line therapy and carboplatin resistant patients. Also, it is quite possible that only a small percentage of the 103 participants in the carboplatin resistant arm of the study never completed the study. Without more information, it is hard for the reader to make a valid conclusion. In summary, the authors should have indicated why almost half of the study participants never completed the study; hence, the primary reason why these reports are occurring (due to treatment failures and increased adverse effect occurrence) is directly related to the circumstances surrounding the high level of subject attrition in this trial.

The phase 3 trial for Tazofect lasted in each patient until clinically significant disease progression occurred plus an additional 2 months unless mortality occurred. Furthermore, the average follow-up time for patients who completed the study was listed. The length of the study was sufficient to assess the effects it was designed to assess. Choice A is an incorrect response.

At the bottom of the highlights of prescribing information page of the drug ad, there is an extensive list of adverse effects and percentage of occurrence of each of these side effects. Hence, sufficient information on these adverse effects was provided. Choice B is an incorrect response. However, this information was based on the number of patients who completed the clinical trial. Since almost half of the study participants (in the Tazofect arm) never completed the trial, an accurate accounting of side effect appearance was not available. This is directly related to subject attrition.
At the top of the highlights of prescribing information page of the drug ad, it clearly states that “Tazofect (tanzopanib) is a kinase inhibitor indicated for first-line treatment of NSCLC with EGFR exon 19 deletions and EGFR exon 21 (L858R) substitution mutations in patients aged 18 years and older.” The drug is NOT indicated for use in carboplatin resistant patients. Although there is a graph on the first page of the drug ad and comments about proven effects, the drug ad never claimed that the drug was “indicated” for use in carboplatin patients. Choice C is an incorrect response.

A type II or beta error is where the researcher fails to reject the null hypothesis when it is really false. In other words, the researcher declared that there was no significant effect on the basis of the sample when there really is one in the population. The likely impact of this type of error is that the drug (Tazofect) would NOT obtain FDA approval and the general population would not receive this medication. Choice E is an incorrect response.
Pharmaceutical Ad 2

GluSense™ ... because it makes sense!

(Glulgilliflozin 75 mg, 150 mg and 300 mg tablets)

Diabetes is a complex disease ...
GluSense is a simple treatment measure with proven therapeutic outcomes!

- The clinical effects of GluSense (150-mg qd), metformin (1000 mg bid) and combination therapy (GluSense 150 mg qd + metformin 1000 mg bid) in patients with newly diagnosed type 2 diabetes who failed to meet glycemic goals with diet and exercise alone are presented above. The results were taken from a phase 3, randomized, double-blinded multicenter clinical trial.
- Each therapy was administered in conjunction with a structured diet and exercise program.
- A baseline A1c, body weight and systolic blood pressure reading were obtained at the onset of the trial and every 8 weeks during the trial. All participants were enrolled in the study for 12 months.
- Of the 1600 initial participants enrolled in the trial, 462 (of 510) participants in the metformin-only group completed the study, 358 (of 533) of the GluSense-only group completed the study, and 313 (of 577) in the GluSense + metformin group completed the study.
- The primary reason (as stated by the patient) for withdrawing from the study was unwanted side effects.

GluSense demonstrated greater reductions in A1c, weight loss & blood pressure than metformin alone at 52 weeks!
- GluSense is indicated for treatment of T2DM as monotherapy & in combination with metformin.
- GluSense has shown efficacy when used in conjunction with other oral hypoglycemic agents.

The treatment your T2DM patients have always needed is finally here!!

GluSense has been proven to:
- Reduce A1c in T2DM patients by an average of 3.4% as monotherapy (P<0.001) & in combination with metformin an average of 4.9% (P<0.002) – mean baseline A1c = 8.05%
- Reduce baseline weight in T2DM patients by an average of 3.1% as monotherapy (P<0.02) & in combination with metformin an average of 5.2% (P<0.03) – mean baseline weight = 182 lb (87.3 kg)
- Reduce baseline systolic blood pressure in T2DM patients by an average of 9.1% as monotherapy (P<0.006) & in combination with metformin an average of 9.6% (P<0.001) – mean baseline SBP = 177 mm Hg.

Additional product information provided below

GluSense demonstrated greater reductions in A1c, weight loss & blood pressure than metformin alone at 52 weeks!
- GluSense is indicated for treatment of T2DM as monotherapy & in combination with metformin.
- GluSense has shown efficacy when used in conjunction with other oral hypoglycemic agents.

The treatment your T2DM patients have always needed is finally here!!

GluSense has been proven to:
- Reduce A1c in T2DM patients by an average of 3.4% as monotherapy (P<0.001) & in combination with metformin an average of 4.9% (P<0.002) – mean baseline A1c = 8.05%
- Reduce baseline weight in T2DM patients by an average of 3.1% as monotherapy (P<0.02) & in combination with metformin an average of 5.2% (P<0.03) – mean baseline weight = 182 lb (87.3 kg)
- Reduce baseline systolic blood pressure in T2DM patients by an average of 9.1% as monotherapy (P<0.006) & in combination with metformin an average of 9.6% (P<0.001) – mean baseline SBP = 177 mm Hg.

Additional product information provided below
HIGHLIGHTS OF PRESCRIBING INFORMATION

Please see GluSense (glugliflozin) drug package insert for complete prescribing information.

Indications and Usage: GluSense (glugliflozin) is an SGLT2 inhibitor with insulin-sensitizing properties, indicated for the treatment of type 2 diabetes in conjunction with diet and exercise as monotherapy, and in combination with metformin in patients aged 18 years and older.

Mechanism of Action: Glugliflozin is an SGLT2 inhibitor with insulin-sensitizing properties. This agent has a dual mechanism of action. It acts by:
- Inhibiting the sodium-glucose cotransporter 2 (SGLT2), thereby reducing glucose reabsorption and increasing urinary glucose excretion
- Decreasing insulin in the periphery and liver, resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Glugliflozin is an agonist for peroxisome proliferator-activated receptor-gamma (PPARγ). Activation of PPARγ nuclear receptors in the liver, skeletal muscle, and adipose tissue modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism.
- Other: antagonizes peripheral alpha-1 adrenergic receptors

Pharmacokinetics
Glugliflozin has an elimination half-life of approximately 16 hours in patients with normal hepatic and renal function. Following oral administration of glugliflozin, Tmax occurs within 3 hours. Glugliflozin is extensively metabolized by hydroxylation and oxidation; the metabolites also partly convert to glucuronide or sulfate conjugates. Following oral administration of glugliflozin, approximately 15–20% of the drug dose is recovered in the urine.

Dosage and Administration: Treatment of type 2 diabetes in patients aged 18 years or older who have failed to meet glycemic goals with diet and exercise alone:
- Monotherapy: 150-300 mg PO qd; start at 75 mg PO qd and increase by 75 mg qwk; max dose 450 mg/day
- Combination with metformin: same as monotherapy and standard metformin dose of 2000 mg daily (in divided doses)

Contraindications: Type 1 diabetes mellitus, hypersensitivity to glugliflozin and/or sulfonamides; NYHA class III or IV heart failure, severe hepatic impairment, hyperkalemia, use with medications causing hyperkalemia and diabetic ketoacidosis

Warnings and Precautions: May cause hypoglycemia, hypotension, and AST/ALT elevation. Caution use in elderly patients with poorly controlled diabetes and patients with past history of cardiovascular disease.

Adverse Reactions (for a complete list, see drug package insert)

<table>
<thead>
<tr>
<th>Common (≥5%)</th>
<th>Less Common (<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperkalemia</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Hepatic dysfunction</td>
</tr>
<tr>
<td>Orthostatic hypotension</td>
<td>Thirst</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Fainting</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>Mental impairment</td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>Pancreatitis</td>
</tr>
</tbody>
</table>
Drug Interactions (see drug package insert)

Practice Questions

1. The data provided in the drug advertisement most strongly supports which of the following conclusions?

 (A) GluSense is a substitute for diet and exercise in type 2 diabetes due to its weight loss properties.
 (B) GluSense is recommended for use in patients with a history of myocardial infarction.
 (C) GluSense is safer to use in patients with type 2 diabetes than metformin.
 (D) The antihypertensive effects of GluSense are comparable to some currently available antihypertensive medications.
 (E) The combination use of GluSense and a sulfonylurea is recommended for those who initially fail sulfonylurea monotherapy.

 The correct answer is D. This type of question generally requires a process of elimination. The statement “The antihypertensive effects of GluSense are comparable to some currently available antihypertensive medications” is most strongly supported by the drug ad. Relevant information to support this statement can be found in several places: First in the table, GluSense is associated with 9.1% decrease in average systolic blood pressure. This percentage decrease is comparable to the diuretics, low-moderate doses of ACE inhibitors, alpha antagonists as well as varying doses of other drugs from different drug classes. Second, the mechanism of action section of the highlights of prescribing information states that this drug antagonizes peripheral alpha-1 adrenergic receptors. This is the same mechanism of action as drugs like terazosin and doxazosin. Finally, the side effects of the drug (orthostatic hypotension, dizziness, and tachycardia) also support its antihypertensive properties since these are side effects commonly seen in alpha antagonists. Hence, out of all of the answer choices, this statement is most strongly supported by the drug ad.

 There are several places which indicate GluSense is used in conjunction with diet and exercise, such as the key under the chart on the main ad page and in the Indications and Usage section in the highlights of prescribing information. Although the drug promotes weight loss, GluSense is not a substitute for diet and exercise (choice A).

 The Warnings and Precautions section states that GluSense should be used cautiously in patients with past history of cardiovascular disease. Furthermore, in Contraindications, it is stated that GluSense is contraindicated for use in patients with NYHA Class III or IV heart failure. Since myocardial infarction (choice B) is a form of cardiovascular disease and a common precipitating cause of heart failure, GluSense would not be recommended for use in these cases. GluSense may potentially be used “cautiously” in patients with a mild form of cardiovascular disease but is not “recommended.”

 The drug ad does not have a safety profile comparison between GluSense and metformin (choice C). The only related comparison between the drugs is the appearance of severe GI side effects leading to withdrawal from the study.

 The only statement relating to the use of GluSense and another drug is found in the main area of the drug ad: “GluSense has shown efficacy when used in conjunction with other oral hypoglycemic agents.” It does not specify the names or drug classes of the other agents (choice E). Furthermore, it does not provide any data to support this claim.
2. Of the initial trial participants, 175 persons from the GluSense-only group and an even large number from the GluSense and metformin group withdrew from the study. Which of the following is the most likely reason for participant withdrawal?

(A) Appearance of drug interactions
(B) Hypersensitivity to sulfonamides
(C) Severe hypoglycemia
(D) Severe hypotension
(E) Severe GI side effects

The correct answer is C. You are asked to determine the most likely reason why participants withdrew from the study. In the key under the graph on page 1, it states “The primary reason (as stated by the patient) for withdrawing from the study was unwanted side effects.” However, it is not stated what side effect caused them to withdraw. Therefore, you must determine the most likely reason based on information provided in the drug ad. The Adverse Reactions section of the highlights of prescribing information provides only a “partial” list of side effects with a percent occurrence above and below 5% so this section alone cannot be used to answer the question. The correct answer can be derived from the section on the bottom right of the main drug ad. It states that GluSense has been proven to reduce A1c in type 2 diabetes (T2DM) patients by an average of 3.4% as monotherapy (P<0.001) and in combination with metformin an average of 4.9% (P<0.002). The mean baseline A1c was 8.05% for study participants. If the mean baseline A1c was 8.05%, that means that some patients likely started with an A1c around 7%. Remember that an A1c 6% is an average daily glucose level of 126 mg/dL. If you lower this A1c by 3.4% (GluSense only) or 4.9% (GluSense + metformin), the resulting A1c levels are 3.6% and 2.1%, respectively. Since the A1c is a long-term average of the daily blood glucose levels, it is likely that this agent caused severe hypoglycemia in participants; hence, the likely reason for withdrawal from the study. Furthermore, it is stated that hypoglycemia is one of the most common adverse effects. Choice C is the best answer choice.

The drug ad does not specifically mention any problems with drug-drug interactions (choice A) in the clinical trial and there is a comment indicating that the reader should please see GluSense (glugliflozin) drug package insert for complete prescribing information. Based on this information, it is unlikely that drug-drug interactions are the primary reason for patient withdrawal.

The Contraindications section states that GluSense is contraindicated for use in patients with sulfonamide hypersensitivity (choice B). However, there is nothing which would lead the reader to believe this is the primary reason for withdrawal from the study.

The bottom right of the ad states that GluSense has been proven to reduce baseline SBP (systolic blood pressure) in T2DM patients by an average of 9.1% as monotherapy (P<0.006) and in combination with metformin an average of 9.6% (P<0.001). The mean participant baseline SBP was 177 mm Hg. Even if the starting blood pressure was 100 mm Hg, the patient would still not be hypotensive with a 9.6% drop in blood pressure. Note, too that orthostatic hypotension is listed as a common side effect, but with the information presented it is unlikely that it was the primary reason for patient withdrawal (choice D).

It is unlikely that severe GI side effects (choice E) were the primary reason for participant withdrawal since the table shows that the GluSense-alone arm had almost no withdrawals from study. GluSense also improved the GI side effect withdrawal rate for patients receiving metformin when the 2 medications were combined.
3. A 64-year-old man comes to the physician with complaints of increasing polyuria and polydipsia. His past medical history is significant for type 2 diabetes, hypertension, hyperlipidemia, and a myocardial infarction 4 years ago. Allergy history includes an anaphylactic reaction to levofloxacin. He is currently receiving metformin 1000 mg 2x daily, enalapril 10 mg daily, pravastatin 20 mg daily, and spironolactone 25 mg twice daily. Physical examination shows blood pressure of 126/82 mm Hg, heart rate 62/min, height 172.7 cm (5 feet, 8 inches), weight 88.6 kg (195 lb), and BMI 29.6.

Laboratory studies show:
- Blood glucose: 215 mg/dL
- A1c: 10.5%
- Albumin: 3.8 g/dL
- Creatinine: 1.3 mg/dL
- AST: 20 IU/L
- ALT: 22 IU/L
- Sodium: 138 mEq/L
- Potassium: 4.9 mEq/L
- Calcium: 9.6 mg/dL
- Ejection fraction: 66%

If the attending physician is considering the addition of GluSense to this patient’s medication regimen, which of the following is a contraindication for prescribing this medication?

(A) Allergy contraindication
(B) Cardiovascular contraindication
(C) Drug interaction contraindication
(D) Hepatic contraindication
(E) Renal contraindication
(F) There is no contraindication in this patient and the medication can be prescribed

The correct answer is C. You are being asked for the most likely reason to not prescribe this medication to a given patient. Therefore, you need to look for either an absolute or relative contraindication for prescribing this medication in the drug ad. The Contraindications section states that GluSense is contraindicated for “use with medications causing hyperkalemia.” The patient is currently receiving enalapril and spironolactone. Both of these medications are associated with the development of hyperkalemia. Furthermore, the patient’s potassium level is 4.9 mEq/L, which is at the high level of normal. The patient is likely to become hyperkalemic once starting this medication. Based on this information, a drug-drug interaction (choice C) between GluSense and both enalapril and spironolactone is the most likely contraindication for use of this medication in this patient. Choice C is correct and choice F is incorrect.

The patient has a history of anaphylaxis to the fluoroquinolone levofloxacin. Although GluSense is contraindicated for use in patients with a sulfonamide allergy, there is no allergy contraindication for using this medication in patients with a fluoroquinolone allergy (choice A).

The only cardiovascular contraindication (choice B) listed for GluSense is NYHA Class III or IV heart failure. This patient has a normal ejection fraction of 66% (normal 55-70%) so does not meet the cardiovascular contraindication criteria for this drug. Although the patient’s past history of myocardial infarction predisposes him to heart failure, the patient currently does
not have heart failure so there is no contraindication. However, there is a warning for use of GluSense in patients with cardiovascular disease. As indicated, this patient has a past history of a myocardial infarction as well as hyperlipidemia and hypertension. Therefore, this medication should be used cautiously in this patient. If GluSense is prescribed, the patient should be monitored closely but there is no cardiovascular contraindication for the use of this drug in this patient.

The patient has normal hepatic function (AST: 20 IU/L (normal <35 IU/L) and ALT 22 IU/L (normal <35 IU/L)); hence, there is no hepatic contraindication for using GluSense in this patient (choice D).

The patient has normal renal function (creatinine: 1.3 mg/dL (normal 0.5-1.4 mg/dL)); hence, there is no renal contraindication for using GluSense in this patient (choice E).
Part II ● Epidemiology and Ethics

Pharmaceutical Ad 3

Zzzkadia™
(Zlideplon 2.5, 5, 7.5 mg tablets)

The only orexin receptor antagonist with GABA_ABZ receptor modulator properties indicated for long-term treatment of insomnia!
- Indicated for long-term treatment of insomnia
- Shown to be non-addicting
- The most effective sedative/hypnotic available

ZzzKadia has been proven to:
- Increase mean total sleep times (TST) by 5.7 hours compared to 1.3 hours with suvorexant and 1.1 hours with zaleplon
- Significantly decrease sleep latency (SL) over both suvorexant and zaleplon
- Significantly decrease wake time after sleep onset (WASO) over both suvorexant and zaleplon

Most common side effects: headache, dizziness, lightheadedness, daytime drowsiness, somnolence, and nightmares

- The effects of ZzzKadia (5 mg HS), Suvorexant (10 mg HS) and Zaleplon (5 mg HS) were evaluated in participants age 35-70 with a DSM-5 diagnosis of insomnia disorder who have not previously used prescription sedative/hypnotics. The results were taken from a 16-week phase 3, randomized, double blinded multicenter clinical trial. Per protocol, patients were instructed to take 10 minutes prior to bedtime 5 times per week maximum.
- Of the 651 initial participants enrolled in the study 137 (of 222) ZzzKadia, 198 (of 220) suvorexant and 192 (of 209) zaleplon participants completed the study.
- Following the study, each of the medications was discontinued and 93% of all participants (who completed the trial) requested further treatment due to the reemergence of severe insomnia as well as side effects ranging from autonomic hyperactivity to psychomotor agitation to seizures.

Additional product information provided below

Increased total sleep time!

Improved daytime function!

SMILE Pharmaceuticals
Smile for life with SMILE Pharmaceuticals

- Improved daytime function!
HIGHLIGHTS OF PRESCRIBING INFORMATION

Please see ZzzKadia (Zlideplon) drug package insert for complete prescribing information.

Indications and Usage: ZzzKadia (Zlideplon) is an orexin receptor antagonist with GABA_Z receptor modulator properties indicated for first-line treatment of short-term insomnia and insomnia disorder (according to DSM-5 diagnostic criteria) in patients age 35 years and older.

Mechanism of Action: Zlideplon is an orexin receptor antagonist with GABA_Z receptor modulator properties. Specifically zlideplon is a selective dual antagonist of orexin receptors OX1R and OX2R that promotes sleep by reducing wakefulness and arousal. It also exerts its action through subunit modulation of the GABA_Z receptor chloride channel macromolecular complex. Zlideplon also binds to the brain omega-1 receptor located on the alpha subunit of the GABA-A/chloride ion channel receptor complex and potentiates t-butyl-bicyclopophosphorothionate (TBPS) binding. Zlideplon has an elimination half-life of approximately 10 hours in patients with normal hepatic function.

Dosage and Administration: Treatment of short-term insomnia and insomnia disorder in patients age 35 years and older with normal hepatic and renal function: 2.5-5 mg PO at bedtime. Maximum dose per day is 7.5 mg.

Contraindications: Hypersensitivity to zlideplon or sulfonylureas; abrupt discontinuation or use in patients with severe hepatic impairment.

Warnings and Precautions: Use caution in the patient who is sensitive to sulfonylureas; has a past history of depression or substance use disorder; drives or operates heavy machinery, or has altered CYP3A4 function (especially CYP3A4 poor metabolizers).

Adverse Reactions:

Common (>5%): orthostatic hypotension (25%), tachycardia (18%), headache (15%), dizziness (13%), lightheadedness (12%), daytime drowsiness (10%), hypotension (9%), somnolence (8%), decreased coordination (7%); memory impairment (5%) and nightmares (5%)

Less common (<5%): hepatotoxicity (2%), toxic epidermal necrolysis (1%), Stevens-Johnson syndrome (1%), diarrhea (1%), paresthesia (1%), and ocular pain (<1%)
Practice Questions

1. The data provided in the drug advertisement most strongly supports which of the following claims?
 (A) The dose of ZzzKadia should be adjusted in patients with hepatic dysfunction.
 (B) ZzzKadia improves daytime function.
 (C) ZzzKadia is indicated for long-term treatment of insomnia.
 (D) ZzzKadia is the most effective sedative/hypnotic.
 (E) ZzzKadia significantly decrease sleep latency (SL) over both suvorexant and zaleplon.

The correct answer is D. Of the 3 medications studied (ZzzKadia, suvorexant, zaleplon), ZzzKadia is significantly more effective than the other 2 agents in terms of total sleep time (TST) and wake time after sleep onset (WASO). These facts are supported by both the confidence intervals and p values provided.

In the prescribing information section, there is a contraindication for use in severe hepatic impairment as well as a precaution about use in patients with altered CYP3A4 function (especially CYP3A4 poor metabolizers). Although a dosage adjustment in patients with renal dysfunction is likely, there is no information provided in the drug ad related to a dosing adjustment in patients with hepatic dysfunction (choice A).

The side effects for this drug include headache (15%), dizziness (13%), lightheadedness (12%), daytime drowsiness (10%), somnolence (8%), decreased coordination (7%) and memory impairment (5%). There is no indication that this drug improves daytime function (choice B).

In the main drug ad it is stated that “the results were taken from a 16-week phase 3, randomized, double blinded multicenter clinical trial.” This timeframe does not constitute long-term efficacy (choice C). Furthermore, in the indications section of the prescribing information it is stated that ZzzKadia is indicated for the treatment of short-term insomnia and insomnia disorder (according to DSM-5 diagnostic criteria).

Choice E refers to the stated decrease in sleep latency (SL) over both suvorexant and zaleplon. This statement is false based on the confidence interval provided for SL. If the given confidence interval (for relative risk or odds ratio) contains 1.0 (as seen in the SL graph), then there is no statistically significant effect of exposure. If the confidence interval for an OR does not contain the number “1” then the following rules apply to the odds ratio:
 • If OR > 1, the exposure is associated with a higher risk of outcome
 • If OR < 1, the exposure is associated with a lower risk of outcome

2. Although not mentioned in the mechanism of action for ZzzKadia, this drug most likely has which of the following pharmacological properties?
 (A) Alpha 1 antagonist
 (B) Beta 1 agonist
 (C) Beta 2 antagonist
 (D) Muscarinic 2 agonist
 (E) Muscarinic 3 antagonist

The correct answer is A. You are being asked to determine the additional pharmacological effects of ZzzKadia, which is currently described as an orexin receptor antagonist with GABA_A receptor modulating properties. The best way to answer this question is to review the adverse effects and match several of these effects to the correct answer choice. Since most of the
CNS-related adverse effects are caused by interaction with the orexin and GABA receptors, the focus should be on the non-CNS related effects. The high incidence of orthostatic hypotension (25%), tachycardia (18%) and hypotension (9%) suggests that the drug has some cardiovascular effects. Of the answer choices, only alpha 1 antagonists (such as terazosin) would cause these cardiovascular effects.

Beta 1 agonists (choice B) are likely to cause increased heart rate, conduction velocity and force of contraction leading to hypertension (not hypotension).

Beta 2 antagonists (choice C) will block the beta-2 receptors found on blood vessels which are responsible for vessel dilation. Hence, blood pressure will not change or may increase.

Muscarinic 2 receptors are primarily located on the heart and when stimulated lead to decreased heart rate. However a muscarinic 2 receptor antagonist (choice D) will block these receptors leading to tachycardia and increased blood pressure secondary to the unopposed beta 1 receptor effects.

Muscarinic 3 receptors are non-innervated receptors located on blood vessels. Antagonism (choice E) of these receptors would cause not change in blood pressure since stimulation (via nitrous oxide endothelium-derived relaxing factor) leads to dilation.

3. Consider the following statement: “ZzzKadia has been shown to be non-addicting!” When evaluating the drug ad and highlights of prescribing information for ZzzKadia, which of the following provides the best evidence that this statement is inaccurate?

(A) Long drug half-life
(B) Presence of euphoric symptoms
(C) Presence of severe side effects
(D) Presence of withdrawal symptoms
(E) This is an accurate statement

The correct answer is D. You are being asked why ZzzKadia is likely an addictive substance with abuse potential. The first step is to understand the definition of abuse potential. According to the FDA, abuse potential refers to a “drug that is used in nonmedical situations, repeatedly or even sporadically, for the positive psychoactive effects it produces. These drugs are characterized by their CNS activity. Examples of the psychoactive effects they produced include sedation, euphoria, perceptual and other cognitive distortions, hallucinations, and mood changes. Drugs with abuse potential often (but not always) produce psychic or physical dependence (leading to withdrawal when substance is removed) and may lead to the disorder of addiction.”

In the main drug ad, the following is stated: “Following the study, each of the medications was discontinued and 93% of all participants (who completed the trial) requested further treatment due to the reemergence of severe insomnia as well as side effect ranging from autonomic hyperactivity to psychomotor agitation to seizures.” Based on this information and the FDA definition of abuse potential, when ZzzKadia is abruptly withdrawn physical side effects (including CNS effects) are seen.

Half-life and the presence of severe side effects (choices A and C) have no established impact on abuse potential.

Euphoric symptoms (choice B) are probably the most common reason why prescription and illicit drugs are abused. Euphoria is defined as an intense feeling of well-being, elation, happiness, excitement and joy. However, there are no euphoric symptoms listed in the adverse
effects of this drug. Pharmacologically-induced euphoria is most commonly seen with stimulants, opioids and cannabinoids.

4. A 42-year-old woman comes to the physician because of a persistent inability to fall asleep and/or stay asleep each night (4-5 nights per week) over the past 8-9 months. She states that she is continually exhausted during the day and her work as a pharmacist is "really suffering." She indicates that she normally works 3 shifts, 12 hours each, plus one 8-hour shift per week. She denies using alcohol or illicit drugs. Physical examination is normal. Based on the information presented in the drug ad for ZzzKadia, which of the following is the most appropriate initial statement to the patient?

(A) “Before I prescribe you a prescription medication for your insomnia, let’s try some natural remedies found at a local health and wellness store.”

(B) “I am thinking that ZzzKadia would be perfect for you. Although it does have some serious side effects, you are not likely to experience them due to your relatively young age.”

(C) “I do not recommend prescribing you any medication at this time since you do not have insomnia disorder.”

(D) “I do not recommend ZzzKadia for you; however, suvorexant or zaleplon may be an appropriate treatment option.”

(E) “ZzzKadia is a new drug that will be perfect for you; however, it does have some serious side effects.”

The correct answer is D. According to the DSM-5, the diagnostic criteria for insomnia disorder are as follows:

• Predominant complaint of dissatisfaction with sleep quality or quantity associated with 1 or more of the following: difficulty initiating sleep, difficulty maintaining sleep, or early-morning awakening with inability to return to sleep

• Sleep disturbance cause clinically significant distress or impairment in social, occupational or other important areas of functioning

• The sleep difficulty occurs at least 3 nights per week

• The sleep difficulty is present for at least 3 months

• The sleep difficulty occurs despite adequate opportunity for sleep

• The insomnia is not better explained by another disorder or is attributed to effects of a substance (drug abuse, medication).

Based on this information, the patient meets the DSM-5 criteria for insomnia disorder, which is commonly treated with pharmacological therapy. Although ZzzKadia is indicated for treatment of insomnia disorder (as seen in the Indications section), this drug would not be recommended for this patient since she works 12-hour shifts and the average total sleep time with ZzzKadia is 11.2 hours. Furthermore, the drug has a half-life of approximately 10 hours. Assuming that the patient was able to awaken earlier than 11.2 hours, the pharmacological effect (and CNS side effects) would likely be present in the patient while she was working in the pharmacy. However the average total sleep time with both suvorexant and zaleplon are 6.3 and 6.7 hours, respectively. Either of these medications (currently approved for insomnia by the FDA) would likely be an appropriate treatment option.

Choice A is incorrect since you would not see non-FDA approved medications on the exam.
PART III

Patient Safety and Quality Improvement
Clinical Applications of Patient Safety and Quality Improvement

Learning Objectives

- Define the principles of patient safety, system-based practice, and continuous quality improvement
- Recognize and classify the different types of medical error
- Describe the types of reporting systems which can identify and analyze medical errors

PRINCIPLES OF PATIENT SAFETY

Case: Within the past 2 years, a major tertiary care referral hospital experiences separate cases of a blood transfusion reaction due to incompatibility, 2 inpatient falls leading to significant injury, a wrong-site surgery, and a medication-dosing error resulting in a patient death.

• What is the most probable single underlying cause behind these medical errors?

 Systems failures due to the complexity of health care delivery

Health care is not a single system, but rather multiple systems which all interact. These clinical microsystems are defined as a group of clinicians and staff working together with a shared clinical purpose to provide health care for a population of patients. Individual health care organizations contain multiple microsystems which evolve over time. It is the complexity of these systems that predispose patients to harm from medical error.

Health care in the United States is capable of achieving incredible results for even the most severely ill patients. However, it does not do so reliably and consistently. Medical errors plague our health delivery systems. In 1999, the Institute of Medicine (IOM) estimated that 44,000–98,000 patients die each year in the United States from preventable medical errors; some of the more recent estimates report an even higher rate of death. This places health care as the third leading cause of death in the United States alone. In addition to the toll that this takes in the form of human suffering, medical errors also represent a significant source of inefficiency and increased cost in the health care system.
The causes of these adverse events are not usually from people intentionally seeking to harm patients, but rather from the complexity of the health care system together with the inherent capability for human error. The causes of these errors are varied and can include failures made in administering medication, performing surgery, reporting lab results and making a diagnosis, to name a few. The most severe of these medical errors are referred to as **sentinel events**. A sentinel event is an adverse event in which death or serious harm to a patient has occurred; it usually refers to an event that is not at all expected or acceptable (e.g., operating on the wrong patient or wrong body part, abduction of an infant from a hospital, patient suicide while admitted to the hospital). The choice of the word *sentinel* reflects the severity of the injury (e.g., amputation of the wrong leg) and the likelihood that investigation of such an event will reveal serious problems in current policies or procedures.

It is unacceptable for patients to suffer preventable harm caused by a health care system whose purpose is to provide healing and comfort. Improving patient safety is the responsibility of every health care professional and requires a comprehensive team effort. Collectively, health care needs to learn from past errors (e.g., root cause analysis) and develop systems of care which prevent future errors from harming patients (e.g., checklists, electronic health records, structured communication).

Systems in health care delivery can be redesigned to **make it difficult for health care personnel to do the wrong thing and easier for them to consistently do the right thing**.

UNDERSTANDING MEDICAL ERROR

Classifications of Medical Errors

Medical errors can be classified as **errors of commission** (doing something wrong) or **errors of omission** (failing to do the right thing). Errors of omission are more difficult to recognize than errors of commission, but are thought to represent a larger percentage of medical errors.

Examples are ordering a medication for a patient with a documented allergy to that medication (**error of commission**), or failing to prescribe venous thromboembolism prophylaxis for a patient undergoing hip replacement surgery (**error of omission**).

Case: A 47-year-old man presents to the outpatient clinic with complaints of shoulder pain and is diagnosed with arthritis. The clinician treating him administers a shoulder corticosteroid injection without reviewing the patient’s medication list prior to the procedure. The patient has been taking Coumadin for atrial fibrillation and develops hemarthrosis.

- Error classified as a **lapse or omission**

Lapses are missed actions or omissions (e.g., forgetting to monitor serum electrolytes in a patient undergoing diuresis for congestive heart failure). Lapses are not directly observable (i.e., you cannot directly ‘see’ a lack of memory). **Slips** are observed actions that are not carried out as intended (e.g., accidentally injecting a medication intravenously when it was meant to be given subcutaneously). **Mistakes** are a specific type of error brought about by a faulty plan or where the intended action is incorrect (e.g., performing a barium swallow on a patient with suspected esophageal perforation).
The figure below clarifies the relationship further.

Case: After an unexpected 3-hour delay in the operating room due to a problem in the electrical system, an operating room team rushes to get started in order to complete the scheduled elective procedures. The team elects not to perform the mandatory sponge count at the end of the first surgery in order to get the next case started sooner. The patient returns 2 weeks later with abdominal pain and is found on x-ray to have a retained foreign object (a sponge) in the abdominal cavity.

- Adverse event due to ‘violation’ in policy

Violations are conscious failures in adhering to policy or regulation. Violations differ from slips, lapses and mistakes because they are deliberate actions, i.e., intentionally doing something against the rules. Reasons for violations may include time constraints, unfamiliarity with policy, or motivation by personal gain. A health care professional may consider that a violation is well-intentioned; however, if it results in an adverse event it would still technically constitute a ‘violation’ rather than an error.

Case: A 65-year-old man presents to the emergency department with sudden epigastric pain. He has a history of alcoholism, and the treating physician suspects a diagnosis of pancreatitis. Despite the fact that the patient denies alcohol use for several years, has normal blood levels of pancreatic enzymes, and has an abnormal EKG, he is treated for pancreatitis and the actual diagnosis of myocardial infarction is delayed.

- Error due to ‘anchoring bias’

Anchoring bias describes when a clinician relies on and clings steadfastly to the initial diagnostic impression, despite subsequent information to the contrary. In many cases the features of a patient’s presentation allow the clinician to make a correct initial diagnostic impression; however, in certain cases subsequent developments in the patient’s course will prove inconsistent with the first impression. Anchoring bias refers to the tendency to hold on to the initial diagnosis, even in the face of disconfirming evidence.
Case: A 33-year-old woman with a breast lump is asked if it is tender. When she says that it is tender, the clinician concludes that the diagnosis is a cyst. No further history is obtained and the clinician fails to realize there has been an increase in size, associated adenopathy and fixation to the chest wall (hence the tenderness), all suggesting breast cancer.

- Error due to ‘confirmation bias’

Confirmation bias may accompany anchoring, and refers to the tendency to focus on evidence that supports an initial diagnosis, rather than to look for evidence that refutes it or provides greater support to an alternative diagnosis.

Case: A 24-year-old sexually active woman is seen by her ObGyn physician for complaints of abdominal pain. She is evaluated briefly and treated for a UTI without any other tests being performed. The next day, the patient presents to the emergency department and is diagnosed with a ruptured appendicitis.

- Error defined as ‘premature closure’

Premature closure is acceptance of a diagnosis before it has been fully vetted by considering alternative diagnoses or searching for data that contradict the initial diagnosis. In this case the physician finds a cause that fits the clinical picture and ceases to search for other diagnostic possibilities.

Case: A 4-week-old infant is brought to the emergency department by his parents after he develops an episode of emesis with an observed period of apnea. Three other infants were seen there earlier this week with the flu. The infant is discharged home with instructions for flu management, but the parents return with him later, reporting that he had another episode of apnea. The patient is further evaluated and subsequently transferred to the children’s hospital with the clinical diagnosis of apnea from gastroesophageal reflux.

- Cognitive error classified as ‘availability bias/heuristic’

Availability bias/heuristic is the tendency to make the diagnosis of a current patient biased by recent or vividly recalled cases or events, rather than on prevalence or probability.

Case: During her third visit to an outpatient clinic for shortness of breath, a 57-year-old woman with previously documented pneumonia is treated with antibiotics and sent home. She later presents to the emergency department with exacerbation of dyspnea and is admitted to the medical service, where she is found to have hypoxia from heart failure.

- Error due to ‘diagnosis momentum’
Diagnosis momentum is a bias that occurs when the diagnosis considered by one clinician becomes a definitive diagnosis as it is passed from one clinician to the next; it then becomes accepted without question by clinicians down the line. It is the medical equivalent of “following the crowd.”

Case: A patient with a known heroin addiction presents with abdominal pain. The treating physician assumes the pain to be a sign of opiate withdrawal and manages the patient accordingly with admission to the inpatient med-psychiatry ward. Later during the hospital stay the patient’s pain increases and he develops peritonitis from a missed bowel perforation.

- Error related to ‘framing effects’

Framing effects: Diagnostic decision-making unduly biased by extraneous and collateral information. This can lead to diagnostic error by allowing the way the story is framed to influence the diagnosis.

Human Factors that Cause/Influence Medical Errors
An understanding of medical error requires comprehension of the personal situations and factors associated with the risk of error. Human beings have limited memory and attention capacity. People can make errors when distracted or overtasked. The risk of error is exacerbated by conditions of fatigue, stress, and illness.

Case: A 9-year-old-boy is admitted to the pediatric oncology service for the treatment of a hemolytic malignancy, and is started on chemotherapy ordered from the pharmacy. The hospital pharmacist is working a double shift because 2 other pharmacists called in sick. The hospital is particularly busy and the pharmacist has not had a break all day. He accidentally sends the wrong dose of chemotherapy to the floor, after which the patient develops a hypotensive reaction. The patient is successfully resuscitated with fluids and supportive care.

- What factors likely contributed to this adverse patient event?
 Poor working conditions and fatigue

The risk of medical error is increased when health care professionals work under less than ideal circumstances, especially when well-designed safety systems are not in place. Poor working conditions include:

- Lack of supervision
- Time pressures
- Poor safety procedures (e.g., lack of safety policies)
- Poorly designed human-equipment interfaces (e.g., infusion pumps that are difficult to program)
- Inadequate information (e.g., missing or outdated labs, illegible written orders, failure to communicate a critical change in patient status, language barriers)
A helpful acronym which can be used by health care providers to assess their suitability to provide patient care is IM SAFE.

- Illness
- Medication
- Stress
- Alcohol
- Fatigue
- Emotion

The following actions have been demonstrated to limit errors caused by human factors.

- Avoid reliance on memory or vigilance.
- Simplify processes when possible.
- Standardize common procedures and processes.
- Routinely use checklists.

SYSTEMS-BASED PRACTICE

Lessons from high-reliability organizations (e.g., aviation, nuclear power plants) emphasize the importance of approaching errors on a systems level rather than a personal level with blame. It is easier to redesign the conditions under which people work than to attempt to change fallible human nature. When a system fails (i.e., medical error occurs), the immediate question should be *why did it fail*, not ‘who caused it to fail.’

A classic example of a systems-based approach to patient safety is the removal of concentrated potassium from general hospital wards. This action was intended to prevent the inadvertent preparation of IV solutions with concentrated potassium, an error that had produced small but consistent numbers of deaths for many years. This particular approach is called a ‘forcing function,’ where the system is redesigned in a way that forces an individual to avoid making the error due to process design, rather than relying on individual memory. Think of a car that won’t allow you to start the engine unless your foot is on the brake.
The “Swiss-cheese model of error” (James Reason, 1991) helps to identify the multiple factors that can often contribute to an error resulting in patient harm.

The layers represent barriers which prevent human error from causing patient harm. In a perfect world, these defenses would be impenetrable and patients would always be safe. In reality, these defenses have holes (hence, ‘Swiss cheese’), which represent latent hazards (e.g., poor system design, lack of supervision, equipment defects). Occasionally the holes line up and a patient is injured.

Patient harm can be avoided by building systems with successive layers of protection (e.g., awareness, alarms, policies) and removal of latent errors (i.e., plug the holes).

Case: A 45-year-old man presents for treatment of acute sinusitis. He is prescribed antibiotics, after which he suffers a severe allergic reaction requiring hospitalization. Despite attempts of resuscitation, the patient sustains a cardiac arrest and dies. Later review of his medical record reveals a documented allergy to the antibiotic that was prescribed.

- How do we learn from this event to prevent a similar occurrence in the future?

Error disclosure and analysis
An example of the “Swiss cheese model” follows below.

This example details a medication error. The patient’s medication allergy is not obtained in the initial history, thus leading to the wrong medication being prescribed by the clinician, filled by the pharmacist, and administered by the nurse. The final result is the patient’s death.

Applying ‘systems-thinking’ here, the question to be addressed is, “How can the system be redesigned so it is able to absorb the error before it reaches the patient?”

A systems-based redesign seeks not to remove the possibility of error, but rather to create/reinforce barriers to harm. For this case, one example would have been to implement a computer physician order entry (CPOE) based on the patient’s electronic health record, which
could have alerted the prescriber and pharmacist to the allergy. Even if the prescriber somehow ignores the CPOE alert, an additional system in pharmacy serves as a back-up to prevent the medication error.

Disclosure of Medical Errors
Known medical errors should be openly disclosed to the affected patient or their families. During error disclosure, it is crucial to prepare the appropriate environment for disclosure. Be sure to arrange to have the proper time, place, and people involved, including arrangement of follow-up care and psychosocial support.

Case: A 29-year-old man is brought to the emergency department after falling from a ladder. He is evaluated in the trauma bay and subsequently admitted to the hospital with a bilateral calcaneal fracture and stable L4/L5 compression fracture of the spine. The nurse notices that the blood pressure cuff used on the patient had blood stains on it from a prior patient treated for a motor vehicle collision. The prior patient was known to have hepatitis C. Somehow the cuff was not changed or cleaned before being used on the new patient, thus potentially exposing him to hepatitis C.

- What information should be conveyed to the patient who was exposed?

An error disclosure should include the following 3 elements:
1. Accurate description of the events and their impact on the patient
2. Sincere apology showing care and compassion
3. Assurance that steps are being taken to prevent the event from happening in the future

Often the most senior physicians responsible for the patient and most familiar with the case will make the official disclosure.

QUALITY IMPROVEMENT PRINCIPLES
Only 5% of patient harm is directly due to individual incompetence or poor intentions. People need to be accountable, but system-based changes are needed to truly transform care. Blaming individuals and taking punitive actions for honest mistakes/errors do little to improve the overall safety of the health system. The most effective approach is to find out how the error happened, rather than who did it, and then fix the system to prevent a similar error from causing harm to patients in the future.

Case: An 82-year-old man has a lumbar epidural catheter placed as part of his anesthesia for an elective hip replacement. The orthopedic team places the patient on anticoagulation for venous thromboembolism prophylaxis. Following surgery, the anesthesia resident removes the epidural catheter, unaware that the patient is still receiving anticoagulation. Two days later, the patient develops an epidural hematoma and sustains paraplegia.

Note
Be aware of the other victims of medical error: the health care professionals involved in the adverse event. Studies report that these individuals often have strong feelings of self-doubt, shame, and fear, and in fact directly blame themselves for the event. Without the proper support, this can lead to significant depression, and in extreme cases, suicide. It is important to support colleagues who have been involved in medical error and to seek counseling and support if you yourself have been involved in an adverse event leading to significant patient harm. As much as possible, the goal is to learn from the error and move on.
• What should be done with the intern to improve safety in the future?

Find out how the intern made this error (i.e., how the system allowed the error to occur and result in harm to the patient) and then fix the system to prevent a similar error from causing injury to patients in the future.

Error Reporting
Collecting data on medical errors is essential for improving patient care. Reporting errors provides this data and allows opportunities to improve care by learning from failures of the healthcare system. Error reporting is facilitated by

• Anonymous reporting
• A simple and easy-to-use system
• Timely feedback
• Absence of punitive actions

Note that while ‘near misses’ do not necessarily need to be disclosed to patients, they should be reported to the system so they can be studied and used to inform system changes. It is important to prevent what was a ‘near miss’ this time from potentially harming a patient in the future.

Root Cause Analysis
“Root cause analysis” (RCA) is a retrospective approach to studying errors. It allows a team to identify problems in the system or process of care. It should be conducted by a knowledgeable team (consisting of representatives from all the specialties/professions involved in the event), focus on systems/process analysis rather than individual performance, and identify potential improvements that can be made to reduce the chance of similar errors in the future.

Case: A 16-year-old patient goes into labor and is admitted to the hospital for delivery. During the process of her care, an infusion intended exclusively for the epidural route is erroneously connected to the peripheral IV line and infused by pump. Within minutes, the patient experiences cardiovascular collapse. A cesarean section results in the delivery of a healthy infant, but the medical team is unable to resuscitate the mother.

• Describe an effective approach to studying this error so that future cases of patient harm are prevented.

Root cause analysis
The process of root cause analysis is often supported by the creation of a fishbone diagram (also known as a ‘Cause and Effect’ or Ishikawa diagram) is used to explore all the potential causes that result in a poor outcome. An example is as follows:

Patient Characteristics
- Young age of patient
- Primigravida
- Nonfunctioning medication barcoding system
- Lack of clear limits for clinical staff work hours

Task Factors
- Lack of protocol for retrieval and administration of epidural meds
- Casual attitude about use of epidurals
- Tacit tolerance for delayed placement of patient identification band

Individual Staff
- Nurse distractions
- Nurse fatigue
- Poor communication between obstetricians, anesthesia, and nursing staff

Work Environment
- Maternal Death

Organizational & Management Factors
- Lack of protocol for retrieval and administration of epidural meds

In the case presented here, systemic problems identified by the RCA would include medications being kept in the room, communication problems, inexperienced staff, and technology failures. Many solutions are then generated, including the use of barcode scanning and changing the current medication ordering and dispensing policy. Another consideration would be to add a ‘forcing function,’ by redesigning the Luer lock on the epidural bag so it is unable to be connected to an IV line.

Failure Mode and Effects Analysis

The Failure Mode and Effects Analysis (FMEA) is a systematic tool that allows practitioners to anticipate what might go wrong with a device, product or process; determine the impact of that failure; and determine the likelihood of failure being detected before it occurs. Unlike the retrospective nature of RCA, the FMEA is a proactive approach to patient safety. It produces a risk priority number (RPN) based on the probability and relative impact of a failure. The higher the RPN, the higher the priority for corrective action.

\[
RPN = \text{severity of the effect} \times \text{probability of occurrence of the cause} \times \text{probability of the detection}
\]

For example: inadvertent esophageal intubation during elective surgery can severely affect patient outcome (rating of 10), but it has a low level of occurrence (2) and can be detected fairly easily (3).

Therefore, RPN for this failure mode = \(10 \times 2 \times 3 = 60\).
BUILDING A SAFER HEALTH SYSTEM

In 2001 the IOM provided 6 aims to improve patient safety and quality; health care should be Safe, Timely, Equitable, Efficient, Effective, and Patient-centered (STEEEP). Basic concepts for building a health care system that achieves these aims include:

• Standardize care whenever possible
• Reduce reliance on memory (e.g., using checklists for important steps)
• Use system-based approaches to build safety nets into the health care delivery process to compensate for human error
• Openly report and study errors (e.g., using RCA to learn from error)
• Engage with patients (i.e., patient education is a powerful tool for safety)
• Improve communication and teamwork

Surgery

Patient safety in surgery is similar to patient safety in non-surgical settings and involves many of the same issues including medication error, hospital-acquired infection (HAI), and readmissions. It also includes some errors specific to procedures including wrong-site surgery, retained foreign objects, and surgical site infections.

A wrong-site procedure is an operation or procedure done on the wrong part of the body or on the wrong person. Another variation of this adverse event is performing the wrong procedure on a patient. Wrong-site procedures are rare and preventable, but they do still occur. Using a standard system to confirm the patient, site, and intended procedure with the medical team and patient before the procedure starts is a widely employed method of reducing or eliminating these types of errors.

Case: A 59-year-old man with unresectable lung cancer presents to the emergency department with acute shortness of breath. A chest radiograph demonstrates a right sided malignant pleural effusion. The thoracic surgeon intending to drain the pleural effusion mistakenly places the chest tube on the left side after reading an x-ray of another patient. Post-procedure chest x-ray shows a persistent pleural effusion on the right lung. A second chest tube is then placed, this time in the patient’s right chest. The patient remains stable and his breathing improves. The left chest tube is removed after confirmation that there is no air leak. There are no further sequelae.

• What is one way this adverse event could have been prevented?
 Pre-procedure checklist or team brief

A team of researchers and safety experts supported by the World Health Organization’s “Safe Surgery Saves Lives” program developed a surgical safety checklist designed to improve team communication and consistency of care with the intent of reducing complications and deaths associated with surgery. The premise of the safe surgical checklist is that many common surgical complications are preventable. Implementation of the checklist was associated with significant reductions in the rates of death and complications including wrong-site surgery.
Among other benefits, the surgery checklist helps ensure appropriately administered antibiotic prophylaxis which reduces the incidence of surgical wound infection. The timing of antibiotic administration is critical to efficacy.

- The first dose should be given preferably within 30 minutes before incision.
- Re-dosing at 1 to 2 half-lives of the antibiotic is recommended for the duration of the procedure.
- In general, postoperative administration is not recommended.

Antibiotic selection is influenced by the organism most likely to cause a wound infection in the specific procedure.

Common Elements of the Safe Surgery Checklist

- Confirm patient identity, planned procedure and marking of site
- Review patient allergies
- Ensure necessary equipment is present (e.g., pulse-oximetry)
- Introduce team members to each other
- Review critical steps of the procedure
- Address need for preoperative antibiotics
- Determine airway risk
- Determine estimated blood loss

Medications

Medication errors occur when a patient receives the wrong medication or where the patient receives the right medication but in the wrong dosage or manner (e.g., medication given orally instead of IV, or correct medication given at the wrong time). These errors represent one of the most common causes of preventable patient harm.

Case: A 54-year-old woman (Susan Jones) is admitted to the hospital and diagnosed with metastatic breast cancer for which chemotherapy is administered. During her hospitalization she mistakenly receives an anticoagulation medication intended for the woman next to her in the room who has a similar name (Suzanne Jonas). The mistake is recognized after the first dose and the medication discontinued without any complications. Later during the same admission, she is inadvertently given an overdose of a narcotic when the verbal order for pain medication is administered intravenously instead of orally. She experiences lethargy and hypotension which resolve with supportive care during a brief stay in the ICU.

- What are the risk factors contributing to the occurrence of these medication errors?

Several factors can increase the risk of medication errors:

- Inadequate confirmation of patient identity prior to medication administration
- Look-alike and sound-alike (rifampin/rifaximin) medications
Part III ● Patient Safety and Quality Improvement

- Look-alike medications
- Illegible handwritten prescriptions/orders can result in a pharmacist or nurse administering the wrong drug or wrong dose of medication
- Use of certain abbreviations can result in misinterpretation of the order

The Joint Commission created a “Do Not Use” list of abbreviations for health professionals.

Official “Do Not Use” List

<table>
<thead>
<tr>
<th>Do Not Use</th>
<th>Potential Problem</th>
<th>Use Instead</th>
</tr>
</thead>
<tbody>
<tr>
<td>U, u (unit)</td>
<td>Mistaken for “0” (zero), the number “4” (four) or “cc”</td>
<td>Write “unit”</td>
</tr>
<tr>
<td>IU (International Unit)</td>
<td>Mistaken for IV (intravenous) or the number 10 (ten)</td>
<td>Write “International Unit”</td>
</tr>
<tr>
<td>Q.D., QD, q.d., qd (daily)</td>
<td>Period after the Q mistaken for “I” and the “O” mistaken for “I”</td>
<td>Write “daily”</td>
</tr>
<tr>
<td>Q.O.D., QOD, q.o.d, qod (every other day)</td>
<td>Mistaken for each other</td>
<td>Write “every other day”</td>
</tr>
<tr>
<td>Trailing zero (X.0 mg)*</td>
<td>Decimal point is missed</td>
<td>Write X mg</td>
</tr>
<tr>
<td>Lack of leading zero (.X mg)</td>
<td></td>
<td>Write 0.X mg</td>
</tr>
<tr>
<td>MS</td>
<td>Can mean morphine sulfate or magnesium sulfate</td>
<td>Write “morphine sulfate”</td>
</tr>
<tr>
<td>MSO4 and MgSO4</td>
<td>Confused for one another</td>
<td>Write “magnesium sulfate”</td>
</tr>
</tbody>
</table>

*1 Applies to all orders and all medication-related documentation that is handwritten (including free-text computer entry) or on pre-printed forms.

Source: jointcommission.org
The “5Rs” describe a strategy used to help prevent medication error by confirming the following 5 items prior to administering any medication.

- Right drug
- Right patient
- Right dose
- Right route
- Right time

Performing medication reconciliation (a review of the patient’s complete medication list during any transition of care) is also intended to prevent inadvertent inconsistencies in the medication regimen.

Other systems changes that have saved countless lives:

- Removal of high-risk medications from certain clinical settings
- ‘Unit dose administration,’ in which medications packaged in ready-to-use units are prepared by the pharmacy and delivered to the clinical floor (this practice has resulted in fewer medication errors compared with having nurses perform mixing and dispensing on the floor)

The integration of information technology has also helped to reduce medication errors. Studies have shown that Computerized Physician Order Entry (CPOE) is an effective means of reducing medication error. It involves entering medication orders directly into a computer system rather than on paper or verbally. CPOE can decrease prescribing errors by automatically alerting the prescriber or pharmacist to allergies, potential drug-drug interactions or an incorrect dose.

Other technologies that have been designed to improve medication errors include barcoding to confirm correct patient identity and smart-pumps to prevent inappropriate dosage of IV medications.

Infections

Hospital-acquired infections (HAI) can be avoided. They are preventable, adverse events which may be caused by failing to adhere to evidence-based prevention strategies. Common HAIs include UTI (most common 35-40%), hospital-acquired pneumonia/ventilator-acquired pneumonia (15-20%), surgical site infection (20%), and central line infection (10-15%).

Case: A 42-year-old man has surgery to repair a right inguinal hernia. His post-operative course is complicated by excessive post-op pain requiring IV narcotics. Ten hours after surgery he develops pubic pain. He has not voided since before surgery. A bedside ultrasound confirms a distended bladder indicating acute urinary retention. A urinary catheter is placed by a new nurse who is not familiar with sterile technique. The catheter immediately yields 800 cc of urine and the patient’s pubic pain resolves. The patient requests to have the catheter left in place over the next 2 days. On post-operative day 3 the patient develops a fever to 101°C. A urine analysis and culture reveal an acute urinary infection.

- What steps can be taken to reduce the likelihood of this complication?

(Read suggestions that follow.)
The Comprehensive Unit-based Safety Program to reduce catheter-associated UTIs was a national program supported by the Agency for Healthcare Research and Quality and the Health Research and Educational Trust. Some suggestions from the program on how to reduce UTIs include:

- Minimized indwelling catheter use by using other urine collection means
- Regular use of infection-prevention techniques for catheter placement and maintenance
- Training on urinary management for all care team members
- Daily checks on patients who have a catheter and whether they need it
- Feedback to doctors and nurses about their unit’s catheter use and UTI rates

There are some common approaches that can help to reduce other HAI:

- Hand washing
- Use of sterile technique
- Use of preoperative prophylactic antibiotics (SSI)
- Elevating the head of the bed (ventilation associated pneumonia)
- Following evidence-based protocols for central line placement
 - Hand washing prior to procedure
 - Wearing a cap, mask, sterile gown and gloves
 - Preparation of site with chlorhexidine
 - Use of sterile barrier
 - Removal of the line as soon as possible

Pressure Ulcers

Pressure, or decubitus, ulcers are often preventable. Approaches to avoid this complication include performing risk assessments to identify vulnerable patients (e.g. paraplegics, diabetics, malnutrition, immobility, etc.).

Case: A 65-year-old woman with type 2 diabetes and BMI 44 is being treated in the hospital for diabetic ketoacidosis. She has a urinary catheter in place to monitor urine output and does not get out of bed to go to the bathroom. She has refused ambulation or getting out of bed to a chair due to feeling very fatigued. Later during the hospital stay she develops a fever. Physical exam reveals a stage III infected decubitus ulcer over the sacral prominence.

- How could this complication have been prevented?

 By using decubitus ulcer prevention methods

Preventive activities for high-risk patients include:

- Daily inspection of skin
- Appropriate skin care
- Frequent repositioning
- Use of pressure-relieving surfaces (e.g., airbeds)
Patient Falls
Patient falls are a common cause of injury, both within and outside of health care settings. More than one-third of adults over 65 fall each year. Injuries can include bone fractures and head injury/intracranial bleeding, which both can lead to death.

Case: A 70-year-old woman is admitted to the nursing home after being treated in the hospital for a hip fracture sustained during a fall at home. She had an intramedullary nail placed and is currently able to ambulate with a walker. In addition to her hypertension medication, anxiolytic, dementia pills and a beta-blocker, she also takes post-operative pain medication every 4-6 hours. The patient was also placed on warfarin for DVT prophylaxis. On her way to the bathroom at night, she slips and falls, sustaining a head injury and significant intracranial hemorrhage.

• What steps can be taken to reduce the risk of serious injury from a fall?

Fall risk assessment and preventive interventions

Performing a fall risk assessment will help to select patients who can benefit from preventative resources (e.g. one-to-one observation, non-slip flooring, lowering the bed height). It is important to identify patients at high risk of sustaining serious injury from a fall. The following are known risk factors for patient fall:

• Advanced age (age >60)
• Muscle weakness
• Use of >4 prescription medications
• Impaired memory
• Difficulty walking (e.g., use of a cane or walker).

Unplanned Readmissions
Unplanned hospital readmissions following discharge are recognized as a serious cause of decreased quality and often result from complications or poor coordination of care. Improving communication, reinforcing patient education, and providing appropriate support to patients at risk for readmissions are all strategies to reduce unplanned readmissions.

Case: A 79-year-old patient is admitted to the cardiology service and treated for acute CHF. He is started on a new medication regimen including a diuretic which relieves his symptoms and improves his cardiac function. He is discharged home, though he returns to the hospital 10 days later with another episode of CHF. During the readmission, the team notices that the patient never filled his new prescriptions and was not taking the prescribed diuretic while at home.

• What actions can be taken to prevent this from happening again?
Recommendations to improve the discharge process and prevent readmissions are as follows:

- Provide timely access to care following a hospitalization
- Communicate and coordinate care plan with patients and other members of the care team
- Improve the discharge planning and transition processes
- Ensure patient education and support to optimize home care

Teamwork

Providing safe health care relies on health care professionals working together as a team. Well-functioning teams deliver higher quality and safer care. The need for improved teamwork has led to the application of teamwork training principles, originally developed in aviation, to a variety of health care settings. Simple changes to behavior and culture have had a profound impact on the culture of teamwork and safety in patient care.

Case: A resident responds to a cardiac code 10 minutes late because he was not aware that he was on code-duty. Upon arrival the patient is actively having chest compressions performed by a physician assistant. A nurse brings in the cardiac arrest cart and a respiratory technician places an oxygen mask on the patient and begins bag-mask ventilation. The resident asks for a blood pressure and heart rate to be checked. The respiratory tech and physician assistant both attempt to find a pulse on the patient’s wrist, interrupting chest compressions and ventilation. The nurse simultaneously lowers the bed to place electrodes for an ECG which makes the oxygen mask fall off to the floor. The ECG demonstrates ventricular fibrillation and the resident calls to “shock the patient.” No one is certain how to work the defibrillator. The patient expires.

- How can teamwork be improved to achieve a better outcome during the next cardiac code?

Effective teams share the following characteristics:

- Common purpose/shared mental model
- Measurable goals
- Effective leadership
- Effective communication
- Mutual support
- Respect the value of all team members

Briefs and **huddles** are effective tools for teamwork. The team *brief* is used for planning and is a short ‘time-out’ prior to starting the delivery of care in order to discuss team formation, assign essential roles, establish expectations and climate, and anticipate outcomes and likely contingencies. The *huddle* is used for team problem-solving, and is performed on an ad hoc basis to reestablish situational awareness, reinforce plans already in place, and assess the need to adjust the plan.
Clinical Communication Skills

Communication failures have been identified as a root cause in the majority of serious patient safety events. Patient safety and quality in health care improve when physicians communicate effectively with colleagues, patients, and families. Several techniques have been developed to enhance clinical communication skills.

Case: A 25-year-old woman is admitted to the ICU following a motor vehicle collision, during which she sustained a significant head injury. She is intubated and monitored for increased ICP. The nurse coming on the night shift notices that the patient’s pupils are dilated, and she is uncertain if this is a change in the patient’s status. The nurse pages the resident on-call to see the patient. The resident evaluates the patient but does not speak with the nurse and is not aware of the nurse’s concern of a change in status. No intervention is taken. The following morning during rounds the neurosurgical team finds the patient brain dead from herniation.

• How could communication be improved to prevent this error?

SBAR is a form of structured communication first developed for use in naval military procedures. It has been adapted for health care as a helpful technique used for communicating critical information that requires immediate attention and action concerning a patient’s condition.

The following is an example of SBAR communication:

- **Situation:** What is going on with the patient? “I am calling about Mr. Smith in room 432 who is complaining of shortness of breath.”
- **Background:** What is the clinical background or context? “The patient is a 67-year-old man post-operative day 1 from a left total hip replacement. He has no previous history of pulmonary or cardiac disease.”
- **Assessment:** What do I think the problem is? “His breath sounds are decreased bilaterally and his oxygenation is only 87% on room air. He was getting IV Ringer’s lactate at a rate of 150 cc/hour, in addition to 5 liters fluid replacement and 4 units of blood in the operating room. I would like to rule out acute pulmonary congestion from fluid overload.”
- **Recommendation:** What would I do to correct it or what action is being requested? “I’ve already started supplemental oxygen and I feel strongly that the patient should be assessed for pulmonary overload, his fluids stopped and potentially given a diuretic. Are you available to come in?”

Case: During resuscitation of a cardiac code, the physician running the code determines that epinephrine should be given intravenously. The nurse involved in the code starts an IV, but since no order was given, does not administer the epinephrine. The doctor mistakenly assumes that the drug was administered and that it was not effective in reviving the patient. Precious time is lost until it is realized that no medication has been given.

• What communication technique can be used to avoid this error?
A call-out is a strategy used to communicate important or critical information. The goals of a call-out are to inform all team members simultaneously during team events, help team members anticipate next steps, and help create a shared mental model.

Case: A hospital lab technician phones a nurse to inform him of a critical serum calcium value in one of his patients. The nurse mistakenly hears a different number and believes the calcium to be only mildly elevated. The patient develops a symptomatic arrhythmia and requires transfer to the ICU for further appropriate care.

• How can techniques in effective communication be used to prevent this error?

Check-back

A read-back or check-back is a communication technique commonly used in the military and aviation industry and is now increasingly employed in health care to guard against miscommunication. Safety organizations encourage health care professionals to make a routine practice of reading back verbal orders or critical labs to ensure accuracy.

Case: During a clinical rotation on the pediatric ICU, you are invited by the chief resident to observe the operative repair of a congenital heart lesion in the pediatric cardiac surgery operating room. When you arrive in the OR the patient is already intubated and anesthetized, and procedures are underway to prep the patient for surgery. During the start of the case you see that an operative team member inserts the urinary catheter with a clear breach in sterile technique. This is neither noticed by the team member inserting the catheter nor mentioned by anyone else in the room. Being new to this setting, you are unaware whether different practices for sterile insertion are used in pediatric patients.

• What would you do to address your concern?

Critical language is a form of assertive structured communication which provides key words that enable members of the team to speak when patient safety concerns arise. These key phrases are uniformly understood by all to mean “stop and listen to me; we have a potential problem.” The acronym CUS is used to remember these key words.

• “I’m concerned”
• “I’m uncomfortable”
• “I think this is a safety issue”

Speaking up for patient safety is the responsibility of every member of the health care team. It is important to speak up for the patient. It may be intimidating to speak up when you are the most junior member of the team and at times uncertain if a safety issue is actually in question; however, as people with the privilege of caring for others, health care workers have to value our responsibility to the patient above all else. **Speak up if you witness an error or the potential for an error.** Make sure to report adverse events so others can study and learn from them—informing system-based approaches to improving patient safety.
Chapter 24 ● Clinical Applications of Patient Safety and Quality Improvement

Handoffs

Errors during handoffs and sign-outs can be mitigated by ensuring an accurate and effective transfer of pertinent patient information to the receiving health care professional. This has immediate applications to on-call sign-outs and changes of shift, but it also affects other scenarios such as hospital- and unit-floor-transfers.

Case: A diabetic patient with an ankle fracture is signed-out to the covering intern from a team member in a hurry to leave the hospital. Later that night the patient develops sinus tachycardia thought to be related to pain, and the covering intern orders more pain medication. Unknown to the covering intern, the patient was found earlier to have an incidental pulmonary embolism. This information was forgotten during the hurried sign-out. The patient develops chest pain, dyspnea and ultimately dies from progression of the PE.

• How can this adverse event be avoided in the future?

Use an effective hand-off process

An effective handoff encompasses the following principles:

- Active process
- Prioritize sick patients
- Verbal + written
- Have a set system
- Limit distractions
- Allow sufficient time
- Ensure updated information

Quality Improvement Roadmap

Using formal quality improvement methodology is helpful for successfully carrying out improvement projects. Health care teams can benefit from a roadmap for applying the science of improvement to the project management tasks associated with their improvement efforts.

Case: A hospital is interested in reducing the number of medication errors in the inpatient geriatric unit. The current medication ordering system has been in place for 15 years and consists of written orders on slips of paper being sent to pharmacy by pneumatic tubes, and then receiving the medication in a batched collection system on the unit. Nurses are required to then sort through the batched medications to identify the correct one for their patient(s). Over the past year, the severity of the admitted geriatric patients has increased, along with the number of medications required. There have been reports of possible increased rates of medication errors over the past 6 months.

• How will you approach improving the current process?
The methods used to approach quality and process improvement are as follows:

1. Identify the problem.
2. Measure the problem.
3. Organize a team.
4. Flowchart the process.
5. Develop a range of interventions to fix the problem.
6. Measure the impact of the interventions.

The following tools are commonly used in quality improvement:

Flow chart: map of all the steps in the current clinical process being evaluated
- Flow charting a process helps the team clearly see the complexity of the process and the opportunities for improvement.

Pareto analysis: process of rank-ordering quality improvement opportunities to determine which of the various potential opportunities should be approached first

PDSA (plan-do-study-act) refers to a rapid cycle of activities involved in achieving process or system improvement. It is a form of trial and error and consists of planning an intervention, trying it out (i.e. small scale pilot), observing results (e.g. data collection of quality measures), and acting on what is learned (e.g. implement change system-wide or go back to the planning stage with a new intervention).

Measurements of quality include structure, process, outcomes, and balancing measures.
- **Structure** refers to equipment, resources, or infrastructure (e.g., number of ICU beds, certified infectious disease specialist on staff, ratio of nurses to patients)
- **Process measures** relate to an action involved in the care of patients that is believed to be associated with a particular outcome (e.g., use of preoperative antibiotics to reduce surgical site infections, using 2 means of patient identification prior to blood transfusion).
 - Typically easier to measure than outcome measures, and often serve as surrogates to outcomes
- **Outcome measures** reflect results related directly to the patient (e.g., survival, infection rates, number of admissions for heart failure)
- **Balancing measures** monitor for unintended consequences of a change or intervention made to a process or system. Some well-intended interventions can create unanticipated negative results in quality and safety.
 - For example, alarms have been placed on a number of medical devices and equipment to alert for problems (e.g., oxygen saturation falling below a set level). One negative result has been 'alarm fatigue.' Studies indicate that 85-99% of hospital alarms do not require clinical attention, but failure to respond to the rare critical alarm has resulted in patient death. This is a type of 'boy who cried wolf' phenomenon, where the frequency and prevalence of hospital alarms reduces our attention to them. Strategies are in place to customize alarms to alleviate some of the problem.

Quality models are specific techniques used in improving patient care.

Understanding variation. Data is essential for the improvement process. Without data, there is no objective way to measure the success of your interventions. Data can also reveal if your interventions have not worked and you need to try something new.
It is important to understand how to correctly interpret data, including the concept of \textit{variation in data}. All data has some level of variation. Walter Shewhart, a pioneer in Total Quality Management, stated that data can be perceived in 2 ways: either as an \textit{indication that something has changed (a trend)} or as \textit{random variation that does not mean a change has occurred}.

Understanding the nature of variation is paramount in decision-making in quality improvement.

- Data should be plotted over time (as seen in run charts and control charts)—both before and after a planned intervention is implemented. This allows assessment to see whether the variation is random or reflective of a pattern/trend indicating that a meaningful change has occurred.
- \textbf{Common cause variation} is an inherent part of every process; it is random and due to natural or ordinary fluctuations in the system.
- \textbf{Special cause variation} is due to irregular or unnatural causes that are neither predictable nor inherent to the process. Special cause variation should be identified and eliminated before making QI changes to a process.
- Reducing variation improves the predictability of outcomes and helps reduce the frequency of adverse outcomes for patients.

\textbf{Run chart} (time plot): graphical record of a quality characteristic measured over time

- Run charts help the team determine if a change is a true improvement over time or just a random fluctuation.
 - A trend is defined as \geq 5 consecutive points constantly increasing or constantly decreasing. If a trend is detected, it might indicate a non-random pattern that should be investigated.
 - A shift is a run containing \geq 6 data points all above or all below the median and indicates a non-random pattern that should be investigated.

\begin{center}
\textbf{Falls per 1,000 occupied bed days, by month}
\end{center}

![Sample Run Chart Plotting Patient Falls](AHRQ.gov)
Control chart: similar to run charts but with additional elements of statistical process control; it is used to study how a process changes over time.

A control chart always has a central line for the average, an upper line for the upper control limit and a lower line for the lower control limit. Using these lines you can determine:

- If the variation is consistent/in control (i.e., data all within the control limits reflecting only common cause variation), OR
- If the data is unpredictable/out of control (i.e., data outside the control limits reflecting special causes of variation)

There are many types of control chart, depending on the statistic analyzed on the chart.

Interventions can take many forms, including automation, standardized process, and checklists. A forcing function is a very effective intervention for patient safety, as it does not rely on human memory or vigilance. A forcing function is an aspect of a design that prevents a target action from being performed. Examples are:

- Computer system that does not allow a drug to be ordered at a dose outside known safety parameters
- Enteral tubing designed to prevents accidental connections with IV ports

Six Sigma is a data-driven, patient-centered approach focused on reducing variability. This organized and systematic method for strategic process improvement uses a step-by-step DMAIC method.

- Define: define the problem
- Measure: measure key quality metric
- Analyze: identify root causes
- Improve: determine optimal solutions
- Control: strive for sustainability of implemented change

Lean process focuses on removing waste from the process or system and adopting a value-added philosophy of patient care. Value-stream maps are created to optimize activities that add value from the patient point-of-view and remove activities that do not.

In addition to the formal methods described above, the following are steps that any health care practitioner can apply to improve safety and quality for patients on a daily basis.

- Follow safety protocols (e.g., hand washing)
- Speak up when there are safety concerns (e.g., medical errors and near misses)
- Practice good communication skills (e.g., SBAR)
- Educate patients about their care
- Take care of yourself (e.g., get appropriate sleep and control stress)
- Practice patient-centered care/recognize opportunities to enhance value for patients

CARE WELL DONE

The following case, from an article written by Dr. Atul Gwande for *The New Yorker*, describes the incredible potential of the health care system. Applying the principles of patient safety and quality improvement to clinical care will enable health care to move closer to the goal of getting it right for every patient, every time.
A 3-year-old girl falls into an icy fishpond in a small Austrian town in the Alps. She is lost beneath the surface for 30 minutes before her parents find her on the pond bottom and pull her up. CPR is started immediately by the parents on instruction from an emergency physician over the phone, and EMS arrives within 8 minutes. The girl has a body temperature of 36°C and no pulse. Her pupils are dilated and do not react to light. A helicopter takes the patient to a nearby hospital, where she is wheeled directly to an operating room. A surgical team puts her on a heart-lung bypass machine, her body temperature increases almost 10 degrees, and her heart begins to beat. Over the next few days her body temperature continues to rise to normal and her organs start to recover. While she suffered extensive neurologic deficits during this event, by age 5 with the help of extensive outpatient therapy, she recovers completely and is like any other little girl her age.

CHAPTER SUMMARY

- Medical errors result from the complexity of health care combined with the reality of human failure. Although accountability and responsibility are important, simply blaming people for errors they did not intend to commit does not address underlying failures in the system and is an ineffective way of improving safety.
- System-based redesigns in health care delivery are required and hold the greatest potential for advancing patient safety and quality improvement.
- Improving communication, teamwork and the culture of safety are effective methods in improving patient safety.
- Safety is a team effort requiring everyone on the care team to work in partnership with one another and with patients and families.

High Yield Facts

- Systems-based approaches to improving health care are superior to individual-level efforts or blame
- Preoperative checklists can prevent perioperative complications and other adverse events
- Evidence-based clinical protocols have been shown to prevent central line infection
- Limiting the duration of urinary catheters decreases hospital acquired infections
- Head-of-bed elevation and oral care can help prevent ventilator associate pneumonia
- Medication reconciliation helps to prevent medication errors during transitions
- Hand hygiene is an important component of infection control
- Avoiding the use of hazardous abbreviations when writing orders can decrease adverse events from errors
- Computerized physician order entry helps improve medication safety
- Identification of high risk patients is a key step in fall prevention
- Team training and communication are essential components in improving quality and safety
Practice Questions

1. A 36-year-old woman with HIV/AIDS and B-cell lymphoma is hospitalized for *Clostridium difficile*-associated diarrhea. Following treatment, the patient is discharged home with a prescription for a 14-day course of oral vancomycin. She is unable to fill the prescription at her local pharmacy because of a problem with her insurance coverage. While awaiting coverage approval, she receives no treatment. Her symptoms soon return, prompting an emergency department visit where she is diagnosed with toxic megacolon. Which of the following should be addressed in order to bring about changes that improve patient safety?

 (A) Prescribing physician
 (B) Pharmacist
 (C) Insurance company
 (D) Patient
 (E) Discontinuity of care

 The answer is E. The main failure in this case occurred upon transition of care from the hospital to home. Addressing the discontinuities in care which arise at the time of transition has the greatest potential to improve patient safety.

 Rather than dispensing blame to any of the parties involved in the error (choices A–D), focus should be given to implementing systems-based transformations to support patients during a transition (e.g. post-discharge telephone follow-up to identify and resolve potential medication issues early).

2. A 23-year-old man with a history of depression is admitted to the inpatient psychiatry ward after his third attempt at suicide with an intentional drug overdose. The patient is stabilized medically; however, he is put under 24-hour monitoring by the nursing staff due to repeated attempts at self-harm. During a change of shift, there is a mistake in communication and no one is assigned to the patient. The mistake is noticed 15 minutes into the new shift, and a member of the nursing team is assigned to watch the patient. Fortunately, during that 15-minute period, the patient made no attempt to harm himself. Which of the following statements is correct about this event?

 (A) This is a sentinel event and should be reported to the medical board.
 (B) This is a sentinel event and should be reported to the hospital and family.
 (C) This is a near-miss and should be reported to the hospital.
 (D) This is a near-miss and should be reported to the patient and family.
 (E) This is a near-miss and no reporting is required since the patient was not harmed.

 The answer is C. The event described is a near-miss; there was an error which fortunately did not result in patient harm. Most near-misses need not be disclosed to patients or families (choice D), however should not be covered up. All near misses should be reported to the hospital so that the error can be studied and thus prevented in the future. A sentinel event (choices A and B) is an adverse event resulting in serious or permanent injury to a patient.
3. An 85-year-old woman is being transferred to an acute rehabilitation facility following a hospital admission for hip replacement surgery. Postoperatively during her hospital stay, she is started on deep vein thrombosis (DVT) prophylaxis medication with plans to continue the medication upon discharge. The intern and nurse who are discharging the patient fail to convey this new medication to the receiving treatment team at the rehabilitation center. The patient is not continued on her anticoagulation medication and sustains a DVT, leading to a fatal pulmonary embolus 3 weeks after transfer. Which of the following actions will facilitate quality improvement and the prevention of a similar error in the future?

(A) Determine which staff member(s) failed to order the medication
(B) Develop a process to increase the use of medication reconciliation
(C) Send a memo to all staff about the importance of DVT prophylaxis
(D) Educate patients about the dangers of DVT following hip surgery
(E) Conduct monthly audits to monitor medication errors at transitions of care

The answer is B. The goal of quality improvement (QI) is to achieve improvement by measuring the current status of care and then developing systems-based approaches to making things better. It involves both prospective and retrospective reviews and specifically attempts to avoid attributing blame. QI seeks to create systems to prevent errors from happening. In this case, developing a process to increase the use of medication reconciliation would be following the principles of QI. The other interventions in the answer choices are QA-based and/or simply not as effective in creating and sustaining a positive change. Quality assurance (QA) is an older term describing a process that is reactive and retrospective in nature; it is a form of ‘policing’ to ensure that quality standards have been followed. It often relies on audits and traditionally has focused on punitive actions for failures in quality, i.e., determining who was at fault after something goes wrong. QA has not proven to be very effective in transforming care.
Learning Objectives

- Define population health and value-based care
- Describe how population health management principles can be put into practice

DEFINING POPULATION HEALTH

What is population health?

Case example: A 65-year-old woman presents to the emergency department at 3:00 AM with the acute onset of an asthma attack. She is treated with steroids and nebulizer treatments to stabilize her respiratory status. This is the third such presentation in the past 9 months. During her course of treatment it becomes evident that the patient is not able to get time off from work to see her primary care physician during clinic hours, did not receive an influenza vaccination this year, and continues to smoke 1 pack of cigarettes per day.

- What population health approaches can help this patient?

 Address the day-to-day factors present at home which impact the patient’s health outcomes with asthma

Health care in the United States has traditionally focused on the management of acute medical problems such as trauma, myocardial infarction, and stroke. Incredible advances have been made in these areas and outcomes from acute presentation of disease have steadily improved over the years, with outcomes among some of the best observed in any health system in the world.

However, the health care system here has lagged significantly in the area of disease prevention and health maintenance. Major disparities in access to preventative care services such as prenatal care, cancer screening and diabetes management; together with social inequalities with respect to patient education and income; as well as persistent individual behaviors such as poor diet, lack of exercise and cigarette smoking have contributed to the very poor overall health status observed in the United States.
BIG GEMS (mnemonic for determinants of health)

- Behavior
- Income
- Genetics
- Geography
- Environment
- Medical care
- Social-cultural

Problems with quality and variations in health delivery that do not follow evidence-based standards further erode the value of patient care. Ironically, the United States spends more on health care than any other nation in the world, yet ranks among the lowest in health measures, compared to other developed nations. Furthermore, the current rate of health care spending in the United States is unsustainable.

Population health is an approach to health care that addresses both individual and public health concerns in order to achieve optimal patient results. It is an approach to patient care which understands that health is influenced by several factors outside of traditional health care delivery models, including (but not limited to) social, economic, and environmental factors.

Population health management is fundamental to the transformation of health care delivery. Its principles recognize the importance of focusing attention not only on improving individual patient care, but also on improving the health of an entire population. In fact, direct health care accounts for only a small proportion of premature deaths in the United States.

- For example, the leading causes of premature death—smoking (435,000 deaths/year), obesity (400,000 deaths/year), and alcohol abuse (85,000 deaths/year)—are all preventable through interventions driven by population health management.

Population health management is, in effect, about coordinating care and improving access in order to enhance patient/family engagement and reduce variation in care to achieve better long-term outcomes at a reduced cost. The Institute for Healthcare Improvement (IHI) lists improving the health of the population as one of the 3 dimensions of its Triple Aim approach to optimizing health system performance.
IHI Triple Aim:

- Improve the patient experience of care (including quality and satisfaction)
- **Improve the health of populations**
- Reduce the per capita cost of health care

IHI Population Health Composite Model

Population health management focuses on high-risk patients who are responsible for the majority of health care utilization while simultaneously addressing preventative and chronic care needs of the entire population. One of the first steps in this process is to define the target population (e.g., a hospital or clinic’s entire service area or any subset, whether economic, geographic or demographic, or individuals with certain health conditions). Another important step is to identify the specific health status and needs of that group and deploy interventions and prevention strategies to improve the health of the group. The interventions target individuals, but they affect the entire population.

The incorporation of technology (e.g., electronic health records) and innovations in health care (e.g., digital home health monitoring) provide the infrastructure to support efforts in successful population health management. A key factor for the success of population health programs is...
automation, as managing populations can be highly complex. Technology-enabled solutions are essential to the efficient management of a program.

Let’s say a primary care clinic is interested in improving population health for its diabetic patients.

- First, the clinic analyzes the patient registry generated by its electronic health record to identify high-risk type 2 diabetic patients who are not compliant with their medication and who frequently fail to keep their clinic appointments.
- Next, those patients are offered enrollment in a home hemoglobin A1c monitoring program, using a system which digitally records hemoglobin A1c levels taken in the home and then electronically transfers the results to the clinic.
- The system sends an alert to the clinical team when patients’ hemoglobin A1c levels are consistently higher than a predetermined threshold.
- A nurse coordinator contacts these patients by phone to help manage medication compliance, answer patient questions, and encourage timely follow-up with clinic visits.
- A nutritionist works with patients to encourage healthy dietary choices, while a social worker addresses any financial constraints to following medical recommendations.

VALUE-BASED CARE

The traditional health care system operates under a fee-for-service model, where a fee is collected for each provision of health care service. For example, hospitals and physicians collect a fee each time a patient comes to the hospital for the treatment of congestive heart failure (CHF), including any diagnostic tests or procedures (e.g., chest x-ray, B-type natriuretic peptide, cardiac angiogram).

A new model of health care in the United States is replacing fee-for-service with value-based care, where health care professionals are rewarded for keeping entire populations of patients healthy.

Using the CHF example, a value-based system would reward health care professionals for encouraging lifestyle changes that prevent hospital admissions for CHF, such as promoting a heart healthy diet, monitoring home fluid intake, and motivating patients to engage in regular exercise. Instead of rewarding exclusively for the treatment of acute medical problems, the new system provides incentives for the health care system to maintain healthy populations, prevent disease, and avoid acute medical problems through the active monitoring and management of chronic disease. **Quality in health care is measured by outcomes achieved,** rather than the volume of services delivered.

Note: Value in patient care can be defined as quality of care divided by total cost of care.

Strategies that increase quality and reduce unnecessary costs result in improved value for patients. Unnecessary costs may be generated from the following examples:

- Duplication of services (e.g., a surgeon orders a routine pre-operative ECG for a patient undergoing elective surgery, not realizing the same test was done 1 week ago in the primary care physician’s office and was normal)
- Non evidence-based care (e.g., ordering antibiotics for a viral infection)
- Avoidable inefficiencies in care (e.g., a patient returns to the hospital with acute CHF 1 week after being treated for the same condition because he was unaware that a new diuretic had been started in the hospital and was therefore never filled upon discharge)
Failures in preventive health also lead to avoidable health care spending, as in hospitalization for the treatment of acute pneumonia in a patient who did not receive an influenza vaccination. Shifting the focus from volume of care to value of care will improve the overall status of health care in the United States and contain the currently unsustainable costs of care.

It is important not to confuse value-based care with rationing of care, which seeks to reduce needed services in order to preserve resources. Value-based care seeks to reduce unnecessary or unwanted waste in care which increases cost without increasing quality of care to the patient.

- Studies, for instance, have shown that performing stress cardiac imaging or advanced non-invasive imaging in patients without symptoms on a serial or scheduled pattern (e.g., every 1–2 years) rarely results in any meaningful change in patient management. This practice may, in fact, lead to unnecessary invasive procedures and excess radiation exposure without any proven impact on patients’ outcomes.
 - An exception to this rule would be for patients >5 years after a bypass operation.
- Similarly, using antibiotics for a sore throat or runny nose that is due to a viral infection not only provides no immediate benefit to the patient, it may also increase harm from adverse drug reactions or development of antibiotic resistant bacterial strains.

Many health care organizations are developing guidelines and recommendations to promote value-based care. These approaches motivate patients and their clinicians to follow effective care practices and guide them away from unnecessary and ineffective care; the result is greater value and effectiveness of healthcare utilization. For example, Choosing Wisely™ (choosingwisely.org) is a national initiative of the American Board of Internal Medicine Foundation, which promotes conversations between patients and physicians about unnecessary medical tests/procedures that increase cost without enhancing patient outcomes.

Population health management employs value-based care principles by promoting preventive care, encouraging care patterns that have been proven effective, and reducing waste and unnecessary care.

Value equation in health care:

\[
\frac{\uparrow \text{value}}{\downarrow \text{cost}} = \frac{\uparrow \text{quality}}{}
\]
IMPLEMENTATION OF POPULATION HEALTH MANAGEMENT

The goal of population health management is to keep a patient population as healthy as possible. The components required to achieve this goal include the following:

- Delivery of patient care through multidisciplinary teams
- Coordination of care across care settings
- Increased access to primary care
- Patient education in disease self-management
- Emphasis on health behaviors and lifestyle choices
- Meaningful use of health information technology for data analysis, clinical communication, and outcome measurement

This requires clinicians to identify target populations of patients who may benefit from additional services, such as patients who require reminders for preventative care appointments or patients not meeting management goals. Continual access to patient data and analysis of outcomes is the key to providing proactive, preventive care.

Steps in Population Health Management:

- Step 1: Define population
- Step 2: Identify care gaps
- Step 3: Stratify risks
- Step 4: Engage patients
- Step 5: Manage care
- Step 6: Measure outcomes

Several advances in technology are required to perform effective population health management and accomplish risk stratification; identify gaps in care; achieve patient education, compliance education, disease state monitoring; ensure general wellness; as well as to implement and assess specific interventions targeted to selected populations.

- The electronic health record can produce integrated, accessible population-wide data systems capable of generating reports that drive effective quality and care management processes.
- Web-based tools designed to educate patients about their condition, promote self-care, and encourage preventative behaviors have been used successfully to reduce hospitalization rates by enabling patients to take charge of their health.
- Telemedicine programs have been implemented to establish remote care in order to facilitate patient outreach, allow patient follow-up after discharge from the hospital, and improve health care in rural populations.
- The automation of processes and programs is essential in order to make population health management feasible, scalable, and sustainable, such as a health IT system which targets patients in greatest need of services, generates alerts to those patients seeking appropriate and timely appointments with clinicians, and alerts clinicians in real-time to patient care needs.
However, technology alone will not be sufficient for population health management; effective **teamwork** in patient care is also important. Effective population health involves establishing multidisciplinary care teams to coordinate care throughout the entire continuum of care. High-performance clinical care teams can manage a greater number of patients and more comprehensively respond to patient care needs compared with individual clinicians working in isolation. Care teams can include physicians, nurses, nurse practitioners, physician assistants, pharmacists, patient navigators, medical assistants, dieticians, physical therapists, social workers, and care managers, and others.

The **patient-centered medical home (PCMH)** is one model used to deliver patient-centered, value-based care, and it plays an important role in population health management. The medical home model emphasizes care coordination and communication beyond episodic care in order to transform primary care. It stresses prevention, early intervention and close partnerships with patients to tightly manage chronic conditions and maintain health. The PCMH is not necessarily a physical place, but rather an organizational model that delivers the core functions of primary health care. Key principles in this model include:

- Access to a personal physician who leads the care team within a medical practice
- Adoption of a whole-person orientation to providing patient care
- Integrated and coordinated care
- Focus on quality and safety

The medical home is intended to result in more personalized, coordinated, effective and efficient care. Many of the goals of PCMH directly support efforts in population health.

In 2006, the Massachusetts General Hospital (MGH) worked with the U.S. Centers for Medicare and Medicaid to establish 1 of 6 population health demonstration projects nationwide. During the 3-year demonstration, the MGH implemented strategies to improve health care delivery to its most vulnerable high risk patients—those with multiple health conditions and chronic disease. The hospital system took steps to address the needs of 2,500 of their highest-risk patients.

- Each patient was assigned to a comprehensive care team consisting of a primary care physician, experienced nurse case manager, social worker, and pharmacist.
- A non-clinical community resource specialist was employed to work with the care teams in addressing non-clinical factors influencing health outcomes (for example, if the patient was not able to come to the primary care office for a scheduled visit because of transportation issues, this specialist connected the patient to local transportation resources).

This structure of care allowed clinicians to focus the majority of their time on patients’ medical needs. The results revealed a decrease in hospital readmissions by 20%, and a decrease in emergency room visits by 13% for the patients enrolled in the program. Satisfaction was extremely high among both patients and caregivers, and the system was associated with significant cost-savings. This is one example of using population health to increase quality while decreasing costs, thereby increasing value in patient care.
CHAPTER SUMMARY

• Population health management is an important strategy for improving the quality of patient outcomes, containing costs, and promoting health maintenance.
• Successful population health management requires data-driven clinical decision-making, transformations in primary care leadership, meaningful use of health technology and patient-family engagement.
• Accountable care involves an integrated, proactive approach to improving the value of health in identified patient populations.

High Yield Topics

• Understanding and managing population risk (e.g., identifying care gaps)
• Care teams coordinating home health between clinic visits as well as during clinic encounters
• Informatics: sharing information seamlessly with EHR and patient portals
• Engaging patients in health maintenance: screening, prevention and behavioral health
• Measuring outcomes
• Reducing waste in the system (e.g., duplication, non-value added interventions)
• Improving chronic care: keeping patients out of the hospital by optimizing home and outpatient care

KEY DEFINITIONS

• Care cycle: array of health services and care settings, which address health promotion, disease prevention, and the diagnosis, treatment, management, and rehabilitation of disease, injury, and disability
• Clinical care pathway: integrated, multidisciplinary outline of anticipated care placed in an appropriate timeframe to help patients with a specific condition/set of symptoms move progressively through a clinical experience to positive outcomes
• Clinical outcome: end result of a medical intervention, such as survival or improved health
• Clinical variation: variation in the utilization of health care services that cannot be explained by variation in patient illness or patient preferences (Wennberg JH 2010)
• Continuum of care: concept involving an integrated system of care, which guides and tracks patients over time through a comprehensive array of health services spanning all levels of intensity of care
• Cost-effectiveness analysis: analytic tool in which the costs and effects of at least 1 alternative are calculated and presented, as in a ratio of incremental cost to incremental effect; the effects are health outcomes (e.g., cases of disease prevented, years of life gained, or quality-adjusted life years) rather than monetary measures (e.g., cost-benefit analysis) (Gold et al. 1996)
• **Evidenced-based medicine**: applying the best available research results (evidence) when making decisions about health care

 – Health care professionals who perform evidence-based practice use research evidence, along with clinical expertise and patient preferences. Systematic reviews (summaries of health care research results) provide information, which aids in the process of evidence-based practice.

 ° For example, a health care provider recommends acetaminophen to treat arthritis pain in a patient who has recently had stomach bleeding. The health care provider makes this recommendation because research shows that acetaminophen is associated with less risk for stomach bleeds than other common pain relievers. The health care provider’s recommendation is an example of evidence-based practice.

• **Health**: a state of complete physical, mental and social well-being, and not merely the absence of disease or infirmity (WHO definition)

• **Health inequity**: those inequalities in health deemed to be unfair or to stem from some form of injustice; the dimensions of being avoidable or unnecessary have often been added to this concept (Kawachi, Subramanian, and Almeida-Filho 2002)

• **Health-related quality of life**: impact of the health aspects of an individual’s life on his quality of life or overall well-being (Gold et al. 1996)

• **Intervention**: any type of treatment, preventive care, or test that a person could take or undergo to improve health or to help with a particular problem

 – Health care interventions include drugs (prescription drugs or drugs that can be bought without a prescription), foods, supplements (such as vitamins), vaccinations, screening tests (to rule out a certain disease), exercises (to improve fitness), hospital treatment, and certain kinds of care (such as physical therapy).

• **Life expectancy**: average amount of time a person will live after a certain starting point, such as birth or the diagnosis of a disease

 – The calculation is based on statistical information comparing people with similar characteristics, such as age, gender, ethnicity, and health. In the United States, for example, the life expectancy from birth for men and women combined is 78.1 years. In England, it is 78.7, and in China it is 72.9 years.

• **Patient-centered**: approach to patient care that focuses on the priorities, preferences, and best interests of the patient

 – It is a partnership among practitioners, patients, and their families to ensure that (a) decisions respect patients’ wants, needs, and preferences, and (b) patients have the education and support needed to make decisions and participate in their own care.

• **Patient centered medical home**: care delivery model whereby patient treatment is coordinated through the primary care physician to ensure that the patient receives the necessary care when and where she needs it, in a manner she can understand

 – The goal is to have a centralized setting, which facilitates partnerships between individual patients, their personal physician, and when appropriate, their family. Care is facilitated by registries, information technology, health information exchange, and other means to assure that patients get optimal care.
- **Population**: any group of individuals for whom consideration of health or health care at the level of the group is likely to advance health

- **Population health**: health of a population as measured by health status indicators, and as influenced by social, economic, and physical environments; personal health practices; individual capacity and coping skills; human biology; early childhood development; and health services (Dunn and Hayes 1999)

- **Public health**: activities that a society undertakes to assure the conditions in which people can be healthy; these include organized community efforts to prevent, identify, and counter threats to the health of the public (Turnock 2004)

- **Quality of life**: a broad construct reflecting a subjective or objective judgment concerning all aspects of an individual’s existence, including health, economic, political, cultural, environmental, aesthetic, and spiritual aspects (Gold, Stevenson, and Fryback 2002)

- **Quality measure**: clinical quality measures (CQMs) are a mechanism for assessing observations, treatment, processes, experience, and/or outcomes of patient care
 - In other words, CQMs assess "the degree to which a provider competently and safely delivers clinical services that are appropriate for the patient in an optimal timeframe.

- **Registry**: organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves 1 or more predetermined scientific, clinical, or policy purposes

- **Risk factor**: aspect of personal behavior/lifestyle, environmental exposure, or inborn/inherited characteristic that, on the basis of epidemiologic evidence, is known to be associated with health-related condition(s) considered important to prevent. (Last 2001)

- **Screening**: using tests or other methods of diagnosis to find out whether a person has a specific disease/condition before it causes any symptoms
 - For many diseases (e.g., cancers), starting treatment earlier leads to better results. The purpose of screening is to find the disease so that treatment can be started as early as possible. For example, a breast exam and mammogram are both screening tests used to find small breast cancers.

- **Social determinant**: proposed or established causal factor in the social environment, which affects health outcomes (e.g., income, education, occupation, class, social support)

- **Target population**: entire service area or any subset, whether economic, geographic, or demographic, or individuals with certain health conditions

- **Upstream determinants**: features of the social environment, such as socioeconomic status and discrimination that influence individual behavior, disease, and health status
Practice Questions

1. A 59-year-old man with a history of type 2 diabetes is diagnosed with diabetic retinopathy and referred to ophthalmology for additional management. The patient’s primary care physician is interested in reducing the number of patients in the practice who develop similar long-term complications from type 2 diabetes mellitus. Which one of the following is the most important next step?

(A) Develop an intervention to monitor blood glucose levels for all patients in the practice

(B) Utilize the patient registry to identify high-risk patients comprising the target population

(C) Train staff in the clinic to identify early signs of retinopathy

(D) Request to have an ophthalmologist perform fundoscopic exams on all patients in the practice

(E) Place a sign in the office depicting the dangers of diabetes

Answer: B. One of the first steps in designing a population health management program is to define the target population and identify common risk factors or gaps in care. Ideally, this should be done prior to implementing any intervention, so that it is clear which patients have the greatest need for the intervention and what risk factor(s) the intervention should address.

- Monitoring blood glucose for all patients, even those without diabetes or not at risk for diabetes, may not be a practical use of resources.
- Training staff to identify retinopathy or having an ophthalmologist perform fundoscopic exams will identify patients who already have long-term complications, rather than adjusting behaviors to prevent complications.
- A sign depicting the dangers of diabetes is not a proactive measure, does not optimally engage patients in self-care, and may only help those who are already in the clinic.

2. An 8-year-old boy is brought to the emergency department by his mother after he develops acute shortness of breath and wheezing. The boy appears anxious but is alert and responsive. He is afebrile and responds well to supplemental oxygen and initial respiratory treatment. He has a history of asthma and has presented with similar symptoms 4 times in the past 12 months. The mother smokes 1-2 packs of cigarettes per day while at home with her son. Which of the following addresses an upstream determinant of health amenable to population health management to improve the patient’s long-term outcome?

(A) Rapid use of nebulizer treatments in the emergency department

(B) Administration of weight adjusted dose of steroid treatment

(C) Asking the mom to purchase an inhaler to keep at the home

(D) Parent education on second-hand smoking risk and enrollment in a smoking cessation program

(E) Prophylactic antibiotics

Answer: D. Educating parents about the risks of second-hand smoke to children—especially one with a history of asthma—and offering parents enrollment in a smoking-cessation program may have a dramatic benefit to the health of the child and help prevent future asthma attacks. Use of nebulizers or steroids in the emergency department may be necessary to treat the acute episode of care; however, will not help prevent future attacks. The use of antibiotics without indications of bacterial infection (e.g. no fever) is not warranted.
Index

A
Abandonment of patients, 148
Abbreviations, “Do Not Use” list for, 200
Abortion
 Roe vs Wade decision, 146
 state variations in laws about, 150
Absolute risk reduction, in observational studies, 120
Abuse, of substance. See Substance abuse; individual substances
Academic performance, measuring, 9
 learning disorders and, 12
Accuracy, screening test performance, 114
Acetylcholine, sleep and, 74
Acting out, 8
Active euthanasia, 148
Active failures, in medical error, 193
Acute dystonia, 84
Acute stress disorder (ASD), 33
Addictive disorders/Addiction, 55–58. See also Substance abuse
 Addition, mutually exclusive events by, 130
 ADHD (attention deficit hyperactivity disorder), 13–14
 Tourette disorder and, 16
Adjusted (standardized) rates, 100–101
Adjustment disorders, 53
Advance directives, competency and, 147
Adverse effects
 of antidepressants, 85, 86
 of antipsychotics, 84
 of electroconvulsive therapy, 87
 of mood-stabilizers, 87, 88
Adverse events
 causes of, 188
 contributing factors, 191–192
 prevention of, 198, 201
 reporting of, 206
 victims of, 195
Adverts, pharmaceutical, interpretation of, 168–184
Affect, in mental status examination, 3
Age, disease rates positively correlated with, 101
Agnosia, 41
Agoraphobia, 32
 specific phobia vs., 32
Akathisia, 84
Alcohol
 effect on sleep, 74
 mild neurocognitive disorder due to, 47
Alcohol abuse, 57
α error, in hypothesis testing, 137
Alternative hypothesis, 136
Alzheimer’s disease, neurocognitive disorder due to, 43
 vascular neurocognitive disorder vs., 44
American Board of Internal Medicine Foundation, 219
Amitriptyline, 86
Amnesia
 dissociative, 49
 in Korsakoff syndrome, 47
Amniocentesis, in ID diagnosis, 12
Anxiety disorder, 32
specific phobia vs., 32
Anorexia nervosa, 63–64
Analysis of variance (ANOVA), 139, 141
Anticholinergic effects
 from antidepressants, 85
 from antipsychotics, 83
Antidepressant medications. See also individual medications
 for adjustment disorders, 53
 clinical guidelines for, 85
 hybrid forms, 86
 monoamine oxidase inhibitors, 86
 for pseudodementia, 46
 selective serotonin reuptake inhibitors, 86
 tricyclic, 86
 untoward effects of, 85
Antipsychotic medications, 83–85. See also individual medications
 acute movement syndromes induced by, 84
 adverse effect of, 84
 atypical, 83, 84–85
 general principles of, 83
 side effects of, 83–84
 typical, 83
Antisocial personality disorder, 69
Anxiety disorders
- acute stress disorder, 33
- in childhood, 16
- defined, 31
- generalized anxiety disorder, 33
- obsessive-compulsive, 32
- panic disorder, 31–32
- phobic, 32
- post-traumatic stress disorder, 33

Anxiolytic medications, 88. See also individual medications for adjustment disorders, 53

Aphasia, 41
Appearance, in mental status examination, 3
Appropriateness, in mental status examination, 3
Apraxia, 41
AR (attributable risk), in observational studies, 120
Aripiprazole, 85
ASD (acute stress disorder), 33
ASD (autism spectrum disorders), 13
Asenapine, 85
Assisted suicide, 148
Attack rate, 103
Attention deficit hyperactivity disorder (ADHD), 13–14
Tourette disorder and, 16
Attentional slips of action, medical error and, 188
Attitude, in mental status examination, 3
Attributable risk (AR), in observational studies, 120
Autism spectrum disorders (ASD), 13
Automation of processes/programs, population health management and, 217–218, 220
Availability bias/heuristic, diagnostic error and, 190
Average (mean), as measure of central tendency, 131
Aversion, sexual, 80
Avoidant personality disorder, 69

B
“Baby blues” (postpartum depression), 23
Balancing measures, in quality improvement, 208
Barbiturates, effect on sleep, 74
Barriers, to medical error, 193
creating/reinforcing, 194–195
Bath salts, abuse of, 57
Behavior, effects of blood alcohol levels on, 56
Behavioral guidance, intellectual disability and, 12
Behavioral modification techniques
- for insomnia, 77
- for paraphilias, 81
- for substance-related disorders, 56
Behavioral therapy, 91
- for anxiety, 31
Bell-pad apparatus, for childhood enuresis, 15
Benzodiazepines
- abuse of, 57

as anxiolytic, 88
- effect on sleep, 74
Bereavement, vs. depression, 22
Berkson’s bias. See Selection (sampling) bias
Best interest standard, 146
- in surrogate decision-making, 148
β error, in hypothesis testing, 137
Bias
- in diagnostic error, 189
- in research studies, 123–124
types of, 125
BIG GEMS (mnemonic), 216
Binge-eating, 64
Binge eating, and purging, in anorexia nervosa, 63
Biologic theories, of anxiety, 31
Biostatistics
- confidence intervals, 135–136
- descriptive statistics, 131–134
- hypothesis testing, 136
- inferential statistics, 134–139
- interpretation, 136–138
- measures (indices) of central tendency, 131
- normal distribution, 131
- probability, 121, 129–130
- scales, 138–139
- significance testing, 136–137
- test selection in, 139–141
- variation indices, 132–134
Bipolar I disorder, 20–21
- in peripartum period, 23
Birth rate, 106
Blocking, 7
Blood alcohol levels, behavioral effects of, 56
Blood testing, in substance-related disorders, 56
Body dysmorphic disorder, 37–38
Borderline personality disorder, 69
Brain imaging, findings in schizophrenia, 26
Breath testing, in substance-related disorders, 56
Brief psychotic disorder, 26–27
Briefs, for effective teamwork, 204
Brother Fox case, 146
Bulimia nervosa, 64–65
Bupropion (Wellbutrin), 85, 86
Buspirone, 88

C
CAGE diagnostic testing, in substance-related and addictive disorders, 56
Call-out, as communication strategy, 205–206
Cannabis (marijuana) abuse, 57
Carbamazepine, 88
Cardiac symptoms
- from antidepressants, 85
- from antipsychotics, 84
Index

Care cycle, defined, 222
Care teams, 221
Case-control studies, 119
 and cohort studies compared, 123
 computational measures in, 122
differentiating, 119, 122
 measure of effect used in, 120–121
Case fatality rate (CFR), 107, 108
Case report, 119
Case series report, 119
Cataplexy, 75
Categorical (nominal) scale, 138
Cause and Effect diagram, in root cause analysis, 197
Cause-specific mortality rate, 108
Central line infection, 201
Central sleep apnea, 75
Central tendency, measures (indices) of, 131
 standard deviation and, 132–134
Cerebrovascular disease, neurocognitive syndrome and, 42
CFR (case fatality rate), 107, 108
Chance/random factors, null hypothesis and, 136
Check-back, as communication strategy, 206
Chemical effects, on sleep, 74
Chi-square analysis, 139
 for nominal data, 141
 in observational studies, 122
Childhood disorders
 anxiety, 16
 attention deficit hyperactivity disorder, 13–14
 autism spectrum disorders, 13
 of conduct, 14
 enuresis, 15
 intellectual disability, 11–12
 of learning, 12
 oppositional defiant, 15
 Tourette, 16
Children
 emergency detention of, 151
 ethical principles involving, 149
 sociologic risk factors for, 107
X². See Chi-square analysis
Choosing Wisely™ initiative, 219
Citalopram (Celexa), 86
Citalopram (Celexa), 86
Clinical care pathway, defined, 222
Clinical epidemiology, defined, 95
Clinical outcomes
 defined, 222
 in quality measurement, 208, 218
Clinical quality measures (CQMs), 224
Clinical trials, principles of, 122–123. See also Experimental studies
Clinical variation
 common vs. special causes, distinguishing between, 209
defined, 222
 indices of, 132–134
Clomipramine, 86
Closed-ended questions, as interviewing technique, 4
Clozapine, 84
Cluster A personality disorders, 68
Cluster B personality disorders, 68–69
 definition of, 67
Cluster C personality disorders, 69–70
 definition of, 67
Cocaine abuse, 57
Cognition
 disturbances in, 42. See also Neurocognitive disorder(s)
 in mental status examination, 4
 overview of, 41
Cognitive errors, in diagnosis, 190
Cognitive therapy, 91
Cohort studies, 119–120
 and case-control studies compared, 123
 computational measures in, 122
differentiating, 119–120, 122
 measures of effect used in, 120
Commission, errors of, 188
Committal rights, mentally ill patients and, 151
Communication
 effective, strategies to ensure, 205–206
 failure in, 205
Community trials, 123
Compensatory behavior, in bulimia nervosa, 64
Competency
 advance directives and, 147
 determining, 147
 patients’ rights and, 147
Computed tomography (CT), in schizophrenia, 26
Computerized physician order entry (CPOE), 194–195, 201
Conduct disorder, 14
Confidence intervals, 135–136
 computing with Z-scores, 135
Confidentiality, as absolute right, 150
Confirmation bias, diagnostic error and, 190
Confirmatory tests, 111
Confounders (confounding variables), 124
Confounding bias, 124
Confrontation, as interviewing technique, 4
Continuum of care, defined, 222
Contraindications, for electroconvulsive therapy, 87
Control chart, for quality improvement, 210
Control group, in clinical trials, 122
Conversion disorder, 36–37
Correlation(s)
 graphing with scatterplots, 140
types of, 139
Correlation analysis, 139–140
Cortical volume reduction, in schizophrenia, 26
Cost-effectiveness analysis, defined, 222
Cost reduction strategies, 218–219
Counseling
 autism spectrum disorders and, 13
 genetic, for ID prevention, 12
 learning disorders and, 12
Court cases, in medical ethics, 145–146
CPOE (computerized physician order entry), 194–195, 201
CQMs (clinical quality measures), 224
Criterion, p-value, 136–137
Critical language, as communication strategy, 206
Cross-sectional studies, 119
 computational measures in, 122
 differentiating, 119, 122
 measure of effect used in, 122
Crossover studies, 123
Crude mortality rate, 108
CT (computed tomography), in schizophrenia, 26
CUS (mnemonic), in communication strategy, 206
Cutoff point, in screening test diagram, 113
Cyclothymic disorder, 21–22

D
Data variation, understanding, 208–209
Death and dying
 physicians' responsibility to declare death, 148
 stages of, 23
 wrongful death, medical error as cause of, 187
Decubitus ulcers, prevention of, 202
Defense mechanisms, 7–9
Defenses, against medical error, 193
“Déjà vu,” 50
Delayed ejaculation, 80
Delirium, 41–42
 neurocognitive disorder vs., 46
Delusional disorder, 28–29
Dementia. See Neurocognitive disorder(s)
Demographic variables, for specific rates, 100
Denial, 7
Denominator
 matching numerator with, 100
 in rate equation, 99
 for specific rates, matching numerator with, 100
Dependent personality disorder, 70
Depersonalization disorder, 50
Depression
 grief/bereavement vs., 22
 major. See Major depressive disorder (major depression)
 peripartum, 23
 persistent (dysthymia), 21
Depressive disorders, 19–23
Derealization disorder, 50
Dermal syndromes, antipsychotics inducing, 84
Descriptive statistics, 131–134
Desipramine, 86
Desire. See Sexual desire
Desvenlafaxine, 86
Detoxification units, for substance-related disorders, 56
Deviation scores, 132
Diagnosis momentum, diagnostic error and, 190–191
Diagnostic errors, 189–191
Discharge process, improving, 203–204
Disclosure, of medical error, 195
Disease prevention, types of, 97
 in coronary heart disease example, 98
 primordial, 98
Dispersion of data, indices of, 132–134
Displacement, 8
Dissociation
 as defense mechanism, 9
 defined, 49
Dissociative amnesia/Dissociative amnesia with fugue, 49
Dissociative disorders, 49–50
 amnesia, 49
 depersonalization, 50
 derealization, 50
 of identity, 50
Dissociative identity disorder, 50
Distribution, normal, 131–132
Distribution curve
 mean and standard deviations on, 132–133
 skewed, 132
Divalproex, 88
DMAIC (define, measure, analyze, improve, control) method, for
 quality improvement, 210
DNR (do not resuscitate) orders, patients' rights concerning,
 150–151
Do not resuscitate (DNR) orders, patients' rights concerning,
 150–151
“Do Not Use” list, for handwritten medication abbreviations, 200
Dopamine, sleep and, 74
Dopamine agonist/antagonist, effect on sleep, 74
Dopamine receptors, antipsychotics and, 83
Double-blind design, experimenter expectancy and, 125
Double-blind RCT, 123
Drawings, in personality testing, 9
Dream terror disorder, 77
Duloxetine, 86
Duration, equation for, 102
Duty to warn/Duty to protect, 147, 150
Dysphoria, gender identity, 82
Dysthymia (persistent depressive disorder), 21
Dystonic reaction, antipsychotics causing, 84
E Eating disorders, 63–65
anorexia nervosa, 63–64
binge-eating, 64–65
bulimia nervosa, 64–65
Ecstasy, 57
ECT (electroconvulsive therapy), 87
Education level, adjustment for, 101
EEG (electroencephalography) findings
in NREM sleep, 71, 73
in REM sleep, 72–73
Effectiveness, health service interventions, 97
Efficacy, health service interventions, 97
Efficiency, health service interventions, 97
Ego, 7
Eichner vs Dillon, 146
Ejaculation, dysfunctional, 80
Electroconvulsive therapy (ECT), 87
Electroencephalography (EEG) findings
in NREM sleep, 71, 73
in REM sleep, 72–73
Electronic health record, 218, 220
Emancipated minors, 149
Emergency detention, 151
Endemic, defined, 95
Endocrine effects, of antipsychotics, 83
Epidemic, defined, 95
Epidemic curve
AIDS example, 97
defined, 95
food-borne outbreak example, 96
measles outbreak example, 96
Epidemiology
adjusted (standardized) rates, 100–101
defined, 95
Failure(s)
in communication, 205
learning from, 195–196
in preventive health, 219
root cause analysis and, 196–197
Failure Mode and Effects Analysis (FMEA), 197
Falls, See Patient falls
Family drawings, in personality testing, 9
Family functioning, learning disorders and, 12
Family members’ wishes, interests of patient vs., 147
FDA (Food and Drug Administration), clinical trial phases and,
122–123
Fee-for-service health care system, 218
Feeding tubes, patients’ rights concerning, 148
Female sexual arousal, dysfunctional, 80
Fertility rate, 106
Fetishism, 81
transvestic, 81
Fishbone diagram, in root cause analysis, 197
5R’s strategy, in medication administration, 201
Flow charts, for quality improvement, 208
Fluoxetine (Prozac), 86
Fluvoxamine (Luvox), 86
FMEA (Failure Mode and Effects Analysis), 197
Folstein Mini-Mental Status Exam, 43
Food and Drug Administration (FDA), clinical trial phases and,
122–123
“Forcing function”
medical error and, 192
quality improvement and, 197, 210
Framing effects, diagnostic error and, 191
Frontotemporal neurocognitive disorder, 44
Escitalopram (Lexapro), 86
Estimations, from sample to population as a whole, 134–135
Ethics
conduct vs. legal principles, 151
court cases, 145–146
legal issues and, 147–151
Euthanasia, 148
Evidence-based medicine
defined, 223
infection prevention strategies, 201, 202, 211
patient care standards and, 216
Executive function, disturbances in, 41
Exhibitionism, 81
Experimental studies, 119, 122–123
principles of, 122–123
Experimenter expectancy, 125
associations with, 126
Facilitation, as interviewing technique, 4
Factitious disorder, 38
Failure(s)
in communication, 205
learning from, 195–196
in preventive health, 219
root cause analysis and, 196–197
Failure Mode and Effects Analysis (FMEA), 197
Falls, See Patient falls
Family drawings, in personality testing, 9
Family functioning, learning disorders and, 12
Family members’ wishes, interests of patient vs., 147
FDA (Food and Drug Administration), clinical trial phases and,
122–123
Fee-for-service health care system, 218
Feeding tubes, patients’ rights concerning, 148
Female sexual arousal, dysfunctional, 80
Fertility rate, 106
Fetishism, 81
transvestic, 81
Fishbone diagram, in root cause analysis, 197
5R’s strategy, in medication administration, 201
Flow charts, for quality improvement, 208
Fluoxetine (Prozac), 86
Fluvoxamine (Luvox), 86
FMEA (Failure Mode and Effects Analysis), 197
Folstein Mini-Mental Status Exam, 43
Food and Drug Administration (FDA), clinical trial phases and,
122–123
“Forcing function”
medical error and, 192
quality improvement and, 197, 210
Framing effects, diagnostic error and, 191
Frontotemporal neurocognitive disorder, 44
Escitalopram (Lexapro), 86
Estimations, from sample to population as a whole, 134–135
Ethics
conduct vs. legal principles, 151
court cases, 145–146
legal issues and, 147–151
Euthanasia, 148
Evidence-based medicine
defined, 223
infection prevention strategies, 201, 202, 211
patient care standards and, 216
Executive function, disturbances in, 41
Exhibitionism, 81
Experimental studies, 119, 122–123
principles of, 122–123
Experimenter expectancy, 125
associations with, 126
Facilitation, as interviewing technique, 4
Factitious disorder, 38
Failure(s)
in communication, 205
learning from, 195–196
in preventive health, 219
root cause analysis and, 196–197
Failure Mode and Effects Analysis (FMEA), 197
Falls, See Patient falls
Family drawings, in personality testing, 9
Family functioning, learning disorders and, 12
Family members’ wishes, interests of patient vs., 147
FDA (Food and Drug Administration), clinical trial phases and,
122–123
Fee-for-service health care system, 218
Feeding tubes, patients’ rights concerning, 148
Female sexual arousal, dysfunctional, 80
Fertility rate, 106
Fetishism, 81
transvestic, 81
Fishbone diagram, in root cause analysis, 197
5R’s strategy, in medication administration, 201
Flow charts, for quality improvement, 208
Fluoxetine (Prozac), 86
Fluvoxamine (Luvox), 86
FMEA (Failure Mode and Effects Analysis), 197
Folstein Mini-Mental Status Exam, 43
Food and Drug Administration (FDA), clinical trial phases and,
122–123
“Forcing function”
medical error and, 192
quality improvement and, 197, 210
Framing effects, diagnostic error and, 191
Frontotemporal neurocognitive disorder, 44
Escitalopram (Lexapro), 86
Estimations, from sample to population as a whole, 134–135
Ethics
conduct vs. legal principles, 151
court cases, 145–146
legal issues and, 147–151
Euthanasia, 148
Evidence-based medicine
defined, 223
infection prevention strategies, 201, 202, 211
patient care standards and, 216
Executive function, disturbances in, 41
Exhibitionism, 81
Experimental studies, 119, 122–123
principles of, 122–123
Experimenter expectancy, 125
associations with, 126
Facilitation, as interviewing technique, 4
Factitious disorder, 38
Failure(s)
in communication, 205
learning from, 195–196
in preventive health, 219
root cause analysis and, 196–197
Failure Mode and Effects Analysis (FMEA), 197
Falls, See Patient falls
Family drawings, in personality testing, 9
Family functioning, learning disorders and, 12
Family members’ wishes, interests of patient vs., 147
FDA (Food and Drug Administration), clinical trial phases and,
122–123
Fee-for-service health care system, 218
Feeding tubes, patients’ rights concerning, 148
Female sexual arousal, dysfunctional, 80
Fertility rate, 106
Fetishism, 81
transvestic, 81
Fishbone diagram, in root cause analysis, 197
5R’s strategy, in medication administration, 201
Flow charts, for quality improvement, 208
Fluoxetine (Prozac), 86
Fluvoxamine (Luvox), 86
FMEA (Failure Mode and Effects Analysis), 197
Folstein Mini-Mental Status Exam, 43
Food and Drug Administration (FDA), clinical trial phases and,
122–123
“Forcing function”
medical error and, 192
quality improvement and, 197, 210
Framing effects, diagnostic error and, 191
Frontotemporal neurocognitive disorder, 44
Escitalopram (Lexapro), 86
Estimations, from sample to population as a whole, 134–135
Ethics
conduct vs. legal principles, 151
court cases, 145–146
legal issues and, 147–151
Euthanasia, 148
Evidence-based medicine
defined, 223
infection prevention strategies, 201, 202, 211
patient care standards and, 216
Executive function, disturbances in, 41
Exhibitionism, 81
Experimental studies, 119, 122–123
principles of, 122–123
Experimenter expectancy, 125
associations with, 126
Facilitation, as interviewing technique, 4
Factitious disorder, 38
Failure(s)
in communication, 205
learning from, 195–196
in preventive health, 219
root cause analysis and, 196–197
Failure Mode and Effects Analysis (FMEA), 197
Falls, See Patient falls
Family drawings, in personality testing, 9
Family functioning, learning disorders and, 12
Family members’ wishes, interests of patient vs., 147
FDA (Food and Drug Administration), clinical trial phases and,
122–123
Fee-for-service health care system, 218
Feeding tubes, patients’ rights concerning, 148
Female sexual arousal, dysfunctional, 80
Fertility rate, 106
Fetishism, 81
transvestic, 81
Fishbone diagram, in root cause analysis, 197
5R’s strategy, in medication administration, 201
Flow charts, for quality improvement, 208
Fluoxetine (Prozac), 86
Fluvoxamine (Luvox), 86
FMEA (Failure Mode and Effects Analysis), 197
Folstein Mini-Mental Status Exam, 43
Food and Drug Administration (FDA), clinical trial phases and,
122–123
“Forcing function”
medical error and, 192
quality improvement and, 197, 210
Framing effects, diagnostic error and, 191
Frontotemporal neurocognitive disorder, 44
Frotteurism, 81
Fugue, dissociative amnesia with, 49

G
GAD (generalized anxiety disorder), 33
Gag clauses, 149
Gamblers Anonymous (GA), 61
Gambling disorder, 61
Gaussian distribution, 131
Gender differences, adjustment for, 101
Gender dysphoria, 82
Gender identity, defined, 79
Gender identity dysphoria, 82
Gender role, defined, 79
Generalized anxiety disorder (GAD), 33
Genetic counseling, for ID prevention, 12
Genito-pelvic pain disorder, 80
Good Samaritan Laws, 150
Grief, vs. depression, 22
Group therapy, 91
Gwande, Dr. Atul, 210

H
HAI. See Hospital-acquired infections (HAI)
Hair testing, in substance-related disorders, 56
Hallucinations
hypnagogic, 75
hypnopompic, 75
in mental status examination, 3
Hallucinogens, 57
Handoffs
effective, principles of, 207
errors in, 207
Handwritten abbreviations, “Do Not Use” list for, 200
HAP (hospital-acquired pneumonia), 201
Harm to patient
barriers to, 193
prevention of, 149, 193, 194–195
risk of, 151
Hawthorne effect. See Measurement bias
Health
defined, 223
determinants of. See Health determinants
Health care delivery systems
complexity of, 187–188
making safer, 198–210
patient-centered approach to, 221
population health. See Population health; Population health management
potential of, 210–211
value-based, 218–219
Health care professionals
fitness for patient care, 191–192
risk to patients from, 151
Health determinants, 216
social, 224
upstream, 224
Health inequity, defined, 223
Health power of attorney, 147
Health-related quality of life, 223
Histrionic personality disorder, 68
HIV infection, neurocognitive disorder due to, 45
Homosexuality, 79–80
Hospital-acquired infections (HAI)
prevention of, 202
types of, 201
Hospital-acquired pneumonia (HAP), 201
Hospital readmissions, unplanned
decrease in, 221
prevention of, 204
strategies to reduce, 203
Huddles, for effective teamwork, 204
Human sexuality, 79–82
Humor, 8
Huntington disease, neurocognitive disorder due to, 44
Hybrid antidepressants, 86
Hydrocephalus, normal pressure, 45
Hypertensive crisis, monoamine oxidase inhibitors and, 86
Hypnagogic hallucinations, 75
Hypnopompic hallucinations, 75
Hypoactive sexual desire, 80
Hypotension
from antidepressants, 85
from antipsychotics, 83
Hypothesis testing, 136
I
Id, 7
ID (intellectual disability), 11–12
Identity disorder
dissociative, 50
gender dysphoria, 82
IHI (Institute for Healthcare Improvement), Triple Aim approach
to health system performance, 217
Illness anxiety disorder, 37
Illusions, in mental status examination, 3
Iloperidone, 85
IM SAFE (mnemonic), 192
Imipramine, 86
Immaturity, maternal, 107
Impotence, 80
Impulse control, in mental status examination, 4
Impulse control disorders, 59–62
described, 59
gambling, 61
intermittent explosive disorder, 59–60
kleptomania, 60
Index

pyromania, 60–61
trichotillomania, 62
Incidence, and prevalence relationship, 102
Incidence rate, 102
equation for, 102
Incubation period, defined, 95
Independent events, probabilities and, 129
Indices of central tendency, 131
Infant Doe case, 146
Infant mortality
causes of, 107
risk factors for, 107
Infant mortality rate, 106–107
by race, 107
Infections, hospital-acquired. See Hospital-acquired infections (HAI)
Inferential statistics, 134–139
purpose of, 134–135
Information technology
for medication error reduction and, 201
population health management and, 217–218
Informed consent, 149
exceptions to, 149
Inhalants, abuse of, 58
Injury, unintentional, YPLL and, 109
Inkblot (Rorschach) test, 9
Insight, in mental status examination, 4
Insight-oriented therapy, 91
Insomnia, 76
Institute for Healthcare Improvement (IHI), Triple Aim approach to health system performance, 217
Institute of Medicine (IOM)
medication error estimate by, 187
STEEP aims, 198
Intellectual disability (ID), 11–12
in autism spectrum disorders, 13
Intellectualization, 8
Intelligence quotient (IQ), 9
ADHD and, 14
in intellectual disability, 11–12
learning disorders and, 12
in schizophrenia, 26
Intelligence tests, 9
in schizophrenia, 26
Intercurrent explosive disorder, 59–60
Interpretation
of medical literature, 153–167
of pharmaceutical adverts, 168–184
statistical, 136–137
Interval scale, 138, 139
Intervals. See Confidence intervals
Intervention(s)
defined, 223
in population health management, 217–218
quality improvement and, 210
Intervention studies (clinical trials), principles of, 122–123. See also Experimental studies
Interviewing techniques, in mental status examination, 4
Intoxication
defined, 55
signs, symptoms, and treatment of, 57–58
Introjection, 8
IQ. See Intelligence quotient (IQ)
Ishikawa diagram, in root cause analysis, 197
Isocarboxazid, 86
Isolation, 8
"Jamais vu," 50
Joint Commission, "Do Not Use" list of abbreviations, 200
Judgment
in mental status examination, 4
substituted. See Substituted judgment standard
Kappa statistic, defined, 114
Kleptomania, 60
Klüver-Bucy syndrome, 45
Knowledge-based mistake, medical error and, 188, 189
Korsakoff syndrome, 47
Kubler-Ross, Elizabeth, 23
Lamotrigine, 88
Lapses of memory, medical error and, 188, 189
Late-look bias, 125
associations with, 126
Latent errors, in medical error, 193
Lead-time bias, 125
associations with, 126
Leading questions, as interviewing technique, 4
Lean process, for quality improvement, 210
Learning disorders, 12
Legal drinking age, state variations in laws about, 150
Legal issues. See under Ethics
Lewy bodies, neurocognitive disorder with, 45
Libido, antidepressants and, 85
Life expectancy
defined, 223
premature death and, 109
Life-saving/Limb-saving treatment
legal rules concerning, 150
parental decision to forego, 150
Lifesaving treatment, parental decision to forego, 146
Likelihood ratio, screening test performance, 112–113
Lithium, 87
Living will, 147
Look-alike medications, 200
Lurasidone, 85

Magnetic resonance imaging (MRI), in schizophrenia, 26
Major depressive disorder (major depression), 19–20
 effect on sleep, 74
 with seasonal pattern, 22
Malingering, 39
Malnutrition, signs in anorexia nervosa, 64
MAOIs (monoamine oxidase inhibitors), 86
Marijuana (cannabis) abuse, 57
Masochism, 81
Massachusetts General Hospital (MGH), population health demonstration projects, 221
Masturbation, 79
Matched pairs t-test, 139, 140
Maternal immaturity, 107
Maternal mortality rate, 107
Mean
 confidence intervals of, 135
 as measure of central tendency, 131
 standard deviation and, 132–134
 standard error of, 135
Measurement bias, 125
 associations with, 126
Median, as measure of central tendency, 131
Medical condition, mild neurocognitive disorder due to, 46
Medical error(s). See also Adverse events
 barriers to, 193
 classifications of, 188–191
 disclosure of, 195
 Failure Mode and Effects Analysis and, 197
 human factors causing/influencing, 191–192
 prevention of, 192
 reporting of, 196
 root cause analysis of, 196–197
 systems-based approach to, 192–195
 victims of, 195
Medical literature, interpretation of, 153–167
Medication, mild neurocognitive disorder and, 46
Medication abbreviations, “Do Not Use” list for, 200
Medication errors, 199
 example of, 194
 reduction strategies, 201
 risk factors, 199–200
Medication reconciliation, 201
Memory impairment, 41
Memory lapse, medical error and, 188, 189
Mental retardation. See Intellectual disability (ID)
Mental status examination, 3–4
Mentally ill patients, rights of, 151
Meta-analysis, 139
MGH (Massachusetts General Hospital), population health demonstration projects, 221
Mild ID, 11
Mild neurocognitive disorder, 46–47
Minnesota Multiphasic Personality Inventory (MMPI), 9
Mirtazapine, 86
Mistakes, medical error and, 188, 189
Mixed sleep apnea, 75
MMPI (Minnesota Multiphasic Personality Inventory), 9
Mode, as measure of central tendency, 131
Moderate ID, 11
Monoamine oxidase inhibitors (MAOIs), 86
Mood, in mental status examination, 3
Mood disorders
 bipolar I disorder, 20–21
 cyclothymic disorder, 21–22
 death and dying and, 23
 grief, 22
 major depressive disorder, 19–20
 with seasonal pattern, 22
 peripartum, 23
 persistent depressive disorder, 21
Mood-stabilizing medications, 87–88. See also individual medications
Morbidity, measures of, 99–100
 incidence and prevalence, 102–103
 rates. See Rate(s)
Mortality, measures of, 99–100
 rates. See Mortality rate; Rate(s)
Mortality rate, 106
 case-fatality, 107, 108
 cause-specific, 108
 crude, 108
 infant, 106–107
 maternal, 107
 proportionate, 108
 types of, 108
Mortality statistics, components of, 106–108
Motor tics, in Tourette disorder, 16
Movement disorders, antipsychotics inducing, 84
MRI (magnetic resonance imaging), in schizophrenia, 26
Multi-infarct (vascular) neurocognitive disorder, 43
 Alzheimer type vs., 44
Multiple personality disorder. See Dissociative identity disorder
Multiplication, independent and nonindependent events by, 129
Multiplier(s)
 in rate equation, 99
 for vital statistics, 99
Mutually exclusive events, probabilities and, 129–130
N
Narcissistic personality disorder, 69
Narcolepsy, 74–75
Near misses, reporting of, 196, 210
Negative predictive value (NPV), screening test performance, 112
Neonatal mortality rate, 106
Neurocognitive disorder(s), 42–43
delirium, 41–42
due to Alzheimer’s disease, 43
due to HIV infection, 45
due to Huntington disease, 44
due to Parkinson disease, 45
due to prion disease, 44
due to substance/medication, 46–47
with Lewy bodies, 45
overview of, 41
pseudodementia vs., 46
Neurodegenerative disease, neurocognitive syndrome and, 42
Neuroleptic malignant syndrome, 84
Neuropsychologic tests, in schizophrenia, 26
Neurotransmitters, of sleep, 74
Night terror, 77
Nightmares, 77
Nominal (categorical) scale, 138
Nonindependent events, probabilities and, 129
Nonrapid eye movement (NREM) sleep, 71, 73
Norepinephrine, sleep and, 74
Normal distribution, 131
Normal pressure hydrocephalus, 45
Nortriptyline, 86
NPV (negative predictive value), screening test performance, 112
NREM (nonrapid eye movement) sleep, 71, 73
Null hypothesis, 136
error types and, 137
Numerator
matching denominator with, 100
in rate equation, 99
for specific rates, matching denominator with, 100
Nutritional deficiencies, neurocognitive syndrome and, 42

O
Objective personality tests, 9
Observational studies, 119–121
analyzing, 120
computational measures in, 122
differentiating by time, 119, 122
Obsessive-compulsive disorder (OCD), 32
tourette disorder and, 16
trichotillomania, 62
Obsessive-compulsive personality disorder, 70
Obstructive sleep apnea, 75
OCD (obsessive-compulsive disorder), 32
Ocular syndromes, antipsychotics inducing, 84
Odds ratio (OR)
confidence intervals for, 136
in observational studies, 120–121
Olanzapine, 84
Omission, errors of, 188
One-tailed p value, 136
Open-ended questions, as interviewing technique, 4
Opiates, abuse of, 58
Oppositional defiant disorder, 15
OR. See Odds ratio (OR)
Ordinal scale, 138–139
Orgasmic disorders, 80
antidepressants and, 85
“Out-of-body experience,” 50
Outcomes. See Clinical outcomes

P
p-value, in hypothesis testing, 136–137
limits to, 138
meaning of, 138
one-tailed (directional), 136
two-tailed (nondirectional), 136
Pain, during sexual intercourse, 80
Paliperidone, 85
Pandemic, defined, 95
Panic disorder, 31–32
Paranoid personality disorder, 68
Paraphilic disorders (paraphilias), 81
Parasomnias, 77
Parents withholding treatment from child, 150
Pareto analysis, for quality improvement, 208
Parkinson disease, neurocognitive disorder due to, 45
Paroxetine (Paxil), 86
Partial emancipation, 148
Passive euthanasia, 148
Patient-centered approach, defined, 223
Patient-centered medical home (PCMH), 221, 223
Patient decision-making rights
Roe vs Wade decision, 146
treatment cessation, 147
Patient falls
prevention of, 203
risk assessment, 203
sample run chart for, 209
Patient safety
communication strategies ensuring, 205–206
ensuring, responsibility for, 187–188, 206
falls, preventing, 203
during handoffs, 207
harm and. See Harm to patient
improving. See Quality improvement
infection control, 201–202
medical error and. See Medical error(s)
medications and, 199–201
pressure ulcers, preventing, 202
principles of, 187–188
speaking up for, 206
during surgery, 198–199
system-based redesign for, 188, 192, 194–195, 211
systems-based approach to, 192–195
teamwork for, 204
unplanned readmissions and, 203–204
Patient–physician relationship, rules concerning, 148
PCMH (patient-centered medical home), 221, 223
PCP (phencyclidine), 58
PDSA (plan, do, study, act) model, for quality improvement, 208
Pearson correlation, 139
Pedophilia, 81
Penetration disorder, 80
Perceptual disturbances, in mental status examination, 3
Perinatal mortality rate, 107
Period prevalence, 102
Peripartum mood disorders, 23
Peripartum psychosis, 23
Persistent depressive disorder (dysthymia), 21
Personality disorders, 67–70

categories, 67
overview, 67
Personality tests, 9
in schizophrenia, 26
PET (positron emission tomography), in schizophrenia, 26
Pharmacotherapy. See also Psychopharmacology; individual medications
for acute stress/post-traumatic stress disorders, 33
for ADHD, 14
autism spectrum disorders and, 13
for bipolar I disorder, 21
body dysmorphic disorder, 38
for brief psychotic disorder, 27
for childhood enuresis, 15
for cyclothymic disorder, 21
delusional disorder, 29
for generalized stress disorder, 33
insomnia, 76
for intermittent explosive disorder, 60
interpretation of adverts for, 168–184
for major depressive disorder, 20
for mild neurocognitive disorders, 47
for narcolepsy, 75
for obsessive-compulsive disorder, 32
for panic disorder, 32
for paraphilias, 81
for persistent depressive disorder, 21
personality disorders, 67
for phobic disorders, 32
for schizoaffective disorder, 28
for schizophrenia, 26
for schizophreniform disorder, 27
for substance-related disorders, 56
for Tourette disorder, 16
Phencyclidine (PCP), 58
Phenelzine, 86
Phobias, types of, 32
Phobic disorders, 32
Phototherapy, 22
Physician–patient relationship, rules concerning, 148
PMR (proportionate mortality rate), 108
Pneumonia, hospital-/ventilator-acquired, 201
Point prevalence, 102
Pooled t-test, 140
Population, defined, 224
Population health
defined, 215–216, 224
demonstration projects, 221
Population health management, 216–218
goals in, 220
implementation of, 220–221
steps in, 220
value-based care and, 218–219
Positive predictive value (PPV), screening test performance, 112
Positron emission tomography (PET), in schizophrenia, 26
Post-traumatic stress disorder (PTSD), 33
Postnatal mortality rate, 106
Postpartum blues, 23
Power, statistical error and, 138
Power of attorney, 147
PPV (positive predictive value), screening test performance, 112
Precision, screening test performance, 114
Predictive values, screening test performance, 112
Premature births, 107
Premature closure, diagnostic error and, 190
Premature death
causes of, 216
indicator of, 109
Premature ejaculation, 80
Prenatal care, for ID prevention, 12
Pressure ulcers, prevention of, 202
Prevalence, 97

equation for, 103
and incidence relationship, 102
screening test performance and, 112
Prevalence pot, 103
Prevalence rate, 102

equation for, 103
Prevalence study. See Cross-sectional studies
Prevention. See Disease prevention
Preventive health, failures in, 219
Index

Priapism, trazodone-induced, 85, 86
Primary prevention, 97
 in coronary heart disease, 98
Primordial prevention, 98
Prion disease, neurocognitive disorder due to, 44
Probability, 121, 129–130
Process, in quality measurement, 208
Profound ID, 12
Projection, 7
Projective personality tests, 9
Proportionate mortality rate (PMR), 108
Pseudodementia, 46
 neurocognitive disorder vs., 46
Psychoanalysis, 91
Psychodynanic therapy, for anxiety, 31
Psychologic tests, in schizophrenia, 26
Psychopharmacology. See also individual medications
 antidepressants, 85–86. See also Antidepressant medications
 antipsychotics, 83–85. See also Antipsychotic medications
 anxiolytics, 53, 88
 mood-stabilizers, 87–88
Psychosis, peripartum, 23
Psychosocial stressors, maladaptive reactions to, 53
Psychotherapy(ies)
 for personality disorders, 67
 for substance-related disorders, 56
 types of, 91
Psychotic disorders
 brief, 26–27
 delusional, 28–29
 in peripartum period, 23
 psychopharmacologic therapy for, 83–85
 schizoaffective, 28
 schizophrenia, 25–26
 schizophreniform, 27
 treatment of symptoms in, 85
Psychotic symptoms, treatment of, 85
PTSD (post-traumatic stress disorder), 33
Public health, defined, 224
Purging, signs in anorexia nervosa, 64
Pygmalion effect. See Experimenter expectancy
Pyromania, 60–61

medication errors, reducing, 199–201
models of, 208–210
patient falls, assessing risk for, 203
pressure ulcers, preventing, 202
principles of, 195–197
readmissions, unplanned, 203–204
recommended actions for, 211
roadmap for, 207–210
surgical procedures and, 198–199
teamwork, 204
tools for, 207–210
Quality of life
 defined, 224
 health-related, 223
Quetiapine, 84
Quinlan case, 145

R
Race, infant mortality rate by, 107
Random/chance factors, null hypothesis and, 136
Randomized controlled clinical trial (RCT), 123
double-blind, 123
Range of distribution values, 132
Rapid eye movement (REM) sleep, 72–73
 REM latency, 74
Rate(s)
 adjusted (standardized), 100–101
 defined, 99
 incidence, 102
 measured, types of, 108
 prevalence, 102
 specific. See Specific rates
 Rate equation, 99
 Ratio scale, 138, 139
 Rationalization, 8
 Rationing of care, 219
RCA (root cause analysis), of medical error, 196–197
RCT (randomized controlled clinical trial), 123
double-blind, 123
Reaction formation, 8
Read-back, as communication strategy, 206
Readmission to hospital, unplanned. See Hospital readmissions, unplanned
Reason, James, 193
Recall bias, 125
 associations with, 126
Receiver operating characteristic (ROC) curves, 114
Registry, defined, 224
Regression, 8
Rehabilitation programs, for substance-related disorders, 56
Relative risk (RR)
 confidence intervals for, 136
 for observational studies, 120
Reliability
 in mental status examination, 4
 screening test performance, 114
 in screening test performance, 113
REM. See Rapid eye movement (REM) sleep
REM (rapid eye movement) sleep, REM latency, 74
Reporting, of medical error, 196
Repression, 8
Research abstracts, interpretation of, 153–167
Resource allocation, 97
Restricting behavior, in anorexia nervosa, 63
Right of refusal, competency and, 147
Risk factor, defined, 224
Risk priority number (RPN), 197
Risperidone, 84
ROC (receiver operating characteristic) curves, 114
Roe vs Wade, 146
Root cause analysis (RCA), of medical error, 196–197
Rorschach (inkblot) test, 9
RPN (risk priority number), 197
RR. See Relative risk (RR)
Rule-based mistake, medical error and, 188, 189
Run charts, for quality improvement, 209

S
Sadism, 81
Safe environments, intellectual disability and, 12
Safe surgery checklist, 199
"Safe Surgery Saves Lives" (WHO program), 198
Sample data, generalizations from, 134–135
Sampling (selection) bias, 125
 associations with, 126
SBAR communication, example of, 205
Scales, types of, 138–139
Scatterplots, graphing correlations with, 140
Schizoaffective disorder, 28
Schizoid personality disorder, 68
Schizophrenia
 brain imaging findings, 26
 defined, 25
 differential diagnosis in, 26
 presenting symptoms, 25
 prevalence, 25
 psychologic tests in, 26
 risk factors/etiology, 25
 treatment for, 26
Schizophriniform disorder, 27
Schizotypal personality disorder, 68
Screening, defined, 111, 224
Screening test diagram, 113–114
Screening test performance
 measures of, 112–113
 screening test diagram for, 113–114
 2X2 table for, 111
Screening tests, 111–114
Seasonal pattern, major depressive disorder with, 22
Secondary prevention, 97
 in coronary heart disease, 98
Sedation
 from antidepressants, 85
 from antipsychotics, 83
Seizure disorders, as neurocognitive syndrome cause, 42
Seizures, from antidepressants, 85
Selection (sampling) bias, 125
 associations with, 126
Selective serotonin reuptake inhibitors (SSRIs), 86
Selegiline, 86
Self-esteem
 ADHD and, 14
 intellectual disability and, 12
 learning disorders and, 12
Self-medication hypotheses, 56
Sensitivity, screening test performance, 112
Sensorium, in mental status examination, 4
Sentence completion test, 9
Sentinel events, 188
Separation anxiety, 16
Serotonin, sleep and, 74
Sertraline (Zoloft), 86
Severe ID, 12
Sexual arousal, female, dysfunctional, 80
Sexual aversion, 80
Sexual desire
 antidepressants and, 85
 hypoactive, 80
Sexual dysfunction(s)
 from antidepressants, 85, 86
 in sexual response cycle, 80
Sexual identity, defined, 79
Sexual orientation, defined, 79
Sexual response cycle, dysfunctions in, 80
Sexuality, 79–82
Shift, in run chart, 209
Side effects. See Adverse effects
Significance testing, 136–137
Single-parent family, risk factors for children in, 107
Six Sigma model, for quality improvement, 210
Skewed distribution curve, 132
Sleep
 characteristics of, by age, 74
 chemical effects on, 74
 disorders of, 74–77
 facts about, 71–73
 neurotransmitters of, 74
 stages of, 71–73
Sleep apnea, 75
Sleep attacks, 75
Index

- **Sleep disorders**, 74–77
 - insomnia, 76
 - narcolepsy, 74–75
 - parasomnias, 77
 - sleep apnea, 75
- Sleep hygiene techniques, 77
- Sleep latency, 74
- Sleep paralysis, 75
- Sleeptalking, 77
- Sleepwalking, 77
- Slips/slip of action, medical error and, 188, 189
- Social anxiety disorder, 32
- Social behaviors
 - autism spectrum disorders and, 13
 - learning disorders and, 12
- Social determinant, of health, 224
- Somatic symptom disorder, 35–36
- Somatization, 8
- Somatoform disorders
 - body dysmorphic disorder, 37–38
 - conversion disorder, 36–37
 - defined, 35
 - factitious disorder, 38
 - illness anxiety disorder, 37
 - malingering, 39
 - somatic symptom, 35–36
- Spearman correlation, 139
- Special education techniques
 - ADHD and, 14
 - autism spectrum disorders and, 13
 - intellectual disability and, 12
 - learning disorders and, 12
- Specific rates, 100
 - computing, matching numerator and denominator in, 100
 - formula for, 100
- Specificity, screening test performance, 112
- Speech, in mental status examination, 3
- Splitting, 7
- SSI (surgical site infection), 201
- SSRIs (selective serotonin reuptake inhibitors), 86
- Standard deviation, 132–134
 - mean and, 133–134
- Standard error of the mean, 135
- Standard score (Z-score), 135
- Standardized (adjusted) rates, 100–101
- Stanford-Binet Intelligence Scales, 9
- Statistical tests, selecting, 139–141
- Statistics
 - descriptive, 131–134
 - inferential, 134–139
- STEEEP aims (Institute of Medicine), 198
- Steroids, anabolic, abuse of, 57
- Stranger anxiety, 16
- Structure, in quality measurement, 208
- Structured communication
 - assertive, 206
 - SBAR, example of, 205
- Study designs, in epidemiological research, 118–126
 - bias in, 123–124
 - experimental, 119, 122–123
 - observational, 119–121, 122
- Subjective standard criteria, in surrogate decision-making, 148
- Sublimation, 9
- Substance(s)
 - associated with substance abuse, 57–58
 - effect on sleep, 74
- Substance abuse, 55–58
 - neurocognitive disorders and, 46–47
 - substances associated with, 57–58
- Substance-related disorders, 55–58. See also Addictive disorders/ Addiction; Substance abuse
 - definitions, 55
 - diagnostic tests in, 56
 - physical/psychiatric examinations in, 55
 - risk factors/etiology in, 55–56
 - treatments for, 56
- Substance use disorder, 55
- Substituted judgment standard, 145
 - in surrogate decision-making, 148
- Suicide
 - assisted, 148
 - suicidal behavior and, 89
- Superego, 7
- Supportive therapy, 91
- Suppression, 9
- Surgery, medical error prevention and, 198–199
- Surgical site infection (SSI), 201
- Surrogate decision-making, standards for, 148
- Survival analysis, 110
- Survival rates, lead-time bias and, 125
 - “Survivor guilt,” 33
- Swiss-cheese model, of medical error, 193, 194
 - medication error example, 194
- System-related errors, 192–195
- Systems approach, to medical error, 192–195

T
- t-tests, 139, 140–141
 - matched pairs, 139, 140
 - pooled, 140
- Tarasoff decision, 147, 150
- Tardive dyskinesia (TD), 84
- Target population, defined, 224
- TAT (Thematic Apperception Test), 9
- TCAs (tricyclic antidepressants), 86
- TD (tardive dyskinesia), 84
Teamwork
 - effective, characteristics of, 204
 - poor, medical errors and, 204
 - in population health management, 221
Technology. See Information technology
Telemedicine programs, 220
Tertiary prevention, 97
 - in coronary heart disease, 98
Test validity, screening test performance, 113
Thematic Apperception Test (TAT), 9
Thiamine, for alcohol-related mild neurocognitive disorder, 47
Thought (form and content), in mental status examination, 3
Time plots, for quality improvement, 209
Tourette disorder, 16
Toxins, neurocognitive syndrome and, 42
Transvestic fetishism, 81
Tranylcypromine, 86
Trazodone, 86
Treatment, errors in. See Medication errors
Trend, in run chart, 209
Trichotillomania, 62
Tricyclic antidepressants (TCAs), 86
"Triple Aim" (IHI initiative), 217
Tryptophan, effect on sleep, 74
Two-tailed p value, 136
2X2 tables, in epidemiological study design, 111
Type I (α) error, in hypothesis testing, 137
Type II (β) error, in hypothesis testing, 137

U
Undoing, 8
Unintentional injury, YPLL and, 109
Unplanned readmissions. See Hospital readmissions, unplanned
Upstream determinant, of health, 224
Urinary tract infection (UTI), catheter-related, 201, 202
Urine drug screening, in substance-related disorders, 56
UTI (urinary tract infection), catheter-related, 201, 202

V
Validity
 - screening test performance, 113
 - in screening test performance, 113
Value-based care, 218–219
value equation, 219
Variables
 - confounding, 124
 - demographic, for specific rates, 100
Variance of distribution, 132
Variation. See Clinical variation
Variation in data, understanding, 208–209
Vascular neurocognitive disorder, 43
 - Alzheimer type vs., 44
Venlafaxine, 86
Ventilator-acquired pneumonia, 201
Ventricular enlargement, in schizophrenia, 26
Victims, of adverse event, 195
Violations, medical error and, 190
Vital statistics
 - components of, 106–108
 - multipliers for, 100
Vocal tics, in Tourette disorder, 16
Voyeurism, 81

W
WAIS-R (Wechsler Adult Intelligence Scale Revised), 9
Web-based tools, population health management and, 220
Wechsler Adult Intelligence Scale for Children Revised (WISC-R), 9
Wechsler Adult Intelligence Scale Revised (WAIS-R), 9
Wernicke syndrome, 47
Wilson disease, 45
WISC-R (Wechsler Adult Intelligence Scale for Children Revised), 9
Withdrawal
 - defined, 55
 - signs, symptoms, and treatment of, 57–58
Workplace conditions, medical error and, 191
World Health Organization (WHO), “Safe Surgery Saves Lives” program, 198
Wrong-site procedure, 198
Wrongful death, medical error as cause of, 187

Y
Years of potential life lost (YPLL), 109

Z
Z-scores, 135
Ziprasidone, 85
Editors

Carlos Pestana, MD, PhD
Emeritus Professor of Surgery
University of Texas Medical School at San Antonio
San Antonio, TX

Adil Farooqui, MD, FRCS
Clinical Assistant Professor of Surgery
Keck School of Medicine, University of Southern California
Kaiser Permanente, West Los Angeles Medical Center
Los Angeles, CA

Mark Nolan Hill, MD, FACS
Professor of Surgery
Chicago Medical School
Chicago, IL

Contributor

Ted A. James, MD, MS, FACS
Chief, Breast Surgical Oncology
Vice Chair, Academic Affairs
Department of Surgery
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA

The editors would like to acknowledge
Michaela West, MD, PhD, FACS, North Memorial Health/University of Minnesota and
Gary Schwartz, MD, Baylor University Medical Center.
We want to hear what you think. What do you like or not like about the Notes?
Please email us at medfeedback@kaplan.com.
Table of Contents

Part I. Surgery

1. **Chapter 1: Trauma** ... 3
2. **Chapter 2: Orthopedics** ... 19
3. **Chapter 3: Pre-Op and Post-Op Care** 35
4. **Chapter 4: General Surgery** 45
5. **Chapter 5: Pediatric Surgery** 65
6. **Chapter 6: Cardiothoracic Surgery** 71
7. **Chapter 7: Vascular Surgery** 75
8. **Chapter 8: Skin Surgery** ... 79
9. **Chapter 9: Ophthalmology** .. 81
10. **Chapter 10: Otolaryngology (ENT)** 83
11. **Chapter 11: Neurosurgery** 87
12. **Chapter 12: Urology** ... 91
13. **Chapter 13: Organ Transplantation** 95
Part II. Surgical Vignettes

Chapter 1: Trauma .. 99

Chapter 2: Orthopedics ... 131

Chapter 3: Pre-Op and Post-Op Care 149

Chapter 4: General Surgery .. 163

Chapter 5: Pediatric Surgery ... 195

Chapter 6: Cardiothoracic Surgery 201

Chapter 7: Vascular Surgery ... 207

Chapter 8: Skin Surgery ... 209

Chapter 9: Ophthalmology .. 211

Chapter 10: Otolaryngology (ENT) ... 215

Chapter 11: Neurosurgery ... 221

Chapter 12: Urology ... 229

Chapter 13: Organ Transplantation 237

Index ... 239

Additional resources available at
www.kaptest.com/usmlebookresources
PART I

Surgery
Learning Objectives

- Describe the ABCs of evaluating a trauma patient
- Discuss the importance of the Secondary Survey and a complete head-to-toe review of a trauma patient
- Provide basic information about treatment of burns, bites, and stings

PRIMARY SURVEY: THE ABCs

The initial evaluation of a trauma patient requires a systematic approach to identify life threatening and potentially life-threatening injuries. This typically involves a brief "Primary Survey" to assess airway (A), breathing (B), circulation (C), disability (D, neuro exam), and exposure (E) of the patient, so that all potential injuries can be seen (ABCDE mnemonic). Needed interventions should be immediately addressed as the examiner proceeds through ABCDE.

After the Primary Survey is complete, and if the patient is stable, then a Secondary Survey, involving a complete head to toe examination and evaluation of all organ systems should be performed.

Airway (A)
The first step in the evaluation of trauma is airway assessment and protection.

- The airway is considered intact if the patient is conscious and speaking in a normal tone of voice.
- An airway is considered unprotected and/or compromised if there is an expanding hematoma or subcutaneous emphysema in the neck, noisy or “gurgly” breathing, or a Glasgow Coma Scale <8.

An airway should be secured before the situation becomes critical. **In the field or in the ED**, a definitive airway can be secured by intubation or cricothyroidotomy. Emergent airway control is best done by rapid sequence induction and orotracheal intubation, monitoring oxygen saturation with pulse oximetry. In the presence of a cervical spine injury, orotracheal intubation can still be done if the head is secured and in-line stabilization is maintained during the procedure. If severe maxillofacial injuries preclude the use of intubation or intubation is unsuccessful, cricothyroidotomy may become necessary.

An airway should be secured before the situation becomes critical. **In the field or in the ED**, a definitive airway can be secured by intubation or cricothyroidotomy. Emergent airway control is best done by rapid sequence induction and orotracheal intubation, monitoring oxygen saturation with pulse oximetry. In the presence of a cervical spine injury, orotracheal intubation can still be done if the head is secured and in-line stabilization is maintained during the procedure. If severe maxillofacial injuries preclude the use of intubation or intubation is unsuccessful, cricothyroidotomy may become necessary.

In the pediatric patient population (age <8), tracheostomy is preferred over cricothyroidotomy due to the high risk of airway stenosis, as the cricoid is much smaller than in the adult.
Breathing (B)
The presence of symmetrical breath sounds indicate satisfactory ventilation; an absence or decrease of breath sounds may indicate a pneumothorax and/or hemothorax and necessitate chest tube placement. Pulse oximetry can be used to determine if oxygenation is satisfactory (O2 saturation >90–95%); hypoxia may be secondary to airway compromise, pulmonary contusion, or neurological injury impairing respiratory drive and necessitate intubation. Measurement of end tidal CO2 (capnography) is also very useful.

Circulation (C) and Shock
Clinical signs of shock are seen only if >25% of blood volume (>1500–2000 mL) has been lost and include the following:

- Low BP (<90 mm Hg systolic)
- Tachycardia (heart rate >100 bpm)
- Low urinary output (<0.5 ml/kg/h)

Patients in shock will be pale, cold, shivering, sweating, thirsty, and apprehensive. In the most severe cases, impaired perfusion of the brain may render patients unconscious.

In the trauma setting, shock is generally hypovolemic (secondary to hemorrhage and the most common scenario) or rarely cardiogenic (secondary to pericardial tamponade or tension pneumothorax due to chest trauma).

Hemorrhagic shock is accompanied by collapsed neck veins due to low central venous pressure (CVP), while cardiogenic shock tends to cause elevated CVP with jugular venous distention. Both processes may occur simultaneously, that is, a patient could be hemorrhaging (hypovolemic) and have a tension pneumothorax (with distended neck veins).

In pericardial tamponade, there is shock without respiratory distress. With tension pneumothorax, there is significant dyspnea, absent breath sounds and hyperresonance on the side of the tension pneumothorax, diminished breath sounds on the opposite side (due to mediastinal shift and compression of the lung), accompanied by tracheal deviation.

Treatment of hemorrhagic shock includes volume resuscitation and control of bleeding, in the OR or ED depending on the injury and available resources. Volume resuscitation is initially with 2L of lactated Ringer's solution unless blood products are immediately available.

In the setting of trauma, transfusion of blood products should be in a 1:1:1 ratio between packed RBCs, fresh frozen plasma, and platelets. Resuscitation should be continued until BP and heart rate normalize and urine output reaches 0.5–1.0 ml/kg/hr. In the setting of uncontrolled hemorrhage, permissive hypotension is recommended to prevent further blood loss while awaiting definitive surgical repair, but a mean arterial pressure >60 mm Hg should be maintained to ensure adequate cerebral perfusion.

The preferred route of fluid resuscitation in the trauma setting is 2 large bore peripheral IV lines, 16-gauge or greater. If this cannot be obtained, percutaneous femoral vein catheters should be inserted; saphenous vein cutdown and placement of ≥1 intraosseous cannulas are acceptable alternatives. In children age <6, intraosseous cannulation of the proximal tibia or femur is the alternate route.

Pericardial tamponade is generally a clinical diagnosis that can be confirmed with U/S. Management requires evacuation of the pericardial space by pericardiocentesis, subxiphoid pericardial window, or thoracotomy. Fluid and blood administration while evacuation is being set up is helpful to maintain an adequate cardiac output.
Tension pneumothorax is a clinical diagnosis based on physical exam. Signs include absent breath sounds, tracheal deviation, “hyperresonance,” and distended neck veins. May also be hypotension and shock. Management requires immediate decompression of the pleural space, initially with a large-bore needle (needle thoracostomy) which converts the tension to a simple pneumothorax and followed by chest tube placement.

In the non-trauma setting, hypovolemic shock can also arise because of massive fluid loss such as bleeding, burns, peritonitis, pancreatitis, or massive diarrhea. The clinical picture is similar to trauma, with hypotension, tachycardia, and oliguria with a low CVP. Stop the bleeding and replace the blood volume.

Non-traumatic (intrinsic) cardiogenic shock is caused by myocardial damage (e.g. myocardial infarction or fulminant myocarditis). The clinical picture is hypotension, tachycardia, and oliguria with a high CVP (presenting as distended neck veins). Treatment acutely consists of pharmacologic circulatory support, followed by attempts to restore perfusion and/or cardiac function. Differential diagnosis is essential, because additional fluid and blood administration in this setting could be lethal, as the failing heart becomes easily overloaded.

Neurogenic/spinal shock is often associated with low BP and bradycardia. It can also result in circulatory collapse. Patients are flushed, “pink and warm” with a low CVP. Treatment with phenylephrine and fluids is aimed at filling dilated veins and restoring peripheral resistance.

Disability (D)

Neurologic evaluation (disability) is also an important component of the Primary Survey. Key points include assessing for the patient’s ability to move all extremities, looking for gross defects. Level of consciousness, usually graded by the Glasgow Coma Score (GCS) is also performed and documented.

Exposure (E)

Staying aware of modesty at all times, remove the patient’s clothing to allow for a thorough physical examination. Check for signs of trauma, bleeding, skin irritations, needle marks, and warm body temperature.

SECONDARY SURVEY

After the ABCs have been evaluated and any immediate life-threatening emergencies addressed, trauma evaluation continues with the secondary survey which is composed of a complete physical exam to evaluate for occult injuries followed by chest x-ray and pelvic x-ray (although many include chest x-ray, pelvis x-ray, and FAST as part of the primary survey under “C,” to identify location of hemorrhage). The secondary survey may be augmented with further imaging studies depending on the mechanism of injury and findings on examination. Any change that occurs requires complete re-evaluation, including rechecking that there has not been a change in the ABCs.
A REVIEW FROM HEAD TO TOE

Head Trauma

- Penetrating head trauma as a rule requires surgical intervention and repair of the damage, although brain gunshot wound (especially transcranial gunshot wounds) are frequently lethal.
- Linear skull fractures are left alone if they are closed (no overlying wound).
- Open fractures require wound closure. If comminuted or depressed, treat in the OR.
- The threshold for obtaining a brain CT should be very low. Almost anyone who has lost consciousness or has GCS <13–14 should undergo CT imaging. Those with positive findings should get a neurosurgical consult, while those with normal findings who are neurologically intact (GCS 15) can be considered for discharge if they are able to be accompanied by family/friends for the next 24 hours.

Basilar skull fractures can be difficult to diagnose. Signs of a fracture affecting the base of the skull include raccoon eyes, rhinorrhea, otorrhea or ecchymosis behind the ear (Battle's sign). CT scan of the head is required to rule out intracranial bleeding and should be extended to include the neck (with reconstruction) to evaluate for a cervical spinal injury. Expectant management is the rule and antibiotics are not usually indicated.

Traumatic brain injury (TBI) from trauma can be caused by 3 components:

- Initial blow/direct injury
- Intra-cranial bleeding resulting in a hematoma that displaces the brain structures (e.g., compression of brain parenchyma, midline shift)
- Development of increased intracranial pressure (ICP) due to cerebral edema

There is no treatment for the first (other than prevention), surgery can relieve the second, and medical measures can prevent or minimize the third.

Acute epidural hematoma occurs with modest trauma to the side of the head, and has a classic sequence of trauma, unconsciousness, followed by a lucid interval (a completely asymptomatic patient who returns to his previous activity), gradual lapsing into coma again, fixed dilated pupil (90% of the time on the side of the hematoma), and contralateral hemiparesis with decerebrate posturing. CT scan shows a biconvex, lens-shaped hematoma, typically in the fronto-temporal area. Emergency craniotomy produces a dramatic cure. Because most patients with a history of having been unconscious get a CT scan, the full-blown picture with a fixed pupil and contralateral hemiparesis is seldom seen.

Acute subdural hematoma (SDH) also arises from a blow to the head, but the force of the trauma is typically much larger and the patient is usually much sicker (not fully awake and asymptomatic at any point), due to more severe neurologic damage. CT scan will show semilunar, crescent-shaped hematoma. If midline structures are deviated, craniotomy to evacuate the blood is indicated, but the prognosis is frequently poor. If there is no deviation, therapy is centered on preventing further damage from subsequent increased ICP.

Invasive ICP monitoring, head elevation, modest hyperventilation, avoidance of fluid overload, and diuretics such as mannitol or furosemide can decrease ICP. However, do not diurese to the point of lowering systemic arterial pressure, as cerebral perfusion pressure = mean arterial pressure minus intracranial pressure. Hyperventilation is recommended when there are signs of herniation, and the goal is PCO2 35 mm Hg. Sedation is used to decrease brain activity and oxygen demand. Moderate hypothermia is currently recommended to further reduce cerebral oxygen demand.
Diffuse axonal injury occurs in more severe trauma secondary to anoxia or decreased cerebral perfusion. CT scan shows diffuse blurring of the gray-white matter interface and multiple small punctate hemorrhages. Since there is not a discrete hematoma, there is no role for surgery. Therapy is directed at preventing further damage from increased ICP.

Chronic subdural hematoma (SDH) may be seen in the setting of unrecognized subdural or expansion of acute SDH that was not drained. Chronic subdural hematoma may develop from minor trauma, often in older individuals with underlying brain atrophy, from a tear of the venous sinuses. Over several days or weeks, mental function deteriorates as hematoma forms. Neurologic symptoms may arise from a sub-clinical hematoma as the red blood cells lyse leading to osmotic expansion of the fluid collection. CT scan is diagnostic, and surgical evacuation provides dramatic improvement.

Hypovolemic shock cannot happen from intracranial bleeding: there isn’t enough space inside the head for the amount of blood loss needed to produce shock. Look for another source.

Neck Trauma

For the purpose of evaluating penetrating neck trauma, the neck has been divided into 3 zones.

- **Zone 1** begins at the clavicles and extends to the level of the cricoid cartilage
- **Zone 2** is located between the cricoid cartilage and the angle of the mandible
- **Zone 3** runs from the angle of the mandible to the base of the skull

Surgical exploration for penetrating trauma to the neck is indicated in cases where there is an expanding hematoma, deteriorating vital signs, and signs of esophageal or tracheal injury such as coughing or spitting up blood.

- For injuries to zone 1, evaluate with CTA and neck CT esophagogram (water-soluble, followed by barium if negative), esophagoscopy, and bronchoscopy to help decide if surgical exploration is indicated and to determine the ideal surgical approach.
- Historically, all penetrating injuries to zone 2 mandated surgical exploration, with a recent trend toward selective exploration based on physical exam and imaging studies.
 - If the patient is stable with low index of suspicion of a significant injury, use CTA and neck CT to potentially avoid unnecessary surgical exploration.
 - If the patient’s condition changes or deteriorates urgent surgical exploration is indicated.
- For injuries to zone 3, evaluate with CT angiography to identify any vascular injury.

In all patients with severe blunt trauma to the neck, the integrity of the cervical spine has to be ascertained. Unconscious patients and conscious patients with midline tenderness to palpation should be evaluated initially with CT scan, potentially followed with MRI depending on findings. Conscious patients with no symptoms (are not intoxicated, have not used drugs, or have no ‘distracting’ injury) can be clinically evaluated for a cervical spinal injury; however if CT scan of the head is being obtained, it is generally accepted to extend the study to include the cervical spine.

Spinal Cord Injury

The level and mechanism determine the impact of quality of life and the potential for recovery. Transection of the spinal cord results in irreversible complete loss of motor and sensory neurologic function below the level of the injury. With high spinal cord injury, loss of sympathetic innervation and the resulting vasodilation (and in many cases, loss of sympathetic cardiac drive) can result in neurogenic/spinal shock. Spinal shock should be considered in the acute trauma setting if there is hypotension and paralysis, often accompanied by bradycardia.
A few specific conditions related to spinal cord injury follow.

Complete transection is unlikely to be on the exam because it is too easy: nothing works, sensory, or motor, below the level of the injury.

Hemisection (Brown-Sequard) is typically caused by a clean-cut injury such as a knife blade, and results in ipsilateral paralysis and loss of proprioception along with contralateral loss of pain perception below the level of the injury.

Anterior cord syndrome is typically seen with burst fractures of the vertebral bodies. There is loss of motor function, pain and temperature sensation bilaterally below the injury, but vibratory and positional sense are preserved.

Central cord syndrome occurs in the elderly with forced hyperextension of the neck, such as a rear-end collision. There is paralysis and burning pain in the upper extremities, with preservation of most functions in the lower extremities.

Management necessitates precise diagnosis of a cord injury, best done with MRI. There is some evidence that high-dose corticosteroids immediately after the injury may help, but that concept is still controversial. Further surgical management is too specialized for the exam.

Chest Trauma

Rib fractures can be deadly in the elderly, because pain impairs respiratory effort, which leads to hypoventilation, atelectasis, and ultimately, pneumonia. To avoid this cycle, treat pain from rib fractures with a local nerve block or epidural catheter, in addition to oral and IV analgesics.

Figure I-1-1. X-ray of Multiple Rib Fractures due to Trauma
Simple pneumothorax results from collapse of the lung. Mechanisms include penetrating injury, rib fracture with puncture of lung, and secondary iatrogenic causes (e.g., CVC placement). There is typically moderate shortness of breath with absence of unilateral breath sounds and hyperresonance to percussion. Diagnosis is confirmed with chest x-ray, and management consists of chest tube placement.

Hemothorax occurs when blunt or penetrating injury results in bleeding into the chest cavity. The blood can originate directly from the lung parenchyma or from the chest wall, such as an intercostal artery. Physical examination reveals decreased breath sounds on the affected side, accompanied by dullness to percussion. Diagnosis is confirmed with chest x-ray. Chest tube placement is necessary to enable evacuation of the accumulated blood to prevent late development of a fibrothorax or empyema, but surgery to stop the bleeding is sometimes required. If the lung is the source of bleeding, it usually stops spontaneously as it is a low pressure system. In some cases where a systemic vessel such as an intercostal artery is the source of bleeding, thoracotomy is needed to stop the hemorrhage. Indications for thoracotomy include:

- Evacuation of $>$1,500 mL when the chest tube is inserted
- Collecting drainage of $>$1 L of blood over 4 hours, i.e., $>$200 mL/hr

Severe blunt trauma to the chest may cause obvious injuries such as rib fractures with a flail chest or sucking chest wound, as well as less apparent injuries such as pulmonary contusion, blunt cardiac injury, diaphragmatic injury, and aortic injury.

Sucking chest wounds are obvious from physical exam. If there is a flap that sucks air with inspiration and closes during expiration it could lead to a tension pneumothorax. A sucking chest wound can also arise from an open pneumothorax, where a larger open wound leads to the inability to exchange air on the side of the injury. Initial management is with a partially occlusive dressing secured on 3 sides, with one open side acting as a one-way valve. This allows air to escape but not to enter the pleural cavity (to prevent iatrogenic tension pneumothorax).

Flail chest involves fracture ≥ 3 ribs with >2 segments broken. This allows a segment of the chest wall to retract during inspiration and bulge out during expiration (so-called, “paradoxic breathing”). The real problem is the underlying pulmonary contusion. A contused lung is very sensitive to fluid overload, thus treatment includes fluid restriction and aggressive pain management. Pulmonary dysfunction may develop, thus serial chest x-rays and arterial blood gases have to be monitored.

Pulmonary contusion may be detected immediately after chest trauma with “white-out” of the affected lung(s) or can be delayed up to 48 hours. Significant force is necessary to result in a flail chest, so traumatic dissection or transection of the aorta should be evaluated for using a CT angiogram. Finally, ARDS may develop in this scenario.

Blunt cardiac injury should be suspected with the presence of sternal fractures. ECG monitoring will detect any abnormalities. Although serum troponin level was historically obtained, elevations do not generally change management and are therefore not indicated, and treatment is focused on the complications of the injury such as arrhythmias.

Traumatic rupture of the diaphragm shows up with the bowel in the chest (by physical exam and x-rays), almost always on the left side (the liver protects the right hemidiaphragm). If diaphragmatic injury is suspected it should be evaluated with laparoscopy, although gas insufflation of the peritoneum may complicate anesthetic care. Surgical repair is typically done from the abdomen.

Traumatic rupture of the aorta is the ultimate “hidden injury.” It most commonly occurs at the junction of the arch and the descending aorta where the relatively mobile aorta is tethered.
by the ligamentum arteriosum. Such an injury can occur in the setting of a significant deceleration injury and may be totally asymptomatic until the hematoma contained by the adventitia ruptures resulting in rapid death. Aortic injury should be suspected if:

- Mechanism of injury, high energy deceleration mechanism
- Widened mediastinum on chest x-ray or mediastinal hematoma on chest CT
- Presence of atypical fractures such as the first or second rib, scapula, or sternum, all of which require great force to fracture

Diagnosis is made with CT angiogram. Surgical repair is indicated once the patient has been stabilized and more immediate live-threatening injuries have been managed. Repair of aortic injury can be done in an open or endovascular fashion.

Traumatic rupture of the trachea or major bronchus is suggested by the presence of subcutaneous emphysema in the upper chest and lower neck, or by a large “air leak” from a chest tube. Chest x-ray and CT scan confirm the presence of air outside the bronchopulmonary tree, and fiberoptic bronchoscopy may identify the injury and allow intubation past the injury to secure an airway. Surgical repair is indicated.

Differential diagnosis of **subcutaneous emphysema** also includes rupture of the esophagus and tension pneumothorax.

Air embolism can produce sudden cardiovascular collapse and cardiac arrest. It should be suspected when sudden death occurs in a trauma patient who is intubated and on a respirator. It also can occur in a spontaneously breathing patient if the subclavian vein is opened to the air (e.g. supraclavicular node biopsies, central venous line placement or lines that become disconnected). Immediate management includes cardiac massage, with the patient positioned in Trendelenburg with the left side down to “trap” air in the atria until it can be absorbed or aspirated. Prevention of air embolism includes use of the Trendelenburg position when the great veins at the base of the neck are to be accessed.

Fat embolism may also produce respiratory distress in a trauma patient who hasn’t had direct chest trauma.

- For instance, a patient with multiple traumatic injuries (including several long bone fractures) develops petechial rashes in the axillae and neck; fever, tachycardia, and low platelet count.
- At some point the patient develops full-blown respiratory distress, with hypoxemia and bilateral patchy infiltrates on chest x-ray.

The mainstay of therapy for fat embolism is respiratory support. Heparin, steroids, alcohol, and low-molecular-weight dextran are of no value.

Abdominal Trauma

For the sake of evaluation and management, abdominal trauma is divided into penetrating and blunt trauma based on the mechanism of injury. **Penetrating trauma** is further differentiated into gunshot wounds and stab wounds, as the pattern of injury based on mechanism differs.

- Gunshot wounds to the abdomen require exploratory laparotomy for evaluation and possible repair of intra-abdominal injuries, not to “remove the bullet.” Any entrance or exit wound below the level of the nipple line is considered to involve the abdomen.
- Stab wounds allow a more individualized approach. “Selective management” with close observation of hemodynamically stable patients can avoid non-therapeutic laparotomy. However, a protruding viscera or peritoneal signs/evidence of ongoing bleed requires exploratory laparotomy.
In the absence of the conditions above, local wound exploration may be performed in the ED to assess whether or not the anterior rectus fascia has been penetrated.

- If the fascia is not violated, the intra-abdominal cavity likely has not been penetrated and no further intervention is necessary.
- If the fascia has been violated, surgical exploration is indicated to evaluate for bowel or vascular injury, even in the setting of hemodynamic stability and lack of peritoneal findings on physical examination. If there is any question, perform CT.

Blunt trauma to the abdomen with obvious signs of peritonitis or suspected intra-abdominal hemorrhage requires emergent surgical evaluation via exploratory laparotomy. Signs of internal injury include abdominal distention and significant abdominal pain with guarding or rigidity on physical examination consistent with peritonitis. The occurrence of blunt trauma even without obvious signs of internal injury requires further evaluation because internal hemorrhage or bowel injury can be slow and therefore present in a delayed fashion.

Signs of internal bleeding include a drop in BP, a fast and/or thready pulse, a low CVP, and low urinary output. Patients tend to be cold, pale, anxious, shivering, thirsty, and perspiring profusely. These signs of shock occur when 25–30% of blood volume is acutely lost, ~1,500 ml in the average-size adult. There are few places in the body that this volume of blood can be lost without being obvious on physical or radiographic exam.

- The head is too small without causing a lethal degree of intracranial pressure.
- The pleural cavities could easily accommodate several liters of blood, with relatively few local symptoms, but such a large hemothorax would be obvious on chest x-ray, which is routinely obtained as part of the primary survey in a trauma patient.
- This volume of bleeding could also occur with a pelvic fracture and >1 liter of blood can be lost with a mid-shaft femur fracture.

That leaves the abdomen, retroperitoneum, thighs (secondary to a femur fracture), and pelvis as the only places where a volume of blood significant enough to cause shock could “hide” in a blunt trauma patient that has become unstable. The femurs and pelvis are always checked for fractures in the initial survey of the trauma patient by physical exam and pelvic x-ray. So any patient who is hemodynamically unstable with normal chest and pelvic x-rays likely has intra-abdominal bleeding.

Ultrasound is an important, readily available, adjunct to identify intra-abdominal and pericardial fluid. The Focused Abdominal Sonography for Trauma (FAST) is a bedside ultrasound study that evaluates the perihepatic space, perisplenic space, pelvis, and pericardium for free fluid. Fluid is not typically present in these locations, so if there is a clinical suspicion such as hypotension following blunt trauma, consider an internal injury.

- An unstable patient with a positive FAST exam should be taken to the OR for immediate surgical exploration.
- A stable patient in whom the diagnosis is less definite should undergo a more definitive study, i.e., CT scan. CT will show the presence of intra-abdominal fluid and can accurately delineate the source, typically the liver or spleen.

Additionally, grading scores exist for the extent of solid organ injury, with specific guidelines as to when a surgical intervention is indicated versus observation. The details of these guidelines are outside the scope of the exam. Generally speaking, a patient with intra-abdominal bleeding injury from the liver or spleen can be observed as long as they are hemodynamically stable or respond to fluid and blood product administration; the moment instability is mentioned in a vignette, surgical exploration is indicated.
If surgical exploration is indicated for penetrating or blunt trauma, certain principles must be employed.

- Prolonged surgical time and ongoing bleeding can lead to the “triad of death”: hypothermia, coagulopathy, and acidosis. The longer a patient is open, the worse these components get, and they can interact in a vicious cycle ultimately leading to death. Accordingly, the “damage control” approach has been adopted: that is, immediate life-threatening injuries are addressed, less urgent injuries are temporized or left to be addressed at a later time point. The over-arching principle is to control bleeding.
 - Once bleeding is controlled, the next priority is control of contamination from injury to the GI tract. If a bowel resection is necessary, reconstruction can be delayed as only the contamination is life-threatening, not the inability to digest food.
 - If hypothermia, coagulopathy, or acidosis is setting in and injuries have been controlled, the operation is terminated and the abdomen is closed with a temporary closure. The patient is resuscitated in the ICU, and returns to the OR at a later date when warm, not coagulopathic, and not acidotic for definitive reconstruction and abdominal closure.

- If coagulopathy does develop during surgical exploration, it is best treated with transfusion of RBCs, fresh frozen plasma, and platelets in equal quantities (1:1:1 ratio). This most realistically mimics the replacement of whole blood and provides not only hemoglobin, but also adequate clotting factors to reverse the developing coagulopathy and enable control of hemorrhage.

- Abdominal compartment syndrome is when the pressure in the peritoneal cavity is elevated and exceeds the capillary perfusion pressure leading to end-organ injury. This occurs when a significant amount of fluid is administered in an effort to resuscitate a patient in hypovolemic shock. Bowel edema develops, increasing intra-abdominal pressure (IAP), which is detrimental for several reasons.
 - First, the elevated pressure leads to decreased perfusion pressure to the viscera, contributing to acute kidney injury and possibly bowel and hepatic ischemia.
 - Second, increased IAP leads to upward displacement of the diaphragm preventing adequate expansion of the lungs and ventilation, contributing to respiratory failure.
 - Therefore, if bowel edema is observed or intra-abdominal pressure is elevated following surgical exploration, the abdomen is not closed but rather left open as described in the damage-control approach.
 - Similarly, if a patient is not surgically explored but undergoes a significant volume resuscitation and abdominal compartment syndrome develops, a decompressive laparotomy may be indicated. Incidentally, this can occur in non-trauma scenarios requiring massive fluid resuscitation, most notably severe pancreatitis.

A ruptured spleen is the most common source of significant intra-abdominal bleeding in blunt abdominal trauma. Often there are additional diagnostic hints, such as fractures of lower ribs on the left side. Given the limited function of the spleen in the adult, a splenic injury resulting in hemodynamic instability or requiring significant blood product transfusion is an indication for splenectomy. Post-operative immunization against encapsulated bacteria is mandatory (Pneumococcus, Haemophilus influenza B, and Meningococcus). However, lesser injuries to the spleen which can be repaired easily are attempted.
Pelvic Fracture

The pelvis is a complete boney ring, and therefore it cannot be fractured in only one location; multiple fractures are typically present. These can range from minor to life-threatening. Minor fractures with small pelvic hematomas incidentally identified on CT scan are typically monitored.

In **pelvic fracture with ongoing significant bleeding** causing hemodynamic instability, management is complex.

- The first step for an obvious pelvic fracture in an unstable patient is external pelvic wrapping to provide some stabilization of the pelvis, thereby limiting the potential space for ongoing blood loss.

- In most cases angiography, *not* surgical exploration, is the next step in managing hemorrhage from serious pelvic fracture.
 - This is because it is incredibly difficult (often impossible) to identify the source of bleeding in the pelvis where a deep cavity contains significant organs and vessels including the complex sacral venous plexus.
 - However, interventional radiologists can angiographically identify an arterial source of bleeding and potentially embolize the branch vessels and control hemorrhage.
 - If no arterial bleeding is identified, the ongoing blood loss is presumed to be venous in origin, and the internal iliac arteries are prophylactically embolized to prevent the inflow to these bleeding veins.

In any pelvic fracture, associated injuries have to be ruled out. These include injuries to the rectum (do a rectal exam and rigid proctoscopy), vagina in women (do a manual vaginal exam); urethra in men (do a retrograde urethrogram), and bladder (addressed in the next section).
Urologic Injury

The hallmark of urologic injury is blood in the urine of someone who has sustained penetrating or blunt abdominal trauma. Gross hematuria in that setting must be investigated with appropriate studies.

Penetrating urologic injuries as a rule are surgically explored and repaired.

- Blunt urologic injuries may affect the kidney, in which case the associated injuries tend to be lower rib fractures. If they affect the bladder or urethra, the usual associated injury is pelvic fracture.
- Urethral injuries occur almost exclusively in men. They are typically associated with a pelvic fracture and may present with blood at the meatus.
 - Other clinical findings include a scrotal hematoma, the sensation of wanting to void but inability to do so, and a “high-riding” prostate on rectal exam (i.e., it is not palpable on rectal exam).
 - The key issue in any of these is that a Foley catheter should not be inserted, as it might compound an existing injury; a retrograde urethrogram should be performed instead. If Foley catheter placement is attempted and resistance met, this should be a clue that a urethral injury may be present and attempt should be aborted.
- Bladder injuries can occur in either sex, are usually associated with pelvic fracture, and are diagnosed by retrograde or CT cystogram.
 - The x-ray study must include post-void films to enable visualization of extraperitoneal leak that might be obscured by a bladder full of dye. Management of intraperitoneal bladder injury requires surgical repair with protection by a decompressive suprapubic cystostomy or indwelling Foley catheter.
- Renal injuries secondary to blunt trauma are usually associated with lower rib fractures. They are assessed by CT and most of the time can be managed without surgical intervention.
 - A rare but fascinating potential sequela of injuries affecting the renal pedicle is the development of an arteriovenous fistula leading to CHF. Should renal artery stenosis develop after trauma, renovascular hypertension is another potential sequela.
- Scrotal hematomas can attain alarming size, but typically do not need specific intervention unless the testicle is ruptured. The latter can be assessed with ultrasound examination.
- Penile fracture (disruption of the corpora cavernosa or the tunica albuginea) occurs to an erect penis, typically during vigorous intercourse (more often with a partner on top). There is sudden pain and development of a penile shaft hematoma, with a normal appearing glans.
 - Frequently, the true history will be concealed by an embarrassed patient. Emergency surgical repair is required. If not done, impotence will ensue as either arteriovenous shunts or painful erections.

Injury to the Extremities

Injury to the extremities can arise from blunt or penetrating mechanisms. Often it involves orthopedic, soft tissue, vascular, or nerve injury. Vascular injury has the potential to be immediately life-threatening and should be the initial focus in evaluation. In penetrating injuries of the extremities, the main issue is whether a vascular injury has occurred or not. Anatomic location provides the first clue.
• When there are no major vessels in the vicinity of the injury, only tetanus prophylaxis and irrigation of the wound is required.
• If the penetration is near a major vessel and the patient is asymptomatic, Doppler studies or CT angiogram is performed and will guide the need for a surgical intervention.
• If there is an obvious vascular injury (absent distal pulses, expanding hematoma) surgical exploration and repair are required.

Simultaneous injuries of arteries and bone pose the challenge of the sequence of operative repair. One perspective is to stabilize the bone first, then do the delicate vascular repair which could otherwise be disrupted by the bony reduction and fixation. However during the orthopedic repair, ongoing ischemia is occurring as the arterial flow is disrupted.

A good solution, if proposed on the exam, is to place a vascular shunt, which allows temporary revascularization during the bony repair, with definitive vascular repair completed subsequently. A fasciotomy should usually be added because prolonged ischemia could lead to a compartment syndrome.

High-velocity gunshot wounds (e.g. military or big-game hunting rifles) produce a large cone of tissue destruction that requires extensive debridements and potential amputations.

Crushing injuries of the extremities resulting in myonecrosis pose the hazard of hyperkalemia and renal failure as well as potential development of compartment syndrome. Aggressive fluid administration, osmotic diuretics, and alkalinization of the urine with sodium bicarbonate are good preventive measures for the acute kidney injury, and a fasciotomy may be required to prevent or treat compartment syndrome.

BURNS

Chemical burns require massive irrigation to remove the offending agent. Alkaline burns (chemical drain cleaners) are worse than acid burns (battery acid). Irrigation must begin as soon as possible at the site where the injury occurred (tap water, shower). Do not attempt to neutralize the agent.

High-voltage electrical burns are always deeper and worse than they appear to be. Massive debridements or amputations may be required. Additional concerns include myonecrosis-induced acute kidney injury, orthopedic injuries secondary to massive muscle contractions (e.g., posterior dislocation of the shoulder, compression fractures of vertebral bodies), and late development of cataracts and demyelination syndromes. Of course cardiac electrical integrity and function must be evaluated.

Respiratory burns (inhalation injuries) occur with flame burns in an enclosed space (a burning building, car, plane) and are chemical injuries caused by smoke inhalation. Burns around the mouth or soot inside the throat are suggestive clues. Diagnosis is confirmed with fiberoptic bronchoscopy, but the key issue is whether respiratory support is necessary, guided by serial arterial blood gases. Intubation should be initiated if there is any concern about adequacy of the airway. The routine use of tracheostomy and antibiotic/steroids therapy has been discredited, but levels of carboxyhemoglobin have to be monitored. If elevated, 100% oxygen will shorten its half-life.

Circumferential full-thickness burns of the extremities can lead to tissue edema and restriction of arterial inflow, resulting in ischemia and compartment syndrome secondary to eschar. This can also occur in circumferential burns to the chest, with resultant limitations in ventilation. Escharotomies of insensate full-thickness burns can be done at the bedside with no need for anesthesia to provide immediate relief.
Scalding burns in children should always raise the suspicion of child abuse, particularly if the pattern of the burn does not fit the description of the event given by the parents. A classic example is burns of both buttocks, which are typically produced by holding a small child by arms and legs and dunking him into boiling water.

Burns differ importantly from other types of traumatic injury.

- Burns result in the loss of skin integrity and increase insensible fluid losses, leading to profound hypovolemia and loss of temperature control.
- Burn center consultation should be obtained for burns in children, electrical burns, thermal burns >20%, or full thickness burns >2%. When in doubt consult a burn center before initiating fluid resuscitation or other interventions.
- In the first 24 hours after burn, fluid needs can be estimated by calculations that take into account the extent of the burn and provide an estimated amount of IV fluid that is needed.
- Once fluid resuscitation has been initiated, adjust rate based on urinary output.
- The extent of % total body surface area (% TBSA) involved with partial and full thickness burns in the adult is estimated using the "rule of nines," where the head and each of the upper extremities are each assigned 9% of body surface; each lower extremity is assigned two 9% units; and trunk is assigned 4 units of 9% each. The remaining 1% TBSA is accounted for by the perineum/genitalia.
- For purposes of this calculation, only partial and full thickness (previously referred to as second- and third-degree) burns count.

The most widely used calculation is the modified Parkland formula, in which body weight in kilograms is multiplied by the percentage of burn (as a whole number), and multiplied by 4 mL/% TBSA burn. The number obtained is the estimated total amount of lactated Ringer’s (LR) that will be required in the first 24 hours: half of this volume would need to be infused in the first 8 hours and the other half during the next 16 hours. The 24 hour time window for burn resuscitation begins from the time of the burn injury!

Parkland Formula: BW (kg) × % TBSA burn (up to 50%) × 4 mL/ % TBSA

- Infuse half first 8 hours, infuse second half next 16 hours
- For example, a 70 kg patient with 45% burns would need around 12.6 L in 24 hrs: 6.3 L (788 mL/hr) during the first 8 hrs and 6.3 L (393 mL/hr) during the next 16 hrs.

Alternative strategy: Initiate a predetermined rate of infusion, typically 1,000 ml/h of LR for anyone whose burns >20% of body surface and then adjust as needed to produce the desired...
urinary output (0.5 mL/kg/hr in adults and 1–2 mL/kg/hr in children, with the higher urine output in infants). Fluids containing glucose are avoided to prevent an osmotic diuresis that would render urine output unreliable and exacerbate hypovolemia.

Fluid needs for burned babies differ from adults in several respects.

- Babies have proportionately larger heads and smaller legs; thus the “rule of 9s” for them assigns two 9s to the head, and a total of three 9s (not four) for both legs.
- Third-degree burns in babies look deep red rather than the leathery, dry, gray appearance present in adults.
- Babies need proportionally more fluid than adults, therefore formulas and calculations in the baby use 4–6 mL/kg/%.
- An alternative initial predetermined rate of infusion for babies is 20 mL/kg/hour (for example, an 11 kg infant might have an initial fluid rate of 220 mL/hr).

Other aspects of burn care include tetanus prophylaxis, cleaning of the burn areas, and the use of topical agents. The standard topical agent is silver sulfadiazine. If a topical agent with deep penetration is necessary (e.g. a thick eschar or a burn over cartilage), mafenide acetate is the choice. Burns near the eyes are covered with bacitracin or triple antibiotic ointment (silver sulfadiazine is irritating to the eyes).

- In the early period, all pain medication is given intravenously because GI absorption is unpredictable.
- After an initial day or two of NG suction, intensive nutritional support is provided, preferably via the gut, with high calorie/high nitrogen diets.
- After 2 or 3 weeks of wound care and general support, the burned areas which have not regenerated are grafted. Rehabilitation starts on day 1.
- When possible, early excision and skin grafting are recommended to save costs and minimize pain, suffering, and complications.

BITES AND STINGS

Tetanus prophylaxis and wound care are required for all bites. **Dog bites** are considered provoked if the dog was petted while eating or otherwise teased. No rabies prophylaxis is required, other than observation of the dog for developing signs of rabies.

Unprovoked dog bites or bites from wild animals raise the issue of potential rabies. If the animal is available, it can be euthanized and the brain examined for signs of rabies. Otherwise, rabies prophylaxis with immunoglobulin plus vaccine is mandatory.
Snakebites do not necessarily result in envenomation, even if the snake is poisonous (up to 30% of bitten patients are not envenomated). The most reliable signs of envenomation are severe local pain, swelling, and discoloration developing within 30 minutes of the bite. If such signs are present, draw blood for typing and crossmatch (they cannot be done later if needed), coagulation studies, and liver and renal function. Treatment is based on antivenin. The currently preferred agent for crotalids is CROFAB, of which several vials are usually needed.

Antivenin dosage relates to the size of the envenomation, not the size of the patient (children get the same dosages as adults). Surgical excision of the bite site or fasciotomy is very rarely needed. The only valid first aid is to splint the extremity during transportation. Do not make cruciate cuts, suck out venom, wrap with ice, or apply a tourniquet.

Bee stings kill many more people in the United States than snakebites because of an anaphylactic reaction. Wheezing and rash may occur, and hypotension when present is caused by vasomotor shock (“pink and warm” shock). Epinephrine is the drug of choice (0.3–0.5 ml of 1:1,000 solution). The stingers should be removed without squeezing them.

Black widow spiders have a characteristic red hourglass on the belly. Bitten patients experience nausea, vomiting, and severe generalized muscle cramps. The antidote is IV calcium gluconate. Muscle relaxants also help.

Brown recluse spider bites are often not recognized at the time of the bite. In the next several days, a skin ulcer develops, with a necrotic center and a surrounding halo of erythema. Surgical debridement of all necrotic tissue is needed. Skin grafting may be needed subsequently.

Human bites are bacteriologically the dirtiest bite one can get. They require extensive irrigation and debridement (in the OR) and antibiotics. A classic human bite is the sharp cut over the knuckles on someone who punched someone else in the mouth and was cut by the teeth of the victim. They often show up in the ED with a cover story, but should be recognized because they need specialized orthopedic care.
Learning Objectives

- Describe the diagnostic and treatment approach to common pediatric and adult orthopedic problems
- Discuss priorities in management of bone tumors

PEDIATRIC ORTHOPEDICS

- **Congenital dysplasia of the hip** runs in families, and should be ideally diagnosed right after birth. Children have uneven gluteal folds, and physical examination of the hips shows that they can be easily dislocated posteriorly with a jerk and a “click,” and returned to normal with a “snapping.” If signs are equivocal, U/S is diagnostic (do not order x-rays; the hip is not calcified in the newborn). Treatment is abduction splinting with a Pavlik harness for ~6 months.

- Hip pathology in older children may present as hip or knee pain. **Legg-Calve-Perthes** disease is avascular necrosis of the capital femoral epiphysis and occurs around age 6, with insidious development of limping, decreased hip motion, and hip or knee pain. Patients walk with an antalgic gait (anti = against and alge = pain, so antalgic refers to gait that minimizes pain symptoms) and passive motion of the hip is guarded. Diagnosis is confirmed by AP and lateral hip x-rays. Treatment is controversial, usually containing the femoral head within the acetabulum by casting and crutches.

- **Slipped capital femoral epiphysis (SCFE)** is the most common hip disorder in adolescents. It is an orthopedic emergency because further slippage may compromise the blood supply and result in avascular necrosis of the femoral head.
 - The typical patient is an overweight boy around age 13 who complains of groin or knee pain, and who ambulates with a limp.
 - When sitting with the legs dangling, the sole of the foot on the affected side points toward the other foot.
 - On physical exam there is limited hip motion, and as the hip is flexed the thigh goes into external rotation and cannot be rotated internally.
 - X-rays are diagnostic, and surgical treatment relies on placement of 1-2 pins to hold the femoral head back in place.

- A **septic hip** is an orthopedic emergency.
 - It is seen in toddlers who have had a febrile illness, and then refuse to move the hip. They hold the leg with the hip flexed, in slight abduction and external rotation, and appear uncomfortable with passive movement of the joint (e.g., agitated with diaper change or examination).
– White blood cell count and erythrocyte sedimentation rate are elevated.
– Diagnosis is made by aspiration of the hip under general anesthesia, and surgical irrigation and open drainage are performed if pus is obtained.

- **Acute hematogenous osteomyelitis** is seen in small children who have had a febrile illness and presents as severe localized pain in a bone with no history of trauma to that bone. X-rays will not show anything for several weeks. MRI reveals prompt diagnosis. Treatment is IV antibiotics.

- **Genu varum (bow-legs)** is normal up to age 3; no treatment is needed. Persistent varus age >3 is most commonly Blount disease, a disturbance of the medial proximal tibial growth plate, for which surgery is corrective.

- **Genu valgus (knock-knee)** is normal between ages 4–8; no treatment is needed.

- **Osgood-Schlatter disease (osteochondrosis of the tibial tubercle)** is seen in teenagers with persistent pain right over the tibial tubercle, which is aggravated by contraction of the quadriceps. Physical exam shows localized pain right over the tibial tubercle in the absence of knee swelling. Treatment is initially with rest, ice, compression, and elevation. If conservative management fails, treatment is immobilization of the knee in an extension or cylinder cast for 4–6 weeks.

- **Club foot (talipes equinovarus)** is seen at birth. Both feet are turned inward, and there is plantar flexion of the ankle, inversion of the foot, adduction of the forefoot, and internal rotation of the tibia. Serial plaster casts started in the neonatal period provide sequential correction starting with the adducted forefoot, then the hindfoot varus, and last the equinus. About 50% of patients with club foot are fully corrected this way. The other 50% require surgery after age 6–8 months but before age <1–2 years.

- **Scoliosis** is seen primarily in adolescent girls whose thoracic spines are curved >10 degrees to the right or left. The most sensitive screening finding is to look at the girl from behind while she bends forward. The deformity progresses until skeletal maturity is reached (at the onset of menses skeletal maturity is ~80%). In addition to the cosmetic deformity, severe cases develop decreased pulmonary function. Bracing is used to arrest progression; severe cases may require surgery. Early treatment is mandated.

Fractures

Remodeling occurs to an astonishing degree in children’s fractures, thus degrees of angulation that would be unacceptable in the adult may be acceptable in children when these fractures are reduced and immobilized. Also, the healing process is much faster than in the adult. The only areas where children have special problems include supracondylar fractures of the humerus and fractures of any bone that involve the growth plate or epiphysis.

Supracondylar fractures of the humerus occur with hyperextension of the elbow in a child who falls on the hand with the arm extended. The injuries are particularly dangerous due to the proximity of the brachial artery and ulnar nerve. Although these fractures are treated with standard casting or traction and rarely need surgery, they require careful monitoring of vascular and nerve integrity and vigilance regarding development of compartment syndrome.
Fractures that involve the growth plate or epiphysis can be treated by closed reduction if the epiphysis and growth plate are displaced laterally from the metaphysis but they are in one piece (i.e., the fracture does not cross the epiphysis or growth plate and does not involve the joint). If the growth plate is fractured into two pieces, open reduction and internal fixation will be required to ensure precise alignment and even growth to avoid chronic deformity of the extremity. The Salter Harris (SH) classification is commonly used to grade epiphyseal fractures. Fractures that are SH I and II can often be managed without surgery, but SH ≥III typically requires operative management.

Reproduced with permission from the University of Virginia, Department of Radiology.

All rights reserved.

Figure I-2-1. Supracondylar Fracture of the Humerus

Figure I-2-2. Salter Harris Grade III Fracture of the Medial Tibia
ADULT ORTHOPEDICS

X-rays for suspected fracture in adults should always include the following:

- Two views at 90° to one another
- Joints above and below the broken bone
- If suggested by the mechanism of injury, bones that are in “the line of force,” which might also be broken (e.g. the lumbar spine must be evaluated for fracture following a fall from a significant height with foot fractures)

As a general rule, broken bones that are not badly displaced or angulated or that can be satisfactorily aligned by external manipulation can be immobilized in a cast (“closed reduction”). Broken bones that are severely displaced or angulated or that cannot be aligned easily require surgical intervention to reduce and fix the fracture (“open reduction and internal fixation”).

Clavicular fracture is typically at the junction of middle and distal thirds. It is treated by placing the arm in a sling. Figure-of-8 bandage treatment is now less popular.

Anterior dislocation of the shoulder is by far the most common shoulder dislocation. Patients hold the arm close to their body but rotated outward as if they were going to shake hands. There may be numbness in a small area over the deltoid, from stretching of the axillary nerve. AP and lateral x-rays are diagnostic. Some patients develop recurrent dislocations with minimal trauma.

Posterior shoulder dislocation is rare and occurs after massive uncoordinated muscle contractions, such as epileptic seizure or electrical burn. The arm is held in the usual protective position (close to the body, internally rotated). Regular x-rays can easily miss it; axillary views or scapular lateral views are needed.

Colles’ fracture is a fairly common fracture of the distal radius that results from a fall on an outstretched hand, often in older patients with osteoporosis. The deformed and painful wrist looks like a “dinner fork.” The main abnormality seen on x-ray is a dorsally displaced, dorsally angulated fracture of the distal radius. Treatment is with close reduction and long arm cast.

Copyright 2007 Bates, M.D. - Custom Medical Stock Photo.
All rights reserved.

Figure I-2-3. X-ray demonstrating Colles Fracture with “Dinner-fork” Deformity
Monteggia fracture results from a direct blow to the ulna (i.e., on a raised protective arm hit by a nightstick). There is diaphyseal fracture of the proximal ulna, with anterior dislocation of the radial head. Galeazzi fracture is the mirror image: the distal third of the radius gets the direct blow and has the fracture, and there is dorsal dislocation of the distal radioulnar joint. In both of these, the broken bone often requires open reduction and internal fixation, whereas the dislocated one is typically handled with closed reduction.

Fracture of the scaphoid (carpal navicular) affects a young adult who falls on an outstretched hand. Chief complaint is typically wrist pain, with physical exam revealing localized tenderness to palpation over the anatomic snuff box. In undisplaced fractures, x-rays are usually negative, but thumb spica cast is indicated just with the history and physical findings. X-rays will show the fracture 3 weeks later. If original x-rays show displaced and angulated fracture, open reduction and internal fixation are needed. Scaphoid fractures are notorious for a very high rate of nonunion secondary to avascular necrosis.

Metacarpal neck fracture (typically the fourth or fifth, or both) happens when a closed fist hits a hard surface (like a wall). The hand is swollen and tender, and x-rays are diagnostic. Treatment depends on the degree of angulation, displacement, or rotary malalignment: closed reduction and ulnar gutter splint for the mild fractures, with Kirschner wire or plate fixation for markedly displaced fractures.

Hip fracture is a bit of a misnomer for fractures that involve the proximal femur. These fractures typically occur in the elderly following a fall. The hip hurts, and the patient’s position in the stretcher is one in which the affected leg is shortened and externally rotated. Specific treatment depends on the specific location (as shown by x-rays).

Femoral neck fracture, particularly if displaced, compromises the very tenuous blood supply of the femoral head. Faster healing and earlier mobilization can be achieved by replacing the femoral head with a prosthesis.

![Figure 1-2-4. Right Femoral Neck Fracture on X-ray](image)

Intertrochanteric fracture is less likely to lead to avascular necrosis and is usually treated with open reduction and pinning. The unavoidable immobilization that ensues poses a very high risk for deep venous thrombosis and pulmonary emboli, thus post-op anticoagulation is recommended.
Figure I-2-5. Intertrochanteric Fracture of the Right Hip on X-ray

Femoral shaft fracture is common and often requires operative management in adults with intramedullary rod fixation.

- If bilateral and comminuted, it may produce enough internal blood loss to lead to shock (external fixation may help while the patient is stabilized).
- If open, it is an orthopedic emergency, requiring OR irrigation and closure within 6 hours.
- If multiple, fat embolism syndrome may develop, in which severe respiratory distress occurs secondary to marrow fat entering the blood stream and embolizing to the pulmonary vasculature.
- Treatment is supportive care.

Knee injury typically produces swelling of the knee; knee pain without swelling is unlikely to be a serious knee injury. Collateral ligament injury is usually sustained when the force of impact is at the side of the knee, a common sports injury. Medial forces to the knee generally result in disruption of the lateral ligament and vice versa.

- The knee will be swollen and there is localized pain by direct palpation on the affected side.
- With the knee flexed 30°, passive abduction or adduction will produce pain on the torn ligaments and allow further displacement than the normal leg.
Abduction demonstrates the medial injuries (valgus stress test), whereas adduction diagnoses the lateral injuries (varus stress test). Isolated injuries are treated with a hinged cast.

When several ligaments are torn, surgical repair is preferred.

Anterior cruciate ligament (ACL) injury is more common than posterior injury.
- There is severe knee swelling and pain.
- With the knee flexed 90°, the lower leg can be pulled anteriorly, like a drawer being opened (anterior drawer test).
- A similar finding can be elicited with the knee flexed at 20° by grasping the thigh with one hand, and pulling the leg with the other (Lachman test).

Posterior cruciate ligament (PCL) injury produces the opposite findings. MRI is diagnostic. Sedentary patients may be treated with immobilization and rehabilitation, whereas athletes require arthroscopic reconstruction.

Meniscal tear is difficult to diagnose clinically and on x-rays, but is beautifully demonstrated on MRI.
- Protracted pain and swelling after a knee injury
- Possible “catching and locking,” which limits knee motion, and a “click” when the knee is forcefully extended
- Repair is done, trying to save as much meniscus as possible
- Complete meniscectomy leads to the late development of degenerative arthritis

Injuries to the medial meniscus, medial collateral, and anterior cruciate often occur simultaneously.

Tibial stress fracture ("shin splints") is commonly seen in athletes and military recruits. There is tenderness to palpation over a very specific point on the bone, but x-rays are initially normal. Treat with a cast, and repeat the x-rays in 2 weeks. Non-weight bearing with crutches is another option.

Leg fracture involving the tibia and fibula is often seen when a pedestrian is hit by a car. Physical exam shows angulation; x-rays are diagnostic. Casting takes care of the ones that are easily reduced; intramedullary nailing is needed for the ones that cannot be aligned. The lower leg (along with the forearm) is one of the most common locations for development of the compartment syndrome. Increasing pain after a long leg cast has been applied always requires immediate removal of the cast and appropriate assessment. Because of the superficial location of the tibia, many significant tibial fractures are open fractures.

Rupture of the Achilles tendon is often seen in middle-aged recreational athletes who subject themselves to severe strain (tennis, for instance). As they plant the foot and change direction, a loud popping noise is heard (like a rifle shot), and they fall clutching the ankle. Limited plantarflexion is still possible; but pain, swelling, and limping bring them to seek medical attention. Palpation of the tendon reveals a gap. Casting in equinus position allows healing over several months; surgery achieves a quicker cure.

Fracture of the ankle occurs when falling on an inverted or everted foot. In either case, both malleoli break. AP, lateral, and mortise x-rays are diagnostic. Open reduction and internal fixation are needed if the fragments are displaced.
Orthopedic Emergencies

Compartment syndrome is an emergency that may be missed in the absence of a high index of suspicion. It occurs most frequently in the forearm or lower leg.

- Precipitating events include prolonged ischemia followed by reperfusion, crushing injuries, or other types of trauma.
- In the lower leg, by far the most common cause is tib/fib fracture with closed reduction.
- The patient has pain and limited use of the extremity; palpation of soft tissue within the compartment feels very tight and tender to palpation.
- The most reliable physical finding is excruciating pain with passive extension.
- Pulses may be normal because tissue ischemia will result if compartment pressure exceeds the capillary perfusion pressure (~20–25 mm Hg), but distal pulses will remain until compartment pressure is greater than the mean arterial pressure (typically 50–60 mm Hg).
- Emergency fasciotomy is required for treatment.

Pain under a cast is always handled by removing the cast and examining the limb.

Open fracture, in which a broken bone protrudes from the wound, requires irrigation in the OR and suitable reduction within 6 hours from the time of the injury. It is also called compound fracture.

Posterior dislocation of the hip occurs when the femur is driven backward, such as in a head-on car collision where the knees hit the dashboard. The patient has hip pain and lies in the stretcher with the leg shortened, adducted, and internally rotated (in a broken hip the leg is also shortened, but it is externally rotated). Because of the tenuous blood supply of the femoral head, emergency reduction is needed to avoid avascular necrosis.

Necrotizing skin and soft tissue infections/gas gangrene occur with deep, penetrating, dirty wounds. In about 3 days the patient is extremely sick, looking toxic and moribund. The affected site is tender, swollen, discolored, and has gas crepitation. Treatment includes IV penicillin, extensive emergency surgical debridement, and possibly hyperbaric oxygen.

Figure I-2-6. Gangrene of the Toes
Associated neurovascular injuries

The radial nerve can be injured in oblique fractures of the middle to distal thirds of the humerus. If a patient comes in unable to dorsiflex (extend) the wrist, and regains function when the fracture is reduced and the arm is placed on a hanging cast or coaptation sling, no surgical exploration is needed. However, if nerve paralysis develops or remains after reduction, the nerve is entrapped and surgery has to be done.

Popliteal artery injury can occur in posterior dislocations of the knee. Following reduction of the dislocation, the popliteal artery must be evaluated with U/S, because even if distal pulses which had been absent return following reduction of the dislocation, there may be an intimal flap or local dissection that may need further evaluation with CT angiogram or surgical exploration. If pulses remain absent or an obvious injury is identified on U/S, surgical exploration is indicated. Delayed restoration of flow may require a prophylactic fasciotomy.

Injury patterns—the second hidden fracture

The direction of force that produces an obvious injury may produce another one that is less obvious and needs to be sought.
- Falls from a height landing on the feet may have obvious foot or leg fractures, but fractures of the lumbar or thoracic spine may be less obvious and must be assessed.
- Head-on automobile collisions may produce obvious injuries in the face, head, and torso, but if the knees hit the dashboard, the femoral heads may be driven backward into the pelvis or out of the acetabulum and thus cause a fracture or dislocation.
- The presence of facial fractures or closed head injuries mandates evaluation of the cervical spine initially with CT scan and further with MRI if pain or neurological symptoms persist.

Common Hand Problems

Carpal tunnel syndrome occurs following repetitive hand work such as typing and presents with numbness and tingling in both hands in the distribution of the median nerve (radial 3½ fingers). The symptoms can be reproduced by hanging the hand limply for a few minutes, or by tapping, percussing or pressing the median nerve over the carpal tunnel (Tinel's sign). The diagnosis is clinical, but the American Academy of Orthopaedic Surgery recommends that wrist x-rays (including carpal tunnel view) be done to rule out other pathology. Initial treatment is splinting and anti-inflammatory agents. If these conservative measures fail, surgery is indicated following electromyography and nerve conduction velocity.

![Figure I-2-8. Thenar Atrophy (in Left Hand), a Feature of Carpal Tunnel Syndrome](image)

Stenosing tenosynovitis, or trigger finger, is more common in women and presents with acute finger flexion and the inability to extend it unless pulled with the other hand, which results in a painful "snap." Steroid injection is the first line of therapy; surgery is the treatment of last resort.

De Quervain tenosynovitis is more common in women and is often seen after pregnancy. Repetitive activities with the thumb in extension and abduction (pinching, grasping) result in irritation and inflammation of the thumb extensor tendons. Patients complain of pain along the radial side of the wrist and the first dorsal compartment. On physical exam the pain can be reproduced by asking her to hold the thumb inside her closed fist, then forcing the wrist into ulnar deviation. Splint and anti-inflammatory agents can help, but steroid injection is most effective. Surgery is rarely needed.
Dupuytren contracture occurs in older men of Norwegian ancestry and in alcoholics. There is contracture of the palm of the hand, and palmar fascial nodules can be felt. Surgery may be needed when the hand can no longer be placed flat on a table.

A felon is an abscess in the pulp of a fingertip, often secondary to a neglected penetrating injury. Patients complain of throbbing pain and have all the classic findings of an abscess, including fever. Because the pulp is a closed space with multiple fascial trabecula, pressure can build up and lead to tissue necrosis; thus surgical drainage is urgently indicated (but care should be taken to avoid the flexor tendon sheath).

Gamekeeper thumb is an injury of the ulnar collateral ligament sustained by forced hyperextension of the thumb (historically suffered by gamekeepers when they killed rabbits by dislocating their necks with a violent blow with the extended thumb—nowadays seen as a skiing injury when the thumb gets stuck in the snow or the ski strap during a fall). On physical exam there is collateral laxity at the thumb-metacarpophalangeal joint, and if untreated it can be dysfunctional and painful, and lead to arthritis. Casting is usually effective.

Jersey finger is an avulsion injury to the flexor digitorum profundus tendon sustained when the flexed finger is forcefully extended (as in someone unsuccessfully grabbing a running person by the jersey). When making a fist, the distal phalanx of the injured finger does not flex with the others.

Mallet finger is the opposite: the extended finger is forcefully flexed (a common volleyball injury), and the extensor tendon is ruptured. The tip of the affected finger remains flexed when the hand is extended, resembling a mallet. For both of these injuries, splinting is usually the first line of treatment.

Traumatically amputated digits are surgically reattached whenever possible. The amputated digit should be cleaned with sterile saline, wrapped in a saline-moistened gauze, placed in a sealed plastic bag, and the bag placed on a bed of ice. The digit should not be placed in antiseptic solutions or alcohol, should not be put on dry ice, and should not be allowed to freeze.

Back Pain
Lumbar disk herniation occurs most commonly at L4–L5 or L5–S1. Peak age incidence is age 40s.

- Patients often describe several months of vague aching pain (the “discogenic pain” produced by pressure on the anterior spinal ligament) before they have the sudden onset of the “neurogenic pain” precipitated by a forced movement.
- Neurogenic pain is often severe and characterized as feeling, “like an electrical shock that shoots down the leg” (exitng on the side of the big toe in L4–L5, or the side of the little toe in L5–S1), and it is exacerbated by coughing, sneezing, or defecating (if the pain is not exacerbated by those activities, the problem is not a herniated disk). Patients cannot ambulate and they hold the affected leg flexed.
- Straight leg-raising test reproduces excruciating pain and MRI confirms the diagnosis.
- Treatment for most patients is bed rest, physical therapy, and pain control, enhanced by a regional nerve block; surgical intervention is needed if neurologic deficits are progressing; emergency intervention is needed in the presence of the cauda equine syndrome (distended bladder, flaccid rectal sphincter, or perineal saddle anesthesia).
Figure I-2-9. Spine MRI Showing Lumbar Disc Herniation of L4-L5 Interspace

Ankylosing spondylitis is seen in men age 30s and 40s, who complain of chronic back pain and morning stiffness. The pain is worse at rest and improves with activity. Symptoms are progressive, and x-rays reveal a “bamboo spine.” Anti-inflammatory agents and physical therapy are effective. Many of these patients have the HLA B-27 antigen, which is also associated with uveitis and inflammatory bowel disease.

Metastatic malignancy should be suspected in the elderly who have progressive back pain that is worse at night and unrelieved by rest or positional changes. Weight loss is often an additional finding. The most common pathology is lytic breast cancer metastases in women and blastic prostate metastases in men. Most lesions are identifiable on x-ray, but MRI is a more sensitive diagnostic tool.

Leg Ulcers

Diabetic ulcer is typically indolent and located at pressure points (heel and metatarsal head). It starts because of the neuropathy and does not heal because of the microvascular disease. It can sometimes heal with good blood glucose control and wound care, but often become chronic and sometimes leads to amputation due to osteomyelitis.
Figure I-2-10. Gross Appearance of a Large Diabetic Foot Ulcer

Ulcer from arterial insufficiency is usually as far away from the heart as it can be, i.e., at the tip of the toes. It looks dirty, with a pale base devoid of granulation tissue. The patient has other manifestations of arteriosclerotic occlusive disease (absent pulses, trophic changes, claudication, or rest pain). Workup begins with Doppler studies looking for a pressure gradient, though in the presence of microvascular disease this may not be present (and these lesions are less amenable to surgical therapy). Further evaluation with CT angiogram may be necessary, and ultimately, formal angiography leading to angioplasty, stenting, or surgical revascularization.

Venous stasis ulcer develops in chronically edematous, indurated, and hyperpigmented skin above the medial malleolus. The ulcer is painless, with a granulating bed. The patient has varicose veins and suffers from frequent bouts of cellulitis. Duplex scan is useful in the workup. Treatment revolves around physical support to keep the veins empty: support stockings, Ace bandages, and Unna boots. Surgery may be required (vein stripping, grafting of the ulcer, injection sclerotherapy); endovascular ablation with laser or radiofrequency may also be used.

Figure I-2-11. Venous Stasis Ulcers
Marjolin's ulcer is a squamous cell carcinoma of the skin that has developed in a chronic leg ulcer. The classic setting is one of many years of healing and breaking down, such as seen in untreated third-degree burns that underwent spontaneous healing, or in chronic draining sinuses secondary to osteomyelitis. A dirty-looking, deeper ulcer develops at the site, with heaped up tissue growth around the edges. Biopsy is diagnostic. Treatment is wide local excision and skin grafting if necessary.

Foot Pain

Plantar fasciitis is a very common but poorly understood problem affecting older, overweight patients who complain of disabling, sharp pain on the sole of the foot or heel every time the foot contacts the ground.

- The pain is worse in the mornings.
- X-rays show a bony spur matching the location of the pain, and physical exam shows exquisite tenderness to palpation over the spur, although the bony spur is not likely the cause of the problem as many asymptomatic people have similar spurs.
- Spontaneous resolution occurs over several months, during which time symptomatic treatment is offered.

Morton's neuroma is an inflammation of the common digital nerve at the third interspace, between the third and fourth toes. The neuroma is palpable and exquisitely tender to palpation. The cause is typically the use of pointed, high heel shoes (or pointed cowboy boots) that force the toes to be bunched together. Management includes analgesics and more sensible shoes, but surgical excision can be performed if conservative management fails.

Gout typically produces swelling, redness, and exquisite pain of sudden onset at the first metatarsal-phalangeal joint in middle-aged obese men with high serum uric acid. Uric acid crystals are identified in fluid from the joint. Treatment for the acute attack is indomethacin and colchicine; treatment for chronic control is allopurinol and probenecid.
TUMORS

Children and Young Adults

Primary malignant bone tumors are diseases of young people. They present with persistent low-grade pain for several months.

- **Osteogenic sarcoma** is the most common primary malignant bone tumor.
 - It is seen in ages 10–25, usually around the knee (lower femur or upper tibia).
 - A typical “sunburst” pattern is often described on x-rays.

- **Ewing sarcoma** is the second most common.
 - It affects younger children (ages 5–15) and it grows in the diaphyses of long bones.
 - A typical “onion skinning”–type pattern is often seen on x-rays.

Adults

Most malignant bone tumors in adults are metastatic, from the breast in women (lytic lesions) and from the prostate in men (blastic lesions). Localized pain is an early finding. X-rays can be diagnostic, CT scans give more information, and MRI is even more sensitive. Lytic lesions commonly present as pathologic fractures.

- **Multiple myeloma** is seen in old men and presents with fatigue, anemia, and localized pain at specific places on several bones. X-rays are diagnostic, showing multiple, punched-out lytic lesions.
 - They also have Bence-Jones protein in the urine and abnormal immunoglobulins in the blood, best demonstrated by serum protein electrophoresis (SPEP).
 - Treatment is chemotherapy; thalidomide can be used in the event that chemotherapy fails.

- **Soft tissue sarcoma** has relentless growth of soft tissue mass over several months. It is firm and typically fixed to surrounding structures.
 - It can metastasize hematogenously to the lungs but does not invade the lymphatic system.
 - MRI delineates the extent of the mass and invasion of local structures.
 - Incisional biopsy to obtain tissue is diagnostic.
 - Treatment includes wide local excision, radiation, and chemotherapy.

Figure I-2-13. Shoulder X-ray Showing Punched-out Lesions of Multiple Myeloma
Learning Objectives

- List the appropriate steps in a preoperative assessment
- Recognize and describe the treatment approach to post-operative complications

PREOPERATIVE ASSESSMENT

Prior to elective surgery, a patient should be examined and “cleared” to proceed. Part of the pre-operative assessment and clearance involves a determination of the patient’s risk for peri-operative complications, e.g., myocardial infarction, DVT, and pulmonary problems.

Cardiac Risk

Ejection fraction <35% (normal 55%) poses prohibitive cardiac risk for elective non-cardiac operations. Incidence of peri-operative myocardial infarction (MI) could be as high as 75–85%, and mortality for such an event as high as 50–90%.

Goldman’s index of cardiac risk assigns the following:

- 11 points to jugular venous distention (evidence of CHF)
- 10 points to recent MI (within 6 months)
- 7 points each to either premature ventricular contractions (≥5 per min) or a rhythm other than sinus rhythm
- 5 points to age >70
- 4 points to emergency nature of surgery
- 3 points each to either aortic valve stenosis, poor medical condition, or surgery within the chest or abdomen

The risk of life-threatening cardiac complications is only 1% with total score up to 5. The risk becomes 5% if the points total up to 12, increases to 11% with counts up to 25, and reaches 22% when the points >25.

Jugular venous distention, which indicates the presence of CHF, is the worst single finding predicting high cardiac risk. If at all possible, treatment with ACE inhibitors, beta-blockers, digitalis, and diuretics should precede surgery. **Recent MI** is the next worse predictor of cardiac complications. Operative mortality within 3 months of the infarct is 40%, but drops to 6% after 6 months. Therefore delaying surgery longer than 6 months from MI is the best course of action. If surgery cannot be safely delayed, admission to the ICU before surgery is recommended to optimize cardiac performance.

Clinical Correlate

Do not memorize the specific percentages with respect to cardiac complications. Just get an idea of what contributes to cardiac risk.
Pulmonary Risk

Smoking is by far the most common cause of increased pulmonary risk, and the problem is compromised ventilation (high PCO₂, low forced expiratory volume in 1 second [FEV₁]), rather than compromised oxygenation. The smoking history, or the presence of chronic obstructive pulmonary disease (COPD), should lead to evaluation.

- Start with pulmonary function tests, and, if abnormal, obtain an arterial blood gas.
- Cessation of smoking for 8 weeks and intensive respiratory therapy (physical therapy, expectorants, incentive spirometry, humidified air) should precede surgery.

Hepatic Risk

Predictors of mortality are stratified by the Child-Pugh classification system. The contributing factors can be remembered as Ascites, Bilirubin, Clotting (prothrombin time), Diet (serum albumin) and Encephalopathy (presence/absence). Predict surgical mortality as follows:

- ~40% mortality is predictable with bilirubin >2 mg/dL, albumin <3 g/dL, prothrombin time >16 sec, or encephalopathy.
- ~80–85% mortality is predictable if 3 of the above are present (close to 100% if all 4 exist), or with either bilirubin alone >4 mg/dL, albumin <2 g/dL, or blood ammonia concentration >150 mg/dL.

Nutritional Risk

Malnutrition impairs healing and can significantly increase the risk of major surgery. Severe nutritional depletion is identified by one or more of the following:

- Loss of 20% of body weight over 6 months
- Serum albumin <3 g/dL
- Anergy to skin antigens
- Serum transferrin level <200 mg/dL

Operative risk is multiplied significantly in those circumstances. Surprisingly, as few as 4–5 days of preoperative nutritional support (preferably via the gut) can make a big difference, and 7–10 days would be optimal if the surgery can be deferred for that long.

Metabolic Risk

Diabetic coma is an absolute contraindication to surgery. Rehydration, return of urinary output, and at least partial correction of the acidosis and hyperglycemia must be achieved before surgery.

POSTOPERATIVE COMPLICATIONS

Fever

Malignant hyperthermia develops shortly after the onset of the anesthetic (typically attributed to halothane or succinylcholine). Temperature >40 C (104 F) and metabolic acidosis, hypercalcemia, and hyperkalemia also occur. A family history may exist. Treatment is IV dantrolene, 100% oxygen, correction of the acidosis, and cooling blankets. Monitor post-operatively for the development of myoglobinuria.
Bacteremia is seen within 30–45 minutes of invasive procedures (instrumentation of the urinary tract is a classic example) and presents as chills and a temperature spike as high as 40°C (104°F). Draw multiple sets of blood cultures and start empiric antibiotics.

Although rare, severe wound pain and very high fever within hours of surgery should alert you to the possibility of gas gangrene in the surgical wound. Immediately remove surgical dressings and examine the wound. Gas gangrene is not subtle, and should prompt immediate return to the OR for wound reopening and washout.

Postoperative fever 38.3–39.4°C (101–103°F) is caused (sequentially in time) by atelectasis, pneumonia, urinary tract infection (UTI), deep venous thrombophlebitis, wound infection, or deep abscesses. (“wind, water, walking, wound”)

Atelectasis is the most common source of fever on the first post-operative day. Assess the risk for the other causes listed above, listen to the lungs, do a chest x-ray, improve ventilation (deep breathing and coughing, postural drainage, incentive spirometry), and perform a bronchoscopy if necessary.

Pneumonia will happen in about 3 days if atelectasis is not resolved. Fever will persist, leukocytosis will be present, there may be purulent sputum, and chest x-ray will demonstrate an infiltrate(s). Obtain sputum cultures and treat with appropriate antibiotics.

UTI typically produces fever starting on post-operative day 3. Work up with a urinalysis and urinary cultures and treat with appropriate antibiotics.

Deep vein thrombophlebitis typically produces fever starting around post-operative day 5. Diagnosis requires a high index of suspicion. Physical exam is not sensitive for this pathology, so obtain U/S with Doppler studies of the deep leg and pelvic veins. Treatment is systemic.
anticoagulation initially with heparin or unfractionated low molecular weight heparin and transitioned to a long term anticoagulant, typically warfarin.

Wound infection typically begins to produce fever around post-operative day 7. Physical exam will reveal erythema, warmth, tenderness, and fluctuance.

- If only cellulitis is present treat with antibiotics.
- If an abscess is present or suspected the wound must be opened and drained.
- If it is unclear, use both U/S and CT scan to diagnose.

Deep abscesses (i.e. intra-peritoneal: subphrenic, pelvic, or subhepatic) start producing fever around post-operative days 10–15. CT scan of the appropriate body cavity is diagnostic. Percutaneous image-guided drainage is therapeutic.

Chest Pain

Perioperative myocardial infarction (MI) may occur during the operation (triggered most commonly by hypotension), in which case it is detected by the ECG monitor (ST depression, T-wave flattening). When it happens post-operatively, it is typically within the first 2–3 days, presenting as chest pain in one-third of patients and with the complications of the MI in the rest. The most reliable diagnostic test is serum troponin-I levels. Mortality is 50–90% and greatly exceeds that of MI not associated with surgery. Treatment is directed at the complications. Thrombolysis cannot be used in the peri-operative setting, but emergency angioplasty and coronary stenting can be life-saving.

Pulmonary Embolism

Pulmonary embolus (PE) typically occurs around post-operative day 7 in elderly and/or immobilized patients. The pain is pleuritic, sudden onset, and is accompanied by shortness of breath. The patient is anxious, diaphoretic, and tachycardic, with prominent distended veins in the neck and forehead (a low CVP virtually excludes the diagnosis). Arterial blood gases demonstrate hypo-xemia and often hypocapnia. Diagnosis is with CT angiogram, which is a spiral CT with a large IV contrast bolus timed to pulmonary artery filling.

Treatment is systemic anticoagulation with heparin and should be started immediately following diagnosis.

- In decompensating patients with a high index of suspicion, consider starting treatment even prior to confirming the diagnosis.
- If a PE recurs while anticoagulated or if anticoagulation is contraindicated, place an inferior vena cava (Greenfield) filter to prevent further embolization from lower extremity deep venous thromboses.
Prevention of thromboembolism will in turn prevent PE. Sequential compression devices should be used on anyone who does not have a lower extremity fracture or significant lower extremity arterial insufficiency. In moderate or high risk patients, prophylactic anticoagulation is indicated with lower dose heparin (typically 5000 units every 8–12 hours until mobile) or enoxaparin (30–40 mg/24 hrs, based on renal function). Risk factors for DVT include age > 40, pelvic or leg fractures, venous injury, femoral venous catheter, and anticipated prolonged immobilization.

Figure I-3-2. Spiral CT of Chest Demonstrating Pulmonary Embolus

Other Pulmonary Complications

Aspiration is a distinct hazard in awake intubations in combative patients with a full stomach. It can be lethal right away or lead to a chemical injury of the tracheobronchial tree and subsequent pulmonary failure and/or pneumonia. Prevention includes strict restriction of oral intake prior to surgery and antacids before induction. Therapy starts with bronchoscopic lavage and removal of acid and particulate matter followed by bronchodilators and respiratory support. Steroids usually don’t help and so are not necessarily indicated. Antibiotics are only indicated if a patient demonstrates evidence of the resultant pneumonia, i.e. leukocytosis, sputum production and culture, and focal consolidation on chest x-ray.

Intraoperative tension pneumothorax can develop in patients with traumatized lungs once they are subjected to positive-pressure breathing. They become progressively more difficult to ventilate with rising airway pressure, BP steadily declines, and CVP steadily rises. If the abdomen is open, quick decompression can be achieved through the diaphragm but this is not recommended. A better approach is to place a needle through the anterior chest wall into the pleural space. Formal chest tube has to be placed following acute decompression.
Disorientation/Coma

Hypoxia is the first suspect when a post-operative patient becomes confused and disoriented. Sepsis is another prime cause. Check arterial blood gases and provide respiratory support if airway protection is threatened.

Adult respiratory distress syndrome (ARDS) is seen in patients with a complicated post-op course, often complicated by sepsis as the precipitating event. There are bilateral pulmonary infiltrates and hypoxia, with no evidence of CHF. The centerpiece of therapy is positive end-expiratory pressure (PEEP) with low volume ventilation as excessive ventilatory volumes have been demonstrated to result in barotrauma. A source of sepsis must be sought and corrected.

Delirium tremens (DTs) is very common in the alcoholic whose drinking is suddenly interrupted by surgery. During post-operative day 2 or 3, the patient gets confused, has hallucinations, and becomes combative. IV benzodiazepines are the standard therapy, but oral alcohol is available at most hospitals for this indication (less commonly used).

Acute hyponatremia can produce confusion, convulsions, and eventually coma and even death (“water intoxication”). This can be inadvertently induced by the liberal administration of sodium-free IV fluids (like D5W) in a postoperative patient with high levels of antidiuretic hormone (ADH; triggered by the response to trauma). Therapy, which includes hypertonic saline and osmotic diuretics, is controversial. Unfortunately mortality is high, especially in young women; the best management is prevention by including sodium in IV fluids.
Hypernatremia can also be a source of confusion, lethargy, and potentially coma, and rapidly induced by large, unreplaced water loss. Surgical damage to the posterior pituitary with unrecognized diabetes insipidus is a good example. Unrecognized osmotic diuresis can also do it. Rapid replacement of the fluid deficit is needed, but to “cushion” the impact on tonicity many prefer to use D5/2 or D5/3 normal saline (NS), rather than D5W.

Ammonium intoxication is a common source of coma in the cirrhotic patient. Inability to detoxify absorbed protein from GI bleeding can produce “hepatic coma” in patients with cirrhosis (this may also be seen after a porto-systemic shunt e.g., TIPPS procedure).

Urinary Complications

Postoperative urinary retention is extremely common, particularly after surgery in the lower abdomen, pelvis, perineum, or groin. The patient feels the need to void, but cannot do it. Bladder catheterization should be performed 6-8 hours post-operatively if no spontaneous voiding has occurred. Indwelling (Foley) catheter placement is indicated at the second (some say third) consecutive catheterization.

Zero urinary output typically is caused by a mechanical problem, rather than a biologic one. Look for a plugged or kinked catheter, and flush the tubing to dislodge any clot that may have formed.

Low urinary output (<0.5 ml/kg/hr) in the presence of normal perfusing pressure (i.e., not because of shock) represents either fluid deficit or acute kidney injury.

- A low-tech diagnostic test is a fluid challenge: a bolus of 500 ml of IV fluid infused over 10 or 20 minutes. Dehydrated patients will respond with a temporary increase in urinary output, whereas those in renal failure will not do so.
- A more scientific test is to measure urinary sodium: it will be <10 or 20 mEq/L in the dehydrated patient with normally functional kidneys, while it will exceed 40 mEq/L in cases of renal failure.
- An even more scientific test is to calculate the fractional excretion of sodium, or FeNa. In order to calculate the FeNa, plasma and urinary sodium and creatinine must be measured. In acute kidney injury, the ratio >2; in hypovolemia it is <1.

Abdominal Distention

Paralytic ileus is to be expected in the first few days after abdominal surgery. Bowel sounds are absent or hypoactive and there is no passage of gas. There may be mild distension, but there is no pain. Paralytic ileus is prolonged by hypokalemia.

Early mechanical bowel obstruction because of adhesions can happen during the postoperative period. What was probably assumed to be paralytic ileus not resolving after 5-7 days is most likely an early mechanical bowel obstruction. X-rays will show dilated loops of small bowel and air-fluid levels. Diagnosis is confirmed with an abdominal CT scan that demonstrates a transition point between proximal dilated bowel and distal collapsed bowel at the site of the obstruction. Surgical intervention is needed to correct the problem.

Ogilvie syndrome or pseudo-obstruction is a poorly understood (but very common) condition that could be described as a “paralytic ileus of the colon.”

- It does not follow abdominal surgery but is classically seen in elderly sedentary patients (Alzheimer, nursing home) who have become further immobilized owing to surgery elsewhere (broken hip, prostatic surgery).
Patients develop abdominal distention without tenderness, and x-rays show a massively dilated colon.

After fluid and electrolyte correction, it is imperative that mechanical obstruction be ruled out radiologically or by endoscopy, before giving IV neostigmine to restore colonic motility. A long rectal tube is also commonly used.

This is a functional obstruction, not an anatomic one.

Wound

Wound infections are typically seen around post-operative day 7.

Wound dehiscence is typically seen around post-operative day 5 after open laparotomy. The wound looks intact, but large amounts of pink, “salmon-colored” fluid are noted to be soaking the dressing; this is peritoneal fluid. Reoperation is needed to avoid peritonitis and evisceration.

Evisceration is a catastrophic complication of wound dehiscence, where the skin itself opens up and the abdominal contents herniate. It typically happens when the patient (who may not have been recognized as having a dehiscence) coughs, strains, or gets out of bed. The patient must be kept in bed, and the bowel covered with large sterile dressings soaked with warm saline. Emergency abdominal closure is required.

Fistula of the GI tract is recognized because bowel contents leak out through a wound or drain site. It may harm the patient in a number of ways.

- If it does not empty completely to the outside but leaks into a body cavity, an abscess may develop and lead to sepsis; complete drainage is the required treatment.
- If it drains freely, sepsis is not encountered (patient is typically afebrile with no signs of peritoneal irritation) though there are 3 other potential problems:
 - Fluid and electrolyte loss
 - Nutritional depletion
 - Erosion and digestion of the abdominal wall
- These problems are related to location and volume of the fistula:
 - Nonexistent in the distal colon
 - Present but manageable in low-volume fistula (up to 200–300 ml/day)
 - Upper GI fistulas (stomach, duodenum, upper jejunum)
 - Daunting in high-volume (several liters per day) fistulas in upper GI tract
- Fluid and electrolyte replacement, nutritional support (preferably elemental diets delivered beyond the fistula), and compulsive protection of the abdominal wall (frequent dressing changes, suction tubes, “ostomy” bags) are done to keep the patient alive until nature heals the fistula. Nature will do so if none of the following are present to prevent wound healing (**mnemonic**: FRIENDS):
 - Foreign body
 - Radiation injury
 - Infection or inflammatory bowel disease
 - Epithelialization
 - Neoplasm
 - Distal obstruction
 - Steroid use
Fluids and Electrolytes

Hypernatremia means that the patient has lost water (or other hypotonic fluids) and has developed hypertonicity. Every 3 mEq/L that the serum sodium concentration is >140 represents roughly 1 L of water lost. The condition results in water loss from cells and typically presents as alterations in neurologic function. The extent of brain dysfunction depends on the magnitude and time frame over which the hypernatremia developed.

- If the problem happens slowly (i.e., over several days), the brain will adapt and the only clinical manifestations will be those of volume depletion.
- Treatment requires volume repletion, but done in such a way that volume is corrected rapidly (in a matter of hours) while tonicity is only gently “nudged” in the right direction (and goes back to normal in a matter of days). This is achieved by using D5/2 NS rather than D5W.
- If the hypernatremia develops rapidly (i.e., in osmotic diuresis, or diabetes insipidus), it will produce CNS symptoms (the brain has not had time to adapt), and correction can be safely done with more diluted fluid (D5/3 NS, or even D5W).

Hyponatremia means that a net excess of water has been retained and hypotonicity has developed, but there are 2 different scenarios (easily distinguishable by the clinical circumstances).

- In one scenario, a patient who starts with normal fluid volume adds to it by retaining water because of the presence of inappropriate amounts of ADH (e.g., post-op water intoxication, or inappropriate ADH secreted by tumors).
- In the other scenario, a patient who is losing large amounts of isotonic fluids (typically from the GI tract) is forced to retain water if he has not received appropriate replacement with isotonic fluids.
- Rapidly developing hyponatremia (water intoxication) produces CNS symptoms (the brain has not had time to adapt), and requires careful use of hypertonic saline (3% or 5%).
- In slowly developing hyponatremia from inappropriate ADH, the brain has time to adapt, and therapy should be water restriction.
- In the case of the hypovolemic, dehydrated patient losing GI fluids and forced to retain water, volume restoration with isotonic fluids (NS or lactated Ringer’s) will provide prompt correction of the hypovolemia and allow the body to slowly and safely unload the retained water and return the tonicity to normal.

Hypokalemia develops slowly (over days) when potassium is lost from the GI tract (all GI fluids have lots of K), or in the urine (because of loop diuretics or too much aldosterone), and it is not replaced. Hypokalemia develops very rapidly (over hours) when potassium moves into the cells, most notably when diabetic ketoacidosis is corrected. Therapy is obviously potassium replacement. Remember that the safe “speed limit” of IV potassium administration is 10 mEq/hr.

Hyperkalemia will occur slowly if the kidney cannot excrete potassium (renal failure, aldosterone antagonists) and it will occur rapidly if potassium is being dumped from the cells into the blood (crushing injuries, dead tissue, acidosis). The ultimate therapy for hyperkalemia is hemodialysis, but while waiting for it we can help by “pushing potassium into the cells” (50% dextrose and insulin), sucking it out of the GI tract (NG suction, exchange resins such as sodium polystyrene sulfonate if the patient’s bowels are working), or neutralizing its effect on the cellular membrane (IV calcium). The latter provides the quickest protection.
Metabolic acidosis can occur from any of the following:

- Excessive production of fixed acids (diabetic ketoacidosis, lactic acidosis, low-flow states)
- Loss of buffers (loss of bicarbonate-rich fluids from the GI tract)
- Inability of the kidney to eliminate fixed acids (renal failure)

In all 3 cases, blood pH is low (<7.4), serum bicarbonate is low (<22), and there is a base deficit. When abnormal acids are piling up in the blood, there is also an “anion gap” (serum sodium exceeds by >10 or 15 the sum of chloride and bicarbonate), which does not exist when the problem is loss of buffers.

Treatment in all cases must be directed at the underlying cause, though in all cases administration of bicarbonate (or bicarbonate precursors, like lactate or acetate) will temporarily help correct the pH. Bicarbonate therapy, however, risks producing a “rebound alkalosis” once the underlying problem is corrected. Thus correction of the underlying problem—rather than bicarbonate administration—is the preferred therapy. In long-standing acidosis, renal loss of K⁺ leads to a deficit that does not become obvious until the acidosis is corrected. One must be prepared to replace K⁺ as part of the therapy of acidosis.

Metabolic alkalosis occurs classically in a setting involving loss of acid gastric fluid, for example with prolonged emesis or NG suction. Such patients present with low K⁺, low Cl⁻, and high bicarbonate (hypokalemic, hypochloremic metabolic alkalosis). Treatment involves replacement of chloride and potassium, thereby allowing the kidneys to correct the problem. Metabolic alkalosis can also develop if excess bicarbonate is administered.

Respiratory acidosis and alkalosis result from impaired ventilation (acidosis) or abnormal hyperventilation (alkalosis). They are recognized by abnormal PCO₂ (low in alkalosis, high in acidosis) in conjunction with the abnormal pH of the blood. Therapy must be directed at correction of the underlying respiratory problem. It is important to note that metabolic acid-base derangements may be accompanied by respiratory “compensatory” changes. For example, acute metabolic acidosis will result in tachypnea with lowering of pCO₂ to mitigate the decrease in pH arising from the primary derangement (in this case, metabolic acid).
Learning Objectives

- Demonstrate understanding of surgical diseases of the gastrointestinal and endocrine systems
- Explain surgical treatment approaches for diseases of the breast
- Answer questions about surgical hypertension

DISEASES OF THE GASTROINTESTINAL SYSTEM

Upper Gastrointestinal System

Esophagus

Gastroesophageal reflux may produce vague symptoms that can be difficult to distinguish from other sources of epigastric distress. In more typical cases, an overweight individual complains of burning retrosternal pain and “heartburn” that is brought about by bending over, wearing tight clothing, or lying flat in bed at night; it is relieved by the ingestion of antacids or over-the-counter H2 blockers. When the diagnosis is uncertain, pH monitoring can be helpful to establish the presence of reflux and its correlation with the symptoms. If there is a long-standing history, the concern is the damage that might have been done to the lower esophagus (peptic esophagitis) and the possible development of Barrett’s esophagus. In that setting, endoscopy and biopsy are the indicated tests, as Barrett’s is a precursor to malignancy.

Surgery for gastroesophageal reflux is:

- Appropriate in long-standing symptomatic disease that cannot be controlled by medical means (using laparoscopic Nissen fundoplication)
- Necessary when complications have developed (ulceration, stenosis) (using laparoscopic Nissen fundoplication)
- Imperative if there are severe dysplastic changes (resection is needed)

Motility problems have recognizable clinical patterns, such as crushing pain with swallowing in uncoordinated massive contraction, or the suggestive pattern of dysphagia seen in achalasia, where solids are swallowed with less difficulty than liquids. Manometry studies are used for the definitive diagnosis. Barium swallow is typically done first to evaluate for an obstructing lesion.

Achalasia is seen more commonly in women. There is dysphagia that is worse for liquids; the patient eventually learns that sitting up straight and waiting allows the weight of the column of liquid to overcome the sphincter. There is occasional regurgitation of undigested food.
X-rays show megaesophagus. Manometry is diagnostic. The most appealing current treatment is balloon dilatation done by endoscopy; however, recurrence is high and many patients ultimately require an esophagomyotomy (Heller).

Cancer of the esophagus shows the classic progression of dysphagia starting with meat, then other solids, then soft foods, eventually liquids, and finally (in several months) saliva. Significant weight loss is always seen. Squamous cell carcinoma is seen in men with a history of smoking and drinking. Adenocarcinoma is the more common form of cancer in people with long-standing gastroesophageal reflux. Diagnosis is established by endoscopy and biopsy. Endoscopic U/S and CT/PET scan are used to assess local and lymph node involvement and therefore operability, but most cases present late and therefore are inoperable.

Mallory-Weiss tear is a mucosal laceration at the junction of the esophagus and stomach. It occurs after prolonged, forceful vomiting and presents with bright red hematemesis. Endoscopy establishes diagnosis, and allows treatment with endoscopic clipping or coagulation.

Boerhaave's syndrome is rupture (perforation) of the esophagus that results from prolonged, forceful vomiting. There is continuous, severe, wrenching epigastric and low sternal pain of sudden onset, soon followed by fever, leukocytosis, and a very sick-looking patient. Contrast swallow with a water-soluble agent (Gastrografin) is diagnostic and emergency surgical repair should follow. Delay in diagnosis and treatment has grave consequences due to the morbidity of mediastinitis.

Instrumental perforation of the esophagus is by far the most common reason for esophageal perforation. Shortly after completion of endoscopy, symptoms as described above will develop. There may be emphysema in the lower neck (virtually diagnostic in this setting). Contrast studies and prompt repair are imperative.

Figure I-4-1. Upright Chest X-ray Demonstrating Free Air under the Right and Left Hemi-Diaphragm due to Colonic Perforation during Endoscopy

Copyright 2007 Bates, M.D. - Custom Medical Stock Photo.
Stomach

Gastric adenocarcinoma is more common in the elderly. Symptoms include:

- Anorexia
- Weight loss
- Vague epigastric distress or early satiety
- Occasional hematemesis

Endoscopy and biopsies are diagnostic. CT scan helps assess operability. Surgery is the best therapy.

Gastric lymphoma is almost as common as gastric adenocarcinoma. Presentation and diagnosis are similar, but treatment is chemotherapy. Surgery is only indicated if perforation develops as a complication of rapid shrinkage of gastric lymphoma in response to effective chemotherapy. Mucosa-associated lymphoid tissue (MALT) is a low grade, B-cell neoplasm that is associated with \textit{H. pylori} infection. If identified early, MALT neoplasms can be reversed by eradication of \textit{H. pylori}.

Mid and Lower Gastrointestinal System

Small bowel and appendix

Mechanical intestinal obstruction is typically caused by adhesions in those who have had a prior laparotomy. There is colicky abdominal pain and protracted vomiting, progressive abdominal distention (if it is a low obstruction), and no passage of gas or feces. Early on, high-pitched bowel sounds coincide with the colicky pain (after a few days there is silence). X-rays show distended loops of small bowel, with air-fluid levels. Treatment starts with NPO, NG suction, and IV fluids, hoping for spontaneous resolution, while watching for early signs of strangulation or peritonitis. Surgery is done if conservative management is unsuccessful, within 24 hours in cases of complete obstruction or within a few days in cases of partial obstruction.

Strangulation of the intestine occurs due to compromised blood supply leading to bowel ischemia. It starts as described above, but eventually the patient develops fever, leukocytosis, constant pain, signs of peritoneal irritation, and ultimately full-blown peritonitis and sepsis. Emergency surgery is required.

Mechanical intestinal obstruction caused by an incarcerated inguinal hernia has the same clinical picture and potential for strangulation as described above, but the physical exam shows the irreducible hernia that used to be reducible. Because we can effectively eliminate the hernia (we cannot effectively eliminate adhesions), all of these undergo surgical repair, but the timing varies: emergently after proper rehydration in those who appear to be strangulated and electively in those who can be reduced manually and have a viable bowel.

Carcinoid syndrome is seen in patients with a small bowel carcinoid tumor with liver metastases. It includes diarrhea, flushing of the face, wheezing, and right-sided heart valvular damage (look for prominent jugular venous pulse). Diagnosis is made with 24-hour urinary collection for 5-hydroxyindolacetic acid (5-HIAA).

Clinical Correlate

Whenever syndromes produce episodic attacks, the offending agent will be at high concentrations in the blood \textit{only at the time of the attack}. A blood sample taken afterward will be normal. Thus, a 24-hour urinary collection is more likely to provide the diagnosis.
Acute appendicitis is one of the most common gastrointestinal conditions that requires emergency surgery. Clinical presentation provides important diagnostic clues. The classic picture of acute appendicitis begins with anorexia, followed by:

- Vague periumbilical crampy pain that several hours later becomes sharp, severe, constant, and localized to the right lower quadrant of the abdomen
- Localized tenderness, guarding, and rebound found in the right lower quadrant
- Modest fever and leukocytosis in the 10,000–15,000 range, with neutrophilia and immature forms

Emergency appendectomy is the indicated treatment.

Doubtful presentations that could be acute appendicitis include those that do not have all the classic findings described above. CT scan has become the standard diagnostic modality for those cases.

Colon

Cancer of the right colon typically presents with anemia (hypochromic, iron deficiency) in the right age group (age 50–70). Stools will be 4+ for occult blood. Colonoscopy and biopsies are diagnostic; surgery (right hemicolectomy) is treatment of choice.

Cancer of the left colon typically presents with bloody bowel movements and obstruction. Blood coats the outside of the stool, there may be constipation, stools may have narrow caliber. Flexible proctosigmoidoscopic exam (45 or 60 cm) and biopsies are usually the first diagnostic study. Before surgery is done, full colonoscopy is needed to rule out a synchronous second primary lesion more proximally. CT scan helps assess operability and extent. Treatment is elective surgical resection (sigmoidectomy or L-colectomy) and primary anastomosis for non-obstructing lesions, but likely emergency surgery and colostomy for acute obstruction.

Colonic polyps may be premalignant. In descending order of probability for malignant degeneration are familial polyposis (and variants such as Gardner’s), familial multiple inflammatory polyps, villous adenoma, and adenomatous polyp. Polyps that are not premalignant include juvenile, Peutz-Jeghers, isolated inflammatory, and hyperplastic.

Chronic ulcerative colitis (CUC) is a specific type of inflammatory bowel disease (IBD) that is generally managed medically. Surgical indications include disease present >20 years (due to the very high incidence of malignant degeneration), severe interference with nutritional status, multiple hospitalizations, need for high-dose steroids or immunosuppressants, or development of toxic megacolon (abdominal pain, fever, leukocytosis, epigastric tenderness, massively distended transverse colon on x-rays, with gas within the wall of the colon). Definitive surgical treatment of CUC requires removal of affected colon, including all of the rectal mucosa (which is always involved).

Clostridium difficile associated disease (CDAD) or pseudomembranous enterocolitis is caused by overgrowth of Clostridium difficile in patients who have been on antibiotics. Any antibiotic can do it. Clindamycin was the first one described, and, currently, Cephalosporins are the most common cause. There is profuse, watery diarrhea, crampy abdominal pain, fever, and leukocytosis. Diagnosis is best made by identifying the toxin in the stool. Stool cultures take too long, and the pseudomembranes are not always seen on endoscopy. The culpable antibiotic should be discontinued, and no antidiarrheals should be used. Metronidazole is the treatment of choice (oral or IV), with vancomycin (oral) an alternative. A virulent form of the disease, unresponsive to treatment, with WBC >50,000/µL and serum lactate above 5 mg/dL, requires emergency colectomy.
Anorectal Disease

In all anorectal disease, cancer should be ruled out by proper physical exam (including proctosigmoidoscopic exam), even though the clinical presentation may suggest a specific benign process.

Hemorrhoids typically bleed when they are internal (can be treated with rubber band ligation), or hurt when they are external (may need surgery if conservative treatment fails). Internal hemorrhoids can become painful and produce itching if they are prolapsed.

Anal fissure happens to young women. There is exquisite pain with defecation and blood streaks covering the stools. The fear of pain is so intense that patients avoid bowel movements (and get constipated) and may even refuse proper physical examination of the area. Examination may need to be done under anesthesia (the fissure is usually posterior, in the midline). A tight sphincter is believed to cause and perpetuate the problem, thus therapy is directed at relaxing it: stool softeners, topical nitroglycerin, local injection of botulinum toxin, steroid suppositories, or lateral internal sphincterotomy. Calcium channel blockers such as diltiazem ointment 2% TID topicaly for 6 weeks have had an 80-90% success rate, as compared to only 50% success for botulinum toxin.

Crohn’s disease often affects the anal area. It starts with a fissure, fistula, or small ulceration, but the diagnosis should be suspected when the area fails to heal and gets worse after surgical intervention (the anal area typically heals very well because it has excellent blood supply—failure to do so should suggest Crohn’s disease). Surgery, in fact, should not be done in Crohn’s disease of the anus. A fistula, if present, could be drained with setons while medical therapy is underway. Remicade helps healing.

Ischiorectal abscess (perirectal abscess) is very common. The patient is febrile, with exquisite perirectal pain that does not let him sit down or have bowel movements. Physical exam shows all the classic findings of an abscess (rubor, dolor, calor, and fluctuance) lateral to the anus, between the rectum and the ischial tuberosity. Incision and drainage are needed, and cancer should be ruled out by proper examination during the procedure. If patient is a poorly-controlled diabetic, necrotizing soft tissue infection may follow; significant monitoring is mandatory.

Fistula-in-ano develops in some patients who have had an ischiorectal abscess drained. Epithelial migration from the anal crypts (where the abscess originated) and from the perineal skin (where the drainage was done) form a permanent tract. Patient reports fecal soiling and occasional perineal discomfort. Physical exam shows an opening (or openings) lateral to the anus, a cordlike tract may be felt, and discharge may be expressed. Rule out a necrotic and draining tumor, and treat with fistulotomy.

Squamous cell carcinoma of the anus is rare, but it is more common in HIV and in patients having anoreceptive intercourse. A fungating mass grows out of the anus, metastatic inguinal nodes are often palpable. Diagnose with biopsy. Treatment starts with the Nigro chemoradiation protocol (5-fluorouracil, mitomycin, and external beam radiation), followed by surgery if there is residual tumor. Currently the 5-week chemo-radiation protocol has a 90% success rate, so surgery is not commonly required.
Gastrointestinal Bleeding

General statistics of GI bleeding show that 75% of cases originate in the upper GI tract (from the tip of the nose to the ligament of Treitz). 25% originate in the colon or rectum, and very few arise from the jejunum and ileum. GI bleeding arising from the colon comes from angiodysplasia, polyps, diverticulosis, or cancer, all of which are diseases of older people. Even hemorrhoids become more common with age. Therefore:

• When a young patient presents with GI bleed, the odds are overwhelming that it comes from the upper GI tract.

• When an older patient presents with GI bleed, it could be from anywhere (an “equal opportunity bleeder”), as the upper GI is the most common source overall (3⁄4), but age makes that old patient a good candidate for lower GI bleeding.

Vomiting blood always denotes a source in the upper GI tract. The same is true when blood is recovered by an NG tube in a patient who presents with bleeding per rectum. The best next diagnostic test in that setting is upper GI endoscopy. Be sure to look at the mouth and nose first.

Similarly, melena (black, tarry stool) always indicates digested blood, thus it must originate high enough to undergo digestion. Start the workup with upper GI endoscopy.

Red blood per rectum could come from anywhere in the GI tract (including upper GI, as it may have transited too fast to be digested). The first diagnostic maneuver if the patient is actively bleeding at the time is to pass an NG tube and aspirate gastric contents. If blood is retrieved, an upper source has been established (follow with upper endoscopy as above). If no blood is retrieved and the fluid is white (no bile), the territory from the tip of the nose to the pylorus has been excluded, but the duodenum is still a potential source and upper GI endoscopy is still necessary. If no blood is recovered and the fluid is green (bile tinged), the entire upper GI (tip of the nose to ligament of Treitz) has been excluded, and there is no need for an upper GI endoscopy.

Active bleeding per rectum, when upper GI has been excluded, is more difficult to work up. Bleeding hemorrhoids should always be excluded first by physical exam and anoscopy. Colonoscopy is not helpful during an active bleed as blood obscures the field. Once hemorrhoids have been excluded, management is based on the rate of bleeding.

• If the bleeding >2 mL/min (1 unit of blood every 4 hours), an angiogram is useful as it has a very good chance of finding the source and may allow for angiographic embolization.

• If the bleeding is slower, i.e. <0.5 mL/min, wait until the bleeding stops and then do a colonoscopy.

• For bleeding in between, do a tagged red-cell study
 – If the tagged blood collects somewhere indicating a site of bleeding, an angiogram may be productive.
 o The difficulty with the tagged red-cell study is that it is a slow test, and by the time it is finished, the patient is often no longer bleeding and the subsequent angiogram is useless. In that case, at least there is some degree of localization of bleeding to indicate which side of the colon to resect if the patient rebleeds or emergently begins to exsanguinate.
 – If the tagged red cells do not show up on the scan, a subsequent colonoscopy is planned. Some practitioners always begin with the tagged red-cell study, regardless of the estimated rate of bleeding.
With increasing frequency in clinical practice, when bleeding is not found to be in the colon, capsule endoscopy is done to localize the spot in the small bowel. Of course this is done only when the patient is stable and upper and lower GI sources have been ruled out.

Patients with a recent history of blood per rectum, but not actively bleeding at the time of presentation, should start workup with upper GI endoscopy if they are young (overwhelming odds); but if they are old they need both an upper and a lower GI endoscopy (typically performed during the same session).

Blood per rectum in a child is most commonly a Meckel’s diverticulum; start workup with a technetium scan looking for the ectopic gastric mucosa in the distal ileum.

Massive upper GI bleeding in the stressed, multiple trauma, or complicated post-op patient is probably from stress ulcers. Endoscopy will confirm. Angiographic embolization is the best therapeutic option. Better yet, they should be avoided by maintaining the gastric pH above 4 with prophylactic H2 blockers or proton pump inhibitors, which is now commonly done in the ICU setting.

Acute Abdomen

Acute abdominal pain can be caused by perforation, obstruction, or inflammatory/ischemic processes. Each of these groups has some common identifying characteristics.

- Acute abdominal pain caused by **perforation** has sudden onset and is constant, generalized, and very severe. The patient is reluctant to move, and very protective of his abdomen. Except in the very old or very sick, impressive generalized signs of peritoneal irritation are found: tenderness, muscle guarding, rebound, and lack of bowel sounds. Free air under the diaphragm on upright x-rays confirms the diagnosis. Perforated peptic ulcer is the most common example. Emergency surgery is indicated.

- Acute abdominal pain caused by **obstruction** of a narrow duct (ureter, cystic, or common bile) has sudden onset of colicky pain, with typical location and radiation according to source. The patient moves constantly, seeking a position of comfort. There are few physical findings, and they are limited to the area where the process is occurring.

- Acute abdominal pain caused by **inflammatory process** has gradual onset and slow buildup (at the very least a couple of hours, more commonly 6-12 hours). It is constant, starts as ill-defined and eventually localizes to the site of pathology, and often has typical radiation patterns. There are physical findings of peritoneal irritation in the affected area, and (except for pancreatitis) systemic signs such as fever and leukocytosis.

Ischemic processes affecting the bowel are the only ones that combine severe abdominal pain with blood in the lumen of the gut.

Spontaneous bacterial peritonitis (SBP) should be suspected in the child with nephrosis and ascites, or the adult with ascites who has a “mild” generalized acute abdomen with equivocal physical findings, and perhaps some fever and leukocytosis. Cultures of the ascitic fluid will yield a single organism (in garden-variety acute abdomens, a multiplicity of organisms grow). Treat with antibiotics, not with surgery.

Treatment for a generalized acute abdomen is exploratory laparotomy, with no need to have a specific diagnosis as to the exact nature of the process. With the exception of patients in whom SBP is suspected, other etiologies that mimic an acute abdomen must be ruled out.
before proceeding to exploration. These include myocardial ischemia (obtain an ECG), lower lobe pneumonia (perform a chest x-ray), PE (suspect in an immobilized patient), and abdominal processes that do not require surgical exploration, such as pancreatitis (check serum amylase and lipase) and urinary stones (perform a non-contrast CT scan of abdomen).

Acute pancreatitis should be suspected in the alcoholic who develops an “upper” acute abdomen. The classic picture has rapid onset for an inflammatory process (a few of hours), and the pain is constant, epigastric, radiating straight through to the back, with nausea, vomiting, and retching. Physical findings are relatively modest, but there may be vaguely localized discomfort in the epigastrium. Diagnose with serum amylase and lipase, CT if diagnosis is not clear. Treat with NPO, NG suction, IV fluids. (More details in pancreatic disease section.)

Biliary tract disease should be suspected in the obese multiparous female patient ages 30-50 (“fat, female, forty, fertile”) who presents with right upper quadrant abdominal pain. While gallstones are more common in women than men, acute cholecystitis occurs with equal frequency. Acalculous acute cholecystitis is more common in older men.

Ureteral stones produce sudden onset colicky flank pain radiating to the inner thigh and scrotum or labia, sometimes with urinary symptoms like urgency and frequency; and with microhematuria discovered on urinalysis. Non-contrast CT scan is the best diagnostic test. Treatment most often involves analgesics and vigorous hydration to facilitate stone passage.

Acute diverticulitis is one of the very few inflammatory processes giving acute abdominal pain in the left lower quadrant (in women, the fallopian tube and ovary are other potential sources).

- Patients are typically middle-aged and present with fever, leukocytosis, physical findings of peritoneal irritation in the left lower quadrant, occasionally with a palpable tender mass.
- CT scan with oral and IV contrast is diagnostic.
- Treatment is NPO, IV fluids, and antibiotics.
- Most episodes of acute diverticulitis respond to antibiotics and do not require operative intervention.
- Emergency surgery is needed for those who do not demonstrate evidence of free perforation of fistulization (most often to the bladder, presenting with pneumaturia).
- Radiologically guided percutaneous drainage of an abscess may be helpful and help prevent emergent surgical resection, but if successful, will usually require elective resection.
- Colonoscopy is indicated around 6 weeks after an episode of diverticulitis to rule out an underlying malignancy (endoscopy earlier in the presence of active inflammation increases the likelihood of perforation and decreases the diagnostic sensitivity).
- Elective resection of the involved colon is indicated for those who have had complications, multiple attacks, or continuing discomfort.
Volvulus of the sigmoid is seen in older patients. It presents with signs of intestinal obstruction and severe abdominal distention. X-rays are diagnostic, as they show air-fluid levels in the small bowel, very distended colon, and a huge air-filled loop in the right upper quadrant that tapers down toward the left lower quadrant with the shape of a “parrot’s beak.”

Proctosigmoidoscopic exam resolves the acute problem and assesses for mucosal ischemia; leaving a rectal tube allows for complete decompression and prevents immediate recurrence. Recurrent cases need elective sigmoid resection.
Mesenteric ischemia is seen predominantly in the elderly, but the real key is the development of an acute abdomen in someone with atrial fibrillation or a recent MI (the source of the clot that breaks off and lodges in the superior mesenteric artery). Because the very old do not mount impressive acute abdomens, often the diagnosis is made late, when there is blood in the bowel lumen (the only condition that mixes acute pain with GI bleeding), and lactic acidosis and sepsis have developed. In very early cases, arteriogram and embolectomy might save the day, whereas once bowel ischemia is present, surgical resection is mandatory.

Hepatobiliary

Liver

Primary hepatoma (hepatocellular carcinoma) is seen in the United States in patients with cirrhosis. Patients develop vague right upper quadrant discomfort and weight loss. The specific blood marker is α-fetoprotein (AFP). CT scan will show location and extent. Resection is done if technically possible.

Metastatic cancer to the liver outnumbers primary cancer of the liver in the United States by 20:1. It is found by CT scan if follow-up for the treated primary tumor is under way, or suspected because of rising carcinoembryonic antigen (CEA) in those who had colonic cancer. If the primary is slow growing and the metastases are confined to one lobe, resection can be done. Other means of control include radiofrequency ablation (RFA).

Hepatic adenoma may arise as a complication of birth control pills, and is important because it has a tendency to rupture and bleed massively inside the abdomen. CT scan is diagnostic. If symptomatic, oral contraceptives should be stopped immediately; emergency surgery is required for patients presenting with signs of rupture and massive hemorrhage. Patients may not resume birth control pills.

Pyogenic liver abscess is seen most often as a complication of biliary tract disease, particularly acute ascending cholangitis. Patients develop fever, leukocytosis, and a tender liver. Sonogram or CT scan is diagnostic. Percutaneous drainage is required.

Amoebic abscess of the liver is 10 times more common in men than women and is generally seen in travelers from countries with endemic Entamoeba histolytica infection. Presentation and imaging diagnosis are similar to pyogenic liver abscesses, but can be treated with metronidazole and rarely require drainage. Definitive diagnosis is made by serology, but because the test takes weeks to be reported, empiric treatment is started in those clinically suspected. If they improve, it is continued; if not, drainage is indicated.

Jaundice

Jaundice is caused by elevated serum bilirubin (>5 mg/dL to cause clinically detectable changes in sclera or skin) and has 3 main etiologies:

- Hemolytic jaundice is usually low level (bilirubin of 6-8 mg/dL, but not 35 or 40), and all the elevated bilirubin is unconjugated (indirect), with no elevation of the conjugated (direct) fraction. There is no bile in the urine. Workup should determine what is chewing up the red cells.

- Hepatocellular jaundice has elevations of both fractions of bilirubin and very high levels of transaminases with only a modest elevation of the alkaline phosphatase. Hepatitis is the most common example, and workup should proceed in that direction (use serologies to determine specific type).
• **Obstructive** jaundice has elevations of both fractions of bilirubin, modest elevation of transaminases, and very high levels of alkaline phosphatase. The first step in the workup is a U/S looking for dilatation of the biliary ducts, as well as further clues as to the nature of the obstructive process. In obstruction caused by stones, the stone that is obstructing the common duct is seldom seen, but stones are seen in the gallbladder, which because of chronic irritation cannot dilate. In malignant obstruction, a large, thin-walled, distended gallbladder is often identified (Courvoisier-Terrier sign).

 – Obstructive jaundice caused by **stones** should be suspected in the obese, multiparous woman age 45, who has high alkaline phosphatase, dilated ducts on sonogram, and nondilated gallbladder full of stones. The next step in that case is an endoscopic retrograde cholangiopancreatography (ERCP) to confirm the diagnosis, perform a sphincterotomy, and remove the common duct stone. Cholecystectomy should usually follow during the same hospitalization.

 – Obstructive jaundice caused by a **tumor** could be caused by adenocarcinoma of the head of the pancreas, adenocarcinoma of the ampulla of Vater, or cholangiocarcinoma arising in the common duct itself.

 ° Once a tumor has been suspected by the presence of dilated gallbladder in the sonogram, the next diagnostic test should be CT scan. Pancreatic cancers that have produced obstructive jaundice are often big enough to be seen on CT. If the CT is negative, ERCP is the next step.

 ° Ampullary cancers or cancers of the common duct by virtue of their strategic location produce obstruction when they are very small, and therefore may not be seen on CT. However, endoscopy will show ampullary cancers and the cholangiography will show intrinsic tumors arising from the duct (apple core) or small pancreatic cancers.

 ° The recent advent of endoscopic U/S has given us another diagnostic pathway to locate and biopsy these tumors. Percutaneous biopsy is not indicated to avoid seeding the abdominal wall with tumor; if cancer is suspected and a tumor is identified on CT or ERCP, it should be resected if no contraindications are present (i.e. evidence of metastatic disease).

Ampullary cancer should be suspected when malignant obstructive jaundice coincides with anemia and positive blood in the stools.

 - Can bleed into the lumen like any other mucosal malignancy, at the same time that it can obstruct biliary flow by virtue of its location.

 - Given that combination, endoscopy should be the first test.

Pancreatic cancer is seldom cured, even when resectable by the Whipple operation (pancreatoduodenectomy).

Ampullary cancer and cancer of the lower end of the common duct have a much better prognosis (about 40% cure).

Gallbladder

Gallstones are responsible for the vast majority of biliary tract pathology. There is a spectrum of biliary disease caused by gallstones, as noted below. Although the obese woman age 45 is the “textbook” victim, incidence increases with age so that eventually, gallstones are common across all ethnic groups. Asymptomatic gallstones are left alone.
Biliary colic is a typical pain pattern associated with cholelithiasis and/or chronic cholecystitis. It occurs when a stone temporarily occludes the cystic duct. The pain is described as colicky (“waves”) of pain in the right upper quadrant radiating to the right shoulder and back, often triggered by ingestion of fatty food, accompanied by nausea and vomiting but without signs of peritoneal irritation or systemic signs of inflammatory process. The episode is self-limited (10, 20, maybe 30 minutes), or easily aborted by anticholinergics. Right upper quadrant U/S establishes diagnosis of gallstones and elective laparoscopic cholecystectomy is indicated.

Acute cholecystitis starts as a biliary colic, but the stone remains at the cystic duct until an inflammatory process develops in the obstructed gallbladder.

- Pain becomes constant, there is modest fever and leukocytosis, and there are physical findings of peritoneal irritation in the right upper quadrant.
- Liver function tests are minimally affected.
- U/S is diagnostic in most cases (gallstones, thick-walled gallbladder, and pericholecystic fluid).
- In equivocal cases, a radionuclide scan (HIDA) would show tracer uptake in the liver, common duct, and duodenum, but not in the occluded gallbladder.
- NPO, IV fluids, and antibiotics “cool down” most cases, allowing elective laparoscopic cholecystectomy to follow.
- Cholecystectomy is usually performed during the same hospital admission as an urgent case, though it is rarely a true emergency.
- If the patient doesn’t respond or if acute cholecystitis is not associated with gallstones (acalculous cholecystitis, most often seen in men and diabetics), emergency cholecystectomy will be needed. Emergency percutaneous cholecystostomy may be the best temporizing option in the very sick with a prohibitive surgical risk.
Acute ascending cholangitis is a far more deadly disease, in which stones have reached the common duct producing partial obstruction and ascending infection.

- Patients are often older and much sicker.
- Temperature spikes to 40.6°C (105°F), with chills, and very high white blood cell count indicates sepsis.
- There is some hyperbilirubinemia but the key finding is extremely high levels of alkaline phosphatase.
- Charcot’s triad is the presence of fever, jaundice, and right upper quadrant pain and is suggestive of ascending cholangitis; Reynolds pentad is those 3 symptoms plus altered mental status and evidence of sepsis (most commonly, hypotension), which further suggests the diagnosis.
- IV antibiotics and emergency decompression of the common duct is lifesaving; this is performed ideally by ERCP, alternatively percutaneous through the liver by percutaneous transhepatic cholangiogram (PTC), or rarely by surgery.
- Eventually, cholecystectomy has to be performed.

Obstructive jaundice without ascending cholangitis can occur when stones produce complete biliary obstruction, rather than partial obstruction. Presentation and management were detailed in the jaundice section.

Biliary pancreatitis is seen when stones become impacted distally in the ampulla, temporarily obstructing both pancreatic and biliary ducts. The stones often pass spontaneously, producing a mild and transitory episode of cholangitis along with the classic manifestations of pancreatitis (elevated amylase or lipase). U/S confirms gallstones in the gallbladder. Medical management (NPO, NG suction, IV fluids) usually leads to improvement, allowing elective cholecystectomy to be done later. If not, ERCP and sphincterotomy may be required to dislodge the impacted stone.

Pancreas

Acute pancreatitis is seen as a complication of gallstones (as described above), or in alcoholics. Acute pancreatitis may be edematous, hemorrhagic, or suppurative (pancreatic abscess). Late complications include pancreatic pseudocyst and chronic pancreatitis.

Reproduced with permission from VGHTC, Gastroenterology Section.

Figure I-4-5. Grey-Turner Sign Can Be seen in Acute Pancreatitis
Acute edematous pancreatitis occurs in the alcoholic or the patient with gallstones. Epigastric and midabdominal pain starts after a heavy meal or bout of alcoholic intake, is constant, radiates straight through to the back, and is accompanied by nausea, vomiting, and (after the stomach is empty) continued retching. There is tenderness and mild rebound in the upper abdomen. Serum amylase and lipase are elevated, and often serum hematocrit levels are high due to hypovolemia. Resolution usually follows a few days of pancreatic rest (NPO, NG suction, IV fluids).

Acute severe pancreatitis is a much more deadly disease. It typically begins as an episode of acute pancreatitis but progresses to include pancreatic necrosis. Patients are quite ill and frequently require ICU admission and close monitoring. The condition is accompanied by marked leukocytosis, hyperglycemia, and hypocalcemia. Mortality can be high and scoring systems have been developed to classify the severity and predict mortality, e.g., Ranson’s criteria.

Ranson’s criteria categorize the severity of pancreatitis based on admission factors and clinical findings 48 hours later.

Intensive supportive therapy is needed in the ICU: significant IV fluid hydration, possibly mechanical ventilation, and enteral feeding (distal to the pancreas). A common final pathway for death is the development of multiple pancreatic abscesses; try to anticipate them and drain if possible. If drained fluid is positive for bacteria (often gram-negative), the antibiotic of choice is IV carbapenem (imipenem or meropenem).

Necrosectomy is the best way to deal with necrotic pancreas, but timing is crucial. Most practitioners will wait as long as possible before necrosectomy is offered, as it requires the dead tissue to delineate well and mature for dissection. Patients do far better by waiting at least 4 weeks before debridement of the dead pancreatic tissue. Many pancreatic abscesses are not amenable to percutaneous or open drainage and will require open drainage or debridement.

Pancreatic abscess (acute suppurative pancreatitis) may become evident in someone who was not getting CT scans, because persistent fever and leukocytosis develop ~10 days after the onset of pancreatitis and sepsis develops. Imaging studies done at that time will reveal the collection(s) of pus, and percutaneous drainage and imipenem or meropenem will be indicated.

Pancreatic pseudocyst can be a late sequela of acute pancreatitis, or of pancreatic (upper abdominal) trauma, with unrecognized ductal injury. In either case, ~5 weeks elapses between the original problem and the discovery of the pseudocyst. There is a collection of pancreatic juice outside the pancreatic ducts (most commonly in the lesser sac), and the pressure symptoms thereof (early satiety, vague symptoms, discomfort, a deep palpable mass). CT or U/S will be diagnostic. Treatment is dictated by the size and age of the pseudocyst.

- Cysts ≤6 cm or those that have been present <6 weeks are not likely to have complications and can be observed for spontaneous resolution.
- Larger (>6 cm) or older cysts (>6 weeks) are more likely to cause obstruction, bleed, or get infected, and they need to be treated.

Treatment involves drainage of the cyst. The cyst can be drained percutaneously to the outside, drained surgically into the GI tract, or drained endoscopically into the stomach.

Clinical Correlate

In recent years, the Balthazar CT severity index (CTSI), Apache II score (>8), and SOFA scores have been used to predict severity and risk of death for acute severe pancreatitis.
Chronic pancreatitis is a devastating disease. People who have repeated episodes of pancreatitis (usually alcoholic) eventually develop calcified burned-out pancreas, steatorrhea, diabetes, and constant epigastric pain. The diabetes and steatorrhea can be controlled with insulin and pancreatic enzymes, but the pain is resistant to most modalities of therapy and can be incredibly debilitating. If ERCP shows specific points of obstruction and dilatation, operations that drain the pancreatic duct may help.

Hernias
All abdominal hernias should be electively repaired to avoid the risk of intestinal obstruction and strangulation. Exceptions include:

- Asymptomatic umbilical hernia in patients age <5 (they typically close spontaneously)
- Esophageal sliding hiatal hernias (not “true” hernias)

Hernias that become irreducible need emergency surgery to prevent strangulation. Those that have been irreducible for years need elective repair.

![Gross Appearance of Large Umbilical Hernia](image)

Figure I-4-6. Gross Appearance of Large Umbilical Hernia

DISEASES OF THE BREAST
In all breast disease, cancer must be ruled out even if the presentation initially suggests benign disease. The only sure way to rule out cancer is to get tissue for the pathologist. Age correlates best with the odds for cancer:

- Virtually unknown in the teens
- Rare in young women
- Quite possible by middle age
- Very likely in the elderly

Women with a family history are at greater risk from an earlier age. Other risk factors for the development of breast cancer include first period at a young age, radiation exposure, later menopause, and never having been pregnant.

Clinical Correlate
Tests that identify the genetic markers BRCA1 and BRCA2 can help identify individuals at a very high risk for developing breast and ovarian cancer.
Mammography is not a substitute for tissue diagnosis, but is an important adjunct to physical examination. A breast mass that might be missed by palpation may be seen on mammogram, and the opposite can also be true.

- As a regular screening exam, mammography should be started between ages 40-50 (earlier if there is family history).
- Mammography is not as helpful in women age <30 (breast is too dense) or during lactation (increased parenchymal density). In these cases, ultrasound is often used to work-up breast complaints. Mammography can be done if necessary during pregnancy.
- Stereotactic (i.e. mammogram-directed core needle biopsy) or U/S-guided core biopsies have become the most convenient, effective, and inexpensive way to biopsy breast masses, whether they are palpable or are discovered by screening mammogram.
- Annual MRI screening, in addition to mammography, may be considered in patients with significant risk factors for developing breast cancer (e.g., BRCA, mediastinal irradiation for Hodgkins age 10-30, significant family history risk).

Fibroadenoma is primarily seen in young women (late teens, 20s, or 30s) as a firm, rubbery mass that moves easily with palpation. Fine-needle aspirate (FNA) or core biopsy is sufficient to establish diagnosis. Removal is optional in uncomplicated cases. Giant juvenile fibroadenoma is seen in very young adolescents, where it has very rapid growth. Removal is needed to avoid deformity and distortion of the breast.

Cystosarcoma phyllodes tumors are most common in women in their 30s and 40s, but women of any age can have them. They can become very large, distorting the entire breast, yet not invading or becoming fixed. Most are benign, but a malignant variant is also possible. Core biopsy is needed (FNA is not sufficient), and removal is mandatory.

Mammary dysplasia (fibrocystic disease, cystic mastitis) is most common in women of childbearing age, but can affect women of any age. It often presents with bilateral tenderness related to the menstrual cycle and multiple lumps (cysts) that seem to come and go (they are cysts) also following the menstrual cycle. U/S can be used to evaluate breast complaints and is also diagnostic for simple cysts. Any dominant or persistent mass of concern should be worked-up, including a mammogram and biopsy if appropriate.

Intraductal papilloma is seen in women with bloody nipple discharge. Mammogram is needed to exclude other potential lesions, but it will not show the papilloma (they are tiny). Galactogram or U/S may be diagnostic and guide surgical resection. However, any patient with a bloody nipple discharge is cancer until proven otherwise.

Mastitis and **breast abscesses** are most commonly seen in lactating women; what appears to be a breast abscess at other times is cancer until proven otherwise. Mastitis is treated with oral antibiotics alone, whereas ultrasound-guided fine needle aspiration or incision and drainage are needed to drain a true abscess.

Breast cancer should be suspected in any woman with a palpable breast mass, and the index of suspicion increases with the patient’s age. Other strong indicators of cancer include:

- Ill-defined fixed mass
- Retraction of overlying skin
- Recent retraction of the nipple
- Eczematoid lesions of the areola
- Reddish orange peel skin over the mass (so called “inflammatory cancer,” with skin edema due to extensive lymph node involvement by tumor)
- Palpable axillary nodes
A history of trauma does not rule out cancer.

Breast cancer during pregnancy is diagnosed exactly as if pregnancy did not exist, and is treated the same way with the following exceptions: no radiotherapy during the pregnancy and no chemotherapy during the first trimester. Termination of the pregnancy is not necessary.

The radiologic appearance of breast cancer on mammogram includes an irregular, spiculated mass, asymmetric density, architectural distortion or fine microcalcifications that were not there in a previous study.

Treatment of resectable breast cancer starts with lumpectomy (partial mastectomy) plus post-op radiation or total mastectomy; either way, axillary sentinel lymph node sampling is performed simultaneously. The sentinel node biopsy is performed only when nodes are not palpable on physical exam. Lumpectomy is an ideal option when the tumor is small, not multicentric, and not associated with extensive DCIS.

Infiltrating (or invasive) ductal carcinoma is the common standard form of breast cancer. Other variants (lobular, medullary, tubular, mucinous) tend to have slightly better prognosis and are treated the same way as the standard infiltrating ductal. Lobular has higher incidence of bilaterality.

Inflammatory cancer is a clinical presentation of advanced breast cancer. It has a much worse prognosis and is treated with chemotherapy prior to surgery. The surgery for inflammatory breast cancer is almost always a modified radical mastectomy. Inflammatory breast cancer is also one of the few times where radiation is added following a total mastectomy. It mimics mastitis but is not an infectious process, and antibiotics do not play a role in treatment.

Ductal carcinoma in situ (DCIS) is a precursor to invasive breast cancer. Since it is confined to the ducts, it cannot metastasize (thus no axillary sampling is needed). Total mastectomy is recommended for multicentric lesions throughout the breast; many practitioners add a sentinel node biopsy in those patients, in the event that invasive cancer is found following the mastectomy, as a sentinel node cannot be identified after the breast has been removed. Lumpectomy with or without radiation is used if the lesion(s) are confined to a limited portion of the breast.

Inoperable cancer of the breast is breast cancer that is not amenable to surgical resection. Inoperability is based primarily on local extent (not metastases). Treatment for inoperable breast cancer can include any combination of chemotherapy, hormone therapy (if hormone receptor positive), or radiation, and is often considered palliative. In some cases, chemotherapy may shrink the cancer making it feasible for surgery.

Adjuvant systemic therapy may follow surgery, particularly if the tumor is >1 cm, high-grade, HER2 positive, or axillary nodes are positive. Anti-estrogen hormonal therapy is an option for adjuvant systemic therapy if the tumor is estrogen receptor-positive. Women with small, low-risk tumors may be offered hormonal therapy alone (i.e. without chemotherapy) if their tumors are estrogen-receptor positive.

- Premenopausal women receive tamoxifen
- Postmenopausal women receive an aromatase-inhibitor (e.g. anastrozole)
Persistent headache or back pain (with areas of localized tenderness) in women who recently had breast cancer suggests metastasis. MRI is diagnostic – other tests for spine metastasis may include bone scan, CT scan, and PET. Brain metastases can be radiated or resected. The vertebral body and pedicles are the favorite location in the spine.

Figure I-4-7. Large Calcification Located within a Case of Overt Breast Cancer Noted on Mammography

Figure I-4-8. Peau d’Orange is Seen in Some Cases of Inflammatory Breast Cancer
DISEASES OF THE ENDOCRINE SYSTEM

Thyroid nodules in euthyroid patients could be cancer, but the incidence is low and indiscriminate thyroidectomy is not justified. FNA is the diagnostic method of choice.

- If read as benign, continue to follow the patient but do not intervene.
- If read as malignant or indeterminate, follow with a thyroid lobectomy.
- The need for further surgery is determined by the histologic diagnosis given from a frozen section.
- A total thyroidectomy should be performed in follicular cancers, so that if needed, radioactive iodine can be used in the future to treat blood-borne metastases.

Thyroid nodules in hyperthyroid patients are almost never cancer, but they may be the source of the hyperfunction (“hot adenomas”). Clinical signs of hyperthyroidism include weight loss in spite of strong appetite; palpitations; heat intolerance; moist skin; hyperactive behavior; tachycardia; and occasional atrial fibrillation or flutter.

Laboratory confirmation can be done with thyrotropin (TSH; low) or thyroxine (T4; high). Nuclear scan will show if the nodule is the source. Most hyperthyroid patients are treated with radioactive iodine, but those with a “hot adenoma” have the option of surgical excision of the affected lobe.

Hyperparathyroidism is most commonly found by serendipitous discovery of high serum calcium in blood tests (rarely seen in the full florid “disease of stones, bones, and abdominal groans”). Repeat calcium determinations, look for low phosphorus, and rule out cancer with bone metastases. If findings persist, do parathyroid hormone (PTH) determination (and interpret in light of serum calcium levels).

- Asymptomatic patients become symptomatic at a rate of 20% per year; thus elective intervention is justified.
- Ninety percent have single adenoma.
- Removal is curative (sestamibi scan may help localize the culprit gland before surgery).

Cushing’s syndrome is the constellation of clinical signs which accompany elevated cortisol: fat deposits in the face, a ruddy complexion, hirsutism, interscapular fat (“buffalo hump”), truncal obesity with abdominal striae, and thin weak extremities, classically in a patient with a previously normal appearance. Osteoporosis, diabetes, hypertension, and mood changes may be present. Workup starts with an overnight low-dose dexamethasone suppression test.

- Cortisol suppression at low dosage rules out the disease.
- If no suppression, measure 24-hour urine-free cortisol; if elevated, move to a high-dose suppression test.
 - Suppression at a higher dose identifies pituitary microadenoma.
 - No suppression at higher dose identifies adrenal adenoma (or paraneoplastic syndrome).
- Do appropriate imaging studies (MRI for pituitary, CT scan for adrenal) and remove the offending adenoma.

Zollinger-Ellison syndrome (gastrinoma) shows up as virulent peptic ulcer disease, resistant to all usual therapy (including eradication of Helicobacter pylori), and more extensive than it should be (several ulcers rather than one, ulcers extending beyond first portion of the duodenum). Some patients also have watery diarrhea. Measure gastrin and do a secretin test; if values are equivocal, locate the tumor with CT scan (with contrast) of the pancreas and nearby areas and resect it. Omeprazole helps those with metastatic disease.
Insulinoma produces CNS symptoms because of low blood sugar, always when the patient is fasting. Differential diagnosis is with reactive hypoglycemia (attacks occur after eating), and with self-administration of insulin. In the latter the patient has reason to be familiar with insulin (some connection with the medical profession, or with a diabetic patient), and in plasma assays has high insulin but low C-peptide. In insulinoma, both are high. Do CT (with contrast) of the pancreas to locate the tumor and then resect it. Glucagonoma produces severe migratory necrotic dermatitis, resistant to all forms of therapy, in a patient with mild diabetes, mild anemia, glossitis, and stomatitis. Glucagon assay is diagnostic, CT scan is used to locate the tumor, resection is curative. Somatostatin and streptozocin can help those with metastatic, inoperable disease.

SURGICAL HYPERTENSION

Primary hyperaldosteronism can be caused by an adenoma or by hyperplasia. In both cases the key finding is hypokalemia in a hypertensive (usually female) patient who is not on diuretics. Other findings include modest hypernatremia and metabolic alkalosis. Aldosterone levels are high, whereas renin levels are low. Appropriate response to postural changes (more aldosterone when upright than when lying down) suggests glandular hyperplasia (idiopathic form, which is treated medically), whereas lack of response (or inappropriate response) is diagnostic of adenoma. Adrenal CT scans localize the lesion, and surgical removal provides cure.

Pheochromocytoma is seen in thin, hyperactive women who have attacks of pounding headache, perspiration, palpitations, and pallor (i.e., extremely high but paroxysmal BP). By the time patients are seen, the attack has subsided and blood pressure may be normal, leading to a frustrating lack of diagnosis. Patients who have sustained hypertension are easier to diagnose.

- Start the workup with a 24-hour urinary determination of vanillylmandelic acid (VMA), metanephrines (more specific), or free urinary catecholamines.
- Follow with a CT scan of the adrenal glands and retroperitoneum (10% are extra-adrenal and 10% are bilateral); if negative, a radionuclide study may be necessary to identify extra-adrenal sites.
- Tumors can be very large but most are <10 cm diameter.
- Surgery requires careful pharmacologic preparation with alpha-blockers, followed by beta-blockers. Meticulous intraoperative monitoring and anesthesia care are also an essential part of surgical resection.

Coarctation of the aorta may be recognized at any age, but patients are typically young and have hypertension in the arms, with normal pressure (or low pressure, or no clinical pulses) in the lower extremities. Chest x-ray shows scalloping of the ribs (erosion from large collateral intercostals). CT angiogram (CTA) is diagnostic and surgical correction is curative.

Renovascular hypertension is seen in 2 distinct groups: young women with fibromuscular dysplasia, and old men with arteriosclerotic occlusive disease.

In both groups hypertension is resistant to the usual medications, and a telltale faint bruit over the flank or upper abdomen suggests the diagnosis. Workup is multifactorial, but Duplex scan of the renal vessels and CTA have prominent roles. Therapy is imperative in the young women—usually balloon dilatation and stenting—but it is much more controversial in older patients with atherosclerotic disease, many of whom have short life expectancy from the other manifestations of the arteriosclerosis.
Pediatric Surgery

Learning Objectives

- Demonstrate understanding of common surgical problems in children within the first 24 hours of birth, within the first 2 months of life, and later in infancy

BIRTH—FIRST 24 HOURS

Most congenital anomalies require surgical correction, but in most of them other anomalies have to be looked for first. In some cases clusters are seen.

Esophageal atresia presents with excessive salivation noted shortly after birth or with choking spells when first feeding is attempted. A small NG tube is passed, and it will be seen coiled in the upper chest when x-rays are done. If there is normal gas pattern in the bowel, the baby has the most common form of the 4 types, in which there is a blind pouch in the upper esophagus and a fistula between the lower esophagus and the tracheobronchial tree.

Before therapy is undertaken, rule out associated anomalies (the vertebral, anal, cardiac, tracheal, esophageal, renal, and radial [VACTER] constellation):

- Look at the anus for imperforation
- Check the x-ray for vertebral and radial anomalies
- Do echocardiogram looking for cardiac anomalies
- Do U/S for renal anomalies

Primary surgical repair is preferred, but if it has to be delayed, do a gastrostomy to protect the lungs from acid reflux.

Imperforated anus may be the clinical presentation (noted on physical exam) for the VACTER collection of anomalies. If so, the others have to be ruled out as detailed above.

For the imperforated anus itself, look for a fistula nearby (to vagina or perineum).

- If present, repair can be delayed until further growth (but before toilet training time).
- If not present, do a colostomy for high rectal pouches (and definitive repair at a later date). A primary repair can be done right away if the blind pouch is almost at the anus. The level of the pouch is determined with x-rays taken upside down (so the gas in the pouch goes up), with a metal marker taped to the anus.
Congenital diaphragmatic hernia is always on the left and resulting defects permit the bowel to herniate into the chest. The fundamental problem arises not from the displacement of the bowel, but from the under-developed hypoplastic lung that also retains its fetal-type circulation. Repair must be delayed 3–4 days to allow maturation. Babies go into respiratory distress, and need endotracheal intubation, low-pressure ventilation (careful not to hyperinflate the contralateral lung), sedation, and NG suction. Difficult cases may require extracorporeal membrane oxygenation (ECMO). Many patients currently are diagnosed before birth by U/S.

Gastroschisis and omphalocele present with a defect in the abdominal wall.

- In gastroschisis, the location of the umbilical cord is normal (it reaches the baby), the defect is to the right of the cord (lateral), there is no protective membrane, and the bowel looks inflamed and matted.
- In omphalocele, the cord goes to the defect (central), which has a thin membrane under which one can see a normal-looking bowel and small slice of liver.

Small defects can be closed primarily, but large ones require construction of a prosthetic “silo” to house and protect the bowel. The contents of the silo are then squeezed into the belly, a little bit every day, until complete closure can be done in about a week. Babies with gastroschisis also need vascular access for parenteral nutrition, because the inflamed bowel will not work for about 1 month. If the skin can be closed but not the fascia, then the patient is left with a ventral hernia repaired at a later date.

Exstrophy of the urinary bladder is also an abdominal wall defect of the lower abdominal wall, frequently associated with separation of the pubic symphysis and exposed bladder and/or urethral mucosa. The baby has to be transferred immediately to a specialized center where a repair can be done within the first 1–2 days of life. Delayed repairs do not work.

Neonatal bilious vomiting in the newborn has ominous significance, and is strongly suggestive of a proximal intestinal obstruction. Bowel gas pattern on plain abdominal x-ray can provide important clues as to the underlying cause. Green vomiting and a “double-bubble” picture in x-rays (a large air-fluid level in the stomach and a smaller one to its right in the first portion of the duodenum) are found in duodenal atresia, annular pancreas, or malrotation. All of these anomalies require surgical correction, but malrotation is the most dangerous because the bowel
can twist on itself, cut off its blood supply, and die. If, in addition to the double bubble, there is some “typical gas pattern” beyond, the chances of malrotation are higher. Malrotation is diagnosed with contrast enema (safe, but not always diagnostic) or upper GI study (more reliable, but more risky). Although described here as a problem of the newborn, the first signs of malrotation can show up at any time within the first few weeks of life.

Intestinal atresia also shows up with green vomiting, but instead of a double bubble there are multiple air-fluid levels throughout the abdomen. There may be more than one atretic area, but no other congenital anomalies have to be suspected because this condition results from a vascular insufficiency in utero.

A FEW DAYS OLD—FIRST 2 MONTHS OF LIFE

Necrotizing enterocolitis is a condition caused by bacterial invasion of the intestinal wall which develops in premature infants when they are first fed. There is feeding intolerance, abdominal distention, and a rapidly dropping platelet count (in babies, a sign of sepsis). Treatment is to stop all feedings and initiate broad-spectrum antibiotics, IV fluids, and nutrition. Surgical intervention is required if they develop abdominal wall erythema, air in the portal vein, intestinal pneumatosis (presence of gas in the bowel wall), or pneumoperitoneum, all signs of intestinal necrosis and perforation.

Meconium ileus is caused by abnormally thick meconium with resultant intestinal obstruction, typically seen in babies who have cystic fibrosis (often hinted at by the mother having it). They develop feeding intolerance and bilious vomiting. X-rays show multiple dilated loops of small bowel and a ground-glass appearance in the lower abdomen. Gastrografin enema is both diagnostic (microcolon and inspissated pellets of meconium in the terminal ileum) and therapeutic (Gastrografin draws fluid in and dissolves the pellets).
Hypertrophic pyloric stenosis shows up age ~3 weeks, more commonly in first-born boys, with non-bilious projectile vomiting after each feeding. The baby is hungry and eager to eat again after he vomits. By the time they are seen they are dehydrated, with visible gastric peristaltic waves and a palpable "olive-size" mass in the right upper quadrant. If the mass cannot be felt, U/S is diagnostic. Therapy begins with rehydration and correction of the hypochloremic, hypokalemic metabolic alkalosis, followed by pyloromyotomy.

Biliary atresia should be suspected in babies age 6–8 weeks who have persistent, progressively increasing jaundice (which includes a substantial conjugated fraction). Do serologies and sweat test to rule out other problems, and do HIDA scan after 1 week of phenobarbital (which is a powerful choleretic). If no bile reaches the duodenum even with phenobarbital stimulation, surgical exploration is needed.

- 1/3 of cases can get a long-lasting surgical derivation
- 1/3 of cases need liver transplant after surviving for a while with a surgical derivation
- 1/3 of cases need transplant right away

Hirschsprung's disease (aganglionic megacolon) can be recognized in early life or may go undiagnosed for many years. The cardinal symptom is chronic constipation. With short segments, rectal exam may lead to explosive expulsion of stool and flatus, with relief of abdominal distention. In older children in whom differential diagnosis with psychogenic problems is an issue, presence of fecal soiling suggests the latter. X-rays show distended proximal colon (the uninvolved portion) and "normal-looking" distal colon, which is the aganglionic part. Diagnosis is made with full-thickness biopsy of rectal mucosa. Ingenious operations have been devised to preserve the unique sensory input of the motor-impaired rectum, while adding the normal propulsive capability of the innervated colon.
LATER IN INFANCY

Intussusception is seen in chubby, healthy looking babies age 6–12 months, who have episodes of colicky abdominal pain which makes them draw their knees up to their chest. The pain lasts for ~1 minute, and the child looks perfectly happy and normal until the next episode of colic (the next intestinal contraction). Physical exam shows a vague mass on the right side of the abdomen, an “empty” right lower quadrant, and “currant jelly” stools (stool mixed with blood and mucous). Barium or air enema is both diagnostic and therapeutic. If reduction is not achieved radiologically (or if there are recurrences), surgery is done.

Child abuse (intentional injury) should always be suspected when injuries cannot be properly accounted for. Some classic presentations include:

• Subdural hematoma plus retinal hemorrhages (shaken baby syndrome)
• Multiple fractures in different bones at various stages of healing
• All scalding burns, particularly burns of both buttocks (child was held by arms and legs and dipped into boiling water), and burns with distinct lines of demarcation

Refer to the proper authorities.

Meckel’s diverticulum should be suspected in lower GI bleeding in the pediatric age group. Diagnose with a radioisotope scan looking for gastric mucosa in the lower abdomen.
Learning Objectives

- Answer questions about the surgical correction of congenital and acquired heart problems
- Describe surgical issues related to diseases of the lung

CONGENITAL HEART PROBLEMS

Vascular ring is an aberrant formation of the aorta and great vessels which creates pressure on the tracheobronchial tree and pressure on the esophagus.

- The first symptom includes stridor and episodes of respiratory distress with “crowing” respiration, during which the baby assumes a position with an extended neck.
- The latter symptoms revolve around some difficulty with feeding or swallowing. (If only the respiratory symptoms are present, one should think of tracheomalacia.)

Barium swallow shows typical extrinsic compression from the abnormal vessel. Bronchoscopy shows segmental tracheal compression and rules out diffuse tracheomalacia. Imaging with CT scan or MRI will help to further delineate details of the vascular anatomy and help to plan for surgical repair. Surgery divides the smaller of the two aortic arches.

Morphologic cardiac anomalies (congenital or acquired) are best diagnosed with an echocardiogram.

Conditions that produce left-to-right shunts share the presence of a loud, holosystolic (pansystolic) murmur, overloading of the pulmonary circulation, with resultant long-term damage to the pulmonary vasculature. The volume and consequences of the shunt vary, depending upon their location.

An atrial septal defect has a very minor, low-pressure, low-volume shunt. Patients typically grow into late infancy before they are recognized. A faint pulmonary flow systolic murmur and fixed split second heart sound are characteristic. A history of frequent colds is elicited. Echocardiogram is diagnostic. Closure can be achieved surgically or by cardiac catheterization.

Small, restrictive ventricular septal defects low in the muscular septum produce a heart murmur, but otherwise few symptoms. They are likely to close spontaneously within the first 2 or 3 years of life.

A ventricular septal defect (VSD) in the more typical location (high in the membranous septum) leads to trouble early on. Within the first few months there will be “failure to thrive,” a loud pansystolic murmur best heard at the left sternal border, and increased pulmonary vascular markings on chest x-ray. Diagnose with an echocardiogram and treat with surgical closure.
Patent ductus arteriosus becomes symptomatic in the first few days of life if the ductus arteriosus does not close spontaneously. There are bounding peripheral pulses and a continuous “machinery-like” heart murmur. Echocardiogram is diagnostic. In premature infants who have not gone into CHF, closure can be achieved with indomethacin. Those which do not close, babies who are in heart failure, or full-term babies need surgical ligation.

Right-to-left shunts share the presence of a murmur, diminished lung vascular markings in the lung, and cyanosis. Although 5 are always described (all beginning with the letter T), 3 of them are rather rare and will not be reviewed (one of them, truncus arteriosus, is fascinating because it is cyanotic but it kills by overloading the pulmonary circulation, like the noncyanotic shunts do). The common ones follow.

- **Tetralogy of Fallot** (4 tetra-abnormalities: VSD, pulmonary stenosis, overriding aorta, and right ventricular hypertrophy), although crippling, often allows children to grow up into infancy. It is also the most common cyanotic anomaly, and thus any exam question in which a child age 5–6 is cyanotic is bound to be tetralogy. The children are small for their age, have a bluish hue in the lips and tips of their fingers, clubbing, and spells of cyanosis relieved by squatting. There is a systolic ejection murmur in the left third intercostal space, a small heart, diminished pulmonary vascular markings on chest x-ray, and ECG signs of right ventricular hypertrophy. Echocardiogram is diagnostic, treatment is surgical repair.

- **Transposition of the great vessels** diagnosis is often made prenatally, and if not becomes apparent shortly after birth due to severe cyanosis and failure to thrive. Children are kept alive by an atrial septal defect, ventricular septal defect, or patent ductus (or a combination), but die very soon if not corrected. Suspect this diagnosis in a child age 1-2 days with cyanosis who is in deep trouble, and ask for echocardiogram. The technical details of the surgical correction are mind-boggling, and you do not have to know them.

ACQUIRED HEART DISEASE

Aortic stenosis produces angina, syncope, and dyspnea. There is a harsh midsystolic heart murmur best heard at the right second intercostal space and along the left sternal border. Start the workup with an echocardiogram. Surgical valvular replacement is indicated if there is a gradient >50 mm Hg, or at the first indication of CHF, angina, or syncope.

Chronic aortic insufficiency produces wide pulse pressure (“water hammer pulse”) and a blowing, high-pitched, diastolic heart murmur best heard at the second intercostal space and along the left lower sternal border, with the patient in full expiration. Patients are often followed with medical therapy for many years but should undergo valvular replacement at the first evidence on echocardiogram of the beginning left ventricular dilatation.

Acute aortic insufficiency because of endocarditis is seen in young drug addicts who suddenly develop CHF and a new, loud diastolic murmur at the right second intercostal space. Emergency valve replacement and long-term antibiotics are needed.

Mitral stenosis is caused by a history of rheumatic fever many years before presentation. It produces dyspnea on exertion, orthopnea, paroxysmal nocturnal dyspnea, cough, and hemoptysis. There is a low-pitched, rumbling diastolic apical heart murmur. As it progresses, patients become thin and cachectic and develop atrial fibrillation. Workup starts with echocardiogram. As symptoms become more disabling, mitral valve repair becomes necessary with a surgical commissurotomy or mitral valve replacement.
Mitral regurgitation is most commonly caused by valvular prolapse. Patients develop exertional dyspnea, orthopnea, and atrial fibrillation. There is an apical, high-pitched, holosystolic heart murmur that radiates to the axilla and back. Workup and surgical indications are as above, with repair of the valve (annuloplasty) preferred over prosthetic replacement.

Coronary artery disease (CAD) is the most common type of acquired heart disease in the adult population of the United States. Risk factors include a history of smoking, sedentary lifestyle, hyperlipidemia (particularly hypercholesterolemia), and type II diabetes. The incidence of CAD is higher in men age >45 and post-menopausal women. While CAD can happen to anybody, the typical patient is as follows:

- Middle-age sedentary man
- Has family history, smoking history, type II diabetes and/or hypercholesterolemia

Progressive, unstable, disabling angina is the main reason to do cardiac catheterization and evaluate as a potential candidate for revascularization. Intervention is indicated if ≥1 vessels have ≥70% stenosis and there is a good distal vessel. Preferably, the patient should still have good ventricular function (you cannot resuscitate dead myocardium).

The general rule is that the simpler the problem, the more it is amenable to angioplasty and stent; whereas more complex situations do better with surgery.

- Single vessel disease (that is not the left main or the anterior descending) is perfect for angioplasty and stent.
- Triple vessel disease makes multiple coronary bypass (using the internal mammary for the most important vessel) the best choice.

Post-operative care of heart surgery patients often requires that cardiac output be optimized. If cardiac output is considerably under normal (5 liters/min, or cardiac index 3), the pulmonary wedge pressure (or left atrial pressure, or left end-diastolic pressure) should be measured. Low numbers (0–3) suggest the need for more IV fluids. High numbers (≥20) suggest ventricular failure.

Chronic constrictive pericarditis produces dyspnea on exertion, hepatomegaly, and ascites, and shows a classic “square root sign” and equalization of pressures (right atrial, right ventricular diastolic, pulmonary artery diastolic, pulmonary capillary wedge, and left ventricular diastolic) on cardiac catheterization. Surgical therapy relieves it.

LUNG

A solitary “coin” lesion found on a chest x-ray has an 80% chance of being malignant in people age >50, and even higher if there is a significant history of smoking. A very expensive workup for cancer of the lung, however, can be avoided if an older chest x-ray shows the same unchanged lesion; it is unlikely to be cancer. Therefore, seeking an older x-ray is always the first step when a solitary pulmonary nodule is detected.

Suspected cancer of the lung requires what is potentially an expensive and invasive workup to confirm diagnosis and assess operability. It starts with a chest x-ray (which may have been ordered because of persistent cough or hemoptyisis) showing a suspicious lesion. Assuming no older x-ray is available or the lesion was not present on a previous film, 2 noninvasive tests should be done first: sputum cytology and CT scan (chest and upper abdomen).
Diagnosis of cancer of the lung, if not established by cytology, requires bronchoscopy and biopsies (for central lesions) or percutaneous biopsy (for peripheral lesions). If unsuccessful with those, video-assisted thoracic surgery (VATS) and wedge resection may be needed. How far one goes in that sequence depends on the following:

- Probability of cancer (higher in elderly, with history of smoking and noncalcified lesion in CT)
- Assurance that surgery can be done (will the post-resectional pulmonary function be sufficient)
- Chances that the surgery may be curative (no metastases to mediastinal or carinal nodes, the other lung, or the liver)

The interplay of these factors determines the specific sequence of workup beyond sputum cytology and CT scan in each patient.

Small cell cancer of the lung is treated with chemotherapy and radiation, and therefore assessment of operability and curative chances of surgery are not applicable. Operability and possibility of surgical cure apply only to non–small cell cancer.

The operability of lung cancer is predicated on residual pulmonary function that would be left after resection. If clinical findings (COPD, shortness of breath) suggest this may be the limiting factor, do pulmonary function studies.

- Determine FEV1
- Determine fraction that comes from each lung (by ventilation-perfusion scan)
- Figure out what would remain after lobar resection or pneumonectomy

A minimum FEV₁ of 800 mL is mandatory for a patient to undergo lung resection, as the worst case scenario is that a pneumonectomy will need to be performed and could potentially leave a marginal patient ventilator dependent. If <800 mL, do not continue expensive tests; the patient is not a surgical candidate. Treat with chemotherapy and radiation instead.

Potential cure by surgical removal of lung cancer depends on extent of metastases.

- Hilar metastases can be removed with the pneumonectomy.
- Nodal metastases at the carina or mediastinum preclude curative resection.
- CT scan may identify nodal metastases.
- The addition of PET scan has helped define the presence of an actively growing tumor in enlarged nodes.
- Endobronchial U/S has emerged as a mainstay of diagnosis by obtaining tissue samples from mediastinal nodes; cervical mediastinal exploration (“mediastinoscopy”) is now rarely needed.
- Metastases to the contralateral lung, adrenal gland, or liver would also be evident on CT and be a contraindication to surgical resection.
Learning Objectives

- List the common procedures, including indications, complications, and alternatives, in vascular surgery

Subclavian steal syndrome is rare but fascinating (medical school professors love it, thus it is likely to appear on exams). An arteriosclerotic stenotic plaque at the origin of the subclavian (proximal to the takeoff of the vertebral) allows enough blood supply to reach the arm for normal activity, but does not allow enough to meet higher demands when the arm is exercised. When that happens, the arm diverts blood away from the brain by reversing blood flow in the vertebral artery. That is, the increased blood flow needs of the arm are achieved by retrograde flow from the vertebral artery, with resultant decreased brain perfusion and possible CNS symptoms.

Clinically the patient describes claudication of the arm (coldness, tingling, muscle pain) and posterior neurologic signs (visual symptoms, equilibrium problems) when the arm is exercised. Vascular symptoms alone would suggest thoracic outlet syndrome, but the combination with neurologic symptoms identifies the subclavian steal. Duplex scanning is diagnostic when it shows reversal of flow. Bypass surgery is curative.

Abdominal aortic aneurysm (AAA) is typically asymptomatic, found as a pulsatile epigastric abdominal mass on examination (between the xiphoid and the umbilicus), or found on x-rays, U/S, or CT scans done for another diagnostic purpose, usually in an older man. Size is the key to management; if an aneurysm is found by physical exam, U/S or CT scan is needed to provide precise measurements.

- If aneurysm is ≤4 cm, it can be safely observed; chance of rupture is almost zero
- If aneurysm is ≥5 cm, patient should have elective repair because chance of rupture is very high

Aneurysms that grow 1 cm per year or faster also need elective repair. Most AAAs are now treated with endovascular stents inserted percutaneously. The 10-year outcome has been encouraging; limiting factors to this modality are specific anatomic criteria (neck of aneurysm, landing zone, and tortuosity of vascular tree) and available resources (angiography team and equipment).

Open AAA repair involves an interposition graft within the aneurysm sac and carries ~10-15% peri-operative morbidity, with MI, renal failure, and bowel ischemia being the most severe culprits.

Surgery for a ruptured AAA carries very high morbidity and mortality, thus efforts are made to predict and anticipate rupture, and not wait for it to occur.

- A tender AAA is at risk to rupture, so immediate repair is indicated.
- Excruciating back pain in a patient with a large AAA means that the aneurysm is already leaking. Retroperitoneal hematoma is already forming, and blowout into the peritoneal cavity is imminent; emergency surgery is required.
Arteriosclerotic occlusive disease of the lower extremities has an unpredictable natural history (except for the predictable negative impact of smoking), and therefore there is no role for “prophylactic” surgery in claudication. Surgery is done only to relieve disabling symptoms or to save the extremity from impending necrosis (rest pain). The first clinical manifestation of peripheral arterial disease is often pain brought about by walking and relieved with rest (intermittent claudication). If the claudication does not interfere significantly with the patient’s lifestyle, no workup is indicated. Smoking cessation, exercise, and the use of cilostazol can help the patient in the long run.

The workup of disabling intermittent claudication starts with Doppler studies looking for a pressure gradient, which provides information about the location, level, and severity of an arteriosclerotic lesion.

- If there isn’t a significant gradient, the disease is in the small vessels and not amenable to surgery. If there is one, CTA or magnetic resonance angiogram (MRA) is performed to identify specific areas of stenosis or complete obstruction, and to look for good distal vessels to which a bypass graft could be anastomosed.
- Short stenotic segments can be treated with angioplasty and stenting.
- More extensive disease may require bypass grafts, sequential stents or longer stents.
- When multiple lesions are present, proximal ones are usually repaired before distal ones are addressed.
- Grafts originating at the aorta (aortobifemoral) and procedures on larger arteries are done with prosthetic material.
- Bypasses between more distal vessels (femoropopliteal, or beyond) are usually done with reversed saphenous vein grafts.
Rest pain is the penultimate stage of the disease (the ultimate is ulceration and gangrene). The clinical picture is rather characteristic. The patient seeks help because he “cannot sleep.” It turns out that pain in the calf is what keeps him from falling asleep. He has learned that sitting up and dangling the leg helps the pain, and a few minutes after he does so, the leg that used to be very pale becomes deep purple. Physical exam shows shiny atrophic skin without hair, and no peripheral pulses. Workup and therapy are as detailed above.

Arterial embolization from a distant source is seen in patients with atrial fibrillation (a clot breaks off from the atrial appendage) or those with a recent MI (the source of the embolus is the mural thrombus). The patient suddenly develops the 6 Ps:

- Painful
- Pale
- Cold (“poikilothermic”)
- Pulseless
- Paresthetic
- Paralytic lower extremity

Urgent evaluation and treatment should be completed within 6 hours because the likelihood of irreversible muscle and nerve injury increases after this time. Doppler studies will locate the point of obstruction. Early incomplete occlusion may be treated with thrombolytic therapy. Embolectomy with Fogarty catheters is effective for complete obstructions, and fasciotomy should be added if several hours have passed before revascularization to prevent compartment syndrome from reperfusion edema.

Dissecting aneurysm of the thoracic aorta occurs in the poorly controlled hypertensive. The episode resembles an MI, with sudden onset of extremely severe, tearing chest pain that radiates to the back and migrates down shortly after its onset. There may be unequal pulses in the upper extremities, and chest x-ray shows a widened mediastinum. ECG and cardiac enzymes rule out an MI. Definitive diagnosis should be sought by noninvasive means such as CTA or MRA, but TEE is useful as well. Type A dissections (involving the ascending aorta) are treated surgically, whereas Type B dissections (those in the descending only) are managed medically with control of the hypertension in the ICU.

![Peripheral Vascular Disease noted on Angiogram of the Lower Extremities](image)

Figure I-7-2. Peripheral Vascular Disease noted on Angiogram of the Lower Extremities
Learning Objectives

- List the common procedures, including indications, complications, and alternatives, in dermatology

Cancer of the skin is typically seen in blond, blue-eyed, fair-skinned people who live where the sun is intense and who, by virtue of occupation or hobby, have extensive, unprotected exposure to sunlight. There are 3 main types of skin cancer:

- Basal cell carcinoma: 50% of cases
- Squamous cell carcinoma: 25% of cases
- Melanoma: ≥15% of cases (incidence is rising)

Each type of skin cancer has a unique presentation but in almost all cases the initial diagnosis is done by obtaining tissue from a biopsy of the lesion (shave, punch or excisional biopsy). Excisional biopsy is the most accurate in diagnosis, especially when melanoma is suspected. Because they share etiology, they often coexist, and patients frequently have multiple lesions over the years.

Basal cell carcinoma may show up as a raised waxy lesion or as a nonhealing ulcer. It has a preference for the upper part of the face (above a line drawn across the lips). It does not metastasize but can continue to grow with relentless local invasion ("rodent ulcer"). Local excision with negative margins (1 mm is enough) is curative, but patients should be followed closely because other lesions may develop later.

Squamous cell carcinoma of the skin shows up as a nonhealing ulcer, often on the lower lip (and territories below a line drawn across the lips), and can metastasize to lymph nodes. Excision with wider margins is needed (0.5–2 cm), and node dissection is done if they are involved. Radiation treatment is another option.

Melanoma usually originates in a pigmented lesion. A mnemonic to identify them is **ABCD**.

- Asymmetric (A)
- Irregular borders (B)
- Different colors (C) within the lesion
- Diameter (D) >0.5 cm

Melanoma should also be suspected in any pigmented lesion that changes in any way (grows, ulcerates, changes color and/or shape, bleeds, etc.). The biopsy report must give not only the diagnosis, but also the depth of invasion. The prognosis of melanoma and approach to surgical excision are directly related to the thickness or depth of invasion (Breslow measurement); the deeper the thickness/depth of invasion, the worse the prognosis.
Melanoma-in-situ (non-invasive melanoma) carries an excellent prognosis and can be effectively treated with local excision (5 mm margins).

- Lesions <1 mm in depth have a good prognosis and require only local excision with 1 cm margins.
- Lesions 1–2 cm in depth have a worse prognosis and require resection with 1–2 cm margins.
- Deeper lesions (>2 mm) require excision with wide margins (2 cm).
- Lesions >4 mm have a poor prognosis.
- Lesions 1–4 mm benefit most from aggressive therapy, including management of nodes.
- Patients with lesions >1 mm deep and without palpable nodes on exam should undergo sentinel lymph node biopsy.

Metastatic malignant melanoma (from a deep, invasive primary) can be aggressive and unpredictable. Melanoma can metastasize to all the usual places (lymph nodes, liver, lung, brain, and bone), but it can also metastasize to remote and bizarre locations (e.g. the muscle of the left ventricle, the wall of the duodenum…anywhere!).

Furthermore, it has no predictable timetable. Some patients are full of metastases within a few months of diagnosis, while others go 20 years between resection of their primary tumor and the sudden explosion of metastases. Interferon alpha and ipilimumab are standard options for adjuvant therapy for high-risk melanoma. Newer drugs such as anti-PD 1 antibodies are being explored for treatment.
Learning Objectives

- List the common procedures, including indications, complications, and alternatives, in ophthalmology

CHILDREN

Amblyopia is a vision impairment caused by interference with the processing of images by the brain during the first 6 or 7 years of life. The most common expression of this phenomenon is the child with strabismus (disconjugate gaze, so called “wandering eye”). Faced with 2 overlapping images, the brain suppresses one of them. If the strabismus is not corrected early on, there will be permanent cortical blindness of the suppressed eye, even though the eye is perfectly normal. Should an obstacle impede vision in one eye during those early years (for instance, a congenital cataract), the same problem will develop.

Strabismus is verified by showing that the reflection from a light comes from different areas of the cornea in each eye. Strabismus should be surgically corrected when diagnosed, to prevent the development of amblyopia. When reliable parents relate that a child did not have strabismus in the early years but develops it later in infancy, the problem is an exaggerated convergence caused by refraction difficulties. In that case corrective glasses instantly resolve the problem. True strabismus does not resolve spontaneously.

A white pupil in a baby is an ophthalmologic emergency, as it may be caused by a retinoblastoma. Even if the white pupil is caused by a less lethal problem, like a congenital cataract, it should be attended to in order to prevent amblyopia.

ADULTS

Glaucoma is a very common source of blindness, but because of its silent nature is unlikely to be discovered by regular physicians (or to be tested for in an exam). One variant, however, should be recognized by every physician who might encounter it. Acute closed angle glaucoma shows up as very severe eye pain or frontal headache, typically starting in the evening when the pupils have been dilated for several hours (watching a double feature at the movies, or watching television in a dark room).

- Patient may report seeing halos around lights
- On physical exam the pupil is mid-dilated and does not react to light; cornea is cloudy with greenish hue; and the eye feels "hard as a rock"
Emergency treatment is required (ophthalmologists will drill a hole in the iris with a laser beam to provide a drainage route for the fluid that is trapped in the anterior chamber).

While waiting for the ophthalmologist, administer systemic carbonic anhydrase inhibitors (such as acetazolamide) and apply topical beta-blockers and alpha-2-selective adrenergic agonists. Mannitol and pilocarpine may also be used.

Orbital cellulitis is another ophthalmologic emergency. The eyelids are inflamed, tender, red, and swollen; and the patient is febrile—but the key finding when the eyelids are pried open is that the pupil is dilated and fixed, and ocular motion is very limited. There is pus in the orbit, and emergency CT scan and drainage have to be done.

Chemical burns of the eye require massive irrigation, like their counterparts elsewhere in the body. Start irrigation with plain water as soon as possible, and do not wait until arrival at the hospital. Once the eye has been pried open and washed under running water for about 30 minutes, get the patient to the ED. At the hospital, irrigation with saline is continued, corrosive particles are removed from hidden corners, and before the patient is sent home, pH is tested to assure that no harmful chemicals remain in the conjunctival sac. As is true elsewhere in the body, alkaline burns are worse than acid burns.

Retinal detachment is another emergency that should be recognized by all physicians. The patient reports seeing flashes of light and having “floaters” in the eye. The number of floaters gives a rough idea of the magnitude of the problem.

- The person with 1 or 2 floaters may only have vitreous tugging at the retina, with little actual detachment.
- The person who describes dozens of floaters, or “a snow storm” within the eye, or a big dark cloud at the top of his visual field has a big horseshoe piece of the retina pulled away, and is at risk for detachment of the remaining retina. Emergency intervention, with laser “spot welding,” will protect the remaining retina.

Embolic occlusion of the retinal artery is also an emergency, although little can be done about it. The patient (typically elderly) describes sudden loss of vision from one eye. In about 30 minutes the damage will be irreversible, but the standard recommendation is for the patient to breathe into a paper bag, and have someone repeatedly press hard on the eye and release while he is in transit to the ED (the idea is to vasodilate and shake the clot into a more distal location, so that a smaller area is ischemic).

Newly diagnosed diabetics need ophthalmologic evaluation if they have type II, because they may have had it for years before diagnosis was made. Retinal damage may have already occurred, and proper treatment may prevent its progression. Young people diagnosed with type I often develop eye problems after 20+ years of living with diabetes.
Learning Objectives

- List the most important ENT emergencies and describe the presenting features of each
- Describe the common neck masses and ENT tumors including prognosis
- Recognize and present treatment options for pediatric ENT problems

NECK MASSES

Neck masses can be congenital, inflammatory, or neoplastic. Congenital masses (seen in young people) are typically present for years before they become symptomatic (get infected). Inflammatory masses are typically measured in days or weeks; after a few weeks an inflammatory mass has reached some kind of resolution. Neoplastic masses typically see several months of relentless growth.

Congenital

Thyroglossal duct cyst is a neck mass that is located on the midline, at the level of the hyoid bone, and originates from the foramen cecum in the tongue (pulling at the tongue retracts the mass). It is typically 1–2 cm in diameter. Surgical removal includes the cyst, the middle segment of the hyoid bone, and the track that leads to the base of the tongue (Sistrunk procedure).

Branchial cleft cyst occurs laterally, along the anterior edge of the sternomastoid muscle, anywhere from in front of the tragus to the base of the neck. It is typically several centimeters in diameter, and sometimes has a little opening and blind tract in the skin overlying it.

Cystic hygroma (lymphatic malformation) is found at the base of the neck as a large, spongy, ill-defined mass that occupies the entire supraclavicular area and seems to extend deeper into the chest. Indeed, it often extends into the mediastinum, and therefore CT scan before attempted surgical removal is mandatory. These lesions arise from abnormal development of the neck lymphatic vessels.

Inflammatory versus Neoplastic

The vast majority of recently enlarged lymph nodes are benign, and so an extensive workup should not be undertaken right away. Complete history and physical should be followed by an appointment in 3–4 weeks. If the mass is still there, workup then follows.

Persistent enlarged lymph node (a history of weeks or months) could still be inflammatory, but neoplasia has to be ruled out. There are several patterns that are suggestive of specific diagnosis, as detailed below.

Lymphoma is typically seen in young people; they often have multiple enlarged nodes (in the neck and elsewhere) and have been suffering from low-grade fever and night sweats. FNA can be done, but usually a node has to be removed for pathologic study to determine specific type. Chemotherapy is the usual treatment.

Metastatic tumor to supraclavicular nodes invariably comes from below the clavicles (and not from the head and neck). Lung or intraabdominal tumors are the usual primaries. Biopsy of the lymph node may help establish a tissue diagnosis. It is commonly on the left side (Virchow's node) close to where the thoracic duct empties into the L-subclavian vein.

Squamous cell carcinoma of the mucosae of the head and neck is seen in older men who smoke, drink, and have rotten teeth. Patients with AIDS are also prime candidates. Often the first manifestation is a metastatic node in the neck (typically to the jugular chain). The ideal diagnostic workup is a triple endoscopy (or panendoscopy) looking for the primary tumor.

- Biopsy of the primary establishes the diagnosis and CT scan demonstrates the extent.
- FNA of the node may be done, but open biopsy of the neck mass should never be performed, as an incision in the neck will eventually interfere with the appropriate surgical approach for the tumor.

Treatment involves resection, radical lymph node dissection, and very often radiotherapy and platinum-based chemotherapy. Other presentations of squamous cell carcinoma include persistent hoarseness, persistent painless ulcer in the floor of the mouth, or persistent unilateral earache.

OTHER TUMORS

Acoustic nerve neuroma should be suspected in an adult with unilateral sensory hearing loss. MRI is the best diagnostic modality.

Facial nerve tumors produce gradual unilateral facial nerve paralysis affecting both the forehead and the lower face, as opposed to sudden onset paralysis which suggests Bell's palsy. Gadolinium-enhanced MRI is the best diagnostic study.

Parotid tumors are visible and palpable in front of the ear, or around the angle of the mandible. Most are pleomorphic adenomas, which are benign but have potential for malignant degeneration. They do not produce pain or facial nerve paralysis. A hard parotid mass that is painful or has produced paralysis is a parotid cancer.

- FNA of these tumors may be done, but open biopsy is absolutely contraindicated.
- A formal superficial parotidectomy (or superficial and deep if the tumor is deep to the facial nerve) is the appropriate way to excise—and thereby biopsy—parotid tumors, preventing recurrences and sparing the facial nerve.
- Enucleation alone is inadequate and has a high likelihood of recurrence.
- In malignant tumors the nerve is sacrificed and a nerve interposition graft performed.
PEDIATRIC ENT

Foreign bodies are the cause of unilateral ENT problems in toddlers. A 2-year-old with unilateral earache, unilateral rhinorrhea, or unilateral wheezing has a little toy truck (or another small toy) in his ear canal, up his nose, or into a bronchus. The appropriate endoscopy under anesthesia will allow extraction.

ENT EMERGENCIES AND MISCELLANEOUS

Ludwig's angina is an abscess of the floor of the mouth, often as the result of a dental infection. The usual findings of an abscess are present, but the special issue here is the threat to the airway, which arises from swelling of the tongue. Incision and drainage are done, but intubation and tracheostomy may also be needed to protect the airway.

Bell's palsy produces sudden paralysis of the facial nerve for no apparent reason. Although not an emergency per se, current practice includes the use of antiviral medications—and as is the case for other situations in which antivirals are used, prompt and early administration is the key to their success. Steroids are also typically prescribed.

Facial nerve injuries sustained in multiple trauma produce paralysis right away. Patients who have normal nerve function at the time of admission and later develop paralysis are likely to have swelling that will resolve spontaneously.

Cavernous sinus thrombosis is heralded by the development of diplopia (secondary to paralysis of extrinsic eye muscles) in a patient suffering from frontal or ethmoid sinusitis. This is a serious emergency that requires hospitalization, IV antibiotics, CT scans, and drainage of the affected sinuses.

Epistaxis in children is typically from nosepicking; the bleeding comes from the anterior septum, and phenylephrine spray and local pressure control the problem. In teenagers the prime
suspects are cocaine abuse (with septal perforation) or juvenile nasopharyngeal angiofibroma. Posterior packing may be needed for the former, and surgical resection is mandatory for the latter (the tumor is benign, but it can erode into nearby structures).

In the elderly and hypertensive, nosebleeds can be copious and life-threatening. BP control is paramount and posterior packing is usually required. Sometimes angiographic or surgical ligation of feeding vessels is the only way to control the problem.

Dizziness may be caused by inner ear disease or cerebral disease. When the inner ear is the culprit, the patients describe the room spinning around them (vertigo). When the problem is in the brain, the patient is unsteady but the room is perceived to be stable. In the first case meclizine, Phenergan, or diazepam may help. In the second case, neurologic workup is in order.
Learning Objectives

- List differential diagnoses for neurosurgical presenting complaints
- Describe neurosurgical treatment options for cerebrovascular occlusive disease
- Describe primary and metastatic brain tumors, treatment options, and prognosis
- Provide an approach to treating chronic pain syndromes

Differential Diagnosis Based on Patient History

The timetable and mode of presentation of neurologic disease may provide the first clues as to its nature.

- **Vascular problems** have sudden onset without headache when they are occlusive, and with very severe headache when they are hemorrhagic.

- **Brain tumors** have a timetable of months, and produce constant, progressive, severe headache, sometimes worse in the mornings. As intracranial pressure increases, blurred vision and projectile vomiting are added. If the tumor presses on an area of the brain associated with a particular function, deficits of that function may be evident.

- **Infectious problems** have a timetable of days or weeks, and often an identifiable source of infection in the history.

- **Metabolic problems** develop rapidly (hours or days) and affect the entire CNS. Degenerative diseases usually have a timetable of years.

Vascular Occlusive Disease

Transient ischemic attack (TIA) is sudden, transitory loss of neurologic function that comes on without headache and resolves spontaneously within 24 hours, leaving no neurologic sequelae. The specific symptoms depend on the area of the brain affected, which is in turn related to the vessels involved. The most common origin is high-grade stenosis (≥70%) of the internal carotid or ulcerated plaque at the carotid bifurcation.

- **TIAs are predictors of stroke**, thus timely elective carotid endarterectomy could prevent or minimize that possibility.

- Workup starts with noninvasive Duplex U/S studies.

- Carotid endarterectomy is indicated if the lesions are found in a location that explains the neurologic symptoms.

- Angioplasty and stent can be performed in high risk surgical patients.
Ischemic stroke also has sudden onset without headache, but in contrast to a TIA the neurologic deficits are present >24 hours, leaving permanent sequelae. Except for very early strokes, ischemic stroke is no longer amenable to revascularization procedures. An ischemic infarct may be complicated by a hemorrhagic infarct if blood supply to the brain is suddenly increased. Vascular workup will eventually be done to identify lesions that might produce another stroke (and treat them), but for the existing infarct, assessment is by CT scan, and therapy is centered on rehabilitation.

Intracranial Bleeding

Hemorrhagic stroke is seen in the uncontrolled hypertensive who complains of very severe headache of sudden onset and goes on to develop severe neurologic deficits. CT scan is used to evaluate the location and extent of the hemorrhage, and therapy is directed at control of the hypertension and rehabilitation efforts.

Subarachnoid hemorrhage can be caused by rupture of an intracranial aneurysm as well as trauma or even spontaneous bleeding. The amount of pressure the free blood exerts on the brain determines the severity of symptoms and resultant outcome.

• With significant pressure exertion, especially when caused by an aneurysm, patients complain of severe, sudden onset headache—"the worst headache of their life." Physical exam can demonstrate nuchal rigidity due to meningeal irritation. Evaluation begins with CT scan and may require MRA or formal angiogram to delineate the neurovascular anatomy. Treatment for a cerebral aneurysm is either open clipping of the aneurysm or endovascular coiling with good results.

• If leaking from an aneurysm results in minimal pressure exertion on the brain, patients are not very symptomatic and do not necessarily seek medical attention. Many present in a delayed fashion, usually 7-10 days after the "sentinel bleed." When this happens, the degree of intracranial hematoma is often significant, and patients are not always salvageable. Accordingly, a very high index of suspicion at initial presentation can be life-saving.

BRAIN TUMOR

Brain tumor may offer no clue as to location if it presses on a "silent area" of the brain (for example, a tumor in the frontal lobes may not cause symptoms). The only history will be progressively increasing headache for several months, worse in the mornings, and eventually accompanied by signs of increased intracranial pressure:

• Blurred vision
• Papilledema
• Projectile vomiting
• Bradycardia and hypertension (due to Cushing reflex) at the extreme end of the spectrum

Brain tumor can be visualized very well on CT scan, but MRI gives better detail and is the preferred study. While awaiting surgical removal, treat any increased intracranial pressure with high-dose steroids (i.e., dexamethasone).
Clinical localization of brain tumors may be possible by virtue of specific neurologic deficits or symptom patterns. For example, the motor strip and speech centers are often affected in tumors that press on the lateral side of the brain, producing symptoms on the opposite side of the body (people speak with the same side of the brain that controls their dominant hand). Other classic clinical pictures include the following:

- **Tumor at the base of the frontal lobe** produces inappropriate behavior, optic nerve atrophy on the side of the tumor, papilledema on the other side, and anosmia (Foster-Kennedy syndrome).
- **Craniopharyngioma** occurs in children who are short for their age, and they show bitemporal hemianopsia and a calcified lesion above the sella on x-rays.
- **Prolactinoma** produces amenorrhea and galactorrhea in young women. Diagnostic workup includes ruling out pregnancy (pregnancy test), ruling out hypothyroidism, determination of prolactin level, and MRI of the sella. Therapy is with bromocriptine. Transnasal, trans-sphenoidal surgical removal is reserved for those who wish to get pregnant, or those who fail to respond to bromocriptine.
- **Acromegaly** develops from the effects of excess growth hormone from a pituitary tumor. It is recognized by the height and the presence of large hands, feet, tongue, and jaws. Additionally, there is hypertension, diabetes, sweaty hands, headache, and the history of wedding bands or hats that no longer fit. Workup starts with determination of somatomedin C, and pituitary MRI. Surgical removal is preferred, but radiation is an option.
- **Pituitary apoplexy** occurs when there is bleeding into a pituitary tumor, with subsequent destruction of the pituitary gland. The history may have clues to the long-standing presence of a pituitary tumor (headache, visual loss, endocrine problems), and the acute episode starts with a severe headache, followed by signs of increased compression of nearby structures by the hematoma (deterioration of remaining vision, bilateral pallor of the optic nerves) and pituitary destruction (stupor and hypotension). Steroid replacement is urgently needed, and eventually other hormones will need to be replaced. MRI or CT scan will show the extent of the problem.
- **Tumor of the pineal gland** produces loss of upper gaze and the physical finding known as “sunset eyes” (Parinaud syndrome).
- **Brain tumor in children** is most commonly in the posterior fossa. It produces cerebellar symptoms (stumbling around, truncal ataxia) and the children often assume the knee-chest position to relieve their headache.
- **Brain abscess** shows many of the same manifestations of brain tumors (it is a space-occupying lesion), but develops much more quickly (a week or two). There is fever, and usually an obvious source of the infection nearby, like otitis media or mastoiditis. It has a very typical appearance on CT, thus the more expensive MRI is not needed. Actual resection is required.

PAIN SYNDROMES

Trigeminal neuralgia (tic douloureux) produces extremely severe, sharp shooting pain in the face (in the distribution of the trigeminal nerve). Patients often describe that the pain feels “like a bolt of lightning” brought about by touching a specific area, and lasts 60 seconds. Patients, typically age 60s, have a completely normal neurologic exam. The only finding on physical exam may be an unshaven area in the face (the trigger zone, which the patient avoids touching). MRI is done to rule out organic lesions. Treatment with anticonvulsants is often successful. If not, radiofrequency ablation can be done.
Reflex sympathetic dystrophy (causalgia) develops several months after peripheral nerve injury (e.g., crush injury of nerve). There is constant, burning, agonizing pain that does not respond to the usual analgesics. The pain is aggravated by the slightest stimulation of the area. The extremity is cold, cyanotic, and moist. A successful sympathetic block is diagnostic, and surgical sympathectomy is curative.
Learning Objectives

- Describe treatment options for urologic emergencies, including stones and retention
- List common congenital urologic diseases and their treatment
- Answer questions about urological tumor
- Outline the causes and treatments of urinary incontinence

UROLOGIC EMERGENCIES

Testicular torsion is seen in adolescent males. There is severe testicular pain of sudden onset, but no fever, pyuria, or history of recent mumps. The testis is swollen, exquisitely tender, “high riding,” and with a “horizontal lie.” The cord is not tender, which is different than the findings with acute epididymitis. U/S may be performed at the bedside but time is critical in this condition. This is one of the few urologic emergencies, and immediate surgical intervention is indicated. After the testis is untwisted, an orchiopexy is done to prevent recurrence; simultaneous contralateral orchiopexy is also indicated.

Acute epididymitis can be confused with testicular torsion. It is seen in young men old enough to be sexually active, and it also starts with severe testicular pain of sudden onset. There is fever and pyuria, and although the testis is swollen and very tender, is in the normal position. The cord is also very tender. Acute epididymitis is treated with antibiotics, but U/S is typically performed to avoid missing a possible diagnosis of testicular torsion.

The combination of obstruction and infection of the urinary tract is the other condition that is a urologic emergency. Any situation in which these two conditions coexist can lead to destruction of the kidney in a few hours, and potentially to death from sepsis. A typical scenario is a patient who is being allowed to pass a ureteral stone spontaneously, and who suddenly develops chills, fever spike 40–40.6°C (104–105°F), and flank pain. In addition to IV antibiotics, immediate decompression of the urinary tract above the obstruction is required. This should be accomplished by the quickest and simplest means (in this example, ureteral stent or percutaneous nephrostomy), deferring more elaborate instrumentations for a later, safer date.

UTI (cystitis) is very common in women of reproductive age and requires no elaborate workup. Patients have frequency, painful urination, with small volumes of cloudy and malodorous urine. Empiric antimicrobial therapy is used. More serious infection such as pyelonephritis, or UTI in children or young men, requires urinary cultures and a urologic workup to rule out concomitant obstruction as the reason for the serious infection. Urinary cultures are also indicated in women with frequent/recurrent UTI.
Pyelonephritis, an infection involving the kidney, produces chills, high fever, nausea and vomiting, and flank pain. Hospitalization, IV antibiotics (guided by cultures), and urologic workup (IVP or sonogram) are required.

Acute bacterial prostatitis is seen in older men who have chills, fever, dysuria, urinary frequency, diffuse low back pain, and an exquisitely tender prostate on rectal exam. IV antibiotics are indicated, and care should be taken not to repeat any more rectal exams. Continued prostatic massage could lead to septic shock.

CONGENITAL UROLOGIC DISEASE

Posterior urethral valve is the most common reason a newborn boy doesn’t urinate during day 1 of life (also look for meatal stenosis). Gentle catheterization can be done to empty the bladder (the valves will not present an obstacle to the catheter). Voiding cystourethrogram is the diagnostic test, and endoscopic fulguration or resection will get rid of them.

Hypospadias is easily noted on the neonatal physical exam. The urethral opening is on the ventral side of the penis, somewhere between the tip and the base of the shaft. Circumcision should never be done on such a child, inasmuch as the skin of the prepuce will be needed for the plastic reconstruction that will eventually be done.

UTI in children should always lead to a urologic workup. The cause may be vesicoureteral reflux, or some other congenital anomaly. Vesicoureteral reflux and infection produce burning on urination, frequency, low abdominal and perineal pain, flank pain, and fever and chills in a child. Start treatment of the infection (empiric antibiotics first, followed by culture-guided choice), and do IVP and voiding cystogram looking for the reflux. If found, use long-term antibiotics until the child "grows out of the problem."

Low implantation of a ureter is usually asymptomatic in little boys but has a fascinating clinical presentation in little girls. The patient feels normally the need to void, and voids normally at appropriate intervals (urine deposited into the bladder by the normal ureter); but is also wet with urine all the time (urine that drips into the vagina from the low implanted ureter). If physical examination does not find the abnormal ureteral opening, IVP will show it. Corrective surgery is done.

Ureteropelvic junction (UPJ) obstruction can also produce a fascinating clinical presentation. The anomaly at the UPJ allows normal urinary output to flow without difficulty, but if a large diuresis occurs, the narrow area cannot handle it. Thus the classic presentation is an adolescent who goes on a beer-drinking binge for the first time in his life and develops colicky flank pain.

TUMORS

Hematuria is the most common presentation for cancer of the kidney, ureter, or bladder. Most cases of hematuria are caused by benign disease, but all patients should get a work-up to rule out cancer (the one exception is the adult who has a trace of urine after significant trauma who needs a work-up but not to identify cancer). Workup should begin with CT scan and continue with cystoscopy, which is the only reliable way to rule out cancer of the bladder.

Renal cell carcinoma in its full-blown picture produces hematuria, flank pain, and a flank mass. It can also produce hypercalcemia, erythrocytosis, and elevated liver enzymes. That
full-blown picture is rarely seen today, since most patients are worked up as soon as they have hematuria. CT gives the best detail, showing the mass to be a heterogenic solid tumor (and alerting the urologist to potential growth into the renal vein and the vena cava). Surgery is the only effective therapy and may include partial nephrectomy, radical nephrectomy, or even inferior vena cava resection.

Cancer of the bladder (transitional cell cancer in most cases) has a very close correlation with smoking (even more so than cancer of the lung), and usually presents with hematuria. Sometimes there are irritative voiding symptoms, and patients may have been treated for UTI even though cultures were negative and they were afebrile. Although cystoscopy is the best way to diagnose these, it should be preceded by CT scan. Both surgery and intravesical BCG have therapeutic roles, and a very high rate of local recurrence makes life-long close follow-up a necessity.

Prostatic cancer incidence increases with age. Most are asymptomatic, and have to be sought by rectal exam (rock-hard discrete nodule) and prostatic specific antigen (PSA; elevated levels for age group). Surveillance frequently stops at age 75, beyond which survival is not affected by treatment. Transrectal needle biopsy (guided by sonogram when discovered by PSA) establishes diagnosis. CT helps assess extent and type of therapy. Surgery and/or radiation are choices. Widespread bone metastases respond for a few years to androgen ablation, surgical (orchiectomy) or medical (luteinizing hormone-releasing hormone agonists or antiandrogens like flutamide).

Testicular cancer affects young men, in whom it presents as a painless testicular mass. Because benign testicular tumors are virtually nonexistent, biopsy is not done, and a radical orchietomy is performed by the inguinal route. Blood samples are taken pre-op for serum markers (α-fetoprotein [AFP] and β-human chorionic gonadotropin [β-HCG]), which will be useful for follow-up to identify recurrent disease if elevated initially. Further surgery for lymph node dissection may be done in some cases. Most testicular cancers are exquisitely radiosensitive and chemosensitive (platinum-based chemotherapy), offering many options for successful treatment even in cases of clinically advanced, metastatic disease.

RETENTION AND INCONTINENCE

Acute urinary retention is very common in men who already have significant symptoms from benign prostatic hypertrophy. It is often precipitated during a cold, by the use of antihistamines and nasal drops, and abundant fluid intake. The patient wants to void but cannot, and the markedly distended bladder is palpable.

- An indwelling bladder catheter needs to be placed and left in for at least 3 days.
- First line of long-term therapy is alpha-blockers. For very large glands (>40 g), use 5-alpha-reductase inhibitors.
- Minimally invasive procedures are under evaluation.
- The traditional transurethral resection of the prostate (TURP) is rarely done.

Postoperative urinary retention is also very common, and sometimes it masquerades as incontinence. The patient may not feel the need to void because of post-op pain, medications, etc., but will report that every few minutes there is involuntary release of small amounts of urine. A huge distended bladder will be palpable, confirming that the problem is overflow incontinence from retention. Indwelling bladder catheter is needed.

Stress incontinence is also very common in middle-aged women who have had many pregnancies and vaginal deliveries. They leak small amounts of urine whenever intra-abdominal pressure suddenly increases. This includes sneezing, laughing, getting out of a chair, or lifting a heavy
object. They do not have any incontinence during the night. Examination will show a weak pelvic floor, with the prolapsed bladder neck outside of the “high-pressure” abdominal area.

- For early cases, pelvic floor exercises (Kegel) may be sufficient.
- For advanced cases with large cystoceles, surgical repair of the pelvic floor is indicated.
- For extreme cases, surgical reconstruction of the pelvic floor may be needed.

STONES

Passage of ureteral stones produces the classic colicky flank pain, with radiation to the inner thigh and labia or scrotum, and sometimes nausea and vomiting. Most stones are visible on non-contrast CT scan. Although there are a variety of endoscopic and other modalities to address retained urinary stones, intervention is not always needed.

- Small stones (≤3 mm) at the ureterovesical junction have a 70% chance of passing spontaneously. Treat with analgesics, plenty of fluids, and watchful waiting.
- On the other hand, a 7-mm stone at the UPJ has only a 5% probability of passing. Intervention will be required.

The most common tool used is extracorporeal shock-wave lithotripsy (ESWL). Sometimes ESWL cannot be used (pregnant women, bleeding diathesis, stones that are several centimeters large). Other options include basket extraction, sonic probes, laser beams, and open surgery. Although there is specific therapy for the prevention of recurrences in defined types of stones, abundant water intake is universally applicable.

MISCELLANEOUS

Pneumaturia is almost always caused by fistulization between the bladder and the GI tract, most commonly the sigmoid colon, and most commonly from diverticulitis (second possibility is cancer of the sigmoid, and cancer of the bladder is a very distant third). Workup starts with CT scan, which will show the inflammatory diverticular mass. Sigmoidoscopy is needed later to rule out cancer. Surgical therapy is required.

Erectile dysfunction (ED), or impotence, is defined as an inability to get or maintain an erection, and the etiology can be organic or psychogenic.

- Psychogenic impotence has sudden onset, is partner- or situation-specific, and usually does not interfere with nocturnal erections (which can be tested with a roll of postage stamps). Psycho- or behavioral therapy may be beneficial, or the condition may be self-limited.
- Organic impotence, if caused by trauma, will also have sudden onset, specifically related to the traumatic event (after pelvic surgery, because of nerve damage, or after trauma to the perineum, which involves arterial disruption).
 - Because of chronic disease (arteriosclerosis, diabetes), organic impotence has very gradual onset, going from erections not lasting long enough, to being of poor quality, to not happening at all (including absence of nocturnal erections).
 - Sildenafil, tadalafil, and vardenafil have become first choice therapy in many cases but there are many other options, including vascular surgery (well-suited for those with arterial injury), suction devices (can be used on almost everybody), and prosthetic implants.
Organ Transplantation

Learning Objectives

- Describe the policies related to waiting lists for organ transplantation
- Describe the common complications in organ transplantation

Selection of donors has been liberalized in an attempt to help alleviate the acute shortage of organs. Virtually all brain-dead patients are potential candidates, regardless of age. In some cases donors with specific infections (e.g., hepatitis) can be used for recipients who have the same underlying infection. Even donors with metastatic cancer can donate corneas, because the cornea does not have a blood supply.

The general rule is that all potential donors are referred to the united network for organ-sharing (UNOS), and they will exclude the rare donors that cannot be used at all.

A positive HIV status is the only absolute contraindication to organ donation, though recent reports of donating to HIV+ recipients may change that policy.

After an organ has been transplanted, rejection can develop despite immunosuppressive medications. Tissue typing and a close tissue match may minimize that risk, but it is an ever-present concern for most patients. Transplant rejection can happen in 3 ways: hyperacute, acute, and chronic rejection.

Hyperacute rejection is a vascular thrombosis that occurs within minutes of reestablishing blood supply to the organ. It is caused by preformed antibodies. It is prevented by ABO matching and lymphocytotoxic crossmatch, and thus it is not seen clinically.

Acute rejection (most common) occurs after the first 5 days, and usually within the first 3 months. Episodes occur even though the patient is on maintenance immunosuppression. Signs of organ dysfunction suggest it, and biopsy confirms it.

- In the case of the liver, technical problems are more commonly encountered than immunologic rejection. Thus, the initial priorities if liver function deteriorates post-transplant (rising g-glutamyltransferase [GGT], alkaline phosphatase, and bilirubin) are to rule out biliary obstruction by U/S and vascular thrombosis by Doppler.
- In the case of the heart, signs of functional deterioration occur too late to allow effective therapy, thus routine ventricular biopsies (by way of the jugular, superior vena cava, and right atrium) are done at set intervals. The first line of therapy for acute rejection is steroid boluses. If unsuccessful, antilymphocyte agents (OKT3) have been used though their high toxicity is a problem. Newer anti-thymocyte serum is tolerated better.
- Efforts are underway to come up with cellular MRI as a non-invasive way to diagnose rejection, without the need for biopsy. The field of allotransplantation is in continuous flux.
Chronic rejection is seen years after the transplant, with gradual, insidious loss of organ function. It is poorly understood and irreversible. Although we have no treatment for it, patients suspected of having it have the transplant biopsied in the hope that it may be a delayed (and treatable) case of acute rejection.
PRIMARY SURVEY: THE ABCs

Airway

1. A patient involved in a car accident is fully conscious, and his voice is normal.

A very brief vignette, but in terms of the airway, the airway is fine.

2. A patient with multiple stab wounds arrives in the ED fully conscious, and he has a normal voice, but he also has an expanding hematoma in the neck.

3. A patient with multiple stab wounds arrives in the ED fully conscious, and he has a normal voice, but he also has subcutaneous air (emphysema) in the tissues in the neck and upper chest.

The airway may be fine now, but it is going to be compromised soon. Intubation is indicated now before an emergency situation develops. Orotracheal intubation with rapid-sequence anesthetic induction and pulse oximetry (or topical anesthesia) is preferred in the setting of a trauma center. Blind nasotracheal intubation is often performed by paramedics in the field. The patient with subcutaneous emphysema requires fiberoptic bronchoscopy (more details follow).

4. A patient involved in a severe car accident has multiple injuries and is unconscious. He is breathing spontaneously but his breathing sounds gurgled and noisy.

Altered mental status is the most common indication for intubation in the trauma patient. Unconscious patients with Glasgow coma scale ≤8 may not be able to maintain or protect their airway. Orotracheal intubation would be preferred here, but no anesthetic is needed.
5. An unconscious patient is brought in by the paramedics with spontaneous but noisy and labored breathing. They relate that at the accident site the patient was conscious, but was complaining of neck pain and was unable to move his lower extremities. He lost consciousness during the ambulance ride, and efforts to secure a nasotracheal airway were unsuccessful.

Although it is obvious that the patient has a cervical spine injury, his airway has to be managed first. Orotracheal intubation can still be performed with manual in-line cervical immobilization or over a flexible bronchoscope. Some prefer nasotracheal intubation in this setting if facial injuries do not preclude it.

6. A patient involved in a severe automobile crash is fully awake and alert, but he has extensive facial fractures and is bleeding briskly into his airway, and his voice is masked by gurgling sounds.

Securing an airway is mandatory, but the orotracheal route may not be suitable. Cricothyroidotomy is probably the best choice under these circumstances (except in the pediatric population because of the high-risk of airway stenosis in children, in whom a tracheostomy should be performed because the cricoid cartilage is much smaller than in the adult).

Breathing

7. An unconscious trauma patient has been rapidly intubated in the ED. He has spontaneous breathing and bilateral breath sounds, and his oxygen saturation by pulse oximetry is >95.

As far as breathing is concerned, he is moving air (physical examination) and getting oxygen into his blood (oximetry). Deterioration could occur later, but right now we are ready to move to C in the ABCs.

Circulation

8. A 22-year-old man arrives in the ED with multiple gunshot wounds to the abdomen. He is diaphoretic, pale, cold, shivering, and anxious. He asks for a blanket and a drink of water. His BP is 60/40 mm Hg, pulse 150/min, and thready.

We recognize the picture of shock. In the trauma setting, shock is most commonly hypovolemic caused by bleeding, but other possibilities are pericardial tamponade or tension pneumothorax. Although each of these could occur with transabdominal gunshot wounds, it is less likely (than a direct thoracic injury), so most likely the source of shock is bleeding.
Management includes several simultaneous interventions:

- Large-bore IV lines
- Foley catheter
- Preparation of blood products for immediate exploratory laparotomy for control of bleeding
- Fluid and blood administration

The old emphasis on fluid resuscitation first has given way to a preference for control of the bleeding site as the first order of business, particularly when surgery will have to be done anyway. When surgery might or might not be needed as with blunt trauma, fluid resuscitation is still performed first, in part as a diagnostic test (patients who respond promptly and remain stable are probably no longer bleeding).

9. During a bank robbery an innocent bystander is shot multiple times in the abdomen. When the emergency medical technicians arrive, they find him to be in shock. A fully staffed trauma center is 2 miles away from the site of the shooting.

An ambulance can travel 2 miles in 2 minutes—maybe 3. The point of the vignette is that elaborate attempts to start an IV at the site and begin to infuse Ringer’s lactate would waste precious time that would be best spent moving the patient to a place where the urgently needed laparotomy can be done (“scoop and run”).

10. A 19-year-old man is shot in the right groin during a drug deal gone bad. He staggers to the hospital on his own, and arrives in the ED with BP 90/70 mm Hg and pulse 105/min. Bright red blood is squirting from the groin wound.

The point of this vignette is that control of the bleeding by direct local pressure is the first order of business before volume resuscitation is started. Finger pressure is used in the civilian setting, where typically there is a single patient and multiple health care workers. In the military combat setting, where the ratio is reversed, tourniquets are life-saving.

11. A car accident victim arrives at the ED both unconscious and with spontaneous but noisy breathing. His BP is 80/60 mm Hg, pulse 95/min. Head and neck veins are not obviously distended. While the anesthesia team is intubating him, another team is placing a central line for central venous pressure (CVP) measurement, and others are examining his chest and abdomen.

The emphasis on control of bleeding first and fluid replacement later cannot be implemented if we do not know yet where the bleeding is coming from, and whether it might stop spontaneously or not. In a case like this, two large (16-gauge) peripheral lines should be started, and Ringer’s lactate should be rapidly infused.
At one time central venous lines were deemed essential for fluid resuscitation, but short, wide catheters in peripheral veins work better, and placing them does not interfere with other ongoing therapeutic and diagnostic maneuvers. Central lines should only be used when no other access is available or there is a need for monitoring. Percutaneous femoral vein catheter is an acceptable alternative when peripheral IVs are hard to start. Saphenous vein cut-downs, which were very popular in the 1950s, have also made a comeback as a suitable route.

12. A 4-year-old child has been shot in the arm in a drive-by shooting. The site of bleeding has been controlled by local pressure, but he is hypotensive and tachycardic. Two attempts at starting peripheral IVs have been unsuccessful.

Up to age 6, the access of last resort is intraosseous cannulation in the proximal tibia and femur. The initial bolus of Ringer’s lactate would be 20 ml/kg of body weight.

13. During a wilderness trek, a 22-year-old man is attacked by a bear and bitten repeatedly in the arms and legs. His trek companion manages to kill the bear and to stop the bleeding by applying direct pressure, but when paramedics arrive 1 hour later, they find the patient to be in a state of shock. Transportation to the nearest hospital will take at least 2 hours.

All the training that paramedics took to enable them to infuse IV fluids has not been wasted. In the urban setting we now prefer rapid transportation to the hospital (“scoop and run”), but in this case prompt and vigorous fluid resuscitation is in order. The preferred fluid is Ringer’s lactate, infusing at least 2 liters in the first 20–30 minutes.

14. A 22-year-old gang member arrives in the ED with multiple gunshot wounds to the chest and abdomen. He is diaphoretic, pale, cold, shivering, anxious, and asking for a blanket and a drink of water. His BP is 60/40 mm Hg and pulse 150/min and thready.

Hypovolemic shock is still the best bet, but the inclusion of chest wounds raises the possibility of pericardial tamponade or tension pneumothorax. As a rule, if significant findings are not included in the vignette, they are not present. Thus, as given, this is still a vignette of hypovolemic shock, but you may be offered in the answers the option of looking for the missing clinical signs: distended neck veins (or a high measured CVP) would be common to both tamponade and tension pneumothorax; and respiratory distress, tracheal deviation, and absent breath sounds on a hemithorax that is hyperresonant to percussion would specifically identify tension pneumothorax.

15. A 22-year-old gang member arrives in the ED with multiple gunshot wounds to the chest and abdomen. He is diaphoretic, pale, cold, shivering, anxious, and asking for a blanket and a drink of water. His BP is 60/40 mm Hg and pulse 150/min and thready. He has distended veins in his neck and forehead. He is breathing okay and has bilateral breath sounds and no tracheal deviation.
This is clearly describing the presentation of pericardial tamponade. Although the FAST exam or a formal transthoracic echocardiogram could confirm the diagnosis, it is clinically apparent and time is of the essence. Management entails evacuation of the blood in the pericardial space. This could be done by pericardiocentesis or pericardial window. If positive, follow with thoracotomy and then exploratory laparotomy. Fluid administration or blood transfusions would also help the patient with pericardial tamponade, but only as a temporizing measure while preparations are being made to evacuate the pericardial sac.

16. During a domestic dispute a young woman is stabbed in the chest with a 6-inch-long butcher knife. On arrival at the ED she is found to have an entry wound just to the left of the sternal border, at the fourth intercostal space. BP is 80/50 mm Hg and pulse 110/min. She is cold, pale, and perspiring heavily. She has big distended neck and facial veins, but she is breathing normally and has bilateral breath sounds.

There is no question that this is pericardial tamponade, and the location of the entry wound leaves no doubt as to the source: a stab wound to the heart. That will need to be repaired, and performing the median sternotomy will automatically open the pericardial sac and relieve the tamponade. Many trauma surgeons will not bother with previous pericardiocentesis or pericardial window, and will go straight to the OR.

17. A 22-year-old gang member arrives in the ED with multiple gunshot wounds to the chest and abdomen. He has labored breathing and is cyanotic, diaphoretic, cold, and shivering. His BP is 60/40 mm Hg and pulse 150/min and thready. He is in respiratory distress and has big distended veins in his neck and forehead, his trachea is deviated to the left, and the right side of his chest is hyperresonant to percussion, with no breath sounds.

This vignette describes a tension pneumothorax. Management entails immediate decompression using a large-bore needle or IV catheter placed into the right pleural space, followed by chest tube placement on the right side. Watch out for a trap which offers chest x-ray as an answer choice. Although this would confirm the diagnosis, it is clinically apparent and time is of the essence. Patient will die if sent to x-ray. Exploratory laparotomy will follow.

18. A 22-year-old man is involved in a high-speed, head-on automobile collision. He arrives in the ED in coma, with fixed, dilated pupils. He has multiple obvious fractures in both upper extremities and in the right lower leg. His BP is 70/50 mm Hg, with a barely perceptible pulse 140/min. His CVP is zero.

As mentioned earlier, shock in the trauma setting is caused by bleeding (the most common source), pericardial tamponade, or tension pneumothorax. This case fits right in, but the presence of obvious head injury might lead you into a trap: the question will offer you several kinds of intracranial bleeding (acute epidural hematoma, acute subdural hematoma, intracerebral bleeding, subarachnoid hemorrhage, etc.) as answer choices, all of which would be wrong. Intracranial bleeding can indeed kill you, but not by blood loss. There isn’t enough
room in the head to accommodate the amount of blood needed to go into shock (roughly a liter and a half in the average size adult). Thus, you need to look for another source (we will elaborate in the section on abdominal trauma).

19. A 72-year-old man who lives alone calls 911 saying that he has severe chest pain. He cannot give a coherent history when picked up by the EMTs, and on arrival at the ED he is cold and diaphoretic and his BP is 80/65 mm Hg. He has an irregular, feeble pulse at 130/min. His neck and forehead veins are distended, and he is short of breath.

Many findings are similar to above cases but in the absence of trauma: elderly man, chest pain, straightforward cardiogenic shock from massive MI. Management includes ECG, check coronary enzymes, admit to coronary care unit, etc. Do not drown him with enthusiastic fluid “resuscitation,” but use thrombolytic therapy if offered.

20. A 17-year-old girl is stung many times by a swarm of bees. On arrival to the ED she has BP 75/20 mm Hg and pulse 150/min, but she looks warm and flushed rather than pale and cold. CVP is low.

21. Twenty minutes after receiving a penicillin injection, a man breaks into hives and develops wheezing. On arrival at the ED his BP 75/20 mm Hg and pulse 150/min, but he looks warm and flushed rather than pale and cold. CVP is low.

22. In preparation for an inguinal hernia repair, a patient has a spinal anesthetic placed. His level of sensory block is much higher than anticipated, and shortly thereafter his BP becomes 75/20 mm Hg, but he looks warm and flushed rather than pale and cold. CVP is low.

All of these vignettes describe vasomotor shock due to anaphylaxis or inhibition of the sympathetic nervous system. Management is vasoconstrictors and volume replacement.
A REVIEW FROM HEAD TO TOE

Head Trauma

1. An 18-year-old man arrives in the ED with an ax firmly implanted into his head. Although it is clear from the size of the ax blade and the penetration that he has sustained an intracranial wound, he is awake and alert and hemodynamically stable.

The management of penetrating wounds is fairly straightforward. There will be exceptions, but as a rule the damage done to the internal organs (in this case the brain) will need to be repaired surgically. This man will go to the OR, and it will be there, under anesthesia and with full control, that the ax will be removed. An important detail when the weapon is embedded in the patient and part of it is sticking out is not to remove it in the ED or at the scene of the accident.

2. In the course of a mugging, a man is hit over the head with a blunt instrument. He has a scalp laceration, and CT scan shows an underlying linear skull fracture. He is neurologically intact and gives no history of having lost consciousness.

The rule in skull fractures is that if they are closed (no overlying wound) and asymptomatic, they are left alone. If they are open (like this one), the laceration has to be cleaned and closed, but if not comminuted or depressed, it can be done in the ED.

3. In the course of a mugging, a man is hit over the head with a blunt instrument. He has a scalp laceration, and CT scan shows an underlying comminuted, depressed skull fracture. He is neurologically intact and gives no history of having lost consciousness.

This one goes to the OR for cleaning and repair, and possible craniotomy.

4. A pedestrian is hit by a car. When brought to the ED he has minor bruises and lacerations but is otherwise quite well, with a completely normal neurologic exam. However, the ambulance crew reports that he was unconscious at the site, and although he woke up during the ambulance ride and is now completely lucid, he does not remember how the accident happened.

Anyone who has been hit over the head and has become unconscious gets a CT scan, looking for intracranial hematomas. If the CT scan and the neurologic exam are normal, he can go home—provided his family is willing to wake him up frequently over the next 24 hours to make sure he is not going into coma.
5. A pedestrian is hit by a car. He arrives in the ED in coma. He has ecchymosis around both eyes (raccoon eyes).

6. A pedestrian is hit by a car. He arrives in the ED in coma. He has clear fluid dripping out of his nose.

7. A pedestrian is hit by a car. He arrives in the ED in coma. He has clear fluid dripping from the ear.

8. A pedestrian is hit by a car. He arrives in the ED in coma. He has ecchymosis behind the ear.

Cases 5–8 are vignettes of basal skull fracture; they all require CT scan because the patient is in a coma. The scan will show the fractures, but nothing will actually be done about them. Typically, the leak of CSF will stop by itself, and although there is a higher risk of meningitis, prophylactic antibiotics have not proven to be of use. The CT scan should be extended to include the neck because the most important feature of these 4 vignettes is that the patients sustained significant trauma to the head and thus are at risk for lesions of the cervical spine.

9. A 14-year-old boy is hit over the side of the head with a baseball bat. He loses consciousness for a few minutes, but he recovers promptly and continues to play. One hour later he is found unconscious in the locker room. His right pupil is fixed and dilated. There are signs of contralateral hemiparesis.

This vignette describes an acute epidural hematoma, most likely on the right side. Diagnosis is made with CT scan, which will show a lens-shaped hematoma and deviation of the midline structures to the opposite side. Management is emergency surgical decompression via craniotomy. It has a good prognosis if treated, but fatal within hours if it is not.

10. A 32-year-old man is involved in a head-on, high-speed automobile collision. He is unconscious at the site, regains consciousness briefly during the ambulance ride, and arrives at the ED in deep coma with a fixed, dilated right pupil and contralateral hemiparesis.

This could be an acute epidural hematoma, but acute subdural is a better bet (big-time trauma, sicker patient). Diagnosis is made with CT scan, which will show a semilunar, crescent-shaped hematoma. Given the lateralizing signs, it will also show deviation of the midline structures to the opposite side. Be sure to check the cervical spine also!
Management requires an emergency craniotomy with evacuation of the clot often leading to significant improvement, particularly when the brain is being pushed to the side, but ultimate prognosis is poor because of accompanying parenchymal injury.

11. A man involved in a high-speed, head-on automobile collision is in coma. He has never had any lateralizing signs, and CT scan shows a small crescent shaped hematoma, but there is no deviation of the midline structures.

Another subdural hematoma, but without lateralizing signs and evidence of displacement of the midline structures, surgery has little to offer. Management will probably be directed at controlling ICP, as detailed in the next vignette.

12. A patient involved in a head-on, high-speed automobile collision arrives in the ED in deep coma, with bilateral fixed dilated pupils. CT scan of the head shows diffuse blurring of the gray-white mass interface and multiple small punctate hemorrhages. There is no single large hematoma or displacement of the midline structures.

The CT findings are classic for diffuse axonal injury. Prognosis is terrible, and surgery cannot help. Therapy will be directed at preventing further injury from increased ICP. Probably ICP monitoring will be in order. First-line measures to lower ICP include head elevation, hyper-ventilation, and avoidance of fluid overload. Mannitol and furosemide are next in line.

Do not overdo the treatment. Lowering ICP is not the ultimate goal; preserving brain perfusion is. Thus, diuretics which lead to systemic hypotension, or measures which produce excessive cerebral vasoconstriction may be counterproductive. Hyperventilation is indicated when there are clinical signs of herniation, and the goal is PCO₂ of 35 mm Hg. Lowering oxygen demand may also help. Sedation has been used for that purpose, and hypothermia is currently advocated for the same reason.

13. A 77-year-old man “becomes senile” over a period of 3 or 4 weeks. He used to be active and managed all of his financial affairs. Now he stares at the wall, barely talks, and sleeps most of the day. His daughter recalls that he fell from a horse about a week before the mental changes began.

This vignette is suspicious for a chronic subdural hematoma due to venous bleeding. Diagnosis is made with CT scan, and management is surgical decompression via craniotomy. Spectacular improvement is expected if recognized and treated appropriately.
14. A 45-year-old man is involved in a high-speed automobile collision. He arrives at the ED in coma with fixed, dilated pupils. He has multiple other injuries, including fractures of the extremities. His BP is 70/50 mm Hg with a feeble pulse 130/min. What kind of intracranial bleeding is responsible for the low BP and high pulse rate?

This very same vignette was presented in the review of shock. Shock does not result from intracranial bleeding (not enough room in the head for sufficient blood loss to cause shock). Look for an answer of significant blood loss to the outside (could be scalp laceration), or inside (abdomen, pelvic fractures).

Neck Trauma

15. A man has been shot in the neck and his BP is rapidly deteriorating.

Not much detail, but the point is that penetrating wounds anywhere in the neck need immediate surgical exploration if the patient is unstable (i.e., if vital signs are deteriorating).

16. A 42-year-old man is shot once with a .22-caliber revolver. The entrance wound is in the anterior left side of the neck, at the level of the thyroid cartilage. X-rays show that the bullet is embedded in the right scalene muscle. He is spitting and coughing blood and has an expanding hematoma under the entrance wound. His BP responded promptly to fluid administration, and he has remained stable.

A clear-cut case of a penetrating wound in the middle of the neck (zone II) that has alarming symptoms and therefore follows the rule (rather than the exception) for all penetrating injuries: immediate surgical exploration is required. This is true even though he is stable. The middle of the neck is packed with structures that should not have holes in them and are easily accessible via surgical exploration.

17. A young man is shot in the upper part of the neck. Evaluation of the entrance and exit wounds indicates that the trajectory is all above the level of the angle of the mandible. A steady trickle of blood flows from both wounds, and does not seem to respond to local pressure. The patient is drunk and combative but seems to be otherwise stable.

Now we are getting into the exceptions. In this very high level of the neck (Zone III) there is no trachea or esophagus to worry about, but only pharynx— injuries to which are less consequential. Vascular injuries are the only potential problem, but getting to them surgically is not easy. Thus angiography is a better choice, both for diagnosis and potentially for embolization.
18. A young man suffers a gunshot wound to the base of his neck. The entrance and exit wounds are above the clavicles but below the cricoid cartilage. He is hemodynamically stable.

This is another part of the neck (Zone I, or the thoracic outlet) that is crammed with vital structures that should be promptly repaired if they are injured. But precise preoperative diagnosis would help plan the incision and surgical approach. If the patient is stable, the standard workup includes angiography, soluble-contrast esophagogram, esophagoscopy, and bronchoscopy.

19. In the course of a bar fight, a young man is stabbed once in the neck. The entrance wound is in front of the sternomastoid muscle on the right, at the level of the thyroid cartilage. The patient is completely asymptomatic, and his vital signs are completely normal.

In stab wounds to the upper and middle zones of the neck, completely asymptomatic patients can be closely observed but investigate if any symptoms arise.

20. A patient who was the unbelted right front-seat passenger in a car flies through the windshield when the car crashes into a telephone pole at 30 miles an hour. He arrives in the ED strapped to a headboard and with sandbags on both sides of the neck. He has multiple facial lacerations but is otherwise stable.

Examination of the neck reveals persistent pain and tenderness to palpation over the posterior midline of the neck. Neurologic examination is normal.

Every patient with head injuries from blunt trauma is at risk for cervical spine injury. The paramedics transport everyone as if they had such injury. Neurologic deficits provide a clear answer (more about those later), but in the patient who arrives neurologically intact, we don’t want to make the diagnosis by allowing neurologic deficits to develop. Persistent local pain over the suspected area should trigger radiologic evaluation, which is best done with a CT scan of the neck.

Spinal Cord Injury

21. An 18-year-old street fighter gets stabbed in the back, just to the right side of the midline. He has paralysis and loss of proprioception distal to the injury on the right side, and loss of pain perception distal to the injury on the left side.

Probably no one in real life will have such a neat, clear-cut syndrome, but for purposes of the exam this is a classic spinal cord hemisection, better known as Brown-Séquard syndrome.
22. A patient involved in a car accident sustains a burst fracture of the vertebral bodies. He develops loss of motor function and loss of pain and temperature sensation on both sides distal to the injury, while showing preservation of vibratory sense and position.

Anterior cord syndrome.

23. An elderly man is involved in a rear-end automobile collision in which he hyperextends his neck. He develops paralysis and burning pain on both upper extremities while maintaining good motor function in his legs.

Central cord syndrome.

Management for cases 21–23 requires making the precise diagnosis. CT scans are good to look at the cervical bones. To evaluate the cord, MRI is better. Beyond that, the specific and complicated management of spinal cord injuries is unlikely to be tested on the examination.

Chest Trauma

24. A 75-year-old man slips and falls at home, hitting his right chest wall against the kitchen counter. He has an area of exquisite pain to direct palpation over the seventh rib, at the level of the anterior axillary line. Chest x-ray confirms the presence of a rib fracture, with no other abnormal findings.

A plain rib fracture is the most common chest injury. It is bothersome but manageable in most people, but it can be hazardous in the elderly as splinting and hypoventilation leads to atelectasis and can ultimately lead to pneumonia. The key to treatment is local pain relief, best achieved by nerve block and epidural catheter. Beware of the wrong answers that call for strapping or binding.

25. A 25-year-old man is stabbed in the right chest. He is moderately short of breath and has stable vital signs. There are no breath sounds on the right, which is hyperresonant to percussion.

This vignette describes an uncomplicated pneumothorax. Diagnosis is made with chest x-ray; is this case, as opposed to a tension pneumothorax, there is time to get an x-ray if the option is offered. Ultimately, management is with insertion of a chest tube. If given an option for location, it should be placed at the fifth intercostal space in the mid-axillary line, above the rib.
26. A 25-year-old man is stabbed in the right chest. He is moderately short of breath and has stable vital signs. The base of the right chest has no breath sounds and is dull to percussion. He has faint distant breath sounds at the apex.

Given these findings, this case sounds more like hemothorax. Diagnosis is again made with chest x-ray, and if confirmed, treatment is still with a chest tube. This allows drainage to enable ventilation, assess quantity of bleeding, and drain blood because if blood is allowed to remain in the pleural space, it will lead to adhesions and form a fibrothorax or get infected and create an empyema.

27. A 25-year-old man is stabbed in the right chest. He is moderately short of breath and has stable vital signs. There are no breath sounds at the right base, and only faint distant breath sounds at the apex. The right base is dull to percussion. Chest x-ray confirms the presence of a hemothorax. A chest tube placed at the right pleural base recovers 120 ml of blood and drains another 20 ml in the next hour.

The point of this case is that most hemothoraces do not need exploratory surgery. Bleeding is typically from the lung parenchyma (low pressure) and stops by itself. It also can be from the intercostal artery. A chest tube is all that is needed. Key clue: little blood retrieved, even less afterward.

28. A 25-year-old man is stabbed in the right chest. He is moderately short of breath, has BP of 95/70 mm Hg, pulse 100/min. No breath sounds are heard over the right chest, which is dull to percussion. Chest x-ray shows a large hemothorax on the right. A chest tube placed at the right pleural base recovers 1,250 ml of blood.

The exception is bleeding from a systemic vessel or a major vessel in the pulmonary circuit which will need surgical exploration to repair or ligate. The most likely culprit is an intercostal artery. One or more of the following is required for proceeding with surgical exploration:

- Immediate drainage >1.5 L
- >250 mL/hour for 4 hours
- Hemodynamic instability with high output

29. A 25-year-old man is stabbed in the right chest. He is moderately short of breath and has stable vital signs. There are no breath sounds at the right base, and only faint distant breath sounds at the apex. The right base is dull to percussion. Chest x-ray confirms the presence of a hemothorax. A chest tube placed at the right pleural base recovers 350 ml of blood. Over the ensuing 4 hours he continues to drain 200–300 mL of blood/hour.

Another example of bleeding from a systemic vessel (most likely an intercostal) that will require a thoracotomy.
30. A 25-year-old man is stabbed in the right chest. He is moderately short of breath, has stable vital signs. No breath sounds on the right. Hyperresonant to percussion at the apex of the right chest, dull at the base. Chest x-ray shows one single, large air-fluid level.

This describes a hemopneumothorax. Chest tube placement would ideally be at the base to make sure all the blood is drained. Subsequent management criteria as in the previous vignettes.

31. A worker has been injured at an explosion in a factory. He has multiple cuts and lacerations from flying debris, and he is obviously short of breath. The paramedics at the scene of the accident ascertain that he has a large, flaplike wound in the chest wall, about 5 cm in diameter, and he sucks air through it with every inspiratory effort.

The classic sucking chest wound. It needs to be covered to prevent further air intake (Vaseline gauze is ideal), but must be allowed to let air out. Taping the dressing on 3 sides creates a one-way flap that allows air to escape but not enter. Once in the hospital, he will need a chest tube.

32. A 54-year-old woman crashes her car against a telephone pole at high speed. On arrival at the ED she is in moderate respiratory distress. She has multiple bruises on the chest, and multiple sites of point tenderness over the ribs. X-rays show multiple rib fractures on both sides. On closer observation it is noted that a segment of chest wall on the left side caves in when she inhales, and bulges out when she exhales.

Paradoxical breathing as described essentially makes the diagnosis of flail chest. Diagnosis is easy, but management requires a long discussion. Management of severe blunt trauma to the chest from a deceleration injury has 3 components:

- Treatment of the obvious lesion
- Monitoring for other pathology that may not become obvious until a day or two later
- Actively investigating the potential presence of a silent killer, traumatic transection of the aorta

In this case, the obvious lesion is flail chest. The problem there is the underlying pulmonary contusion, which is treated with fluid restriction, diuretics, and close monitoring of blood gases. Should blood gases deteriorate, the patient needs to be placed on a respirator and get bilateral chest tubes (because lungs punctured by the broken ribs could leak air once positive pressure ventilation is started, which could lead to a tension pneumothorax).

Monitoring is needed over the next 48 hours for possible signs of pulmonary or myocardial contusion. Repeated chest x-rays, blood gases, EKGs, and troponins are needed.

Traumatic transection of the aorta is best diagnosed with CTA of the chest.
33. A 54-year-old woman crashes her car into a telephone pole at high speed. On arrival at the ED she is breathing well. She has multiple bruises over the chest, and multiple sites of point tenderness over the ribs. X-rays show multiple rib fractures on both sides, but the lung parenchyma is clear and both lungs are expanded. Two days later her lungs "white out" on x-rays and she is in respiratory distress.

This is a classic presentation of pulmonary contusion. It does not always show up right away, may become evident 1 or 2 days after the trauma. Management consists of fluid restriction, diuretics, and respiratory support. The latter is essential with intubation, mechanical ventilation, and PEEP if needed.

34. A 33-year-old woman is involved in a high-speed automobile collision. She arrives at the ED gasping for breath, cyanotic at the lips, with flaring nostrils. There are bruises over both sides of the chest, and tenderness suggestive of multiple fractured ribs. BP is 60/45 mm Hg and pulse 160/min and thready. She has distended neck and forehead veins and is diaphoretic. Her left hemithorax has no breath sounds and is hyperresonant to percussion.

A variation on an old theme: classic picture for tension pneumothorax—but where is the penetrating trauma? The fractured ribs can act as a penetrating weapon.

Management. Needle through the upper anterior chest wall to decompress the pleural space, followed by chest tube on the left. Do not fall for the option of getting x-ray first, though you need it later to verify the correct position of the chest tube. This is a deceleration injury. You also need to look for traumatic transection of the aorta with a CTA as discussed.

35. A 54-year-old woman crashes her car against a telephone pole at high speed. On arrival at the ED she is breathing well. She has multiple bruises over the chest, and is exquisitely tender over the sternum at a point where there is a gritty feeling of bone grating on bone, elicited by palpation.

Obviously this describes a sternal fracture (which a lateral chest x-ray will confirm), but the point is that she is at high risk for myocardial contusion and for traumatic rupture of the aorta. Diagnosis of cardiac contusion is made by ECG, and management of arrhythmias as they develop. Serum troponin levels are not always useful as they will not change management. But the real important test would be CTA looking for an aortic rupture given the mechanism of injury.

36. A 53-year-old man is involved in a high-speed automobile collision. He has moderate respiratory distress. Physical examination shows no breath sounds over the entire left chest. Percussion is unremarkable. Chest x-ray shows multiple air fluid levels in the left chest.

This is classic for traumatic diaphragmatic rupture with resultant migration of intra-abdominal contents into the left chest; the right side is protected by the liver so it always occurs to the left.
A nasogastric (NG) tube curling up into the left chest might be an added tidbit. In suspicious cases, laparoscopic evaluation is indicated. Management is surgical repair either through the abdomen (more common) or chest dependent on the surgeon.

37. A motorcycle daredevil attempts to jump over the 12 fountains in front of Caesar’s Palace Hotel in Las Vegas. As he leaves the ramp at very high speed, his motorcycle turns sideways and he hits the retaining wall at the other end, literally like a rag doll. At the ED he is found to be remarkably stable, although he has multiple extremity fractures. Chest x-ray shows fracture of the left first rib and widened mediastinum.

What is it? This is a real case. Classic for traumatic rupture of the aorta: massive trauma, fracture of a hard-to-break bone (could be first rib, scapula, or sternum), and the telltale hint of widened mediastinum.

Diagnosis is with spiral CT scan. Management is emergency surgical repair.

38. A 34-year-old woman suffers severe blunt trauma in a car accident. She has multiple injuries to her extremities, head trauma, and pneumothorax on the left side. Shortly after initial examination it is noted that she is developing progressive subcutaneous emphysema all over her upper chest and lower neck.

Three things can give thoracic subcutaneous emphysema. One is rupture of the esophagus, but the setting there is always after endoscopy (for which it is diagnostic). The second one is tension pneumothorax, but there the alarming findings are all the others already reviewed—the emphysema is barely a footnote. That leaves the third (which is the case): traumatic rupture of the trachea or major bronchus.

Diagnosis is with chest x-ray to confirm the presence of air in the tissues. Fiberoptic bronchoscopy will confirm diagnosis and level of injury and to secure an airway. Surgical repair thereafter.

39. A patient who had received a chest tube for a traumatic pneumothorax is noted to be putting out a very large amount of air through the tube (a large air leak), and his collapsed lung is not expanding.

Another presentation for a major bronchial injury.

40. A patient who sustained a penetrating injury of the chest has been intubated and placed on a respirator, and a chest tube has been placed in the appropriate pleural cavity. The patient had been hemodynamically stable throughout, but then suddenly goes into cardiac arrest.

A typical scenario for air embolism, from an injured bronchus to a nearby injured pulmonary vein, and from there to the left ventricle. Immediate management includes cardiac massage, followed by thoracotomy.
41. During the performance of a supraclavicular node biopsy under local anesthesia, suddenly a hissing sound is heard, and the patient drops dead.

42. A patient who is receiving total parenteral nutrition through a central venous line becomes frustrated because the nurses are not answering his call button, so he gets up and out of bed, and disconnects his central line from the IV tubing. With the open catheter dangling, he takes two steps in the direction of the nurses station, and drops dead.

Two more examples of air embolism. Other thoracic calamities such as tension pneumothorax or continued bleeding will produce severe deterioration of vital signs, but there will be a sequence from being okay to becoming terribly ill. When vignettes give you sudden death, think of air embolism. This is very uncommon.

43. A patient who sustained severe blunt trauma, including multiple fractures of long bones, becomes disoriented about 12 hours after admission. Shortly thereafter he develops petechial rashes in the axillae and neck, fever, and tachycardia. A few hours later he has a full-blown picture of respiratory distress with hypoxemia. Chest x-ray shows bilateral patchy infiltrates, and his platelet count is low.

This is not a chest injury, but is included here because its main problem is respiratory distress. You probably recognized already the fat embolism syndrome. It is not clear how specific the lab finding of fat droplets in the urine is, but it does not matter: the mainstay of therapy is respiratory support—which is needed regardless of the etiology of the respiratory distress. Heparin, steroids, alcohol, and low-molecular-weight dextran have all been used, but are of questionable value.

Abdominal Trauma

44. A 19-year-old gang member is shot in the abdomen with a .38-caliber revolver. The entry wound is in the epigastrium, to the left of the midline. The bullet is lodged in the psoas muscle on the right. He is hemodynamically stable, the abdomen is moderately tender.

No diagnostic tests are needed. A penetrating gunshot wound of the abdomen gets exploratory laparotomy every time. Preparations before surgery include an indwelling bladder catheter, a large-bore venous line for fluid administration, and a dose of broad-spectrum antibiotics.

45. At exploratory laparotomy for the patient described in the previous question, examination shows clean, punched-out entrance and exit wounds in the transverse colon.

If there is gross fecal contamination, do a colostomy. With minimal contamination, primary repair is usually okay.
46. A 19-year-old gang member is shot once with a .38-caliber revolver. The entry wound is in the left mid-clavicular line, 2 inches below the nipple. The bullet is lodged in the left paraspinal muscles. He is hemodynamically stable, but he is drunk and combative and physical examination is difficult to perform.

What is it? The point here is to remind you of the boundaries of the abdomen; though this seems like a chest wound, it is also abdominal. The belly begins at the nipple line. The chest does not end at the nipple line, though. Belly and chest are not stacked up like pancakes: they are separated by a dome. This patient needs all the stuff for a penetrating chest wound (chest x-ray, chest tube if needed), plus the exploratory laparotomy.

47. A 42-year-old man is stabbed in the belly by a jealous lover. The wound is lateral to the umbilicus, on the left, and omentum can be seen protruding through it.

The general rule is that penetrating abdominal wounds get a laparotomy. That is true for gun-shot wounds, but it is also true for stab wounds if it is clear that peritoneal penetration took place.

48. In the course of a domestic fight, a 38-year-old obese woman is attacked with a 4-inch-long switchblade. In addition to several superficial lacerations, she was stabbed in the abdomen. She is hemodynamically stable, and does not have any signs of peritoneal irritation.

This is probably the only exception to the rule that penetrating abdominal wounds have to be surgically explored—and that is because this in fact may not be penetrating at all! (The blade was short, the woman is well padded.) Local wound exploration of the wound tract in the ED may show that no abdominal surgery is needed (i.e. the anterior rectus fascia has not been violated). But if there is any suspicion of intra-abdominal injury, obtain an abdominal CT.

49. A 31-year-old woman smashes her car against a wall. She has multiple injuries including upper and lower extremity fractures. Her BP is 75/55 mm Hg, pulse rate 110/min, and CVP 0. On physical examination she has a tender abdomen, with guarding and rebound on all quadrants.

50. A 31-year-old woman smashes her car against a wall. She has multiple injuries including upper and lower extremity fractures. Her BP is 135/75 mm Hg and pulse 82/min. On physical examination she has a tender abdomen, with guarding and rebound on all quadrants.
Solid organs will bleed when smashed. Hollow viscera will spill their contents. Often they both happen, but one can exist without the other. Here we have 2 vignettes with plenty of clues to suggest that abnormal fluid is loose in the belly. In one case there is also bleeding, in the other there is not; but the presence of “acute abdomen” after blunt abdominal trauma mandates laparotomy. They will both need it.

51. A 26-year-old woman has been involved in a car wreck. She has fractures in both upper extremities, facial lacerations, and no other obvious injuries. Chest x-ray is normal. Shortly thereafter she develops hypotension, tachycardia, and dropping hematocrit. Her CVP is low.

Obviously blood loss, but the question is where. The answer is easy: it has to be in the abdomen. To go into hypovolemic shock one has to lose 25–30% of blood volume, which in the average size adult will be nearly 1.5 L (25–30% of 5 L).

In the absence of external hemorrhage (scalp lacerations can bleed that much), the bleeding has to be internal. That much blood cannot fit inside the head, and would not go unnoticed in the neck (huge hematoma) or chest (a good decubitus x-ray can spot anything >150 ml, and even in other positions 1.5 L would be obvious). Only massive pelvic fractures, multiple femur fractures, or intra-abdominal bleeding can accommodate that much blood. The first two would be evident in physical examination and x-rays. The belly can be silent. Thus the belly is invariably the place to look for that hidden blood.

Diagnosis. We have a choice here. The old, invasive way was the diagnostic peritoneal lavage. The newer, noninvasive ways are the CT scan or sonogram. CT scan is best, but it cannot be done in the patient who is “crashing.” (The exam questions still assume that fast CT scanners are not available in every emergency department in the nation. Under this assumption, only hemodynamically stable patients can get the CT scan.) Try to gauge from the question whether the patient is stable—do CT scan—or literally dying on your hands, in which case diagnostic peritoneal lavage or sonogram is performed in the ED or the OR.

Management. Most likely finding will be ruptured spleen. If stable, observation with serial hemoglobin and hematocrit levels every 6 hours for 48 hours. If not, exploratory laparotomy.

52. A 27-year-old intoxicated man smashes his car against a tree. He is tender over the left lower chest wall. Chest x-ray shows fractures of the 8th, 9th, and 10th ribs on the left. He has a BP of 85/68 mm Hg and a pulse rate 128/min, which do not respond satisfactorily to fluid and blood administration. He has a positive peritoneal lavage, and at exploratory laparotomy a ruptured spleen is found.

You are unlikely to be asked technical surgical questions, but when dealing with a ruptured spleen, remove it. Further management includes administration of Pneumovax and also immunization for *Haemophilus influenza* B and meningococcus.
53. A multiple trauma patient is receiving massive blood transfusions as the surgeons are attempting to repair many intraabdominal injuries. It is then noted that blood is oozing from all dissected raw surfaces, as well as from his IV line sites. His core temperature is normal.

Signs of coagulopathy in this setting require a shotgun approach to treatment. Empiric administration of both fresh-frozen plasma and platelet packs is recommended, in a 1:1 ratio with packed RBCs.

54. During the course of a laparotomy for multiple trauma, the patient develops a significant coagulopathy, a core temperature below 34°C, and refractory acidosis.

This combination of hypothermia, coagulopathy, and acidosis is referred to as the “triad of death.” It requires that the abdomen be packed and temporarily closed immediately (as long as major vascular injuries and GI tract injuries leading to contamination have been controlled).

55. An exploratory laparotomy for multiple intraabdominal injuries has lasted 3.5 hours, during which time multiple blood transfusions have been given, and several liters of Ringer’s lactate have been infused. When the surgeons are ready to close the abdomen they find that the abdominal wall edges cannot be pulled together without undue tension. Both the belly wall and the abdominal contents seem to be swollen.

This is the abdominal compartment syndrome. All the fluid that has been infused has kept the patient alive, but at the expense of creating a lot of edema in the operative area. Forced closure would produce all kinds of problems. The bowel cannot be left exposed to the outside either, so the standard approach is to close the wound with an absorbable mesh over which formal closure can be done later, or with a nonabsorbable plastic cover that will be removed later.

56. In postoperative day 1, a trauma patient develops a very tense and distended abdomen, and the retention sutures are cutting through the abdominal wall. He also develops hypoxia and renal failure.

This is also the abdominal compartment syndrome that was not obvious at the end of the operation, but has developed thereafter. The abdomen will have to be decompressed by opening the incision and using a temporary cover as described above.
Pelvic Fracture

57. In a rollover motor vehicle accident, a 42-year-old woman is thrown out of the car and subsequently becomes crushed underneath it. At evaluation in the ED it is determined that she has a pelvic fracture. She arrived hypotensive, but responded promptly to fluid administration. CT scan shows no intraabdominal bleeding but a pelvic hematoma.

Nonexpanding pelvic hematomas in a patient who has become hemodynamically stable are left alone. Depending on the type of fracture, the orthopedic surgeons may eventually do something to stabilize the pelvis, but at this time the main issue is to rule out the potential associated pelvic injuries: rectum, bladder, and vagina. Physical examination and a Foley catheter will do it.

58. In a rollover motor vehicle accident, a 42-year-old woman is thrown out of the car and subsequently becomes crushed underneath it. At evaluation in the ED it is determined that she has a pelvic fracture. She arrived hypotensive but did not respond to fluid resuscitation. Hemodynamic parameters have continued to deteriorate. FAST exam performed at the ED shows no intraabdominal bleeding.

A tough situation. People can bleed to death from pelvic fracture so it makes sense to do something about it. But that is easier said than done. Surgical exploration is not the answer; these injuries are typically not in the surgical field afforded by a laparotomy. Ateriographic evaluation might reveal arterial bleeding amenable to embolization. Angiographic therapy is not effective for venous bleeding. External pelvic fixation might be the only helpful intervention. A reasonable sequence to give in the examination, as the answer to this vignette, would be external pelvic fixation first, followed by a trip to the angiography suite (interventional radiology) for possible angiographic embolization of both internal iliac arteries.

Urologic Injury

59. A young man is shot point blank in the lower abdomen, just above the pubis. He has blood in the urine, and no evidence of rectal injury.

60. A woman is shot in the flank, and when a Foley catheter was inserted in ED, the urine was found to be grossly bloody.

The hallmark of urologic injuries is blood in the urine after trauma. These two are clear-cut. The therapy is also clear. Penetrating urologic injuries are like most penetrating injuries elsewhere: they need surgical repair.
61. A 22-year-old man involved in a high-speed automobile collision has multiple injuries, including a pelvic fracture. On physical examination there is blood at the meatus.

What is it? The vignette will be longer, but the point is that pelvic fracture plus blood at the meatus in a male means either bladder or urethral injury, most likely the latter. Evaluation starts with a retrograde urethrogram because urethral injury would be compounded by insertion of a Foley catheter.

62. A 19-year-old man is involved in a severe automobile accident. Among many other injuries he has a pelvic fracture. He has blood at the meatus, scrotal hematoma, and the sensation that he wants to urinate but cannot. Rectal examination shows a high-riding prostate.

What is it? This is a more complete description of a posterior urethral injury.

Diagnosis. You already know: retrograde urethrogram.

63. A 19-year-old man is involved in a motorcycle accident. Among many other injuries he has a pelvic fracture. He has blood at the meatus and scrotal hematoma.

This is an anterior urethral injury.

64. A 22-year-old man involved in a high-speed automobile collision has multiple injuries, including a pelvic fracture. At the initial physical examination no blood is seen at the meatus. A poorly informed intern attempts insertion of a Foley catheter, but resistance is met.

Back out! Although the blood at the meatus or the perineal hematoma were not there to warn you, this is also a urethral injury. Do the retrograde urethrogram.

65. A 22-year-old woman involved in a high-speed automobile collision has multiple injuries, including a pelvic fracture. Insertion of a Foley catheter reveals gross hematuria.

What is it? It most likely is a bladder injury.

Assessment will require retrograde cystogram or CT cystography. When done, obvious intraperitoneal extravasation may be seen (rupture at the dome), but if “negative” you need another film after the bladder is empty. Ruptures at the trigone leak retroperitoneally, and the leak may be obscured by the bladder full of dye.
66. A patient involved in a high-speed automobile collision has multiple injuries, including rib fractures and abdominal contusions (but no pelvic fracture). Insertion of a Foley catheter shows that there is gross hematuria.

What is it? The blood most likely is coming from the kidneys.

Diagnosis is with CT scan. For management, the rule is that traumatic hematuria from blunt trauma to the kidney does not need surgery, even if the kidney is smashed. Surgery is done only if the renal pedicle is avulsed or the patient is exsanguinating.

67. A patient involved in a high-speed automobile collision has multiple injuries, including rib fractures and abdominal contusions. Insertion of a Foley catheter shows that there is hematuria, and retrograde cystogram is normal. CT scan shows renal injuries that do not require surgery. Six weeks later the patient develops acute shortness of breath and a flank bruit.

What is it? This is a weird one, but so fascinating that some medical school professors may not be able to resist the temptation to include it. The patient developed a traumatic arteriovenous fistula at the renal pedicle, and subsequent heart failure. Management is arteriogram and surgical correction.

68. A 35-year-old man is about to be discharged from the hospital where he was under observation for multiple blunt trauma sustained in a car wreck. It is then discovered that he has microscopic hematuria.

69. A 4-year-old falls off his tricycle. In the ensuing evaluation he is found to have microscopic hematuria.

Gross traumatic hematuria always has to be investigated, in both children and adults, while microscopic hematuria following trauma does not. At one time it was felt that microscopic hematuria following trauma in children was suggestive of congenital abnormalities and thus deserved mandatory investigation. That is no longer considered absolute. Obviously, any kind of hematuria—needs to be followed.

70. A 14-year-old boy slides down a banister, not realizing that there is a big knob at the end of it. He smashes the scrotum and comes to the ED with a scrotal hematoma the size of a grapefruit. He can urinate normally, and there is no blood in the urine.

What is it? The issue in scrotal hematomas is whether the testicle is ruptured or not.

Diagnosis. U/S will tell.

Management. If ruptured, surgery will be needed, usually orchiectomy. If intact, only symptomatic treatment.
71. A 41-year-old man presents to the ED reporting that he slipped in the shower and injured his penis. Examination reveals a large penile shaft hematoma with normal appearing glans.

What is it? A classic description of fracture of the tunica albuginea (fracture of the corpora cavernosa)—including the usual cover story given by the patient. These always happen during sexual intercourse, usually with woman on top—but the patient is too embarrassed to explain the true details.

Management. This is a urologic emergency. Prompt surgical repair is needed.

Injury to the Extremities

72. A 25-year-old man is shot with a .22-caliber revolver. The entrance wound is in the anteriolateral aspect of his thigh, and the bullet is seen by x-rays to be embedded in the muscles, posterolateral to the femur.

73. A 25-year-old man is shot with a .22-caliber revolver. The entrance wound is in the anteromedial aspect of his upper thigh, and the exit wound is in the posterolateral aspect of the thigh. He has normal pulses in the leg, and no hematoma at the entrance site. X-rays show the femur to be intact.

74. A 25-year-old man is shot with a .22-caliber revolver. The entrance wound is in the anteromedial aspect of his upper thigh, and the exit wound is in the posterolateral aspect of the thigh. He has a large, expanding hematoma in the upper, inner thigh. The bone is intact.

Apart from the obvious need to fix a bone that might have been shattered by a bullet, the issue in low-velocity gunshot wounds (or stab wounds) of the extremities is the possibility of injury to major vessels. In the first vignette, the anatomy precludes that possibility. Thus the patient only needs cleaning of the wound and tetanus prophylaxis. The bullet can be left where it is.

In the second patient, the anatomy of the area makes vascular injury very likely, and lack of symptoms does not exclude that possibility. At one time, all of these would have been surgically explored. Arteriogram then became the preferred diagnostic modality, and, currently CTA is a highly sensitive non-invasive alternative.

In the third vignette, it is clinically obvious that there is a vascular injury. Surgical exploration is in order. Arteriogram preceding surgical exploration is done only in parts of the body where the very specific site of the vascular injury dictates the use of a particular incision versus another (for instance at the base of the neck and thoracic outlet).
75. A young man is shot through the arm with a .38-caliber revolver. The path of the bullet goes right across the extremity, from medial to lateral sides. He has a large hematoma in the inner aspect of the arm, no distal pulses, radial nerve palsy, and a shattered humerus.

That the patient will need surgery is clear, but the issue here is what to do first. A very delicate vascular repair, and an even more fragile nerve reanastomosis, would be at risk of disruption when the orthopedic surgeons start manipulating, hammering, and screwing the bone. Thus the usual sequence begins with fracture stabilization, then vascular repair (both artery and vein if possible), and last nerve repair. The unavoidable delay in restoring circulation will make a fasciotomy mandatory. Temporarily shunting the arterial injury to allow distal perfusion is a good solution if offered as a choice, but is easier said than done in real life.

76. In a hunting accident, a young man is shot in the leg with a high-powered, big-game hunting rifle. He has an entrance wound in the upper outer thigh that is 1 cm in diameter, and an exit wound in the posteromedial aspect of the thigh that is 8 cm in diameter. The femur is shattered.

Even though the major vessels are not in the path of this bullet, this young man will need to go to the OR to have extensive debridement of the injured tissues. High-velocity bullets (military weapons and big-game hunting rifles) produce a cone of destruction.

77. A 6-year-old girl has her hand, forearm, and lower part of the arm crushed in a car accident. The entire upper extremity looks bruised and battered, although pulses are normal and the bones are not broken.

In addition to possible hyperkalemia, crushing injuries lead to 2 concerns: the myoglobinemia–myoglobinuria–acute renal failure issue and the delayed swelling which may lead to a compartment syndrome. For the first, plenty of fluids, osmotic diuretics (mannitol), and alkalinization of the urine help protect the kidney. For the latter, fasciotomy is the answer.

BURNS

1. You get a phone call from a frantic mother. Her 7-year-old girl spilled Drano all over her arms and legs. You can hear the girl screaming in pain in the background.

Management. The point of this question is that chemical injuries—particularly alkalis—need copious, immediate, profuse irrigation. Instruct the mother to do so right at home with tap water, for at least 30 minutes before rushing the girl to the ED. Do not pick an option where you would be “playing chemist,” i.e., soak an alkaline burn with an acid or vice versa.
2. While trying to hook up illegally to cable TV, a man comes in contact with a high-tension electrical power line. He gets an entrance burn wound in the upper outer thigh, and an exit burn lower on the same side.

Management. The issue here is that electrical burns are always much bigger than they appear to be. There is deep tissue destruction. The patient will require extensive surgical debridement. There is also another item (more likely to be the point of the question): myoglobinemia, leading to myoglobinuria and to renal failure. Patient needs lots of IV fluids, diuretics (osmotic if given that choice, i.e., mannitol), perhaps alkalinization of the urine. If asked about other injuries to rule out, they include posterior dislocation of the shoulder and compression fractures of vertebral bodies (from the violent muscle contractions), and late development of cataracts and demyelinization syndromes.

3. A man is rescued by firemen from a burning building. On admission it is noted that he has burns around the mouth and nose, and the inside of his mouth and throat look like the inside of a chimney.

What is it? There are 2 issues here: carbon monoxide poisoning and respiratory burns, i.e., smoke inhalation producing a chemical burn of the tracheobronchial tree. Both will happen with flame burns in an enclosed space. The burns in the face are an additional clue that most patients rarely have in real life but will be mentioned on the exam to point you in that direction.

For the first issue we determine blood levels of carboxyhemoglobin, and put the patient on 100% oxygen (oxygen therapy will shorten the half-life of carboxyhemoglobin). For the second issue, diagnosis can be made with bronchoscopy, but the actual degree of damage—and the need for supportive therapy—is more likely to be revealed by monitoring of blood gases.

Management. Revolves around respiratory support, with intubation and use of a respirator, if needed.

4. A patient has suffered third-degree burns to both of his arms when his shirt caught on fire while lighting the backyard barbecue. The burned areas are dry, white, leathery, anesthetic, and circumferential all around arms and forearms.

What is it? You are meant to recognize the problem posed by circumferential burns: the leathery eschar will not expand, while the area under the burn will develop massive edema, thus circulation will be cut off. (Or in the case of circumferential burns of the chest, breathing will be compromised.) If the fire were in the open space of the backyard, respiratory burn is not an issue.

Management. Compulsive monitoring of Doppler signals of the peripheral pulses and capillary filling. Escharotomies at the bedside at the first sign of compromised circulation. In deeper burns, fasciotomy may also be needed. If the chest wall is involved and respiration impaired, emergent escharotomy is necessary.
5. A toddler is brought to the ED with burns on both of his buttocks. The areas are moist, have blisters, and are exquisitely painful to touch. The parents report that the child accidentally pulled a pot of boiling water over himself.

What is it? Burns, of course. There are several issues. First: how deep. The description is classic for second-degree burns. (Note that in kids third-degree burn is deep bright red, rather than white leathery as in the adult.) How did it really happen? Scalding burns in kids always brings up the possibility of child abuse, particularly if they have the distribution that you would expect if you grabbed the kid by the arms and legs and dunked him in a pot of boiling water.

Management. For the burn is Silvadene (silver sulfadiazine) cream. Management for the social problem requires reporting to authorities for child abuse.

6. An adult man who weighs x kilograms sustains second- and third-degree burns over... (a set of drawings provides the area). The burns will be depicted in a front-and-back drawing, indicating what is second-degree (moist, blisters, painful) and what is third-degree (white, leathery, anesthetic). The question will be about fluid resuscitation.

The first order of business will be to figure out the percentage of body surface burned. The rule of nines is used. In the adult, the head is 9% of body surface, each arm is 9%, each leg has two 9%s, and the trunk has 4 9%s.

7. An adult who weighs x kilograms has third-degree burns over... (the calculated surface turns out to be >20%). Fluid administration should be started at a rate of what?

If you are simply asked how fast should the infusion start, rather than what is the calculated total for the whole day, the answer is Ringer’s lactate (without sugar) at 1,000 ml/h.

8. An adult man who weighs x kilograms has third-degree burns over... (a set of drawings provides the area). How much is the estimated amount of fluid that will be needed for resuscitation?

If asked this way, remember the old Parkland formula:

4 ml of Ringer’s lactate (without sugar) per kilogram of body weight, per percentage of burned area (up to 50%) “for the burn,” plus about 2L of 5% dextrose in water (D5W) for maintenance.

Give one half in the first 8 hours, the second half in the next 16 hours. Day 2 requires about one half of that calculated amount, and is the time when colloids should be given if one elects to use them. By day 3 there should be a brisk diuresis, and no need for further fluid.
Remember that these amounts are only a guess, to be fine-tuned by the actual response of the patient (primarily hourly urinary output). Higher amounts are needed in patients who have respiratory burn, electrical burns, or recent escharotomies.

The use of the formulas is now less frequently done, since physicians typically end up adjusting the rate of fluid administration on the basis of the urinary output after initial resuscitation.

9. After suitable calculations have been made, a 70-kg adult with extensive third-degree burns is receiving Ringer’s lactate at the calculated rate. In the first 3 hours his urinary output is 15, 22, and 18 ml.

Most experts aim for an hourly urinary output of at least 0.5 ml/kg, or preferably 1 ml/kg body weight per hour. For patients with electrical burns the flow should be even higher (1 to 2 ml/kg per hour); thus by any criteria this patient needs more fluid.

10. After suitable calculations have been made, a 70-kg adult with extensive third-degree burns is receiving Ringer’s lactate at the calculated rate. In the first 3 hours his urinary output is 325, 240, and 270 ml.

The opposite of the previous vignette. Somebody is trying to drown this poor guy. The calculation was too generous; the rate of administration has to be scaled back.

11. During the first 48 hours after a major burn, a 70-kg patient received vigorous fluid resuscitation and maintained a urinary output between 45 and 110 ml/h. On postburn day 3—after IV fluids have been discontinued—urinary output reaches 270 to 350 ml/h.

This is the expected. Fluid is coming back from the burn area into the circulation. He does not need more IV fluids to replace these losses.

12. An 8-month-old baby who weighs x kilograms is burned over...areas (depicted in a front-and-back drawing). Second-degree burn will look the same as in the adult; third-degree burn will look deep bright red.

In babies the head is bigger and the legs are smaller, thus the head has two 9%s, whereas both legs add up to 3 (rather than 4) 9%. Proportionally, fluid needs are greater in children than in adults. Therefore:

- If asked for the rate in the first hour, it should be 20 ml/kg.
- If asked for 24-hour calculations, the formula calls for 4 to 6 ml/kg/%.
13. A patient with second- and third-degree burns over 65% of his body surface is undergoing proper fluid resuscitation. The question asks about management for the burned areas, and other supportive care.

First of all, tetanus prophylaxis. Then suitable cleaning, and use of topical agents. The standard one is silver sulfadiazine. If deep penetration is desired (thick eschar, cartilage), mafenide acetate is the choice (do not use everywhere; it hurts and can produce acidosis). Burns near the eyes are covered with triple antibiotic ointment. Pain medication is given IV.

After about 2–3 weeks, grafts will be done to the areas that did not regenerate. After an initial day or two of NG suction, intensive nutritional support is needed (via the gut, high calorie/high nitrogen). Rehabilitation starts on day 1.

14. A 42-year-old woman drops her hot iron on her lap while doing the laundry. She comes in with the shape of the iron clearly delineated on her upper thigh. The area is white, dry, leathery, anesthetic.

What is the issue? A current favorite of burn treatment is the concept of early excision and grafting. After fluid resuscitation, the typical patient with extensive burns spends 2–3 weeks in the hospital consuming thousands of dollars of health care every day, getting topical treatment to the burn areas and intensive nutritional support in preparation for skin grafting.

In very extensive burns there is no alternative. However, less extensive burns can be taken to the OR and excised and grafted on day 1, saving tons of money. You will not be asked on the exam to provide the fine judgment call for the borderline case that might be managed that way (the experts are routinely doing it in burns under 20% and daring to include patients with as much as 40%), but the vignette is a classic one in which the decision is easy: very small and clearly third-degree.

Management. Early excision and grafting.

BITES AND STINGS

1. A 6-year-old child tries to pet a domestic dog while the dog is eating, and the child’s hand is bitten by the dog.

This is considered a provoked attack, and as far as rabies is concerned, only observation of the pet is required (for development of signs of rabies). Tetanus prophylaxis and standard wound care is all that is needed for the child. Had the bite been to the face, and thus near the brain, treatment should be started and then discontinued if it is proven to be not necessary.
2. During a hunting trip, a young man is bitten on the leg by a coyote. The animal is captured and brought to the authorities alive.

Observation of a wild animal for behavioral signs of rabies is impractical. But having the animal available will allow it to be killed and the brain examined for signs of rabies, thus hopefully sparing the hunter the necessity of getting vaccinated. Had the bite been to the face, and thus near the brain, treatment should be started and then discontinued if it is proven to be not necessary.

3. While exploring caves in the Texas hill country, a young man is bitten by bats (that promptly fly away).

Now we do not have the animal to examine. Rabies prophylaxis is mandatory (immunoglobulin plus vaccine).

4. During a hunting trip a hunter is bitten in the leg by a snake. His companion, who is an expert outdoorsman, reports that the snake had elliptical eyes, pits behind the nostrils, big fangs, and rattlers in the tail. The patient arrives at the hospital 1 hour after the bite took place. Physical examination shows 2 fang marks about 2 cm apart, and there is no local pain, swelling, or discoloration.

The description of the snake is indeed that of a poisonous rattlesnake, but even when bitten by a poisonous snake, up to 30% of patients are not envenomated. The most reliable signs of envenomation are excruciating local pain, swelling, and discoloration (usually fully developed within 30 minutes)—none of which this man has. Continued observation (about 12 hours) is all that is needed, plus the standard wound care (including tetanus prophylaxis).

5. During a hunting trip, a hunter is bitten in the leg by a snake. His companion, who is an expert outdoorsman, reports that the snake had elliptical eyes, pits behind the nostrils, big fangs, and rattlers in the tail. The patient arrives at the hospital 1 hour after the bite took place. Physical examination shows two fang marks about 2 cm apart, as well as local edema and ecchymotic discoloration. The area is very painful and tender to palpation.

This patient is envenomated. Blood should be drawn for typing and crossmatch, coagulation studies, and renal and liver function. The mainstay of therapy is antivenin, of which several vials have to be given. The product currently preferred is CroFab. Surgical excision of the bite site and fasciotomy are only needed in extremely severe cases.
6. While playing in the backyard of her south Texas home, a 6-year-old girl is bitten by a rattlesnake. At the time of hospital admission she has severe signs of envenomation.

The point of this vignette is to remind you that snake antivenin is one of the very few medicines for which the dose is not calculated on the basis of the size of the patient. The dose of antivenin depends on the amount of venom injected, regardless of the size and age of the victim.

7. During a picnic outing, a young girl inadvertently bumps into a beehive and is stung repeatedly by angry bees. She is seen 20 minutes later and found to be wheezing, hypotensive, and madly scratching an urticarial rash.

Epinephrine is the drug of choice (0.3 to 0.5 ml of 1:1000 solution). The stingers have to be carefully removed.

8. While rummaging around her attic, a woman is bitten by a spider that she describes as black, with a red hourglass mark in her belly. The patient has nausea and vomiting and severe generalized muscle cramps.

Black widow spider bite. The antidote is IV calcium gluconate. Muscle relaxants also help.

9. A patient seeks help for a very painful ulceration that he discovered in his forearm on arising this morning. Yesterday he spent several hours cleaning up the attic, and he thinks he may have been “bitten by a bug.” The ulcer is 1 cm in diameter, with a necrotic center with a surrounding halo of erythema.

Probably a brown recluse spider bite. Dapsone will help. Local excision and skin grafting may be needed. All necrotic tissue must be debrided/excised.

10. A 22-year-old gang leader comes to the ED with a small, 1-cm deep sharp cut over the knuckle of the right middle finger. He says he cut himself with a screwdriver while fixing his car.

What is it? The description is classic for a human bite. No, nobody actually bit him—he did it by punching someone in the mouth and getting cut with the teeth that were smashed by his fist. The imaginative cover story usually comes with this kind of lesion. The point of management is that human bites are bacteriologically the dirtiest that one can get and antibiotics are given. Rabies shots will not be needed, but surgical exploration by an orthopedic surgeon will be required as well as antibiotics.
1. In the newborn nursery it is noted that a child has uneven gluteal folds. Physical examination of the hips reveals that one of them can be easily dislocated posteriorly with a jerk and a “click,” and returned to normal position with a “snapping.” The family is concerned because a previous child had the same problem.

What is it? Developmental dysplasia of the hip (congenital dislocation of the hip)

Diagnosis. The physical examination should suffice, but if there is any doubt, do a sonogram.

Management. Abduction splinting with Pavlik harness

2. A 6-year-old boy has insidious development of limping with decreased hip motion. He complains occasionally of knee pain on that side. He walks into the office with an antalgic gait. Passive motion of the hip is guarded.

What is it? In this age group, Legg-Calve-Perthes disease (avascular necrosis of the capital femoral epiphysis). Remember that hip pathology can show up with knee pain. Management is AP and lateral x-rays for diagnosis. Contain the femoral head within the acetabulum by casting and crutches.

3. A 13-year-old obese boy complains of pain in the groin (it could be the knee) and is noted by the family to be limping. He sits in the office with the sole of the foot on the affected side pointing toward the other foot. Physical examination is normal for the knee, but shows limited hip motion. As the hip is flexed, the leg goes into external rotation and cannot be rotated internally.

What is it? Forget the details: a bad hip in this age group is slipped capital femoral epiphysis, an orthopedic emergency. Management is AP and lateral x-rays for diagnosis. The orthopedic surgeons will pin the femoral head in place.
4. A young toddler has had the flu for several days, but until 2 days ago he was walking around normally. He now absolutely refuses to move one of his legs. He is in pain and holds the leg with the hip flexed, in slight abduction and external rotation, and you cannot examine that hip—he will not let you move it. He has elevated sedimentation rate.

What is it? Another orthopedic emergency: septic hip. Aspiration of the hip under general anesthesia to confirm the diagnosis, and open arthrotomy is performed for drainage.

5. A child with a febrile illness but no history of trauma has persistent, severe localized pain in a bone.

What is it? Acute hematogenous osteomyelitis. X-ray will not show anything for 2 weeks. MRI is diagnostic. Then give antibiotics.

6. A 2-year-old child is brought in by concerned parents because he is bowlegged.

7. A 5-year-old child is brought in by concerned parents because he is knockkneed.

Genu varum (bow-leg) is normal up to age 3. Genu valgus (knock-knee) is normal ages 4–8. Thus, neither of these children needs therapy. Should the varum deformity (bow-legs) persist beyond its normal age range, i.e., age >3, Blount disease is the most common problem (a disturbance of the medial proximal tibial growth plate). In that case, surgery can be performed.

8. A 14-year-old boy says he injured his knee while playing football. Although there is no swelling of the knee joint, he complains of persistent pain right over the tibial tubercle, which is aggravated by contraction of the quadriceps. Physical examination shows localized tenderness right over the tibial tubercle.

This is another one with a fancy name: Osgood-Schlatter disease (osteoochondrosis of the tibial tubercle). It is usually treated with immobilization of the knee in an extension or cylinder cast for 4–6 weeks, if more conservative management fails (rest, ice, compression, and elevation).
9. A baby boy is born with both feet turned inward. Physical examination shows that there is plantar flexion of the ankle, inversion of the foot, adduction of the forefoot, and internal rotation of the tibia.

This is the complex deformity known as club foot (fancy name: talipes equinovarus). The child needs serial plaster casts started in the neonatal period. The sequence of correction starts with the adducted forefoot, then the hindfoot varus, and finally the equinus. About 50% of patients respond completely and need no surgery; those who require surgery are operated on age >6–8 months, but <1–2 years.

10. A 12-year-old girl is referred by the school nurse because of potential scoliosis.

The thoracic spine is curved toward the right, and when the girl bends forward a “hump” is noted over her right thorax. The patient has not yet started to menstruate.

Management. This is too complicated for the exam, but the point is that scoliosis may progress until skeletal maturity is reached. Baseline x-rays are needed to monitor progression. At the onset of menses skeletal maturity is ~80%, so this patient still has a way to go. Bracing may be needed to arrest progression. Pulmonary function could be limited if there is large deformity.

Fractures

11. A 4-year-old falls down the stairs and fractures his humerus. He is placed in a cast at the nearby “doc in the box,” and he is seen by his regular pediatrician 2 days later. At that time he seems to be doing fine, but AP and lateral x-rays show significant angulation of the broken bone.

Nothing else is needed. Except for rotational deformities, children have such tremendous ability to heal and remodel broken bones that almost any reasonable alignment and immobilization will end up with a good result. In fact, fractures in children are no big deal—with a few exceptions that are illustrated in the next few vignettes.

12. An 8-year-old boy falls on his right hand with the arm extended, and he breaks his elbow by hyperextension. X-rays show a supracondylar fracture of the humerus. The distal fragment is displaced posteriorly.

This type of fracture is common in children, but it is important because it may produce vascular or nerve injuries—or both—and end up with a Volkmann contracture. Although it can usually be treated with appropriate casting or traction (and rarely needs surgery), the answer revolves around careful monitoring of vascular and nerve integrity, and vigilance regarding development of a compartment syndrome.
13. A child sustains a fracture of a long bone, involving the epiphyses and growth plate. The epiphyses and growth plate are laterally displaced from the metaphyses, but they are in one piece, i.e., the fracture does not cross the epiphyses or growth plate and does not involve the joint.

14. A child sustains a fracture of a long bone that extends through the joint, the epiphyses, the growth plate, and a piece of the metaphyses.

In the first example, even though the dreaded growth plate is involved it has not been divided by the fracture. Treatment by closed reduction is sufficient.

In the second example, there are 2 pieces of growth plate. Unless they are very precisely aligned, growth will be disturbed. Open reduction and internal fixation will be needed.

ADULT ORTHOPEDICS

1. A man who fell from a second floor window has clinical evidence of fracture of his femur. The vignette gives you a choice of x-rays to order.

Here are the rules:

- Always get x-rays at 90° to each other (for instance, AP and lateral).
- Always include the joints above and below.
- If appropriate (this case is), check the other bones that might be in the same line of force (here, the lumbar spine).

2. While playing football, a college student fractures his clavicle. The point of tenderness is at the junction of the middle and distal thirds of the clavicle.

Place the arm in a sling or figure of 8 splint. Young women may request fixation by surgery, to achieve a better cosmetic result.

3. A 55-year-old woman falls in the shower and hurts her right shoulder. She shows up in the ED with her arm held close to her body, but rotated outward as if she were going to shake hands. She is in pain and will not move the arm from that position. There is numbness in a small area of her shoulder, over the deltoid muscle.

What is it? Anterior dislocation of the shoulder, with axillary nerve damage.

Management. Get AP and lateral x-rays for diagnosis. Reduce.
4. After a grand mal seizure, a 32-year-old epileptic notices pain in her right shoulder, and she cannot move it. She goes to the nearby “doc in a box,” where she has x-rays and is diagnosed as having a sprain and given pain medication. The next day she still has the same pain and inability to move the arm. She comes to the ED with the arm held close to her body, in a normal (i.e., not externally rotated, but internally rotated) protective position.

What is it? Posterior dislocation of the shoulder. Very easy to miss on regular x-rays.

Management. Get x-rays again but order axillary view or scapular lateral.

5. An elderly woman with osteoporosis falls on her outstretched hand. She comes in with a deformed and painful wrist that looks like a “dinner fork.” X-rays show a dorsally displaced, dorsally angulated fracture of the distal radius and small, nondisplaced fracture of the ulnar styloid.

This is the famous Colles’ fracture. It is treated with close reduction and long arm cast.

6. During a rowdy demonstration and police crackdown, a young man is hit with a nightstick on his outer forearm that he had raised to protect himself. He is found to have a diaphyseal fracture of the proximal ulna, with anterior dislocation of the radial head.

Another classic with a fancy name: Monteggia fracture. The patient needs closed reduction of the radial head, and possible open reduction and internal fixation of the ulnar fracture.

7. Another victim of the same melee has a fracture of the distal third of the radius and dorsal dislocation of the distal radioulnar joint.

This one is Galeazzi fracture and is quite similar to Monteggia in terms of the resultant instability. The fractured radius may need open reduction and internal fixation, while the dislocated joint may be manipulated back into proper position and casted in supination.

8. A young adult falls on an outstretched hand and comes in complaining of wrist pain. On physical examination, he is distinctly tender to palpation over the anatomic snuff-box. AP and lateral x-rays are read as negative.

Another classic, this is a fracture of the scaphoid bone (carpal navicular). These are notorious because x-rays will not show them for 2–3 weeks, and they have a high rate of nonunion. The history and physical findings (the tenderness in the snuff-box) are sufficient to indicate the use of a thumb spica cast, with repeat x-rays 3 weeks later.
9. A young adult falls on an outstretched hand and comes in complaining of wrist pain. On physical examination he is distinctly tender to palpation over the anatomic snuff-box. AP, lateral, and oblique x-rays show a displaced and angulated fracture of the scaphoid.

Displaced and angulated; will need open reduction and internal fixation.

10. During a barroom fight, a young man throws a punch at somebody, but misses and ends up hitting the wall. He comes in with a swollen and tender right hand. X-rays show fracture of the fourth and fifth metacarpal necks.

Metacarpal necks, typically the fourth or the fifth (or both), take the brunt of one’s anger when trying to hit somebody but miss. Treatment depends on the degree of angulation, displacement, or rotary malalignment. Closed reduction and ulnar gutter splint for the mild ones, Kirschner-wire or plate fixation for the bad ones.

11. A 77-year-old man falls in the nursing home and hurts his hip. He shows up with the affected leg shortened and externally rotated. X-rays show that he has a displaced femoral neck fracture.

The point of this vignette is that blood supply to the femoral head is compromised in this setting, and the patient is better off with a metal prosthesis put in, rather than an attempt at fixing the bone.

12. A 77-year-old man falls in the nursing home and hurts his hip. He shows up with the affected leg shortened and externally rotated. X-rays show that he has an intertrochanteric fracture.

These can be fixed with less concern about avascular necrosis. Open reduction and pinning are usually performed. Immobilization in these old people often leads to deep venous thrombosis and pulmonary embolus; thus an additional choice for postoperative anticoagulation may be offered in the question.

13. The unrestrained front-seat passenger in a car that crashes sustains a closed fracture of the femoral shaft.

There are many ways to deal with fractured femurs, but intramedullary rod fixation is commonly done.
14. The unrestrained front-seat passenger in a car that crashes sustains closed comminuted fractures of both femoral shafts. Shortly after admission, he develops BP 80/50 mm Hg, pulse 110/min, and venous pressure 0. The remainder of the physical examination and x-ray survey (chest, pelvis) are unremarkable. Sonogram of the abdomen done in the ED was negative.

This is a throwback to the trauma vignettes to remind you that femur fractures may bleed into the tissues sufficiently to cause hypovolemic shock. Fixation will diminish the blood loss, and fluid resuscitation and blood transfusions will take care of the shock.

15. The unrestrained front-seat passenger in a car that crashes sustains closed comminuted fractures of both femoral shafts. Twelve hours after admission, he develops disorientation, fever, and scleral petechia. Dyspnea is evident shortly thereafter, at which time blood gases show Po2 of 60.

Another repeated topic: fat embolism. Respiratory support is the centerpiece of the treatment.

16. A college student is tackled while playing football, and he develops severe knee pain. When examined shortly thereafter, the knee is swollen, and he has pain on direct palpation over the medial aspect of the knee. With the knee flexed at 30°, passive abduction elicits pain in the same area, and the leg can be abducted further out than the normal, contralateral leg (valgus stress test).

17. A college student is tackled while playing football, and he develops severe knee pain. When examined shortly thereafter, the knee is swollen, and he has pain on direct palpation over the lateral aspect of the knee. With the knee flexed at 30°, passive adduction elicits pain in the same area, and the leg can be adducted further out than the normal, contralateral leg (varus stress test).

The medial collateral ligament is injured in the first example, whereas the second example depicts an injury to the lateral collateral ligament. A hinged cast is the usual treatment for either isolated injury. When several ligaments are torn, surgical repair is preferred.

18. A college student is tackled while playing football, and he develops severe knee swelling and pain. On physical examination with the knee flexed at 90°, the leg can be pulled anteriorly, like a drawer being opened. A similar finding can be elicited with the knee fixed at 20° by grasping the thigh with one hand, and pulling the leg with the other.

This is a lesion of the anterior cruciate ligament, shown by the anterior drawer test and the Lachman test. Further definition of the extent of internal knee injuries can be done with MRI.
Sedentary patients may be treated just with immobilization and rehabilitation, but athletes require arthroscopic reconstruction.

19. A college athlete injured his knee while playing basketball. He has been to several physicians who have prescribed pain medication and a variety of splints and bandages, but he still has a swollen knee and knee pain. He describes catching and locking that limit his knee motion, and he swears that when his knee is forcefully extended there is a “click” in the joint. He has been told that his x-rays are normal.

Meniscal tears may be difficult to diagnose clinically, but MRI will show them beautifully. Arthroscopic repair is done, trying to save as much of the meniscus as possible. If complete meniscectomy is done, late degenerative arthritis will ensue. Some orthopedic surgeons prefer to repair meniscal injuries with an open operation.

20. A young recruit complains of localized pain in his tibia after a forced march at boot camp. He is tender to palpation over a very specific point on the bone, but x-rays are normal.

What is it? Stress fracture. The lesson here is that stress fractures will not show up radiologically until 2 weeks later. Treat as if he has a fracture (cast) and repeat the x-ray in 2 weeks. Non-weight bearing (crutches) is another option.

21. A pedestrian is hit by a car. Physical examination shows the leg to be angulated midway between the knee and the ankle. X-rays confirm fractures of the shaft of the tibia and fibula.

Casting takes care of the ones that can be easily reduced. Intramedullary nailing is needed for the ones that cannot be aligned.

22. A pedestrian is hit by a car. Physical examination shows the leg to be angulated midway between the knee and the ankle. X-rays confirm fractures of the shaft of the tibia and fibula. Satisfactory alignment is achieved, and a long leg cast applied. In the ensuing 8 hours the patient complains of increasing pain. When the cast is removed, the pain persists, the muscle compartments feel tight, and there is excruciating pain with passive extension of the toes.

Compartment syndrome is a distinct hazard after fractures of the leg (the forearm and the lower leg are the two places with the highest incidence of compartment syndrome). Fasciotomy is needed here.
23. An out-of-shape, recently divorced 42-year-old man is trying to impress a young woman by challenging her to a game of tennis. In the middle of the game, a loud “pop” is heard (like a gunshot), and the man falls to the ground clutching his ankle. He limps off the courts, with pain and swelling in the back of the lower leg, but still able to dorsiflex his foot. When he seeks medical help the next day, palpation of his Achilles tendon reveals an obvious defect right beneath the skin.

This is a classic presentation for rupture of the Achilles tendon. Casting in equinus position will allow healing after several months, or open surgical repair may do it sooner.

24. While running to catch a bus, an old man twists his ankle and falls on his inverted foot. AP, lateral, and mortise X-rays show displaced fractures of both malleoli.

A very common injury. When the foot is forcefully rotated (in either direction), the talus pushes and breaks one malleolus and pulls off the other one. Open reduction and internal fixation is needed in this case because the fragments are displaced.

Orthopedic Emergencies

25. A middle-aged homeless man is brought to the ED because of very severe pain in his forearm. He passed out after drinking a bottle of cheap wine and fell asleep on a park bench for an indeterminate time, probably over 12 hours. There are no signs of trauma, but the muscles in his forearm are very firm and tender to palpation. Passive motion of his fingers and wrist elicit excruciating pain. Pulses at the wrist are normal.

Classic compartment syndrome. Emergency fasciotomy is needed. Note that normal pulses do not rule out this diagnosis.

26. A patient presents to the ED complaining of moderate but persistent pain in his leg under a long leg plaster cast that was applied 6 hours earlier for a fracture.

The point of this vignette is that you do not do anything for pain under a cast, not even pain medication. The cast must be removed right away. It may be too tight, it may be compromising blood supply, or it may have rubbed off a piece of skin. Your only acceptable option is to remove the cast.
27. A young man involved in a motorcycle accident has an obvious open (compound) fracture of his right thigh. The femur is sticking out through a jagged skin laceration.

An open fracture is an orthopedic emergency. This patient may need to have other problems treated first (abdominal bleeding, intracranial hematomas, chest tubes, etc.), but the open fracture should be in the OR getting cleaned and reduced within 6 hours of the injury.

28. A front-seat passenger in a car that had a head-on collision relates that he hit the dashboard with his knees, and complains of pain in the right hip. He lies in the stretcher in the ED with the right lower extremity shortened, adducted, and internally rotated.

What is it? Another orthopedic emergency: posterior dislocation of the hip. The blood supply of the femoral head is tenuous, and delay in reduction could lead to avascular necrosis.

Management. X-rays and emergency reduction.

29. A healthy 24-year-old man steps on a rusty nail at the stables where he works as a horse breeder. Three days later he is brought to the ED moribund, with a swollen, dusky foot, in which one can feel gas crepitation.

What is it? Gas gangrene. Management is a lot of IV penicillin and immediate surgical debridement of dead tissue, followed by a trip to the nearest hyperbaric chamber for hyperbaric oxygen treatment.

30. A 48-year-old man breaks his arm when he falls down the stairs. X-rays demonstrate an oblique fracture of the middle to distal thirds of the humerus. Physical examination shows that he cannot dorsiflex (extend) his wrist.

Fractures of the humeral shaft can injure the radial nerve, which courses in a spiral groove right around the posterior aspect of that bone. However, surgical exploration is not usually needed. Hanging arm cast or coaptation splint are used, and the nerve function returns eventually. However, if the nerve was okay when the patient came in, and becomes paralyzed after closed reduction of the bone, the nerve is entrapped and surgery has to be performed.

31. A football player is hit straight on his right leg, and he suffers a posterior dislocation of his knee.

The point here is that posterior dislocation of the knee can nail the popliteal artery. Attention to integrity of pulses, Doppler studies or CT angio, and prompt reduction are the key issues.
32. A window cleaner falls from a third-story scaffold and lands on his feet. Physical examination and x-rays show comminuted fractures of both calcanei.

Compression fractures of the thoracic or lumbar spine are the associated, hidden injuries that have to be looked for in this case.

33. In a head-on automobile collision, the unrestrained front-seat passenger strikes the dashboard and windshield. He comes in with facial lacerations, upper extremity fractures, and blunt trauma to his chest and abdomen.

In the confusion of dealing with multiple traumas, it is possible to miss less-obvious injuries. In this scenario, as the knees strike the dashboard, the femoral heads may drive backward into the pelvis, or out of the acetabulum.

34. The unrestrained front-seat passenger in a car that crashes at high speed is brought into the ED with multiple facial fractures and a closed head injury.

The ultimate hidden injury (because of the devastating complications if missed) is the fracture of the cervical spine. A CT scan must be done to rule it out.

Common Hand Problems

35. A 43-year-old secretary who types a lot at work complains about numbness and tingling in the hand, particularly at night. On physical examination, when asked to hang her hand limply in front of her, numbness and tingling are reproduced over the distribution of the median nerve (the radial side 3 1/2 fingers). The same happens when her median nerve is pressed over the carpal tunnel, or when it is percussed.

Carpal tunnel syndrome is diagnosed clinically, and this vignette is typical. The American Academy of Orthopedic Surgery recommends that wrist x-rays (including carpal tunnel view) be done, primarily to rule out other things. Initial treatment is splints and anti-inflammatories. If surgery is needed, electromyography and nerve conduction velocity should precede it.

36. A 58-year-old woman describes that she awakens at night with her right middle finger acutely flexed, and she is unable to extend it. She can do it only by pulling on it with her other hand, at which time she feels a painful “snap.”

This is trigger finger. Steroid injections are tried first, and surgery is performed if needed.
37. A young mother complains of pain along the radial side of the wrist and the first dorsal compartment. She relates that the pain is often caused by the position of wrist flexion and simultaneous thumb extension that she assumes to carry the head of her baby. On physical examination the pain is reproduced by asking her to hold her thumb inside her closed fist, and then forcing the wrist into ulnar deviation.

De Quervain tenosynovitis. Splints and antiinflammatories can help, but steroid injection is best. Surgery is rarely needed.

38. A 72-year-old man of Norwegian ancestry has a contracted hand that can no longer be extended and be placed flat on a table. Palmar fascial nodules can be felt.

Dupuytren contracture. Surgery may be needed.

39. A 33-year-old carpenter accidentally drives a small nail into the pulp of his index finger, but he pays no attention to the injury at the time. Two days later he shows up in the ER, with throbbing pulp pain, fever, and all the signs of an abscess within the pulp of the affected finger.

This kind of abscess is called a felon, and like all abscesses it has to be drained. There is an urgency to it, however, because the pulp is a closed space and the process is equivalent to a compartment syndrome.

40. A young man falls while skiing, and as he does he jams his thumb into the snow. Physical examination shows collateral laxity at the thumb metacarpophalangeal joint.

This one is “gamekeeper’s thumb.” The injury was to the ulnar collateral ligament of the thumb. If not treated it can be dysfunctional and painful, and can lead to arthritis. Casting is usually done.

41. Two thieves grab a woman’s purse and run away with it. She tries to grab one of the offenders by his jacket, but he pulls away, hurting the woman’s hand in the process. Now, when she makes a fist, the distal phalanx of her ring finger does not flex with the others.

42. While playing volleyball, a young woman injures her middle finger. She cannot extend the distal phalanx.

Two classic tendon injuries, with appropriate names: jersey finger (to the flexor), and mallet finger (to the extensor). Splinting is usually the first line of treatment.
43. While working at a bookbinding shop, a young man suffers a traumatic amputation of his index finger. The finger was cleanly severed at its base.

Replantation of severed digits is no longer “miracle surgery.” It is commonly done at specialized centers, and regular physicians should know how to handle the amputated part. The answer is to clean it with sterile saline, wrap it in saline-moistened gauze, place it in a plastic bag, and place the bag on a bed of ice.

The digit should not be placed in antiseptic solutions or alcohol, put in dry ice, or allowed to freeze.

Back Pain

44. A 45-year-old man complains of aching back pain for several months. He was told previously that he had muscle spasms, and was given analgesics and muscle relaxants. He comes in now because of the sudden onset of very severe back pain that came on when he tried to lift a heavy object. The pain is like an electrical shock that shoots down his leg; it is aggravated by sneezing, coughing, and straining, and it prevents him from ambulating. He keeps the affected leg flexed. Straight leg-raising gives excruciating pain.

What is it? Lumbar disk herniation. Peak age incidence is in age 40s, and virtually all those cases are at L4–L5 or L5–S1.

- If the “lightning” exits the foot by the big toe, it is L4–L5.
- If the “lightning” exits by the little toe, it is L5–S1.

Management is MRI for diagnosis. Bed rest and pain control will take care of most of these. Use neurosurgical intervention only if there is progressive weakness or sphincteric deficits.

45. A 46-year-old man has sudden onset of very severe back pain that came on when he tried to lift a heavy object. The pain is like an electrical shock that shoots down his leg, and it prevents him from ambulating. He keeps the affected leg flexed. Straight leg-raising test gives excruciating pain. He has a distended bladder, flaccid rectal sphincter, and perineal saddle area anesthesia.

The cauda equina syndrome is a surgical emergency.

46. A young man began to have chronic back pain at age 34. Pain and stiffness have been progressive. He describes morning stiffness, and pain that is worse at rest, but improves with activity. Two years ago, he was treated for uveitis.

Think ankylosing spondylitis. X-rays will eventually show “bamboo spine.” Antiinflammatory agents and physical therapy are used.
47. A 72-year-old man has had a 20-pound weight loss, and he complains of low back pain. The pain is worse at night and is unrelieved by rest or positional changes.

Suggestive of metastatic malignancy. If advanced, x-rays will show it. At a higher cost, an MRI will make a reliable, early diagnosis.

Leg Ulcers

48. A 67-year-old diabetic has an indolent, unhealing ulcer at the heel of the foot.

What is it? Ulcer at a pressure point in a diabetic is caused by neuropathy. Once it has happened, it is unlikely to heal because the microcirculation is poor also. The infection would be osteomyelitis.

Management is to control the diabetes, keep the ulcer clean, keep the leg elevated, and be resigned to the idea that the foot may need to be amputated. The other common location is the first metatarsophalangeal joint.

49. A 67-year-old smoker with high cholesterol and coronary disease has an indolent, unhealing ulcer at the tip of his toe. The toe is blue, and he has no peripheral pulses in that extremity.

What is it? Ischemic ulcers are at the farthest away point from where the blood comes.

Management. Doppler studies looking for pressure gradient, MRI angio or CT angio. Lack of pulses is concerning for an inherent vascular problem; revascularization (i.e. stenting or surgical bypass) may be possible, and then the ulcer may heal.

50. A 44-year-old obese woman has an indolent, unhealing ulcer above her right medial malleolus. The skin around it is thick and hyperpigmented. She has frequent episodes of cellulitis, and has varicose veins.

What is it? Venous stasis ulcer.

Management. Duplex scanning, Unna boot, support stockings. Varicose vein surgery or endoluminal ablation may ultimately be needed.

51. A 40-year-old man has had a chronic draining sinus in his lower leg since he had an episode of osteomyelitis at age 12. In the last few months he has developed an indolent, dirty-looking ulcer at the site, with “heaped up” tissue growth at the edges.
52. Ever since she had an untreated third-degree burn to her lower leg at age 14, a 38-year-old immigrant from Latin America has had shallow ulcerations at the scar site that heal and break down all the time. In the last few months she has developed an indolent, dirty-looking ulcer at the site, with “heaped up” tissue growth around the edges, which is steadily growing and shows no sign of healing.

Both of these are classic vignettes for the development of squamous cell carcinoma at long-standing, chronic irritation sites. The name Marjolin ulcer has been applied to these tumors. Obviously biopsy is the first diagnostic step, and wide local excision (with subsequent skin grafting) is the appropriate therapy.

Foot Pain

53. An older, overweight man complains of disabling, sharp heel pain every time his foot strikes the ground. The pain is worse in the mornings, preventing him from putting any weight on the heel. X-rays show a bony spur matching the location of his pain, and physical examination shows exquisite tenderness right over that heel spur.

Although all the signs point to that bony spur as the culprit, this is in fact plantar fasciitis—a very common but poorly understood problem that needs symptomatic treatment until it resolves spontaneously within 12 to 18 months. Podiatrists often remove the spur anyway; although the spur is not the initial problem, its removal can accelerate recovery.

54. A woman who usually wears high-heeled, pointed shoes complains of pain in the forefoot after prolonged standing or walking. Physical examination shows a very tender spot in the third interspace, between the third and fourth toes.

This one is a Morton neuroma, which is an inflammation of the common digital nerve. If conservative management (more-sensible shoes, among other things) does not suffice, the neuroma may be excised.

55. A 55-year-old obese man suddenly develops swelling, redness, and exquisite pain at the first metatarsal–phalangeal joints.

Gout. The diagnosis of the acute attack is done with identification of uric acid crystals in fluid from the joint. Treatment of the acute attack relies on indomethacin and colchicine. Long-term control of serum uric acid levels is done with allopurinol or probenecid.
TUMORS

1. A 16-year-old boy complains of low-grade but constant pain in the distal femur present for several months. He has local tenderness in the area, but is otherwise asymptomatic. X-rays show a large bone tumor breaking through the cortex into the adjacent soft tissues and exhibiting a “sunburst” pattern.

2. A 10-year-old complains of persistent pain deep in the middle of the thigh. X-rays show a large, fusiform bone tumor, pushing the cortex out and producing periosteal “onion skinning.”

Primary malignant bone tumors are also diseases of young people. Our vignettes illustrate each of these, but this is such a specialized field that you may just be asked to diagnose “malignant bone tumor” without picking the specific kind.

- Most common: osteogenic sarcoma
 - Seen in ages 10–25
 - Usually occurs around the knee (lower femur or upper tibia)
- Second-most common: Ewing’s sarcoma
 - Seen in younger children (ages 5–15)
 - Grows in the diaphyses of long bones

Management. Do not mess with these and do not attempt biopsy. Referral is needed, both to an orthopedic surgeon (every 3 years) and to a specialist on bone tumors.

3. A 66-year-old woman picks up a bag of groceries, and her arm snaps broken.

What is it? A pathologic fracture (i.e., for trivial reasons) means bone tumor, which in the vast majority of cases will be metastatic. Get x-rays to diagnose this particular broken bone, whole body bone scans to identify other metastases, and start looking for the primary. In women, it is the breast (lytic bone lesions). In men, it is the prostate. Lung is second most common in both men and women.

4. A 60-year-old man complains of fatigue and pain at specific places on several bones. He is found to be anemic, and x-rays show multiple punched out lytic lesions throughout the skeleton.

Multiple lytic lesions in an old anemic man suggest multiple myeloma. X-rays are diagnostic, and additional tests include Bence-Jones protein in the urine and abnormal immunoglobulins in the blood. The latter are detectable by serum electrophoresis and better yet by immuno-electrophoresis.

Management. Chemotherapy is the usual treatment. Thalidomide is used for refractory cases.
5. A 58-year-old woman has a soft tissue tumor in her thigh. It has been growing steadily for 6 months. It is located deep into the thigh, is firm, is fixed to surrounding structures, and measures ~8 cm in diameter.

What is it? Soft tissue sarcoma is the concern.

Diagnosis. Start with MRI. Leave biopsy and further management to the experts.
PREOPERATIVE ASSESSMENT

Cardiac Risk

1. A 72-year-old man with a history of multiple myocardial infarctions is scheduled to have an elective sigmoid resection for diverticular disease. A preoperative radionuclide ventriculography shows an ejection fraction <0.35.

This is a “no-go” situation in which cardiac risk in noncardiac surgery is prohibitive. With this ejection fraction, the incidence of perioperative MI is 75–85%, and the mortality for such an event is around 55–90%. Probably the only option here is not to operate, but to continue with medical therapy for the diverticular disease. Should he develop an abscess, percutaneous drainage would be the only possible intervention.

2. A 72-year-old chronically bedridden man is being considered for emergency cholecystectomy for acute cholecystitis that is not responding to medical management. He had a transmural MI 4 months ago, and currently has atrial fibrillation, 8–10 premature ventricular beats/min, and jugular venous distention.

This patient is a compendium of almost all of the items that Goldman has compiled as predictors of operative cardiac risk. In fact he adds up to 50 points, and anything >25 points (class IV) gives a mortality in excess of 22%. Here again the best option would be to treat the cholecystitis in a different way (percutaneous cholecystostomy tube being the obvious choice).

3. A 72-year-old man is scheduled to have an elective sigmoid resection for diverticular disease. In the preoperative evaluation it is noted that he has venous jugular distention.

Now we have fewer items, but CHF is the worst one on the list (the other one here is his age). The failure has to be treated first, with ACE inhibitors, beta-blockers, digitalis, and diuretics.
4. A 72-year-old man is scheduled to have an elective sigmoid resection for diverticular disease. In the preoperative evaluation it is ascertained that he had a transmural MI 2 months ago.

The next worst Goldman finding is the recent MI (<6 months). Time is the best therapy for that one. Mortality is highest within 3 months of the MI (near 40%), but is brought down considerably >6 months (6%). Waiting is the obvious choice here. If our hand is forced and earlier operation becomes mandatory, admission to the ICU the day before surgery is recommended, to “optimize” all the cardiac parameters.

5. A 72-year-old man who needs to have elective repair of a large abdominal aortic aneurysm has a history of severe, progressive angina.

For many years it was believed that coronary revascularization prior to major surgery improved the risk of the latter. Current reviews of the available evidence suggest that it does not. The planned surgery for the aneurysm can be done first if it is more urgent than addressing the angina.

Pulmonary Risk

6. A 61-year-old man with a 60 pack-year smoking history and physical evidence of chronic obstructive pulmonary disease (COPD) needs elective surgical repair of an abdominal aortic aneurysm. He currently smokes 1 pack per day.

Smoking is by far the most common cause of increased pulmonary risk, and the main problem is compromised ventilation (high Pco2 and low FEV1) rather than compromised oxygenation. Start the evaluation with FEV1. If it is abnormal, perform blood gases. Cessation of smoking for 8 weeks and intensive respiratory therapy (physical therapy, expectorants, incentive spirometry, humidified air) should precede surgery.

Hepatic Risk

7. A cirrhotic is bleeding from a duodenal ulcer. Surgical intervention is being considered. His bilirubin is 3.5, prothrombin time 22 seconds, and serum albumin 2.5. He has ascites and encephalopathy.

Please don’t! Any one of those items alone (bilirubin >2, albumin <3, prothrombin >16, and encephalopathy) predicts a mortality >40%. If 3 of them are present, the number is 85%. If all 4 are present, the number is 100%.
8. A cirrhotic with a blood ammonia concentration >150 ng/dl needs an operation.

9. A cirrhotic with an albumin level <2 needs an operation.

10. A cirrhotic with a bilirubin >4 needs an operation.

Another way to look at liver risk is to see if any one of the previously listed findings is deranged to an even greater degree. Any one of these 3 examples would carry a mortality of about 80%. A deranged prothrombin time is slightly kinder to the patient, predicting only 40–60% mortality. Death, incidentally, occurs with high-output cardiac failure with low peripheral resistance.

Nutritional Risk

11. An elderly gentleman needs palliative surgery for an advanced cancer of the colon. He has lost 20% of his body weight over the past 2 months, and his serum albumin is 2.7. Further testing reveals anergy to injected skin-test antigens and a serum transferrin level <200 mg/dl.

Any one of these 4 findings indicates severe nutritional depletion. All 4 leave no doubt as to the enormous operative risk that this man represents. Surprisingly, as few as 4–5 days of preoperative nutritional support (preferably via the gut) can make a big difference, and 7–10 days would be optimal if there is no big hurry to operate.

Metabolic Risk

12. An elderly diabetic man presents with a clinical picture of acute cholecystitis that has been present for 3 days. He is profoundly dehydrated, in coma, and has blood sugar 950, severe acidosis, and ketone bodies “all over the place.”

The treatment of diabetes is not within the scope of this surgical review, but we should point out that someone in overt diabetic ketoacidotic coma is not a surgical candidate, no matter how urgent the operation might be. The metabolic problem has to be addressed first in this case (although aiming for complete correction to normal values would be unrealistic as long as that rotten gallbladder is there). Temporization of the cholecystitis can be achieved with a percutaneous cholecystostomy tube with cholecystectomy performed when acidosis has resolved.
POSTOPERATIVE COMPLICATIONS

Fever

1. Shortly after the onset of a general anesthetic with inhaled halothane and muscle relaxation with succinylcholine, a patient develops a rapid rise in body temperature, exceeding 104°F. Metabolic acidosis and hypercalcemia are also noted. A family member died under general anesthesia several years before, but no details are available.

A classic case of malignant hyperthermia. The history should have been a warning, but once the problem develops, treat with IV dantrolene plus the obvious support measures: 100% oxygen, correction of the acidosis, and cooling blankets. Watch for myoglobinuria.

2. Forty-five minutes after completion of a cystoscopy, a patient develops chills and a fever spike of 104°F.

This early on after an invasive procedure, and this high a fever, means bacteremia. Take blood cultures times 3, and start empiric antibiotic therapy.

3. On postoperative day 1 after an abdominal procedure, a patient develops a fever of 102°F.

Fever on day 1 means atelectasis, but all the other potential sources have to be ruled out. Management includes the following:

- Chest x-ray
- Look at wound and IV sites
- Inquire about urinary tract symptoms
- Improve ventilation: deep breathing and coughing, postural drainage, incentive spirometry

The ultimate therapy for major, recalcitrant atelectasis is bronchoscopy.

4. On postoperative day 1 after an abdominal procedure, a patient develops a fever of 102°F. The patient is not compliant with therapy for atelectasis, and by postoperative day 3 still has daily fever in the same range.

Now a pneumonic process has developed in the atelectatic segments. Chest x-ray, sputum cultures, and appropriate antibiotics are needed.
5. A patient who had major abdominal surgery is afebrile during the first 2 postoperative days, but on day 3 he has a fever spike to 103°F.

6. A patient who had major abdominal surgery is afebrile during the first 4 postoperative days, but on day 5 he has a fever spike to 103°F.

7. A patient who had major abdominal surgery is afebrile during the first 6 postoperative days, but on day 7 he has a fever spike to 103°F.

Every potential source of post-op fever always has to be investigated, but the timing of the first febrile episode gives a clue as to the most likely source. The mnemonic used (sequentially) is the “4 Ws”: wind (for atelectasis), water (for urine), walking (for the veins in the leg), and wound. Thus UTI, thrombophlebitis, and wound infection are the likely culprits in these vignettes. Urinalysis and urinary culture, Doppler studies, and physical examination are the respective tests.

8. A patient who had major abdominal surgery has a normal postoperative course, with no significant episodes of fever, until the 10th day when his temperature begins to spike up to 102 and 103°F every day.

Now deep abscess (intra-abdominal: typically pelvic or subphrenic) is the most likely source, and CT scan is performed to diagnose; management is percutaneous drainage.

Chest Pain

9. On postoperative day 2 after an abdominoperineal resection for rectal cancer, a 72-year-old man complains of severe retrosternal pain, radiating to the left arm. He also becomes short of breath and tachycardic.

10. During the performance of an abdominoperineal resection for rectal cancer, unexpected severe bleeding is encountered, and the patient is hypotensive on and off for almost 1 hour. The anesthesiologist notes ST depression and T wave flattening in the ECG monitor.

Perioperative MI happens within the first 3 days, and the biggest triggering cause is hypovolemic shock. These two are fairly typical scenarios, although the classic chest pain picture is often obscured by other ongoing events. When thinking MI, everybody does an ECG, but the most reliable diagnostic test is serum troponin.
11. On postoperative day 7 after pinning of a broken hip, a 76-year-old man suddenly develops severe pleuritic chest pain and shortness of breath. When examined, he is found to be anxious, diaphoretic, and tachycardic, and he has prominent distended veins in his neck and forehead.

Chest pain this late post-op is pulmonary embolus (PE). This patient is obviously at high risk, and the findings are classic. If they give you a similar vignette in which the venous pressure is low, it virtually excludes this diagnosis. Arterial blood gases are your first test, and hypoxemia and hypocapnia are the obligatory findings (in their absence, it is not a PE either). CTA is the gold standard diagnostic test of choice. Therapy starts with heparinization. The very active natural fibrinolytic mechanism in the lung makes the use of clot-busters less clearly indicated, but if PEs recur during anticoagulation, a vena cava filter (Greenfield) is needed.

This man already had a PE. It is too late to think about preventive measures for him, but read the narrative portion of this book for a brief review of those.

Other Pulmonary Complications

12. An awake intubation is being attempted in a drunk and combative man who has sustained gunshot wounds to the abdomen. In the struggle the patient vomits and aspirates a large amount of gastric contents with particulate matter.

This is every anesthesiologist’s nightmare. Aspiration can kill a patient right away, or produce chemical injury to the tracheobronchial tree (“chemical pneumonitis”). This is an inflammatory problem, not an infectious one, so antibiotics are not immediately indicated. However, the irritation results in pulmonary failure and increases the risk of secondary pneumonia. Prevention is best (empty stomach, antacids before induction), but once it happens, lavage and removal of particulate matter is the first step (with the help of bronchoscopy), followed by bronchodilators and respiratory support. Steroids are not useful.

13. A trauma patient is undergoing a laparotomy for a seat belt injury. He also sustained several broken ribs. Halfway through the case it becomes progressively difficult to “bag” him, and his BP steadily declines, while the CVP steadily rises. There is no evidence of intraabdominal bleeding.

This patient has intraoperative tension pneumothorax. The lung was punctured by one of the broken ribs. The best approach is immediate thoracic needle decompression. The formal chest tube can be placed later.
Disorientation/Coma

14. Eighteen hours after major surgery, a patient becomes disoriented.

This is a very brief vignette, but out of the very long list of things that can produce post-op disorientation, the most lethal one if not promptly recognized and treated is hypoxia. So, unless it is clear from the vignette that we can blame metabolic problems (uremia, hyponatremia, hypernatremia, ammonium, hyperglycemia, delirium tremens [DTs], or our own medications), the safest thing to ask for first is blood gases.

15. In the second week of a stormy, complicated postoperative period in a young patient with multiple gunshot wounds to the abdomen, he becomes progressively disoriented and unresponsive. He has bilateral pulmonary infiltrates, and a \(PO_2 \) of 65 while breathing 40% oxygen. He has no evidence of CHF.

The reason for the mental changes are obvious: he is not getting enough oxygen in his blood, but the rest of the findings specifically identify adult respiratory distress syndrome (ARDS). The centerpiece of therapy for ARDS is PEEP, with care not to use too much volume, which may damage the lungs. Another issue is why does he have ARDS? In an older patient we can blame preexisting lung disease, and when there has been trauma to the chest, that can be the cause—but when those are not present, we have to think of sepsis as the precipitating event.

16. An alcoholic man checks in to have an elective colon resection for recurrent diverticular bleeding. He swears to everyone that he has not touched a drop of alcohol for the past 6 months. On postoperative day 3 he becomes disoriented and combative, and claims to see elephants crawling up the walls. The wife then reveals that the patient actually drank heavily up until the day of hospital admission.

These are obviously DTs. The standard management relies on benzodiazepines. In the past surgeons used IV alcohol (5% alcohol/5% dextrose), but this is most uncommon today. Most hospitals allow oral intake of alcohol for such scenarios.

17. Twelve hours after completion of an abdominal hysterectomy, a 42-year-old woman becomes confused and lethargic, complains of severe headache, has a grand mal seizure, and finally goes into a coma. Review of the chart reveals that an order for D5W, to run in at 125 ml/h, was mistakenly implemented as 525 ml/h.

This is a classic example of water intoxication. The laboratory finding that will confirm it will be a very low serum sodium concentration. Mortality for this iatrogenic condition is very high, and therapy is very controversial. Very careful use of hypertonic saline is probably a reasonable answer.
18. Eight hours after completion of a trans-sphenoidal hypophysectomy for a prolactinoma, a young woman becomes lethargic, confused, and eventually comatose. Review of the record shows that her urinary output since surgery has averaged 600 ml/h, although her IV fluids are going in at 100 ml/h.

The reverse of the previous vignette. Large, rapid, unreplaced water loss from surgically induced diabetes insipidus. The lab will show significant hypernatremia, and the safest therapy would use 1/3 or 1/4 normal saline to replace the lost fluid, although in this acute setting D5W would be acceptable.

19. A cirrhotic patient goes into coma after an emergency portocaval shunt for bleeding esophageal varices.

Brief but obvious: the culprit here will be ammonia. If there is also hypokalemic alkalosis and high cardiac output–low peripheral resistance, overt liver failure has occurred.

Urinary Complications

20. Six hours after undergoing a hemorrhoidectomy under spinal anesthesia, a 62-year-old man complains of suprapubic discomfort and fullness. He feels the need to void but has not been able to do so since the operation. There is a palpable suprapubic mass that is dull to percussion.

By far the most common post-op urinary problem is inability to void, and men are the likely victims. In-and-out bladder catheterization is the answer. Some authors recommend leaving an indwelling Foley catheter if catheterization has to be repeated in 6 hours, others wait until it has been done twice before suggesting it.

21. A man has had an abdominoperineal resection for cancer of the rectum, and an indwelling Foley catheter was left in place after surgery. The nurses are concerned because even though his vital signs have been stable, his urinary output in the last 2 hours has been zero.

In the presence of renal perfusing pressure, an output of zero invariably means a mechanical problem. In this case the catheter is plugged or kinked. More ominous—but much more rare—possibilities include both ureters having been tied off or thrombosis of the renal vessels.

22. Several hours after completion of multiple surgery for blunt trauma in an average-size adult, the urinary output is reported in 3 consecutive hours as 12 ml/h, 17 ml/h, and 9 ml/h. His BP has hovered around 95 to 130 systolic during that time.
His kidneys are perfusing, but he is either behind in fluid replacement or has gone into renal failure. A fluid challenge would suggest which situation exists. A bolus of 500 ml given in 10–20 minutes should produce diuresis in the dehydrated patient but not in renal failure.

The more elegant way, however, and the answer for the exam, is to look at urinary sodium. The dehydrated patient will be retaining sodium, and the urine will be <10 or 20 mEq/L. In renal failure the figure will be >40. An even more elegant calculation is the fractional excretion of sodium, which in renal failure >1.

Abdominal Distention

23. Four days after exploratory laparotomy for blunt abdominal trauma with resection and reanastomosis of damaged small bowel, a patient has abdominal distention, without abdominal pain. He has no bowel sounds and has not passed flatus, and his abdominal x-rays show dilated loops of small bowel without air fluid levels.

Probably paralytic ileus, which can be expected under the circumstances. NPO and NG suction should be continued until peristaltic activity resumes. Should resolution not be forthcoming, mechanical obstruction should be ruled out with a CT scan of the abdomen that will demonstrate a transition point between the proximal, dilated bowel and the distal collapsed bowel at the site of obstruction. Hypokalemia should also be ruled out.

24. An elderly gentleman with Alzheimer’s disease who lived in a nursing home is operated on for a fractured femoral neck. On postoperative day 5 it is noted that his abdomen is grossly distended and tense, but not tender. He has occasional bowel sounds. X-rays show a very distended colon and a few distended loops of small bowel.

In the elderly who are not very active to begin with and are now further immobilized, massive colonic dilatation (Ogilvie syndrome) is commonly seen. Correct the fluids and electrolytes first. Neostigmine can dramatically improve colon motility, but it has significant side effects. Colonoscopy is a common successful treatment.

Wound

25. On postoperative day 5 after a laparotomy, it is noted that large amounts of salmon-colored clear fluid are soaking the dressings.

The classic presentation of a wound dehiscence. The patient must go to the OR for repair.
26. The nurses report that on postoperative day 5 after a laparotomy, a patient has been draining clear pink fluid from his abdominal wound. A medical student removes the dressing and asks the patient to sit up so he can get out of bed and be helped to the treatment room. When the patient complies, the wound opens widely and a handful of small bowel rushes out.

This one is evisceration, a rather serious problem. Put the patient back in bed, cover the bowel with large moist dressings soaked in warm saline (moist and warm are the key), and make arrangements to rush him to the OR for reclosure.

27. On postoperative day 7, the inguinal incision of an open inguinal herniorrhaphy is found to be red, hot, tender, and boggy (fluctuant). The patient reports fever for the past 2 days.

Wound infection. This far advanced there is sure to be pus, and the wound has to be opened. If it were just a bit of redness early on, antibiotics might still be able to abort the process. If there is doubt as to the presence or absence of pus, a sonogram is diagnostic.

28. Nine days after a sigmoid resection for cancer, the wound drains a brown fluid that everybody recognizes as feces. The patient is afebrile, and otherwise doing quite well.

A fecal fistula, if draining to the outside, is inconvenient but not serious. It will close eventually with little or no therapy. If feces were accumulating on the inside, the patient would be febrile and sick, and would need drainage and probably a diverting colostomy.

29. Eight days after a difficult hemigastrectomy and gastroduodenostomy for gastric ulcer, a patient begins to leak 2–3 L of green fluid per day through the right corner of his bilateral subcostal abdominal wound.

If patient is febrile, with an acute abdomen, and sick, he needs to be explored. The problem is serious. However, if all the gastric and duodenal contents are leaking to the outside, further immediate surgery is not the answer.

- Provide massive fluid and electrolyte replacement
- Provide nutritional support, with elemental nutrients delivered into the upper jejunum; total parenteral nutrition [TPN] is second choice but less effective with greater potential risk

The goal is eventual healing without having to operate again. The abdominal wall has to be protected from the digestion caused by the leaking GI fluids. Somatostatin or octreotide may diminish the volume of GI fluid loss.
Fluids and Electrolytes

30. Eight hours after completion of a trans-sphenoidal hypophysectomy for a prolactinoma, a young woman becomes lethargic, confused, and eventually comatose. Review of the record shows that her urinary output since surgery has averaged 600 ml/h, although her IV fluids are going in at 100 ml/h. A serum sodium determination shows a concentration of 152 mEq/L.

An elevated concentration of serum sodium invariably means that the patient has lost pure water (or hypotonic fluids). Every 3 mEq/L above the normal of 140 represents 1 L lost. This woman is 4 L shy, which fits her history of a diuresis of 500 ml/h more than the intake she is getting. As previously noted, she could be given 4 L of D5W, but many would prefer a similar amount of 5% dextrose in half normal saline, or 5% dextrose in one-third normal saline.

31. Several friends go on a weekend camping trip in the desert. On day 2 they lose their way as well as all connection via electronic devices. They are rescued a week later. One of them is brought to your hospital—awake and alert—with obvious clinical signs of dehydration. Serum sodium concentration is 155 mEq/L.

This gentleman has also lost water, about 5 L, but has done so slowly, by pulmonary and cutaneous evaporation over 5 days. He is hypernatremic, but his brain has adapted to the slowly changing situation. Were he to be given 5 L of D5W, the rapid correction of his hypertonicity would be dangerous. Five liters of 5% dextrose in half normal saline would be a much safer plan.

32. Twelve hours after completion of an abdominal hysterectomy, a 42-year-old woman becomes confused and lethargic, complains of severe headache, has a grand mal seizure, and finally goes into coma. Review of the chart reveals that an order for D5W to run in at 125 ml/h was mistakenly implemented as 525 ml/h. Her serum sodium concentration is 122 mEq/L.

In the surgical patient with normal kidneys, hyponatremia invariably means that water (without sodium) has been retained, thus the body fluids have been diluted. In this case a lot of IV water was given, and the antidiuretic hormone (ADH) produced as part of the metabolic response to trauma has held onto it. Rapidly developing hyponatremia (water intoxication) is a big problem (the brain has no time to adapt), and once it has occurred, the therapy is very controversial. Most clinicians would recommend hypertonic saline (either 3% or 5%) given 100 ml at a time, and reassessing the situation (clinical and lab) before each succeeding dose.

33. A 62-year-old woman comes in for her scheduled chemotherapy administration for her metastatic cancer of the breast. Although she is quite asymptomatic, the lab reports that her serum sodium concentration is 122 mEq/L.
In this setting, water has also been retained (by ADH produced by the tumor), but so slowly that the brain has kept up with the developing hypotonicity. Rapid correction would be lethal and ill advised. Water restriction, on the other hand, will slowly allow the abnormality to be reversed.

34. A 68-year-old woman comes in with an obvious incarcerated umbilical hernia. She has gross abdominal distension, is clinically dehydrated, and reports persistent fecaloid vomiting for the past 5 days. She is awake and alert, and her serum sodium concentration is 118 mEq/L.

Hyponatremia means water retention, but in this case the problem began with loss of isotonic (sodium-containing) fluid from her gut. As her extracellular fluid became depleted, she has retained whatever water has come her way: tea and Coke that she still was able to drink early on, and endogenous water from catabolism. Thus she is now volume-depleted at the same time that she is hyponatremic (hypotonic). She desperately needs volume replacement, but we do not want to correct her hypotonicity too quickly. Thus lots of isotonic fluids (start with 1 or 2 L/h of normal saline or Ringer’s lactate, depending on her acid-base status) would be the way to go (use clinical variables to fine-tune). Once her volume is replenished, she will unload the retained water and correct her own tonicity.

35. A patient with severe diabetic ketoacidosis comes in with profound dehydration and a serum potassium concentration 5.2 mEq/L. After several hours of vigorous therapy with insulin and IV fluids (saline, without potassium), his serum potassium concentration is reported as 2.9.

Severe acidosis (or alkalosis, for that matter) results in the loss of potassium in the urine. While the acidosis is present, though, the serum concentration is high because potassium has come out of the cells in exchange for hydrogen ion. Once the acidosis is corrected, that potassium rushes back into the cells, and the true magnitude of the potassium loss becomes evident. He obviously needs potassium. (Under most circumstances, 10 mEq/h is a safe “speed limit.” In this setting, 20 mEq/h can be justified.)

36. An 18-year-old woman slips and falls under a bus, and her right leg is crushed. On arrival at the ED she is hypotensive, and she receives several units of blood. Over the next several hours she is in and out of hypovolemic shock, and she develops acidosis. Her serum potassium concentration, which was 4.8 mEq/L at the time of admission, is reported to be 6.1 a few hours later.

Let’s count the ways in which potassium has been pouring into her blood: it came out of the crushed leg, it came in with the blood transfusions, and it came from the cells when she became acidic. With low perfusing pressure (in and out of shock), the kidneys have not been doing a great job of eliminating it. We will have to do that. In addition to improving her BP, we can “push potassium into the cells” with insulin and 50% dextrose. We can help dispose of it with exchange resins, and we can neutralize it with IV calcium. Hemodialysis is the ultimate weapon.
37. An elderly alcoholic, diabetic man, with marginal renal function, sustains multiple trauma while driving under the influence of alcohol. In the course of his resuscitation and multiple surgeries, he is in and out of shock for prolonged periods of time. Blood gases show a pH of 7.1 and Pco₂ of 36. His serum electrolytes are sodium 138, chloride 98, and bicarbonate 15.

This man has every reason to develop metabolic acidosis, and he will do so by retention of fixed acids (rather than by loss of bicarbonate). The main driving force in this case is the state of shock, with lactic acid production; but the diabetes, alcohol, and bad kidney are also contributing.

The lab shows that indeed he has metabolic acidosis (low pH and low bicarbonate), he is trying to compensate by hyperventilating (low Pco₂), and he shows the classic anion gap (the sum of his chloride and bicarbonate is 25 mEq shy of the serum sodium concentration—instead of the normal 10 to 15).

As for the therapy, the classic treatment for metabolic acidosis is either bicarbonate or a bicarbonate precursor such as lactate or acetate. But in cases like this, reliance on such therapy tends to eventually produce alkalosis once the low flow state is corrected. Thus the emphasis here should be in fluid resuscitation. However, the choice of fluid is critical: a lot of saline would not be a good idea (too much chloride). A lot of Ringer’s lactate would be a better choice.

38. A patient who has had a subtotal gastrectomy for cancer, with a Billroth 2 reconstruction, develops a “blowout” of the duodenal stump, and a subsequent duodenal fistula. For the past 10 days he has been draining 750–1,500 mL/d of green fluid. His serum electrolytes show sodium 132, chloride 104, and bicarbonate 15. The pH in his blood is 7.2, with Pco₂ 35.

Again, metabolic acidosis, but now with a normal anion gap. He has been losing lots of bicarbonate out of the fistula. The problem would not have developed if his IV fluid replacement had contained lots of bicarbonate (or lactate, or acetate), but the use of those agents is indicated now for the therapy of the existing abnormality.

39. A patient with severe peptic ulcer disease develops pyloric obstruction and has protracted vomiting of clear gastric contents (i.e., without bile) for several days. His serum electrolytes show sodium 134, chloride 82, potassium 2.9, and bicarbonate 34.

The classic hypochloremic, hypokalemic, metabolic alkalosis secondary to loss of acid gastric juice. This man needs to be rehydrated (choose saline rather than Ringer’s lactate), and he needs lots of potassium chloride (10 mEq/h will give him plenty, and will be a safe rate). Very rarely is ammonium chloride (or diluted, buffered hydrochloric acid) needed.
DISEASES OF THE GASTROINTESTINAL SYSTEM

Upper Gastrointestinal System

Esophagus

1. A 62-year-old man describes epigastric and substernal pain that he cannot characterize well. At times his description sounds like gastroesophageal reflux, at times it does not. Sonogram of the gallbladder, ECG, and cardiac enzymes have been negative.

What is it? The question is, is it gastroesophageal reflux?

Diagnosis. Esophageal pH monitoring.

2. A 54-year-old obese man gives a history of burning retrosternal pain and heartburn that is brought about by bending over, wearing tight clothing, or lying flat in bed at night. He gets symptomatic relief from antacids but has never been formally treated. The problem has been present for many years, and seems to be progressing.

What is it? The description is classic for gastroesophageal reflux disease (GERD).

Management. The diagnosis is not really in doubt, and with that clinical picture alone thousands of patients are treated with symptomatic medication—but the academicians writing exam questions would want you to recommend endoscopy and biopsies to assess the extent of esophagitis and potential complications, specifically, Barrett’s esophagus.

3. A 54-year-old obese man gives a history of burning retrosternal pain and heartburn that is brought about by bending over, wearing tight clothing, or lying flat in bed at night. He gets symptomatic relief from antacids but has never been formally treated. The problem has been present for many years, and seems to be progressing. Endoscopy shows severe peptic esophagitis and Barrett’s esophagus.
Management for Barrett’s has evolved, and the diagnosis alone is no longer considered an indication for surgery. In this patient who has not had formal medical management, that should be the first step. Continued symptoms would warrant consideration for fundoplication. Dysplastic changes would require resection.

4. A 54-year-old obese man gives a history of many years of burning retrosternal pain and heartburn that is brought about by bending over, wearing tight clothing, or lying flat in bed at night. He gets brief symptomatic relief from antacids, but in spite of faithful adherence to a strict program of medical therapy, the process seems to be progressing. Endoscopy shows severe peptic esophagitis with no dysplastic changes.

Management: He has failed medical management, and has no dysplastic changes. He needs a fundoplication. Whether or not it is performed, he needs endoscopy surveillance with biopsies to follow progression of the esophagitis.

5. A 47-year-old woman describes difficulty swallowing, which she has had for many years. She says that liquids are more difficult to swallow than solids, and she has learned to sit up straight and wait for the fluids to “make it through.” Occasionally she regurgitates large amounts of undigested food.

It sure sounds like achalasia. The diagnosis is suggested by a barium swallow (usually the first test) and confirmed by manometry studies. Endoscopic Botox injection, balloon dilation and surgery are the therapeutic options.

6. A 54-year-old black man with a history of smoking and drinking describes progressive dysphagia that began 3 months ago with difficulty swallowing meat, progressed to other solid foods, then soft foods, and is now evident for liquids as well. He locates the place where the food “sticks” at the lower end of the sternum. He has lost 30 pounds of weight.

A classic for carcinoma of the esophagus (progressive dysphagia, weight loss). Given the detail of race, age, sex, and habits, it is probably squamous cell cancer. Had the history been longstanding reflux, it would suggest adenocarcinoma.

The diagnosis is made the same way for both: endoscopy and biopsies—but the endoscopist wants a “road map” first. The sequence is barium swallow, then endoscopy with U/S and biopsies, then CT scan (to assess extent and limitations to respectability such as metastatic disease).
7. A 24-year-old man spends the night cruising bars and drinking heavily. In the wee hours of the morning he is quite drunk, and he starts vomiting repeatedly. He initially brings up gastric contents only, but eventually he vomits bright red blood.

8. A 24-year-old man spends the night cruising bars and drinking heavily. In the wee hours of the morning he is quite drunk and starts vomiting repeatedly. Eventually he has a particularly violent episode of vomiting, and he feels a very severe, wrenching epigastric pain and low sternal pain of sudden onset. On arrival at the ED 1 hour later he still has the pain, is diaphoretic, has fever and leukocytosis, and looks quite ill.

What is it? Two vignettes that have the same beginnings, with one leading to bleeding (Mallory-Weiss tear), and the other one to perforation (Boerhaave syndrome).

Management. For the patient who is bleeding, endoscopy to ascertain the diagnosis and occasionally treat. Bleeding will typically be arterial and brisk, but self-limiting. Photocoagulation can be used if needed, and rarely a discreet mucosal tear is identified that can be clipped.

The patient with perforation is facing a potentially lethal problem. Gastrografin swallow will confirm the diagnosis, and emergency surgical repair will follow. Prognosis depends on time elapsed between perforation and treatment, and degree of mediastinal contamination that has occurred.

9. A 66-year-old man has an upper GI endoscopy done as an outpatient to check on the progress of medical therapy for gastric ulcer. Six hours after the procedure, he returns complaining of severe, constant retrosternal pain that began shortly after he went home. He looks prostrate and very ill, is diaphoretic, has a fever of 104°F, and a respiratory rate of 30. There is a hint of subcutaneous emphysema at the base of the neck.

What is it? Instrumental perforation of the esophagus. The setting plus the air in the tissues are virtually diagnostic. Do Gastrografin swallow and emergency surgical repair. Severe pain after endoscopy is a perforation until proven otherwise.
Stomach

10. A 72-year-old man has lost 40 pounds of weight over a 2- or 3-month period. He gives a history of anorexia for several months, and of vague epigastric discomfort for the past 3 weeks.

What is it? Cancer of the stomach is a possibility, along with other etiologies.

Diagnosis. Imaging studies followed by endoscopy and biopsies.

Management. Surgery will be done for cure if possible, for palliation if not.

Mid and Lower Gastrointestinal System

Small bowel and appendix

11. A 54-year-old man has had colicky abdominal pain and protracted vomiting for several days. He has developed progressive moderate abdominal distention, and has not had a bowel movement or passed any gas for 5 days. He has high-pitched, loud bowel sounds that coincide with the colicky pain, and x-rays show distended loops of small bowel and air-fluid levels. Five years ago he had an exploratory laparotomy for a gunshot wound of the abdomen.

What is it? Mechanical intestinal obstruction, caused by adhesions.

Management. NG suction, IV fluids, and careful observation.

12. A 54-year-old man has had colicky abdominal pain and protracted vomiting for several days. He has developed progressive moderate abdominal distention, and has not had a bowel movement or passed any gas for 5 days. He has high-pitched, loud bowel sounds that coincide with the colicky pain, and x-rays show distended loops of small bowel and air-fluid levels. Five years ago he had an exploratory laparotomy for a gunshot wound of the abdomen. Six hours after being hospitalized and placed on NG suction and IV fluids, he develops fever, leukocytosis, abdominal tenderness, and rebound tenderness.

What is it? He has strangulated obstruction, i.e., a loop of bowel is dying—or dead—from compression of the mesenteric blood supply.

Management. Emergency surgery.
13. A 54-year-old man has had colicky abdominal pain and protracted vomiting for several days. He has developed progressive moderate abdominal distention, and has not had a bowel movement or passed any gas for 5 days. He has high-pitched, loud bowel sounds that coincide with the colicky pain, and x-rays show distended loops of small bowel and air-fluid levels. On physical examination a groin mass is noted, and he explains that he used to be able to “push it back” at will, but for the past 5 days has been unable to do so.

What is it? Mechanical intestinal obstruction caused by an incarcerated (potentially strangulated) hernia.

Management. After suitable fluid replacement he needs urgent surgical intervention.

14. A 55-year-old woman is being evaluated for protracted diarrhea. On further questioning she gives a bizarre history of episodes of flushing of the face, with expiratory wheezing. A prominent jugular venous pulse is noted on her neck.

What is it? Carcinoid syndrome.

Diagnosis. Twenty-four-hour urinary collection for 5-hydroxy-indolacetic acid, perform a CT scan to assess liver metastasis, and plan resection based upon the results.

15. A 22-year-old man develops anorexia followed by vague periumbilical pain that several hours later becomes sharp, severe, constant, and well localized to the right lower quadrant of the abdomen. He has abdominal tenderness, guarding, and rebound to the right and below the umbilicus, temperature 99.6° F, and white blood cell count 12,500, with neutrophilia and immature forms.

What is it? A classic for acute appendicitis.

Management. Perform emergency appendectomy. If the case had not been typical, do CT scan. In children and women of child-bearing age for whom the presentation is not typical, U/S can also make the diagnosis and prevent radiation exposure,
Colon

16. A 59-year-old man is referred for evaluation because he has been fainting at his job where he operates heavy machinery. He is pale and gaunt, but otherwise his physical examination is remarkable only for 4+ occult blood in the stool. Lab shows hemoglobin 5 g/dl.

What is it? Cancer of the right colon.

Diagnosis. Colonoscopy and biopsies.

Management. Blood transfusions and eventually right hemicolectomy.

17. A 56-year-old man has bloody bowel movements. The blood coats the outside of the stool, and has been present on and off for several weeks. For the past 2 months he has been constipated, and his stools have become of narrow caliber.

What is it? Cancer of the distal, left side of the colon.

Diagnosis. Endoscopy and biopsies. If given choices, start with flexible proctosigmoidoscopy (with the 45-cm or 60-cm instrument that any MD can handle). Eventually full colonoscopy (to rule out a second primary) will be needed before surgery.

18. A 77-year-old man has a colonoscopy because of rectal bleeding. A villous adenoma is found in the rectum, and several adenomatous polyps are identified in the sigmoid and descending colon.

The issue with polyps is which ones are premalignant, and thus need to be excised. Premalignant include, in descending order of potential for malignant conversion, familial polyposis (and all variants, such as Gardner), familial multiple inflammatory polyps, villous adenoma, and adenomatous polyp. Benign polyps, which can be left alone, include juvenile, Peutz-Jeghers, isolated, inflammatory, and hyperplastic.

19. A 42-year-old man has suffered from chronic ulcerative colitis for 20 years. He weighs 90 pounds and has had at least 40 hospital admissions for exacerbations of the disease. Because of a recent relapse, he has been placed on high-dose steroids and Imuran. For the past 12 hours he has had severe abdominal pain, temperature of 104°F, and leukocytosis. He looks ill and “toxic.” His abdomen is tender, particularly in the epigastric area, and he has muscle guarding and rebound. X-rays show a massively distended transverse colon, and there is gas within the wall of the colon.
What is it? Toxic megacolon.

Management. Emergency surgery for the toxic megacolon, but the case illustrates all of the other indications for surgery in chronic ulcerative colitis. The involved colon has to be removed, and that always includes the rectal mucosa.

20. A 27-year-old man is recovering from an appendectomy for gangrenous acute appendicitis with perforation and periappendicular abscess. He has been receiving Clindamycin and Tobramycin for 7 days. Eight hours ago he developed watery diarrhea, crampy abdominal pain, fever, and leukocytosis.

What is it? Pseudomembranous colitis from overgrowth of Clostridium difficile.

Diagnosis. The diagnosis relies primarily on identification of toxin in the stools. Cultures take too long, and proctosigmoidoscopic exam does not always find typical changes.

Management. Clindamycin has to be stopped, and antidiarrheal medications (diphenoxylate combined with atropine, paregoric) should not be used. Metronidazole is the usual drug of choice. An alternate drug is vancomycin. Failure of medical management, with a marked leukocytosis and serum lactate above 5 mmol/L, is an indication for emergency colectomy.

Anorectal Disease

21. A 60-year-old man known to have hemorrhoids reports bright red blood on the toilet paper after evacuation.

22. A 60-year-old man known to have hemorrhoids complains of anal itching and discomfort, particularly toward the end of the day. He has mild perianal pain when sitting down and finds himself sitting sideways to avoid the discomfort.

What is it? The rule is that internal hemorrhoids bleed but do not hurt, whereas external hemorrhoids hurt but do not bleed.

Management. It is not reassurance and hemorrhoid remedies prescribed over the phone! In all anorectal problems, cancer has to be ruled out first. The correct answer is proctosigmoidoscopic examination (digital rectal exam, anoscopy, and flexible sigmoidoscope). Once the diagnosis has been confirmed, internal hemorrhoids can be treated with rubber-band ligation, whereas external hemorrhoids or prolapsed hemorrhoids require surgery.
23. A 23-year-old woman describes exquisite pain with defecation and blood streaks on the outside of the stools. Because of the pain she avoids having bowel movements and when she finally does, the stools are hard and even more painful. Physical examination cannot be done, as she refuses to allow anyone to even draw apart her buttocks to look at the anus for fear of precipitating the pain.

A classic description of anal fissure. Even though the clinical picture is classic, cancer still has to be ruled out. Examination under anesthesia is the correct answer. Medical management includes stool softeners and topical agents. A tight sphincter is believed to cause and perpetuate the problem, and injections with paralyzing agents (botulin toxin) have been proposed. If it gets to surgery, lateral internal sphincterotomy is the operation of choice.

Fissures are preferably treated by calcium channel blockers such as diltiazem ointment 2% topically 3x/daily for 6 weeks, or cortisone suppositories. They have an 80-90% success rate. Botox has a 50% rate of healing.

24. A 28-year-old man is brought to the office by his mother. In the last 4 months he has had 3 operations—done elsewhere—for a perianal fistula, though after each one the area has not healed, and in fact the surgical wounds have become bigger. The patient now has multiple unhealing ulcers, fissures, and fistulas all around the anus, with purulent discharge. There are no palpable masses.

Another classic. The perianal area has a fantastic blood supply and heals beautifully even though feces bathe the wounds. When it does not, immediately think of Crohn’s disease.

You must still rule out malignancy (anal cancer does not heal either if not completely excised). A proper examination with biopsies is needed. The specimens should confirm Crohn’s. Fistulotomy is not recommended. Most fistulae will get draining setons which will ensure adequate drainage of infection while medical management controls the disease. Remicade in particular has shown to help heal these fistulae.

25. A 44-year-old man shows up in the ED at 11 pm with exquisite perianal pain. He cannot sit down, reports that bowel movements are very painful, and has been having chills and fever. Physical examination shows a hot, tender, red, fluctuant mass between the anus and the ischial tuberosity.

Another very common problem: ischiorectal abscess. The treatment for all abscesses is drainage. This one is no exception. But cancer also has to be ruled out. Thus the best option would be an answer that offers examination under anesthesia and incision and drainage. If the patient is diabetic, incision and drainage would have to be followed by very close in-hospital follow-up.
26. A 62-year-old man complains of perianal discomfort and reports that there are fecal streaks soiling his underwear. Four months ago he had a perirectal abscess drained surgically. Physical examination shows a perianal opening in the skin, and a cordlike tract can be palpated going from the opening toward the inside of the anal canal. Brownish purulent discharge can be expressed from the tract.

What is it? A pretty good description of fistula-in-ano.

Management. First rule out cancer with proctosigmoidoscopy (necrotic tumors can drain). Then schedule elective fistulotomy.

27. A 55-year-old HIV-positive man has a fungating mass growing out of the anus, and rock-hard, enlarged lymph nodes in both groins. He has lost a lot of weight, and looks emaciated and ill.

What is it? Squamous cell carcinoma of the anus.

Diagnosis. Biopsies of the fungating mass.

Management. Nigro protocol is combined preoperative chemotherapy and radiation for 5 weeks with 90% cure rate. Surgery is done only if Nigro fails to cure the cancer.

Gastrointestinal Bleeding

28. A 33-year-old man vomits a large amount of bright red blood.

What is it? There is not a lot of information here, but you can already define the territory where the bleeding is taking place: from the tip of the nose to the ligament of Treitz.

Diagnosis. Don’t forget to look at the mouth and nose and then proceed with upper GI endoscopy.

29. A 33-year-old man has had 3 large bowel movements that he describes as made up entirely of dark red blood. The last one was 20 minutes ago. He is diaphoretic and pale, and has a BP of 90/70 mm Hg and pulse rate of 110.

The point of the vignette is that something needs to be done to define the area from which he is bleeding: with the available information, it could be from anywhere in the GI tract (a vast territory to investigate). Fortunately, he seems to be bleeding right now, thus the first diagnostic move is to place an NG tube and aspirate after you have looked at the nose and mouth.
30. A 33-year-old man has had 3 large bowel movements that he describes as made up entirely of dark red blood. The last one was 20 minutes ago. He is diaphoretic and pale, and has a BP of 90/70 mm Hg and a pulse rate of 110. An NG tube returns copious amounts of bright red blood.

What is it? The area has been defined (tip of the nose to ligament of Treitz). Proceed with endoscopy.

31. A 65-year-old man has had 3 large bowel movements that he describes as made up entirely of dark red blood. The last one was 20 minutes ago. He is diaphoretic and pale, and has a BP of 90/70 mm Hg and a pulse rate of 110. An NG tube returns clear, green fluid without blood.

What is it? If the NG tube had returned blood, the boundaries would have been tip of the nose to ligament of Treitz. Clear fluid, without bile, would have exonerated the area down to the pylorus, and if there is bile in the aspirate, down to the ligament of Treitz—provided you are sure that the patient is bleeding now. That’s the case here. So, he is bleeding from somewhere distal to the ligament of Treitz. Further definition of the actual site is no longer within reach of upper endoscopy, and except for anoscopy looking for bleeding hemorrhoids, lower endoscopy is notoriously unrewarding during massive bleeding. If he is bleeding at >2 ml/min (about 1 U of blood every 4 hours), some physicians go straight to the emergency angiogram. Those same physicians would wait and do a colonoscopy later if the bleeding is <0.5 mL/min, and they would resort to a tagged red-cell study for the cases in between. There is another school of thought that always begins with the tagged red-cell study, regardless of estimated rate of bleeding. If the question offers that choice in this setting (upper GI source has been ruled out, and bleeding hemorrhoids have been sought), it would be safe to pick it.

32. A 72-year-old man had 3 large bowel movements that he describes as made up entirely of dark red blood. The last one was 2 days ago. He is pale, but has normal vital signs. An NG tube returns clear, green fluid without blood.

What is it? The clear aspirate is meaningless because he is not bleeding right now. So the guilty territory can be anywhere from the tip of the nose to the anal canal. Across the board, 75% of all GI bleeding is upper, and virtually all the causes of lower GI bleeding are diseases of the old: diverticulosis, polyps, cancer, and angiodysplasias. So, when the patient is young, the odds overwhelmingly favor an upper site. When the patient is old, the overall preponderance of upper is balanced by the concentration of lower causes in old people—so it could be anywhere.

Diagnosis. Angiography is not the first choice for slow bleeding or bleeding that has stopped. Even the proponents of radionuclide studies don’t have much hope if the patient bled 3 days ago. The first choice now is endoscopies, both upper and lower.
33. A 7-year-old boy passes a large bloody bowel movement.

What is it? In this age group, Meckel diverticulum leads the list.

Diagnosis. By radioactively labeled technetium scan (not the one that tags red cells, but the one that identifies gastric mucosa).

34. A 41-year-old man has been in the ICU for 2 weeks being treated for idiopathic hemorrhagic pancreatitis. He has had several percutaneous drainage procedures for pancreatic abscesses, chest tubes for pleural effusions, and bronchoscopies for atelectasis. He has been in and out of septic shock and respiratory failure several times. Ten minutes ago he vomited a large amount of bright red blood, and as you approach him he vomits again what looks like another pint of blood.

What is it? In this setting it has to be stress ulcer.

Management. It should have been prevented by keeping the pH of the stomach above 4 with H2 blockers, antacids, or both; but once the bleeding takes place, the diagnosis is made as usual with endoscopy. Treatment will be difficult (start with endoscopic attempts—laser and such), and it may require angiographic embolization of the left gastric artery.

Acute Abdomen

35. A 59-year-old man arrives in the ED at 2 AM, accompanied by his wife who is wearing curlers on her hair and a robe over her nightgown. He has abdominal pain that began suddenly about 1 hour ago, and is now generalized, constant, and extremely severe. He lies motionless on the stretcher, is diaphoretic, and has shallow, rapid breathing. His abdomen is rigid, very tender to deep palpation, and has guarding and rebound tenderness in all quadrants.

What is it? Definitely an acute abdomen. The time and circumstances attest to the severity and rapid onset of the problem. The physical findings are impressive. He has generalized acute peritonitis. The best bet is perforated peptic ulcer—but we do not need to prove that.

Management. The acute abdomen does not need a precise diagnosis to proceed with surgical exploration. Lower lobe pneumonia and MI have to be ruled out with chest x-ray and ECG, and it would be nice to have a plain x-ray or CT scan of the abdomen and a normal lipase—but the best answer of this vignette should be prompt emergency exploratory laparotomy.
36. A 62-year-old man with cirrhosis of the liver and ascites presents with generalized abdominal pain that started 12 hours ago. He now has moderate tenderness over the entire abdomen, with some guarding and equivocal rebound. He has mild fever and leukocytosis.

What is it? Peritonitis in the cirrhotic with ascites, or the child with nephrosis and ascites, could be spontaneous bacterial peritonitis—which does not need surgery—rather than acute peritonitis secondary to an intraabdominal catastrophe that requires emergency operation. This is very uncommon.

Diagnosis. Cultures of the ascitic fluid (aspirate via paracentesis) will yield a single organism. Treatment will be with the appropriate antibiotics.

37. A 43-year-old man develops excruciating abdominal pain at 8:18 PM. When seen in the ED at 8:50 PM, he has a rigid abdomen, lies motionless on the examining table, has no bowel sounds, and is obviously in great pain, which he describes as constant. X-ray shows free air under the diaphragm.

What is it? Acute abdomen plus perforated viscus equals perforated duodenal ulcer in most cases. Although I am exaggerating the sudden onset by giving the exact minute, vignettes of perforated peptic ulcer will have a pretty sharp time of onset.

Management. Emergency exploratory laparotomy.

38. A 44-year-old alcoholic man presents with severe epigastric pain that began shortly after a heavy bout of alcoholic intake, and reached maximum intensity over a period of 2 hours. The pain is constant, radiates straight through to the back, and is accompanied by nausea, vomiting, and retching.

He had a similar episode 2 years ago, for which he required hospitalization.

What is it? Acute pancreatitis.

Diagnosis. Serum amylase and lipase determinations. CT scan will follow if the diagnosis is unclear, or in a day or two if there is no improvement.

Management. NPO, NG suction, IV fluids.
39. A 43-year-old obese mother of 6 children has severe right upper quadrant abdominal pain that began 6 hours ago. The pain was colicky at first, radiated to the right shoulder and around toward the back, and was accompanied by nausea and vomiting. For the past 2 hours the pain has been constant. She has tenderness to deep palpation, muscle guarding, and rebound in the right upper quadrant. Her temperature is 101°F, and she has a WBC count of 16,000. She has had similar episodes of pain in the past brought about by ingestion of fatty food, but they all had been of brief duration and relented spontaneously or with anticholinergic medications.

What is it? Acute cholecystitis.

Diagnosis. Sonogram should be the first choice. If equivocal, an HIDA scan (radionuclide excretion scan) should be done.

Management. Start medical management (antibiotics, NPO, IV fluids) with the intention of doing laparoscopic cholecystectomy within the same hospital admission.

40. A 52-year-old man has right flank colicky pain of sudden onset that radiates to the inner thigh and scrotum. There is microscopic hematuria.

What is it? Ureteral colic (included here for differential diagnosis).

Diagnosis. Specific CT scan for ureteric colic is CT-KUB. This is a noncontrast CT scan that allows for visualization of a ureteric calculus.

41. A 59-year-old woman has a history of 3 prior episodes of left lower quadrant abdominal pain for which she was briefly hospitalized and treated with antibiotics. She began to feel discomfort 12 hours ago, and now she has constant left lower quadrant pain, tenderness, and a vaguely palpable mass.

She has fever and leukocytosis.

What is it? Acute diverticulitis.

Diagnosis. In acute diverticulitis, CT scan is the gold standard investigation. After 6 weeks of cooling off, however, all cases must get a colonoscopy to rule out perforated colon cancer.

Management. Treatment is medical for the acute attack (antibiotics, NPO), but elective sigmoid resection is advisable for recurrent disease (like this woman is having). Percutaneous drainage of abscess is indicated if one is present. Emergency surgery (resection or colostomy) may be needed if she gets worse or does not respond to treatment.
42. An 82-year-old man develops severe abdominal distension, nausea, vomiting, and colicky abdominal pain. He has not passed any gas or stool for the past 12 hours. He has a tympanitic abdomen with hyperactive bowel sounds. X-ray shows distended loops of small and large bowel, and a very large gas shadow that is located in the right upper quadrant and tapers toward the left lower quadrant with the shape of a parrot’s beak.

What is it? Volvulus of the sigmoid.

Management. Endoscopic intervention will relieve the obstruction. Eventually, surgery to prevent recurrences should be considered. If the patient has an acute abdomen, this means dead gut, and laparotomy is mandated.

43. A 79-year-old man with atrial fibrillation develops an acute abdomen. He has a silent abdomen, with diffuse tenderness and mild rebound. There is a trace of blood in the rectal exam. He has acidosis and looks quite sick. X-rays show distended small bowel and distended colon up to the middle of the transverse colon.

What is it? Acute abdomen in an elderly person who has atrial fibrillation brings to mind embolic occlusion of the mesenteric vessels. Acidosis frequently ensues, and blood in the stool is often seen. Unfortunately not much can be done, as the bowel is usually dead. Young, aggressive vascular surgeons would call for an angiogram to perform emergency embolectomy, assuming the case is seen very early before the bowel dies.

Hepatobiliary

Liver

44. A 53-year-old man with cirrhosis of the liver develops malaise, vague right upper quadrant abdominal discomfort, and 20-pound weight loss. Physical examination shows a palpable mass that seems to arise from the left lobe of the liver. α-fetoprotein is significantly elevated.

45. A 53-year-old man develops vague right upper quadrant abdominal discomfort and a 20-pound weight loss. Physical examination shows a palpable liver with nodularity. Two years ago he had a right hemicolectomy for cancer of the ascending colon. His carcinoembryonic antigen (CEA) had been within normal limits right after his hemicolectomy, but is now 10 times normal.
What is it? Both are good descriptions of cancer in the liver, included to remind you that α-fetoprotein goes with primary hepatoma, whereas CEA goes with metastatic tumor from the colon.

Diagnosis. Both would start with CT scan (with contrast) to define location and extent of tumor.

Management. In the primary hepatoma, resection would be performed if a tumor-free anatomic segment can be left behind. In the metastatic tumor, resection is done if there are no other metastases, it is surgically possible, and the primary is relatively slow growing.

46. A 24-year-old woman develops moderate, generalized abdominal pain of sudden onset, and shortly thereafter faints. At the time of evaluation in the ED she is pale, tachycardic, and hypotensive. The abdomen is mildly distended and tender, and she has hemoglobin 7 g/dl. There is no history of trauma. On inquiring as to whether she might be pregnant, she denies the possibility because she has been on birth control pills since she was age 14, and has never missed taking them.

What is it? Bleeding from a ruptured hepatic adenoma, secondary to birth control pills.

Management. It’s pretty clear that she is bleeding into the belly, but CT scan will confirm it and probably show the liver adenoma as well. Surgery will follow. She will not be allowed to take birth control pills in the future.

47. A 44-year-old woman is recovering from an episode of acute ascending cholangitis secondary to choledocholithiasis. She develops fever and leukocytosis and some tenderness in the right upper quadrant. A sonogram reveals a liver abscess.

Not much of a diagnostic challenge here, but the issue is management, and it is included to contrast it with the handling of the patient in the next vignette. This is a pyogenic abscess, it needs to be drained which can usually be done by the radiologists percutaneously, other laparoscopic drainage can be performed.

48. A 29-year-old migrant worker from Mexico develops fever and leukocytosis, as well as tenderness over the liver when the area is percussed. He has mild jaundice and an elevated alkaline phosphatase. Sonogram of the right upper abdominal area shows a normal biliary tree and an abscess in the liver.

What is it? This one is an amebic abscess—very common in Mexico.

Management. Alone among abscesses, this one in most cases does not have to be drained, but can be effectively treated with Metronidazole. Get serology for amebic titers, but don’t wait for the report (it will take 3 weeks). Start the patient on Metronidazole. Prompt improvement will tell you that you are on the right track. When the serologies come back, the patient will be well and your diagnosis will be confirmed. Don’t fall for an option that suggests aspirating the pus and sending it for culture; you cannot grow the ameba from the pus.
Jaundice

49. A 42-year-old woman is jaundiced. She has a total bilirubin of 6, and laboratory reports that the unconjugated, indirect bilirubin is 6 and the direct, conjugated bilirubin is 0. She has no bile in the urine.

What is it? The vignette in the exam will be adorned with other evidence of hemolysis, but you do not need it to make the diagnosis. This is hemolytic jaundice.

Management. Try to figure out what is chewing her red cells.

50. A 19-year-old college student returns from a trip to Cancun, and 2 weeks later develops malaise, weakness, and anorexia. A week later he notices jaundice.

When he presents for evaluation his total bilirubin is 12, with 7 indirect and 5 direct. His alkaline phosphatase is mildly elevated, and the transaminases are very high.

What is it? Hepatocellular jaundice.

Management. Get serologies to confirm diagnosis and type of hepatitis.

51. A patient with progressive jaundice that has been present for 4 weeks is found to have a total bilirubin of 22, with 16 direct and 6 indirect, and minimally elevated transaminases. The alkaline phosphatase was twice the normal value 2 weeks ago, and now is about 6 times the upper limit of normal.

What is it? A generic example of obstructive jaundice.

Management. Sonogram, looking for dilated intrahepatic ducts, possibly dilated extrahepatic ducts as well, and if we get lucky, a finding of gallstones.

52. A 40-year-old obese mother of 5 children presents with progressive jaundice, which she first noticed 4 weeks ago. She has a total bilirubin of 22, with 16 direct and 6 indirect, and minimally elevated transaminases. The alkaline phosphatase is about 6 times the upper limit of normal. She gives a history of multiple episodes of colicky right upper quadrant abdominal pain, brought about by ingestion of fatty food.

What is it? Again, obstructive jaundice, with a good chance of being caused by stones.

Management. Start with the sonogram. If you need more tests after that, endoscopic retrograde cholangiopancreatography (ERCP) is the next move, which could also be used to remove the stones from the common duct. Cholecystectomy will eventually have to be performed.
53. A 66-year-old man presents with progressive jaundice, which he first noticed 6 weeks ago. He has total bilirubin of 22, with 16 direct and 6 indirect, and minimally elevated transaminases. The alkaline phosphatase is about 6 times the upper limit of normal. He has lost 10 pounds over the past 2 months, but is otherwise asymptomatic. A sonogram shows dilated intrahepatic ducts, dilated extrahepatic ducts, and a very distended, thin-walled gallbladder.

What is it? Malignant obstructive jaundice. “Silent” obstructive jaundice is more likely to be caused by tumor (although most patients with pancreatic tumor have dull constant pain). A distended gallbladder is an ominous sign: when stones are the source of the problem, the gallbladder is thick-walled and nonpliable.

Diagnosis. You already have the sonogram. Next move is CT scan. Follow with ERCP if the CT is not diagnostic.

54. A 66-year-old man presents with progressive jaundice, which he first noticed 6 weeks ago. He has a total bilirubin of 22, with 16 direct and 6 indirect, and minimally elevated transaminases. The alkaline phosphatase is about 6 times the upper limit of normal. He is otherwise asymptomatic. A sonogram shows dilated intrahepatic ducts, dilated extrahepatic ducts, and a very distended, thin-walled gallbladder. Except for the dilated ducts, the CT scan is unremarkable. ERCP shows a narrow area in the distal common duct, and a normal pancreatic duct.

What is it? Malignant, but lucky: probably cholangiocarcinoma at the lower end of the common duct. He could be cured with a pancreatoduodenectomy (Whipple operation).

Management. Get brushings of the common duct for cytologic diagnosis.

55. A 64-year-old woman presents with progressive jaundice, which she first noticed 2 weeks ago. She has a total bilirubin of 12, with 8 direct and 4 indirect, and minimally elevated transaminases. The alkaline phosphatase is about 10 times the upper limit of normal. She is otherwise asymptomatic, but is found to be slightly anemic and to have positive occult blood in the stool. A sonogram shows dilated intrahepatic ducts, dilated extrahepatic ducts, and a very distended, thin-walled gallbladder.

What is it? Again malignant, but also lucky. The coincidence of slowly bleeding into the GI tract at the same time that she develops obstructive jaundice points to an ampullary carcinoma, another malignancy that can be cured with radical surgery.

Management. Endoscopy with U/S assistance.
56. A 56-year-old man presents with progressive jaundice, which he first noticed 6 weeks ago. He has a total bilirubin of 22, with 16 direct and 6 indirect, and minimally elevated transaminases. The alkaline phosphatase is about 8 times the upper limit of normal. He has lost 20 pounds over the past 2 months, and has a persistent, nagging mild pain deep into his epigastrium and in the upper back. His sister died at age 44 from a cancer of the pancreas. A sonogram shows dilated intrahepatic ducts, dilated extrahepatic ducts, and a very distended, thin-walled gallbladder.

What is it? Bad news. Cancer of the head of the pancreas. Terrible prognosis.

Diagnosis. Nowadays, endoscopic U/S has become a standard part of the pancreatic head mass work-up. U/S-guided FNAC is increasingly being used for diagnosis. Endoscopic retrograde cholangiopancreatography (ERCP) has a limited role in placing stents to decompress the bile duct if total bilirubin is >20.

Gallbladder

57. A white, obese 40-year-old mother of 5 children gives a history of repeated episodes of right upper quadrant abdominal pain brought about by the ingestion of fatty foods, and relieved by the administration of anticholinergic medications. The pain is colicky, radiates to the right shoulder and around to the back, and is accompanied by nausea and occasional vomiting. Physical examination is unremarkable.

What is it? Gallstones, with biliary colic.

Management. Sonogram. Elective cholecystectomy will follow.

58. A 43-year-old obese mother of 6 children has severe right upper quadrant abdominal pain that began 6 hours ago. The pain was colicky at first, radiated to the right shoulder and around toward the back, and was accompanied by nausea and vomiting. For the past 2 hours the pain has been constant. She has tenderness to deep palpation, muscle guarding, and rebound in the right upper quadrant. Her temperature is 101°F, and WBC count 12,000. Liverfunction tests are normal.

What is it? If you are alert, you will recognize the picture of acute cholecystitis. A similar vignette was presented in the acute abdomen section. It is repeated here to contrast it with the next one. She will get a cholecystectomy, as previously mentioned.
59. A 73-year-old obese mother of 6 children has severe right upper quadrant abdominal pain that began 3 days ago. The pain was colicky at first but has been constant for the past 2.5 days. She has tenderness to deep palpation, muscle guarding, and rebound in the right upper quadrant. She has temperature spikes of 104 and 105°F, with chills. WBC count is 22,000, with a shift to the left. Her bilirubin is 5, and she has an alkaline phosphatase of 2,000 (~20x normal).

What is it? Acute ascending cholangitis.

Diagnosis. The diagnosis is already clear. Sonogram might confirm dilated ducts.

Management. This is an emergency, and many things will be needed at once. The therapy is based on IV antibiotics plus emergency decompression of the biliary tract. To achieve the latter, ERCP is the first choice, but percutaneous transhepatic cholangiogram (PTC) is another option (and surgery is a distant third choice).

60. A white, obese 40-year-old mother of 5 children gives a history of repeated episodes of right upper quadrant abdominal pain brought about by the ingestion of fatty foods, and relieved by the administration of anticholinergic medications. The pain is colicky, radiates to the right shoulder and around to the back, and is accompanied by nausea and occasional vomiting. This time she had a shaking chill with the colicky pain, and the pain lasted longer than usual. She has mild tenderness to palpation in the epigastrium and right upper quadrant. Laboratory determinations show a bilirubin of 3.5, an alkaline phosphatase 5 times normal, and serum lipase 3 times normal value.

What is it? She passed a common duct stone and had a transient episode of cholangitis (the shaking chill, the high phosphatase) and a bit of biliary pancreatitis (the high amylase).

Management. As in many of these cases, start with sonogram. It will confirm the diagnosis of gallstones. If she continues to get well, elective cholecystectomy will follow. If she deteriorates, she may have the stone still impacted at the ampulla of Vater, and may need ERCP and sphincterotomy to extract it.
Pancreas

61. A 33-year-old alcoholic man shows up in the ED with epigastric and midabdominal pain that began 12 hours ago shortly after the ingestion of a large meal. The pain is constant and very severe, and radiates straight through to the back. He vomited twice early on, but since then has continued to have retching. He has tenderness and some muscle guarding in the upper abdomen, is afebrile, and has mild tachycardia. Serum lipase is 1,200, and his hematocrit is 52%.

What is it? Acute pancreatitis.

Management. Put the pancreas at rest: NPO, NG suction, IV fluids.

62. A 56-year-old alcoholic man is admitted with a clinical picture of acute upper abdominal pain. The pain is constant, radiates straight through the back, and is extremely severe. He has a serum amylase of 800, a hematocrit of 40%, WBC count of 18,000, blood glucose of 150 mg/dl, and serum calcium of 6.5. He is given IV fluids and kept NPO with NG suction. By the next morning, his hematocrit has dropped to 30%, the serum calcium has remained below 7 despite calcium administration, his blood urea nitrogen (BUN) has gone up to 32, and he has developed metabolic acidosis and a low arterial Po2.

What is it? He has acute severe pancreatitis. In fact, he is in deep trouble, with at least 8 of Ranson's criteria predicting 80 to 100% mortality.

Management. Very intensive support will be needed, but the common pathway to death from complications of hemorrhagic pancreatitis frequently is by way of pancreatic abscesses that need to be drained as soon as they appear. Thus serial CT scans will be required. In very select patients there is a role for necrosectomy to get rid of dead pancreatic tissue.

63. A 57-year-old alcoholic man is being treated for acute hemorrhagic pancreatitis. He was in the ICU for 1 week, required chest tubes for pleural effusion, and was on a respirator for several days, but eventually improved enough to be transferred to the floor. Two weeks after the onset of the disease, he begins to spike fever and to demonstrate leukocytosis. He looks septic.

What is it? Pancreatic abscess.

Diagnosis. CT scan.

Management. Drainage and appropriate antibiotics.
64. A 49-year-old alcoholic man presents with ill-defined upper abdominal discomfort and early satiety. On physical examination he has a large epigastric mass that is deep within the abdomen and actually hard to define. He was discharged from the hospital 5 weeks ago, after successful treatment for acute pancreatitis.

65. A 55-year-old woman presents with vague upper abdominal discomfort, early satiety, and a large but ill-defined epigastric mass. Five weeks ago she was involved in an automobile accident in which she hit the upper abdomen against the steering wheel.

What is it? The 2 presentations of pancreatic pseudocyst.

Management. You could diagnose it on the cheap with a sonogram, but CT scan is probably the best choice. Small cysts (<6 cm) which have not been present too long (<6 weeks) can be watched for spontaneous resolution. Bigger or older cysts could have serious complications (obstruction, infection, bleeding) and they need intervention. Internal surgical derivation (cystogastrostomy or cystojejunostomy) is the standard surgical treatment. Radiologically guided external drainage is option, often used for infected pseudocysts. The latest and very appealing (if technically feasible) is endoscopic cystogastrostomy, which can only be done for cysts with a completely liquid content without debris.

66. A disheveled, malnourished individual shows up in the ED requesting medication for pain. He smells of alcohol and complains bitterly of constant epigastric pain radiating straight through to the back which he says he has had for several years. He has diabetes, steatorrhea, and calcifications in the upper abdomen in a plain x-ray.

What is it? Chronic pancreatitis.

Management. There is little that can be done for a patient like this. Stopping the alcoholic intake is the first step (easier said than done). Replacement of pancreatic enzymes and control of the diabetes are obvious needs. Sometimes the pancreatic enzymes will relieve the pain, but if they do not, the pain will be very difficult to eradicate. Various operations can be performed that would be guided by the anatomy of the pancreatic ducts; thus, if forced to go to further diagnostic tests, pick ERCP.
Hernias

67. A 9-month-old baby girl is brought in because she has an umbilical hernia. The defect is 1 cm in diameter, and the contents are freely reducible.

Although we routinely recommend elective surgical repair of all hernias (to prevent the ghastly complication of strangulation), there are some exceptions. This is one. Umbilical hernias in children age <5 years may still close spontaneously. Only observation is needed here. If present at age 5 years, repair is usually performed.

68. An 18-year-old man has a routine physical examination as part of his college registration, and the examination reveals that he has a right inguinal hernia. The external inguinal ring is about 2.5 cm in diameter, and a hernial bulge can be easily seen and felt going down into his scrotum when he is asked to strain. He is completely asymptomatic and was not even aware of the presence of the hernia.

Elective surgical repair is in order. Even though he is asymptomatic, he should not be exposed to the risk of bowel strangulation. They will not ask you about specific technical details. The hernia is probably indirect. All routine unilateral first-time hernias can be repaired by open or laparoscopic approach with a mesh. Laparoscopy is often favored for repair of recurrent inguinal, bilateral inguinal, and incisional hernias.

69. A 72-year-old farmer is forced by his insurance company to have a physical examination to be issued a life insurance policy. He has been healthy all his life, and “has never been to the doctor.” At the examination it is found that he has a large, left inguinal hernia that reaches down into the scrotum. Bowel sounds can be easily heard over it. The hernia is not reducible, and he says that many years ago he used to be able to “push it back,” but for the last 10 or 20 years he has not been able to do so.

A hernia that cannot be pushed back in (reduced) is incarcerated, and one that has compromised blood supply is strangulated. The latter is an emergency. The former is also an emergency if the irreducible state is of new onset, because one does not want to wait for overt signs of dead or compromised bowel before operating. But if he has been this way for 10 or 20 years, obviously the bowel is alive and well. Elective repair is still indicated, before he runs out of good luck and gets into trouble.
DISEASES OF THE BREAST

1. An 18-year-old woman has a firm, rubbery mass in the left breast that moves easily with palpation.

What is it? Fibroadenoma.

Management. The underlying concern in all breast masses is cancer, and the best predictor of the likelihood of malignancy is age. At age 18, the chances of malignancy are very remote; thus, the least invasive way to make the diagnosis is, in order, sonogram or needle biopsy. Sonogram is diagnostic for fibroadenomas. Reassurance alone would not be a good choice! Do not order a mammogram either. At age 18, mammograms are virtually useless (breast too dense). Sonogram is the only imaging technique suitable for the very young breast. Once diagnosis is confirmed, excision is optional.

2. A 14-year-old girl has a firm, movable, rubbery mass in her left breast that was first noticed 1 year ago and has since grown to be about 6 cm in diameter.

What is it? Giant juvenile fibroadenoma.

Management. At age 14 chances of cancer are virtually zero. That avenue does not have to be explored. But the rapid growth requires resection to avoid cosmetic deformity.

3. A 37-year-old woman has a 12- × 10- × 7-cm mass in her left breast. It has been present for 7 years, and has been slowly growing to its present size. The mass—firm, rubbery, completely movable—is not attached to chest wall or to overlying skin. There are no palpable axillary nodes.

What is it? Cystosarcoma phyllodes, a benign condition that can turn into an outright malignant sarcoma.

Management. After tissue diagnosis, proceed with margin-free resection.

4. A 35-year-old woman has a 10-year history of tenderness in both breasts, related to her menstrual cycle, with multiple lumps on both breasts that seem to "come and go" at different times in the menstrual cycle. She now has a firm, round, 2-cm mass that has not gone away for 6 weeks.

What is it? Palpable cyst in fibrocystic disease (cystic mastitis, mammary dysplasia).

Management. Start with a mammogram to evaluate for any lesions suspicious for malignancy. An ultrasound is also helpful in evaluating the persistent mass. A cyst is the most likely candidate. Once confirmed by ultrasound, aspiration of the cyst can be performed for symptom relief. Otherwise, a simple cyst can be left alone. (Note: if aspiration is performed for symptom
relief, it is important to understand that this is not the same as FNA biopsy—this is aspiration of fluid to empty a cyst, not aspiration of a solid mass to get cells for diagnosis). If the mass goes away and the fluid aspirated is clear, that's all. If, however, the fluid is bloody, it goes to cytology. If the mass does not go away or recurs multiple times, she needs a biopsy.

5. A 34-year-old woman has been having bloody discharge from the right nipple, on and off for several months. There are no palpable masses.

What is it? Intraductal papilloma.

Management. Although cancer is a concern with bloody nipple discharge, the most common cause of this complaint happens to be benign intraductal papilloma. The concern over cancer must be ruled out; the way to detect cancer that is not palpable is with mammogram. That should be the first choice. If negative, one may still wish to find and resect the intraductal papilloma to provide symptomatic relief and further exclude malignancy given the bloody discharge. Resection can be guided by galactogram, sonogram, or done as a retroareolar exploration.

6. A 26-year-old lactating mother has cracks in the nipple and develops a fluctuating, red, hot, tender mass in the breast, along with fever and leukocytosis.

What is it? Sounds like an abscess—and in this setting it is. Breast feeding is a common cause of breast abscess. In anybody else, a breast abscess is a cancer until proven otherwise.

Management. There would be low yield to obtaining a mammogram in this case (age, lactation, low-risk presentation for cancer). Drainage is the treatment for all abscesses, this one included. Ultrasound-guided needle drainage is preferred in lactating women, since a formal incision and drainage carries a higher risk of developing a persistent milk fistula in the lactating breast.

7. A 49-year-old woman has a firm, 2-cm mass in the right breast, which has been present for 3 months.

What is it? This could be anything. Age is the best determinant for risk for cancer of the breast. If she had been 72, you go for cancer. At 22, you favor benign.

Management. Mammogram to assess the palpable mass and to explore for other non-palpable lesions (don't want to miss anything). An ultrasound of the mass would also be helpful. Then, multiple core biopsies of the known 2-cm mass are needed.

8. A 34-year-old woman in month 5 of pregnancy reports a 3-cm firm, ill-defined mass in her right breast that has been present and growing for 3 months.

The diagnosis of possible breast cancer in the pregnant patient is done the same way as if she had not been pregnant. Yes, you can do the mammogram (with appropriate fetal shielding used) and appropriate biopsies; but the radiologist will probably use sonogram to guide the biopsies, and no, you do not need to terminate the pregnancy.
9. A 69-year-old woman has a 4-cm hard mass in the right breast with ill-defined borders, movable from the chest wall but not movable within the breast. The skin overlying the mass is retracted and has an “orange peel” appearance.

10. A 69-year-old woman has a 4-cm hard mass in the right breast under the nipple and areola with ill-defined borders, movable from the chest wall but not movable within the breast. The nipple became retracted 6 months ago.

11. A 72-year-old woman has a red, swollen breast. The skin over the area looks like orange peel. She is not particularly tender, and it is debatable whether the area is hot or not. She has no fever or leukocytosis.

12. A 62-year-old woman has an eczematoid lesion in the areola. It has been present for 3 months, and it looks to her like “some kind of skin condition” that has not improved or gone away with a variety of lotions and ointments.

These are all classic presentations of breast cancer. The hard masses are likely invasive breast adenocarcinoma. The red, orange peel skin is likely inflammatory breast cancer, and the eczematoid areolar lesion is likely Paget’s disease of the breast (a rare form of breast cancer). They all need mammograms for further evaluation and multiple core biopsies of suspicious breast lesions. The suspicious skin lesions (e.g. orange peel, eczematoid) can be confirmed with dermal punch biopsies.

13. A 42-year-old woman hits her breast with a broom handle while doing her housework. She noticed a lump in that area at the time, and 1 week later the lump is still there. She has a 3-cm hard mass deep inside the affected breast, and some superficial ecchymosis over the area.

What is it? This is a classic trap for the unwary. It is cancer until proven otherwise. Trauma often brings the area to the attention of the patient—but is not the cause of the lump. Proceed as with the others.

14. A 58-year-old woman discovers a mass in her right axilla. She has a discrete, hard, movable, 2-cm mass. Physical examination of her breast is negative, and she has no enlarged lymph nodes elsewhere.

What is it? A tough one, but another potential presentation for cancer of the breast. It could be lymphoma but also may be lymph node metastasis from an occult primary. She needs a mammogram (we are now looking for an occult primary in the breast) and possible U/S.
node will eventually have to be biopsied. MRI of the breast is now in the work-up for occult primary breast cancer, as many are lobular cancers which are not always visualized by mammogram or even U/S.

15. A 60-year-old woman has a routine, screening mammogram. The radiologist reports an irregular area of increased density, with fine microcalcifications, that was not present 2 years ago on a previous mammogram.

Management. You will not be asked to read difficult x-rays (particularly mammograms), but you should recognize the description of a malignant radiologic image—which this one is. Thus, we go back to our old issue: we need tissue diagnosis. The mammographer will obtain multiple core biopsies.

16. A 44-year-old woman has a 2-cm palpable mass in the upper outer quadrant of her right breast. A core biopsy shows infiltrating ductal carcinoma. The mass is freely movable, and her breast is of normal, rather generous size. She has no palpable axillary nodes, and the mammogram showed no other lesions.

Treatment of operable breast cancer begins (but does not end) with surgery. With a small tumor far away from the nipple, the standard option is partial mastectomy (lumpectomy) and axillary node sampling (i.e. sentinel node biopsy) to help determine the need for adjuvant systemic therapy. Why go after the axillary nodes when they are not palpable? Because palpation is notoriously inaccurate in detecting microscopic metastasis to the lymph nodes which may be present in the early stages of an invasive breast cancer. Afterward, radiation therapy is typically given to the breast (otherwise, lumpectomy would have an unacceptably high rate of local recurrence).

17. A 62-year-old woman has a 4-cm hard mass under the nipple and areola of her smallish left breast. A core biopsy has diagnosed infiltrating ductal carcinoma. There are no palpable axillary nodes. The mammogram shows extensive associated branching calcifications thought to represent DCIS.

Lumpectomy is an ideal option when the tumor is small (in relation to the size of the breast), is located where most of the breast can be spared, and can be performed in a way that maintains the cosmetic appearance of the breast. A total mastectomy (also called simple mastectomy) is the choice here given the extent of disease. If necessary, a biopsy can be performed of the suspicious calcifications to confirm malignancy if there is any doubt. Axillary sampling of sentinel nodes is also required (i.e. sentinel node biopsy if no palpable nodes).

Radiation is typically not needed when the whole breast is removed unless in rare circumstances where the mass is very large (e.g., ≥5 cm) or if the lymph nodes contain metastasis. The old (unmodified) radical mastectomy is no longer done.
18. A 44-year-old woman has a 2-cm palpable mass in the upper outer quadrant of her right breast. A core biopsy shows lobular cancer.

19. A 44-year-old woman has a 2-cm palpable mass in the upper outer quadrant of her right breast. A core biopsy shows medullary cancer of the breast.

If you see on the exam breast cancers that are not the standard infiltrating ductal carcinoma, here are the rules: lobular has a higher incidence of bilaterality (but not enough to justify bilateral mastectomy). Almost all the other variants of invasive cancer have a little better prognosis than infiltrating ductal, and they are all treated the same way anyway.

20. A 52-year-old woman has a suspicious area on mammogram. Multiple radiologically guided core biopsies show ductal carcinoma in situ.

No axillary sampling is needed if a lumpectomy is being performed. Lumpectomy and radiation should be offered in cases of limited DCIS. If there are multicentric lesions all over the breast, total mastectomy (also called simple mastectomy) is needed. Sentinel node biopsy should be done in the event that invasive carcinoma is found on the mastectomy pathology, since you cannot go back to do a sentinel node biopsy once the breast has been removed.

21. A 32-year-old woman in the seventh month of pregnancy is found to have a 2-cm mass in her left breast. Mammogram shows no other lesions, and core biopsy reveals infiltrating ductal carcinoma.

Again, pregnancy imposes very few limitations on our handling of breast cancer. The only no-no’s are: no radiation therapy during the pregnancy, and no chemotherapy during the first trimester. Termination of the pregnancy is not needed.

22. A 44-year-old woman arrives in the ED because she is “bleeding from the breast.” Physical examination shows a huge, fungating, ulcerated mass occupying the entire right breast, and firmly attached to the chest wall. The patient maintains that the mass has been present for only “a few weeks,” but a relative indicates that it has been there at least 2 years, maybe longer.

An all-too-frequent tragic case of neglect and denial. Obviously, this is a far advanced cancer of the breast. Tissue diagnosis is still needed, and either a core or an incisional biopsy is in order, but the likely question here is what to do next. This is inoperable, and incurable as well, but palliation can be offered. Chemotherapy (or hormone therapy if the tumor is hormone receptor positive) may be considered in the first line of treatment, perhaps accompanied by radiation. In many cases the tumor will shrink enough to become operable for palliative surgery.
23. A 37-year-old woman has a lumpectomy and axillary sentinel node biopsy for a 3-cm infiltrating ductal carcinoma. The pathologist reports clear surgical margins and metastatic cancer in both of the sentinel nodes that were removed. The tumor is positive for estrogen and progesterone receptors.

Very rarely is surgery alone sufficient to cure breast cancer. Many patients require subsequent adjuvant systemic therapy. The need for it is underscored by the finding of involved axillary nodes. Chemotherapy is indicated here, followed by radiation (because she had a lumpectomy) and finally, hormonal therapy, which, given her age, should be tamoxifen. According to the results of the American College of Surgeons Oncology Group Z0011 trial, patients undergoing lumpectomy and radiation who have T1-T2 invasive breast cancer, no palpable adenopathy, and only 1–2 sentinel lymph nodes containing limited metastases may safely avoid an axillary dissection.

24. A 66-year-old woman has a total mastectomy for infiltrating ductal carcinoma of the breast. The pathologist reports that the tumor measures 1 cm in diameter and that 1 of 2 sentinel nodes removed are positive for metastasis. The tumor is estrogen and progesterone receptor positive.

The hormonal therapy of choice for post-menopausal women is an aromatase inhibitor (e.g., anastrazole). This may follow chemotherapy depending on the specific tumor features of the case (including possible Oncotype DX testing). As a general rule, all invasive cancers should be treated locally by surgery/radiation therapy and systemically by chemo/hormonal therapy (exceptions are very small, low-risk breast cancers, typically in elderly women, which may not require any adjuvant systemic therapy).

25. A 44-year-old woman complains bitterly of severe headaches that have been present for several weeks and have not responded to the usual over-the-counter headache remedies. She is 2 years post-op from MRM for T3 N2 M0 cancer of the breast, and she had several courses of post-op chemotherapy, which she eventually discontinued because of the side effects.

A classic: severe headache in someone who a few years ago had extensive cancer of the breast means brain metastases until proven otherwise. Don’t get hung up on the TNM classification; if the numbers are not 1 for the tumor and 0 for the nodes and metastases, the tumor is bad. Do MRI of the brain and use high-dose steroids and radiation.

26. A 39-year-old woman completed her last course of postoperative adjuvant chemotherapy for breast cancer 6 months ago. She comes to the clinic complaining of constant back pain for about 3 weeks. She is tender to palpation over 2 well-circumscribed areas in the thoracic and lumbar spine.

A variation on the above theme. Now it is bone metastases, instead of brain metastases—at least until proven otherwise. What do you do? MRI for diagnosis. Local radiation to the metastases may help, and a variety of orthopedic supports can be used to prevent collapse of the vertebral bodies and pedicles.
Chapter 4 l General Surgery

DISEASES OF THE ENDOCRINE SYSTEM

1. A 62-year-old woman was drinking her morning cup of coffee at the same time she was applying her makeup, and she noticed in the mirror that there was a lump in the lower part of the neck, visible when she swallowed. She consults you for this, and on physical examination you ascertain that she indeed has a prominent, 2-cm mass on the left lobe of her thyroid as well as 2 smaller masses on the right lobe. They are all soft, and she has no palpable lymph nodes in the neck.

Management. Most thyroid nodules are benign, and surgical removal to ascertain the diagnosis is a big operation—thus surgery has to be reserved for selected cases. Worrisome features include: young, male, single nodule, history of radiation to the neck, solid mass on sonogram, and cold nodule on scan. In centers with sufficient experience, the last 2 tests are omitted in preference for FNA and cytology. This case does not sound malignant, but you cannot be sure. If given the option among the answers, go for the FNA.

2. A 21-year-old man is found on a routine physical examination to have a single, 2-cm nodule in the thyroid gland. His thyroid function tests are normal. An FNA is read as indeterminate.

Management. Surgery is done for the FNAs that are read as malignant and those that are indeterminate.

3. A 32-year-old woman has a thyroid lobectomy done for a 2-cm mass that had been reported on a FNA as a “follicular neoplasm, not otherwise specified.” The specimen is given for frozen section to a pathologist with a great deal of experience in thyroid disease and in the reading of frozen sections. The intraoperative diagnosis is follicular cancer.

Management. A total thyroidectomy should be completed.

4. An automated blood chemistry panel done during the course of a routine medical examination indicates that an asymptomatic patient has a serum calcium of 12.1 in a lab where the upper limit of normal is 9.5. Repeated determinations are consistently between 10.5 and 12.6. Serum phosphorus is low.

What is it? Parathyroid adenoma.

Diagnosis. Had this question been written 20 years ago, the vignette would have described a patient with a disease of “stones and bones and abdominal groans,” and you would have cleverly asked for a serum calcium as your first test. Today most parathyroid adenomas are identified when they are still asymptomatic, because of the widespread use of automated blood chemistry panels. Across the board, most cases of hypercalcemia are caused by metastatic cancer, but that
would not be the case on asymptomatic people. Your next move here is parathyroid hormone (PTH) determination and sestamibi scan to localize the adenoma. Surgery will follow.

5. A 32-year-old woman is admitted to the psychiatry unit because of wild mood swings. She is found to be hypertensive and diabetic and to have osteoporosis. (She had not been aware of such diagnosis beforehand.) It is also ascertained that she has been amenorrheic and shaving for the past couple of years. She has gross centripetal obesity, with moon facies and buffalo hump, and thin, bruised extremities. A picture from 3 years ago shows a person of very different, more normal appearance.

What is it? Cushing’s syndrome. The appearance is so typical that you will probably be given before and after photographs on the exam, with a brief vignette. The presenting symptom may be any one of those listed.

Diagnosis. Start with the overnight dose dexamethasone suppression test. If she suppresses at a low dose, she is an obese, hairy woman, but she does not have the disease. If she does not suppress at the low dose, verify that 24-hour urine-free cortisol is elevated, and then go to high-dose suppression tests. If she suppresses at a high dose, do an MRI of the head looking for the pituitary microadenoma, which will be removed by the transnasal, trans-sphenoidal route. If she does not suppress at the higher dose, do a CT or MRI of adrenals looking for the adenoma there.

6. A 28-year-old woman has virulent peptic ulcer disease. Extensive medical management including eradication of *Helicobacter pylori* fails to heal her ulcers. She has several duodenal ulcers in the first and second portions of the duodenum. She has watery diarrhea.

What is it? Gastrinoma (Zollinger-Ellison syndrome).

Diagnosis. Start by measuring serum gastrin. If the value is not clearly normal or abnormal, a secretin stimulation test is added. Later, do CT scans (with vascular and GI contrast) of the pancreas and nearby area to find the tumor, and then do surgery to remove it.

7. A second-year medical student is hospitalized for a neurologic workup for a seizure disorder of recent onset. During one of the convulsions, it is determined that his blood sugar is extremely low. Further workup shows that he has high levels of insulin in the blood with low levels of C-peptide.

What is it? Exogenous administration of insulin. If the C-peptide had been high along with the insulin level, the diagnosis would have been insulinoma. Had it been a baby with high insulin level and low blood sugar, it would have been nesidioblastosis.

Management. In this case, psychiatric evaluation and counseling (he is faking the disease to avoid taking the USMLE). If it had been insulinoma, CT scan (with vascular and GI contrast) looking for the tumor in the pancreas, and subsequent surgical removal.
8. A 48-year-old woman has had severe, migratory necrolytic dermatitis for several years, unresponsive to all kinds of “herbs and unguents.” She is thin and has mild stomatitis and mild diabetes mellitus.

What is it? Glucagonoma.

Diagnosis. Determine glucagon levels. Eventually CT scan (with vascular and GI contrast) looking for the tumor in the pancreas. Surgery will follow. If inoperable, somatostatin can help symptomatically, and streptozocin is the indicated chemotherapeutic agent.

SURGICAL HYPERTENSION

1. A 45-year-old woman comes into your office for a regular checkup. On repeated determinations you confirm the fact that she is hypertensive. When she was in your office 3 years ago, her BP was normal. Laboratory studies at this time show a serum sodium of 144 mEq/L, a serum bicarbonate of 28 mEq/L, and a serum potassium concentration of 2.1 mEq/L. The woman is taking no medications of any kind.

What is it? Hyperaldosteronism. Possibly adenoma.

Diagnosis. Start with determination of aldosterone and renin levels. If confirmatory (aldosterone high, renin low), proceed with determinations lying down and sitting up to differentiate hyperplasia (appropriate response to postural changes—not surgical) from adenoma (no response or wrong response to postural changes—surgical). Treat the first with Aldactone. Pursue the second with imaging studies (CT or MRI) and surgery.

2. A thin, hyperactive 38-year-old woman is frustrated by the inability of her physicians to help her. She has episodes of severe pounding headache, with palpitations, profuse perspiration, and pallor, but by the time she gets to her doctor’s office she checks out normal in every respect. In addition, she has paroxysmal hypertension.

What is it? Suspect pheochromocytoma.

Diagnosis. The most sensitive test is the 24-hour urinary metanephrine test (90% effective). The vanillylmandelic acid (VMA) test is next best, at 80% effective. Follow with CT scan of adrenal glands. Surgery will eventually be done, with careful pharmacologic preparation with alpha-blockers.
3. A 17-year-old man is found to have a BP of 190/115 mm Hg. This is checked repeatedly in both arms, and it is always found to be elevated, but when checked in the legs it is found to be normal.

What is it? Coarctation of the aorta.

Diagnosis. Start with a chest x-ray, looking for scalloping of the ribs. Then CTA and ultimately surgery.

4. A 23-year-old woman has had severe hypertension for 2 years, and she does not respond well to the usual medical treatment for that condition. A bruit can be faintly heard over her upper abdomen.

5. A 72-year-old man with multiple manifestations of arteriosclerotic occlusive disease has hypertension of relatively recent onset and refractory to the usual medical therapy. He has a faint bruit over the upper abdomen.

What is it? Two examples of renovascular hypertension; the first one caused by fibromuscular dysplasia, the second one secondary to arteriosclerosis.

Diagnosis. Start with Duplex scanning of the renal vessels. CT angio may also be helpful.

Management. Once the diagnosis has been made, the decision for therapy is easy in the young woman: she has many years of potential life, and her hypertension must be cured. Angiographic balloon dilation with stenting is the first choice, surgery the other alternative.

In the elderly man the decision is far more complex. Treatment of the renovascular hypertension makes sense only if other manifestations of the arteriosclerosis are not going to kill him first.
AT BIRTH—THE FIRST 24 HOURS

1. Within 8 hours after birth, it is noted that a baby has excessive salivation. A small, soft NG tube is inserted, and the baby is taken to x-ray to have a “babygram” done. The film shows the tube coiled back on itself in the upper chest. There is air in the GI tract. What is it? Tracheoesophageal (TE) fistula, the most common type, with proximal blind esophageal pouch and distal TE fistula.

Management. First, rule out the associated anomalies (VACTER: vertebral, anal, cardiac, TE, and renal/radial). The vertebral and radial will be seen in the same x-ray you already took, you need echocardiogram for the heart, sonogram for the kidneys, and physical examination for the anus. Then off to surgery.

2. A newborn baby is found on physical examination to have an imperforate anus. Management. This is part of the VACTER group, so rule out the other components. For the anal problem, if there is a fistula to the vagina or perineum, repair can be safely done later, as the GI tract is not obstructed. If there is no fistula, one has to ascertain the level of the blind pouch. This is done with an x-ray while holding the baby upside down, with a metal marker taped to the anal dimple. Low imperforate anus can be corrected with a very simple operation. High imperforate anus needs a colostomy, and repair at a later date.

3. A newborn baby is found to be tachypneic, cyanotic, and grunting. The abdomen is scaphoid, and there are bowel sounds heard over the left chest. An x-ray confirms that there is bowel in the left thorax. Shortly thereafter, the baby develops significant hypoxia and acidosis. What is it? Congenital diaphragmatic hernia.

Management. The main problem is the hypoplastic lung. It is better to wait 36 to 48 hours to do surgery to allow transition from fetal circulation to newborn circulation. Meanwhile, the trick is to keep the child alive with endotracheal intubation, low-pressure hyperventilation (careful not to blow up the other lung), sedation, and NG suction.
4. At the time of birth, it is noted that a child has a large abdominal wall defect to the right of the umbilicus. There is a normal cord, but protruding from the defect is a matted mass of angry-looking edematous bowel loops.

5. A newborn baby is noted to have a shiny, thin, membranous sac at the base of the umbilical cord (the cord goes to the sac, not to the baby). Inside the sac, one can see part of the liver and loops of normal bowel.

What is it? The first vignette is gastroschisis, the second one omphalocele. Medical school professors love to emphasize differential diagnoses of somewhat similar problems. Chances are all you'll be expected to do is to identify the correct one.

Management. Intuitive. You've got to get those intestines back into the belly, and the technical details are best left to the pediatric surgeons. They will be on the lookout for atresias (which babies with gastroschisis can have) or multiple defects (which are seen with omphalocele), and they will close small defects directly. Very often, however, the defects are large, most of the bowel is outside the abdomen, and there is no room to “push it in.” In those cases a silo “silo” is used to house the bowel and gradually return it to the abdomen. The baby with gastroschisis will also need vascular access for IV nutrition (the angry bowel will not work for about 1 month).

6. A newborn is noted to have a moist medallion of mucosae occupying the lower abdominal wall, above the pubis and below the umbilicus. It is clear that urine is constantly bathing this congenital anomaly.

What is it? Exstrophy of the urinary bladder.

What's the point of the vignette? These are very rare anomalies that only very highly specialized centers can repair. The problem is that unless the repair is done within the first 48 hours, it will not have a good chance to succeed. It takes time to arrange for transfer of a newborn baby to a distant city. If a day or 2 are wasted before arrangements are made, it will be too late.

7. Half an hour after the first feed, a baby vomits greenish fluid. The mother had polyhydramnios, and the baby has Down syndrome. X-ray shows a “double bubble sign”: a large air-fluid level in the stomach, and a smaller one in the first portion of the duodenum. There is no gas in the rest of the bowel.

What is it? It can be 2 things, but first some general points. Kids vomit, burp, and regurgitate all the time (ask any parent), but the innocent vomit is clear-whitish. Green vomiting in the newborn is bad news. It means something serious. The 2 conditions that this could be are duodenal atresia and annular pancreas. Malrotation is also possible, but I expect that one to be presented to you as in the next vignette.

Management. With complete obstruction, surgery will be needed, but these kids have lots of other congenital anomalies, look for them first.
8. Half an hour after the first feed, a baby vomits greenish fluid. X-ray shows a "double-bubble sign": a large air-fluid level in the stomach and a smaller one in the first portion of the duodenum. There is air in the distal bowel, beyond the duodenum, in loops that are not distended.

What is it? Now you have 3 choices: it could be an incomplete obstruction from duodenal stenosis or annular pancreas, or it could be malrotation.

Management. If you are dealing with incomplete obstruction, you have time to do what's needed, i.e., it is a lesser emergency. But if it is malrotation the bowel could twist and die, so that would be a super-emergency. How can you tell? A contrast enema is safe but not always diagnostic. An upper GI study is riskier but more reliable.

9. A newborn baby has repeated green vomiting during the first day of life, and does not pass any meconium. Except for abdominal distention, the baby is otherwise normal. X-ray shows multiple air-fluid levels and distended loops of bowel.

What is it? Intestinal atresia.

Management. This one is caused by a vascular accident in utero; thus, there are no other congenital anomalies to look for, but there may be multiple points of atresia.

A FEW DAYS OLD TO THE FIRST 2 MONTHS OF LIFE

1. A very premature baby develops feeding intolerance, abdominal distention, and a rapidly dropping platelet count. The baby is 4 days old, and was treated with indomethacin for a patent ductus arteriosus.

What is it? Necrotizing enterocolitis.

Management. Stop all feedings, broad-spectrum antibiotics, IV fluids/nutrition. Surgical intervention may be needed if the baby develops abdominal wall erythema, air in the portal vein, or pneumoperitoneum.

2. A 3-day-old, full-term baby is brought in because of feeding intolerance and bilious vomiting. X-ray shows multiple dilated loops of small bowel and a ground-glass appearance in the lower abdomen. The mother has cystic fibrosis.

What is it? Meconium ileus.

Management. Gastrografin enema may be both diagnostic and therapeutic, so it is the obvious first choice. If unsuccessful, surgery may be needed. The baby has cystic fibrosis, and management of the other manifestations of the disease will also be needed.
3. A 3-week-old baby has had “trouble feeding” and is not quite growing well. He now has bilious vomiting and is brought in for evaluation. X-ray shows a classic “double bubble,” along with normal-looking gas pattern in the rest of the bowel.

What is it? Malrotation. The vignette is repeated here because it can show up at any time within the first few weeks of life. Proceed with urgent diagnostic studies.

4. A 3-week-old first-born, full-term baby boy began to vomit 3 days ago. The vomiting is projectile, has no bile in it, and follows each feeding, and the baby is hungry and eager to eat again after he vomits. He looks somewhat dehydrated and has visible gastric peristaltic waves and a palpable “olive size” mass in the right upper quadrant.

What is it? Hypertrophic pyloric stenosis.

Management. Check electrolytes; hypokalemic, hypochloremic metabolic alkalosis may have developed. Correct it, rehydrate, and do a pyloromyotomy.

5. An 8-week-old baby is brought in because of persistent, progressively increasing jaundice. The bilirubin is significantly elevated, and about 2/3 of it is conjugated, direct bilirubin. Serology is negative for hepatitis, and sweat test is normal.

What is it? Biliary atresia.

Management. HIDA scan after 1 week of phenobarbital is the best test. Surgical derivation will be tried, but 2/3 of these children end up with liver transplant.

6. A 2-month-old baby boy is brought in because of chronic constipation. He has abdominal distention, and plain x-rays show gas in dilated loops of bowel throughout the abdomen. Rectal examination is followed by explosive expulsion of stool and flatus, with remarkable improvement of the distention.

What is it? Hirschsprung disease (aganglionic megacolon).

Diagnosis. Barium enema will define the normal-looking aganglionic distal colon and the abnormal-looking, distended, normal proximal colon; but the diagnosis is established with full thickness biopsy of the rectal mucosa.
LATER IN INFANCY

1. A 9-month-old, chubby, healthy-looking little boy has episodes of colicky abdominal pain that makes him double up and squat. The pain lasts for about 1 minute, and the kid looks perfectly happy and normal until he gets another colic episode. Physical examination shows a vague mass on the right side of the abdomen, an “empty” right lower quadrant, and currant jelly stools.

What is it? Intussusception.

Management. Barium enema or air enema are both diagnostic and therapeutic in most cases. It should be your first choice. If reduction is not achieved radiologically, do surgery.

2. A 1-year-old baby is referred to the University Hospital for treatment of a subdural hematoma. In the admission examination it is noted that the baby has retinal hemorrhages.

3. A 3-year-old girl is brought in for treatment of a fractured humerus. The mother relates that the girl fell from her crib. X-rays show evidence of other older fractures at various stages of healing in different bones.

4. A 1-year-old child is brought in with second-degree burns of both buttocks. The stepfather relates that the child fell into a hot tub.

What is it? These are classic vignettes of child abuse.

Management. Notify the proper authorities.

5. A 7-year-old boy passes a large bloody bowel movement.

What is it? Meckel diverticulum.

Diagnosis. Do a radioisotope scan looking for gastric mucosa in the lower abdomen.
CONGENITAL HEART PROBLEMS

1. A 6-month-old baby has occasional stridor, and episodes of respiratory distress with "crowing" respiration during which he assumes a hyperextended position. The family has also noted mild difficulty in swallowing.

The combination of pressure on the esophagus and pressure on the trachea identifies a vascular ring. Barium swallow will show a typical extrinsic compression from the abnormal vessel. Bronchoscopy confirms the segmental tracheal compression and rules out diffuse tracheomalacia. Surgical repair is done by dividing the smaller of the double aortic arches.

2. A patient who has prosthetic aortic and mitral valves needs extensive dental work.

Antibiotic prophylaxis is needed to protect those valves from bacterial contamination. This is a brief vignette, but it illustrates that these patients need antibiotic prophylaxis for subacute bacterial endocarditis.

3. During a school physical exam, a 12-year-old girl is found to have a heart murmur. She is referred for further evaluation. An alert cardiology fellow recognizes that she indeed has a pulmonary flow systolic murmur, but he also notices that she has a fixed split second heart sound. A history of frequent colds and upper respiratory infections is elicited.

What is it? Atrial septal defect.

Management. Echocardiography to establish the diagnosis. Closure of the defect by open surgery or cardiac catheterization.

4. A 3-month-old boy is hospitalized for "failure to thrive." He has a loud pansystolic heart murmur best heard at the left sternal border. Chest x-ray shows increased pulmonary vascular markings.

What is it? Ventricular septal defect.

Management. Echocardiography and surgical correction.
5. Because of a heart murmur, an otherwise asymptomatic 3-month-old baby is diagnosed with a small, restrictive ventricular septal defect located low in the muscular septum.

This particular variant has a good chance to close spontaneously within the first 2 or 3 years of life.

6. A 3-day-old premature baby has trouble feeding and pulmonary congestion. Physical examination shows bounding peripheral pulses and a continuous, machinery-like heart murmur. Shortly thereafter, the baby goes into overt heart failure.

Management. Echocardiography and surgical closure. In premature infants, surgery is usually reserved for patients who did not close their ductus with indomethacin, but with overt heart failure there is no time to wait. In full-term infants, closure can be achieved with intraluminal coils or surgery.

7. A premature baby girl has mild pulmonary congestion, signs of increased pulmonary blood flow on x-ray, a wide pulse pressure, and a precordial machinery-like murmur. She is not in congestive failure.

Same diagnosis of patent ductus, but with no urgency, and being premature, she is a clear candidate for medical treatment with indomethacin.

8. A 6-year-old boy is brought to the United States by his new adoptive parents from an orphanage in Eastern Europe. The boy is small for his age and has a bluish hue in the lips and tips of his fingers. He has clubbing and spells of cyanosis relieved with squatting. He has a systolic ejection murmur in the left third intercostal space. Chest x-ray shows a small heart and diminished pulmonary vascular markings. ECG shows right ventricular hypertrophy.

What is it? Tetralogy of Fallot. Cyanotic children could have any of the 5 conditions that begin with the letter “T”:

- Tetralogy or transposition of the great vessels (common)
- Truncus arteriosus, total anomalous pulmonary venous connection, or tricuspid atresia (rare)

If the baby went home after birth, and later was found to be cyanotic, bet on tetralogy. If he was blue from the moment of birth, bet on transposition.

Management. Even if all you can recognize from the vignette is that the child has cyanosis, start with an echocardiogram as a good diagnostic test. The intricate details of surgical correction are bound to be beyond the level of knowledge expected on the exam.
ACQUIRED HEART DISEASE

1. A 72-year-old man has a history of angina and exertional syncopal episodes. He has a harsh midsystolic heart murmur best heard at the right second intercostal space and along the left sternal border.

What is it? Aortic stenosis with the triad of angina, dyspnea, and syncope.

Management. Diagnose with echocardiogram. Surgical valvular replacement is indicated if there is a gradient of >50 mm Hg, or at the first indication of CHF, angina, or syncope.

2. A 72-year-old man has been known for years to have a wide pulse pressure and a blowing, high-pitched, diastolic heart murmur best heard at the right second intercostal space and along the left lower sternal border with the patient in full expiration. He has had periodic echocardiograms, and in the most recent one there is evidence of beginning left ventricular dilatation.

What is it? Chronic aortic insufficiency.

Management. Aortic valve replacement.

3. A 26-year-old drug-addicted man develops CHF over a short period of a few days. He has a loud, diastolic murmur at the right, second intercostal space. A physical examination done a few weeks ago, when he had attempted to enroll in a detoxification program, was completely normal.

What is it? Acute aortic insufficiency caused by endocarditis.

Management. Emergency valve replacement, and antibiotics for a long time.

4. A 35-year-old woman has dyspnea on exertion, orthopnea, paroxysmal nocturnal dyspnea, cough, and hemoptysis. She has had these progressive symptoms for about 5 years. She looks thin and cachectic and has atrial fibrillation and a low-pitched, rumbling diastolic apical heart murmur. At age 15 she had rheumatic fever.

What is it? Mitral stenosis.

5. A 55-year-old woman has been known for years to have mitral valve prolapse. She now has developed exertional dyspnea, orthopnea, and atrial fibrillation. She has an apical, high-pitched, holosystolic heart murmur which radiates to the axilla and back.

What is it? Mitral regurgitation.

Management. Start with the echocardiogram. Eventually, consider surgical repair of the valve (annuloplasty) or valve replacement.

6. A 55-year-old man has progressive, unstable, disabling angina that does not respond to medical management. His father and 2 older brothers died of heart attacks age <50. The patient stopped smoking 20 years ago, but still has a sedentary lifestyle, is a bit overweight, has type 2 diabetes mellitus, and has high cholesterol.

What is it? It’s a heart attack waiting to happen: this man needs a cardiac catheterization to see whether he is a suitable candidate for coronary revascularization.

7. A 55-year-old man has progressive, unstable, disabling angina that does not respond to medical management. His father and 2 older brothers died of heart attacks age <50. The patient stopped smoking 20 years ago, but still has a sedentary lifestyle, is a bit overweight, has type 2 diabetes mellitus, and has high cholesterol. Cardiac catheterization demonstrates 70% occlusion of 3 coronary arteries, with good distal vessels. His left ventricular ejection fraction is 55%.

Management. The patient is lucky. He has good distal vessels (smokers and diabetics often do not) and enough cardiac function left. He clearly needs coronary bypass, and with triple-vessel disease he is not a good candidate for angioplasty.

8. A postoperative patient who underwent open heart surgery is determined to have a cardiac index 1.7 L/min/m2 and left ventricular end-diastolic pressure 3 mm Hg.

The postoperative management of open heart surgery is too esoteric for the exam, but a bit of applied physiology is not. You should be able to recognize a dangerously low cardiac index, without a high end-diastolic pressure—a clear indication for increased fluid intake.
9. A 72-kg patient who had a triple coronary bypass is determined on postoperative day 2 to have a cardiac output of 2.3 L/min. Pulmonary wedge pressure is 27 mm Hg. Cardiac output is low, but the ventricle is failing.

Management. Cardiac output of 2.3 L/min in a 72-kg patient is an indicator of heart failure. Given the elevated pulmonary wedge pressure, hypovolemia is not the issue. In the post-CABG period, myocardial dysfunction is common and inotropic support is indicated. Common pharmacological agents for this scenario include epinephrine, norepinephrine, and dobutamine.

LUNG

1. On a routine pre-employment physical examination, a chest x-ray is done on a 45-year-old chronic smoker. A solitary pulmonary nodule is found in the upper lobe of the right lung.

What is it? The concern, of course, is cancer of the lung.

Diagnosis. Find an older chest x-ray if one is available (from ≥1 year ago). The workup for cancer of the lung is expensive and invasive. On the other hand, cancer of the lung grows and kills in a predictable way, over a matter of several months. If an older x-ray has the same unchanged lesion, it is not likely cancer. No further workup is needed now, but the lesion should be followed with periodic x-rays.

2. A 65-year-old man with a 40 pack-year history of smoking gets a chest x-ray because of persistent cough. A peripheral, 2-cm solitary nodule is found in the right lung. A chest x-ray taken 2 years ago was normal.

3. A 66-year-old man with a 40 pack-year history of smoking gets a chest x-ray because of persistent cough. A peripheral 2-cm solitary pulmonary nodule is found in the right lung. A chest x-ray taken 2 years ago was normal. CT scan shows no calcifications in the mass, no liver metastases, and no enlarged peribronchial or peritracheal lymph nodes. Sputum cytology, bronchoscopy, and percutaneous needle biopsy have not been diagnostic. The man has good pulmonary function and is otherwise in good health.

Management. In dealing with cancer of the lung, 3 issues are at play:

- Establishing the diagnosis, which sometimes requires very invasive steps
- Ascertaining whether surgery can be done, i.e., will the patient still be functional after some lung tissue is removed
- Determining whether the surgery has a fair chance to cure him? (It will not if the tumor is extensive.)
Here is an example of a man who could stand lung resection (peripheral lesion, good function) and who stands a good chance for cure (no node metastases in the CT scan). Diagnostic steps should be VATS or wedge resection to remove the wedge of tissue one suspects for malignancy.

4. A 72-year-old chronic smoker with severe COPD is found to have a central, hilar mass on chest x-ray. Sputum cytology establishes a diagnosis of squamous cell carcinoma of the lung. His forced expiratory volume in 1 second (FEV1) is 1,100 ml, and a ventilation–perfusion scan shows that 60% of his pulmonary function comes from the affected lung.

Management. The history and physical exam suggested that the main limiting factor would be pulmonary function, so that issue was properly evaluated first. It takes an FEV1 of at least 800 ml to survive surgery and not be a pulmonary cripple afterward. If this patient underwent a pneumonectomy (which he would need for a central tumor), he would be left with FEV1 440 ml. No way. Don't do any more tests. He is not a surgical candidate. You already have a diagnosis to pursue chemotherapy and radiation.

5. A 62-year-old chronic smoker has an episode of hemoptysis. Chest x-ray shows a central hilar mass. Bronchoscopy and biopsy establish a diagnosis of squamous cell carcinoma of the lung. His FEV1 is 2,200 ml, and a ventilation–perfusion scan shows that 30% of his pulmonary function comes from the affected lung.

Management. This patient could tolerate a pneumonectomy, but we still have to determine the extent of his disease. CT scan alone may be able to establish that he does not have metastasis. CT plus PET scan may be required in some cases where the status of the mediastinal nodes is not clear, and if the PET scan cannot provide an answer, an endobronchial U/S to sample nodes would be the next step in management.

6. A 33-year-old woman undergoes a diagnostic workup because she appears to have Cushing syndrome. Chest x-ray shows a central 3-cm round mass on the right lung. Bronchoscopy and biopsy confirm a diagnosis of small cell carcinoma of the lung.

Management. Radiation and chemotherapy. Small cell lung cancer is not treated with surgery, and thus we have no need to determine FEV1 or nodal status.
1. A 54-year-old right-handed laborer notices coldness and tingling in his left hand as well as pain in the forearm when he does strenuous work. What really concerned him, though, is that in the last few episodes he also experienced transitory vertigo, blurred vision, and difficulty articulating his speech.

This is subclavian steal syndrome. A combination of claudication of the arm with posterior brain neurologic symptoms is classic for this rare but fascinating (and thus favorite question) condition. Duplex scanning will demonstrate retrograde flow through the vertebral artery when the patient exercises the arm. Surgical bypass resolves the problem.

2. A 62-year-old man is found on physical examination to have a 6-cm pulsatile mass deep in the abdomen, between the xiphoid and the umbilicus.

This is an abdominal aortic aneurysm. He needs elective surgical repair, but because our decisions are based so much on the size of the aneurysm, we need more precise measurement. CT scan is indicated.

3. A 62-year-old man has vague, poorly described epigastric and upper back discomfort. He is found on physical examination to have a 6-cm pulsatile mass deep in the abdomen, between the xiphoid and the umbilicus. The mass is tender to palpation.

This is an abdominal aortic aneurysm that is beginning to leak. Get an immediate vascular surgery consultation as surgical repair is necessary.

4. A 68-year-old man is brought to the ED with excruciating back pain that began suddenly 45 minutes ago. He is diaphoretic and has a systolic BP 90 mm Hg. There is an 8-cm, pulsatile mass palpable deep in the abdomen, above the umbilicus.

The aneurysm is rupturing right now. He needs immediate, emergency surgery.
5. A wealthy, retired man has claudication when walking more than 15 blocks.

Vascular surgery and angioplastic stenting are palliative procedures; they do not cure arteriosclerotic disease.

Claudication has an unpredictable course; thus, there is no indication for early operation or intervention. No expensive workup is needed. If he smokes, he should quit, and he would benefit from a program of exercise and the use of cilostazol.

6. A 56-year-old postman describes severe pain in his right calf when he walks 2 or 3 blocks. The pain is relieved by resting 10 or 15 minutes, but recurs if he walks again the same distance. He cannot do his job this way, and he does not qualify yet for retirement, so he is most anxious to have this problem resolved. He does not smoke.

This patient needs help. Start with Doppler studies. If he has a significant gradient, CT angio or MRI angio comes next, followed by bypass surgery or stenting.

7. A patient consults you because he “cannot sleep.” On questioning it turns out that he has pain in the right calf, which keeps him from falling asleep. He relates that the pain goes away if he sits by the side of the bed and dangles the leg. His wife adds that she has watched him do that, and she has noticed that the leg, which was very pale when he was lying down, becomes deep purple several minutes after he is sitting up. On physical examination the skin of that leg is shiny, there is no hair, and there are no palpable peripheral pulses.

Rest pain. Definitely he needs the studies to see whether vascular surgery could help him.

8. A 45-year-old man shows up in the ED with a pale, cold, pulseless, paresthetic, painful, and paralytic lower extremity. The process began suddenly 2 hours ago. Physical examination shows no pulses anywhere in that lower extremity. Pulse at the wrist is 95/min, grossly irregular.

What is it? Embolization by the broken-off tail of a clot from the left atrium. Start with Doppler studies. If he has complete occlusion, do embolectomy with Fogarty catheters, and if he was ischemic for several hours, add a fasciotomy to prevent compartment syndrome. Incomplete occlusion may be treated with clot busters.

9. A 74-year-old man has sudden onset of extremely severe, tearing chest pain that radiates to the back and migrates down shortly after its onset. His BP is 220/110 mm Hg, and he has unequal pulses in the upper extremities and a wide mediastinum on chest x-ray. ECG and cardiac enzymes are negative for MI.

This is dissecting aneurysm of the thoracic aorta. Spiral CT scan is the best study to confirm the diagnosis in a noninvasive way. If the aneurysm is in the ascending aorta, emergency surgery should be performed. If it is in the descending aorta, intensive therapy in the ICU for the hypertension is the preferable option.
1. A 65-year-old West Texas farmer of Swedish ancestry has an indolent, raised, waxy, 1.2-cm skin mass over the bridge of the nose that has been slowly growing over the past 3 years. There are no enlarged lymph nodes in the head and neck.

2. A 71-year-old Arizona farmer of Irish ancestry has a non-healing, indolent, punched out, clean-looking 2-cm ulcer over the left temple that has been slowly becoming larger over the past 3 years. There are no enlarged lymph nodes in the head and neck.

Basal cell carcinoma has 2 potential configurations: waxy raised lesion or punched out ulcer, but both have a preference for the upper part of the face.

Diagnosis is made with full-thickness biopsy at the edge of the lesion (punch or knife) or complete excision with narrow margin of uninvolved skin. Management is surgical excision with clear margins, but conservative width. Alternatives include electrodessication with curettage or ablation.

3. A blond, blue-eyed, 69-year-old sailor has a non-healing, indolent 1.5-cm ulcer on the lower lip that has been slowly enlarging, for the past 8 months. He is a pipe smoker, and he has no other lesions or physical findings.

What is it? Squamous cell carcinoma. The location is classic.

Diagnosis. Biopsy, as described before.

Management. He will need surgical resection with wider (~1 cm) clear margins. Local radiation therapy is another option.
4. A red-headed, highly freckled, 23-year-old woman who worships the sun consults you for a concerning skin lesion on the shoulder. She has a pigmented lesion that is asymmetric, with irregular borders of different colors within the lesion. It measures 1.8 cm.

What is it? This is the classic ABCD which should alert you to melanoma or a forerunner (dysplastic nevus).

Management. Diagnosis made by excisional biopsy with a narrow margin is preferred. Once diagnosis is confirmed, definitive treatment is wide local excision with margins based on depth of invasion (Breslow). Sentinel lymph node biopsy is indicated for lesions >1 cm Breslow thickness.

5. A 35-year-old blond, blue-eyed man left his native Minnesota at age 18 and has been living an idyllic life as a crew member for a sailing yacht charter operation in the Caribbean. He has multiple nevi all over his body, but one of them has changed recently.

What is it? Change in a pigmented lesion is the other tip off to melanoma. It may be growth, or bleeding, or ulceration, or change in color—whatever. Manage as above.

6. A 44-year-old man has unequivocal signs of multiple liver metastases, but no primary tumor has been identified by multiple diagnostic studies of the abdomen and chest. The only abnormality in the physical examination is a missing toe, which he says was removed at age 18 for a black tumor under the toenail.

What is it? A classic vignette for malignant melanoma (the alternate version has a glass eye, and history of enucleation for a tumor). No self-respecting malignant tumor would have this time interval, but melanoma will.

7. A 32-year-old man had a 3.4-mm deep melanoma removed from the middle of his back 3 years ago. He now has… (a tumor in a weird place, like his left ventricle, his duodenum, his ischiorectal area—anywhere!).

The point of this vignette is that invasive melanoma (it has to be deep) metastasizes to all the usual places (lymph nodes plus liver-lung-brain-bone) but it is also the all-time-champion in going to weird places where few other tumors dare to go. Because tumor behavior is unpredictable in any given patient, doctors tend to be aggressive in resecting these metastases.
CHILDREN

1. A 1-year-old child is suspected of having strabismus. You verify that indeed the corneal reflection from a bright light in your examining room comes from different places from each of his eyes.

2. A 2-year-old child is diagnosed with a congenital cataract obstructing his vision in the right eye.

What is the point of these vignettes? To remind you that the brain “learns” to see what the eyes see during early infancy (up to about age 7). If one eye cannot see (any kind of obstruction) or the brain does not like what it sees (double vision), the brain will refuse to process the image and that cortical “blindness” will be permanent (the concept of amblyopia).

Management. The problem has to be surgically corrected as early as possible.

3. A young mother is visiting your office for routine medical care. She happens to have her 18-month-old baby with her, and you happen to notice that one of the pupils of the baby is white, whereas the other one is black.

What is it? An ophthalmologic and potentially life-and-death emergency. A white pupil (leukocoria) at this age can be retinoblastoma. This child needs to see the ophthalmologist not next week, but today or tomorrow. If it turns out to be something more innocent, like a cataract, it still needs correction to avoid amblyopia.

ADULTS

1. A 53-year-old woman arrives in the ED complaining of extremely severe frontal headache and nausea. The pain started about an hour ago, shortly after she left the movies where she watched a double feature. On further questioning, she reports seeing halos around the lights in the parking lot when she left the theater. On physical examination the pupils are mid-dilated and do not react to light. The corneas are cloudy with a greenish hue, and the eyes feel “hard as a rock.”
What is it? A classic description of acute glaucoma. Not the most common type (most are asymptomatic—but you cannot write a vignette for those), but one that requires immediate treatment.

Management. An ophthalmologist is needed right away—but start treatment with systemic carbonic anhydrase inhibitors, topical beta-blockers, and alpha-2-selective adrenergic agonists. Mannitol and pilocarpine may also be used.

2. A 32-year-old woman presents in the ED with swollen, red, hot, tender eyelids on the left eye. She has fever and leukocytosis. When prying the eyelids open, you can ascertain that her pupil is dilated and fixed and that she has very limited motion of that left eye.

What is it? Orbital cellulitis.

Management. Another ophthalmologic emergency that requires immediate consultation, but if asked what to do, CT scan will be indicated to assess the extent of the orbital infection, and surgical drainage will follow.

3. A frantic mother reaches you on the phone, reporting that her 10-year-old boy accidentally splashed Drano (clogged drain remover) on his face. He is screaming in pain, complaining that his right eye hurts terribly.

Management. Copious irrigation is the main treatment for chemical burns. The point of this vignette is to remind you that time is a key element. If the mother is instructed to bring the boy to the ED, his eye will be cooked to a crisp by the time he arrives. The correct answer here is to instruct the mother to pry the eye open under cold water from the tap at home, and irrigate for 30 minutes before bringing the child to the hospital. You will do more irrigation in the ED, remove solid matter, and eventually recheck the pH before the child goes home. Do not forget to check the eyelid for remaining bits of Drano.

4. A 59-year-old, myopic gentleman reports “seeing flashes of light” at night when his eyes are closed. Further questioning reveals that he also sees “floaters” during the day, that they number 10 or 20, and that he also sees a cloud at the top of his visual field.

What is it? This is retinal detachment; 1–2 floaters would not mean that but >12 is an ominous sign. The “cloud” at the top of the visual field is hemorrhage settling at the bottom of the eye.

Management. Another ophthalmologic emergency. The retina specialist will use laser treatment to “spot weld” the retina and prevent further detachment.
5. A 77-year-old man suddenly loses sight from the right eye. He calls you on the phone 10 minutes after the onset of the problem. He reports no other neurologic symptoms.

What is it? Embolic occlusion of the retinal artery.

Management. First evaluate for a CVA. If negative, this is an ophthalmologic emergency—although little can be done for the problem. Get the patient to the ED immediately. It might help for him to take an aspirin and breathe into a paper bag en route, and have someone press hard on his eye and release it repeatedly.

6. A 55-year-old man is diagnosed with type 2 diabetes mellitus. On questioning about eye symptoms, he reports that sometimes after a heavy dinner the television becomes blurry, and he has to squint to see it clearly.

What is it? The blurry TV is no big deal: the lens swells and shrinks in response to swings in blood sugar—the important point is that he needs to start getting regular ophthalmologic follow-up for retinal complications. It takes 10–20 years for these to develop, but type 2 diabetes may be present that long before it is diagnosed.
NECK MASSES

Congenital

1. A 15-year-old girl has a round, 1-cm cystic mass in the midline of her neck at the level of the hyoid bone. When the mass is palpated at the same time that the tongue is pulled, there seems to be a connection between the two. The mass has been present for at least 10 years, but only recently bothered the patient because it got infected.

What is it? Thyroglossal duct cyst.

Management. Sistrunk operation (removal of the mass and the track to the base of the tongue, along with the medial segment of the hyoid bone). Some people insist that the location of the normal thyroid must be ascertained first with radioisotope scanning.

2. An 18-year-old woman has a 4-cm, fluctuant round mass on the side of her neck, just beneath and in front of the sternocleidomastoid. She reports that it has been there at least 10 years, although she thinks that it has become somewhat larger in the last year or two. A CT scan shows the mass to be cystic.

This is a branchial cleft cyst. Do elective surgical removal.

3. A 6-year-old child has a mushy, fluid-filled mass at the base of the neck that has been noted for several years. The mass is ~6 cm in diameter, occupies most of the supraclavicular area and seems by physical examination to go deeper into the neck and chest.

What is it? Cystic hygroma.

Management. Get a CT scan to see how deep the mass goes. Cystic hygromas can extend down into the chest and mediastinum. Surgical removal will eventually be done.
Inflammatory versus Neoplastic

4. A 22-year-old woman notices an enlarged lymph node in her neck. The node is in the jugular chain, measures ~1.5 cm, is not tender, and was discovered by the patient yesterday. The rest of the history and physical examination are unremarkable.

Management. Before you spend a lot of money doing tests, let time be your ally. Schedule the patient to be rechecked in 3 weeks. If the node has gone away by then, it was inflammatory and nothing further is needed. If it’s still there, it could be neoplastic and something needs to be done. Three weeks of delay will not significantly impact the overall course of a neoplastic process.

5. A 22-year-old woman seeks help regarding an enlarged lymph node in her neck. The node is in the jugular chain, measures ~2 cm, is firm, not tender, and was discovered by the patient 6 weeks ago. There is a history of low-grade fever and night sweats for the past 3 weeks. Physical examination reveals enlarged lymph nodes in both axillas and in the left groin.

What is it? Lymphoma.

Management. Tissue diagnosis will be needed. You can start with FNA of the available nodes, but eventually node biopsy will be needed to establish not only the diagnosis but also the type of lymphoma.

6. A 72-year-old man has a 4-cm hard mass in the left supraclavicular area. The mass is movable and not tender and has been present for 3 months. The patient has had a 20-pound weight loss in the past 2 months, but is otherwise asymptomatic.

What is it? Malignant metastases to a supraclavicular node from a primary tumor below the neck (Virchow’s node). The vignette may include a few clues to suggest which one.

Diagnosis. Look for the obvious primary tumors: lung, stomach, colon, pancreas, kidney. The node itself may eventually be biopsied.

7. A 69-year-old man who smokes and drinks and has rotten teeth has a hard, fixed, 4-cm mass in his neck. The mass is just medial and in front of the sternocleidomastoid muscle, at the level of the upper notch of the thyroid cartilage. It has been there for at least 6 months, and it is growing.

What is it? Metastatic squamous cell carcinoma to a jugular chain node, from a primary in the mucosa of the head and neck (oropharyngeal–laryngeal territory).
Management. Don’t biopsy the node! FNA is okay, but the best answer is triple endoscopy (examination under anesthesia of the mouth, pharynx, larynx, esophagus, and tracheobronchial tree), also known as a panendoscopy. CT scan will follow, to determine extent and operability. Most patients get combined therapy that includes radiation, platinum-based chemotherapy, and surgery if possible.

Squamous Cell Cancer—Other Presentations

8. A 69-year-old man who smokes and drinks and has rotten teeth has hoarseness that has persisted for 6 weeks in spite of antibiotic therapy.

9. A 69-year-old man who smokes and drinks and has rotten teeth has a painless ulcer in the floor of the mouth that has been present for 6 weeks and has not healed.

10. A 23-year-old man with AIDS has a painless ulcer in the floor of the mouth that has been present for 6 weeks and has not healed. He does not smoke or drink.

11. A 69-year-old man who smokes and drinks and has rotten teeth has a unilateral earache that has not gone away in 6 weeks. Physical examination shows serous otitis media on that side, but not on the other.

What are they? These are all different ways for squamous cell carcinoma of the mucosa of the head and neck to show up. They all need triple endoscopy to find and biopsy the primary tumor and to look for synchronous second primaries. Although the classic candidate for this disease is the older man who smokes and drinks, patients with AIDS also have very high incidence—with similar presentations.

OTHER TUMORS

1. A 52-year-old man complains of hearing loss. When tested he is found to have unilateral sensory hearing loss on one side only. He does not engage in any activity (such as sport shooting) that would subject that ear to noise that spares the other side.

What is it? Unilateral versions of common ENT problems in the adult suggest malignancy. In this case, acoustic nerve neuroma. Note that if the hearing loss had been conductive, a cerumen plug would be the obvious first diagnosis.

Diagnosis. MRI looking for the tumor.
2. A 56-year-old man develops slow, progressive paralysis of the facial nerve on one side. It took several weeks for the full-blown paralysis to become obvious, and it has been present now for 3 months. It affects both the forehead and the lower face.

What is it? Gradual, unilateral nerve paralysis suggests a neoplastic process.

Diagnosis. Gadolinium-enhanced MRI.

3. A 45-year-old man presents with a 2-cm firm mass in front of the left ear, which has been present for 4 months. The mass is deep to the skin, and it is painless. The patient has normal function of the facial nerve.

What is it? Pleomorphic adenoma (mixed tumor) of the parotid gland.

Diagnosis. FNA is appropriate, but the point of the question will be to bring out the fact that parotid masses are never biopsied in the office or under local anesthesia. Look for the option that offers referral to a head and neck surgeon for formal superficial parotidectomy which serves as a diagnostic and therapeutic tool.

4. A 65-year-old man presents with a 4-cm hard mass in front of the left ear, which has been present for 6 months. The mass is deep to the skin, and it is fixed. He has constant pain in the area, and for the past 2 months has had gradual progression of left facial nerve paralysis. He has rock-hard lymph nodes in the left neck.

This one is parotid cancer, but the point is the same: let the experts manage it.

PEDIATRIC ENT

1. A 2-year-old has unilateral earache.

2. A 2-year-old has unilateral foul-smelling purulent rhinorrhea.

3. A 2-year-old has unilateral wheezing, and the lung on that side looks darker on x-rays (more air) than the other side.

What is it? Unilateral versions of common bilateral ENT conditions in toddlers suggest foreign body (small toys). Appropriate x-rays, physical examination or endoscopies, and extraction are needed—obviously under anesthesia.
Chapter 10 l Otolaryngology (ENT)

ENT EMERGENCIES AND MISCELLANEOUS

1. A 45-year-old woman with a history of a recent tooth infection shows up with a huge, hot, red, tender fluctuant mass occupying the left lower side of the face and upper neck, including the underside of the mouth. The mass pushes up the floor of the mouth on that side. She is febrile.

What is it? Ludwig's angina (an abscess of the floor of the mouth).

Management. The special issue is the need to maintain an airway. Incision and drainage are needed, but intubation or tracheostomy may also be required.

2. A 29-year-old woman calls your office at 10 AM with the history that she woke up that morning with one side of her face paralyzed.

Obviously Bell's palsy. The latest trend is to start these patients right away on antiviral medication and steroids.

3. A patient with multiple trauma from a car accident is being attended to in the ED. As multiple invasive things are done to him, he repeatedly grimaces with pain. The next day it is noted that he has a facial nerve paralysis on one side.

What is it? Trauma to the temporal bone can certainly transect the facial nerve, but when that happens the nerve is paralyzed right there and then. Paralysis appearing late is from edema. The point of the vignette is that nothing needs to be done.

4. Your office receives a phone call from Mrs. Rodriguez, a middle-aged patient whom you have treated repeatedly over the years for episodes of sinusitis. In fact, 6 days ago you started her on decongestants and oral antibiotics for what you diagnosed as frontal and ethmoid sinusitis. Now she tells you over the phone that ever since she woke up this morning, she has been seeing double.

What is it? Cavernous sinus thrombosis, or orbital cellulitis.

Management. This is a real emergency. She needs immediate hospitalization, high-dose IV antibiotic treatment, and surgical drainage of the paranasal sinuses or the orbit. CT scan will be needed to guide the surgery, but I expect that the thrust of the question will be directed at your recognition of the serious nature of this problem.

5. A 10-year-old girl has epistaxis. Her mother says that she often picks her nose.

What is it? Bleeding from the anterior part of the septum.

Management. Phenylephrine spray and local pressure.
6. An 18-year-old boy has epistaxis. The patient denies picking his nose. No source of anterior bleeding can be seen by physical examination.

What is it? In this age group either septal perforation from cocaine abuse, or posterior juvenile nasopharyngeal angiofibroma. The former may need posterior packing. The latter needs to be surgically removed (they are benign, but they eat away at nearby structures).

7. A 72-year-old, hypertensive man, on aspirin for arthritis, has a copious nosebleed. His BP is 220/115 mm Hg when seen in the ED. He says he began swallowing blood before it began to come out through the front of his nose.

What is it? Obviously epistaxis secondary to hypertension.

Management. These are serious problems that can end up with death. Medical treatment to lower the BP is clearly needed, and may be the option offered in the answers, but getting the ENT people there right away should also be part of the equation. Posterior packing is needed, emergency arterial ligation or angiographic embolization may be required.

8. A 57-year-old man seeks help for “dizziness.” On further questioning he explains that he gets light-headed and unsteady, but the room is not spinning around.

What is it? Neurologic, probably vascular occlusive—but not inner ear. Direct your management and workup in that direction.

9. A 57-year-old man seeks help for “dizziness.” On further questioning, he explains that the room spins around him.

What is it? This one is in the vestibular apparatus. I could not even begin to tell you how to work it up, but seek the answers that look like either symptomatic treatment (meclizine, Phenergan, diazepam) or an ENT workup.
VAScular Oclusive Disease

1. A 62-year-old right-handed man has transient episodes of weakness in the right hand, blurred vision, and difficulty expressing himself. There is no associated headache, the episodes have sudden onset, lasting about 5 or 10 minutes at the most, and they resolve spontaneously, leaving no neurologic sequela.

What is it? Transient ischemic attacks in the territory of the left carotid artery, caused by stenosis or an ulcerated plaque at the left carotid bifurcation.

Management. Start workup with Duplex scanning. If stenosis exceeds 70% proceed to carotid endarterectomy.

2. A 61-year-old man presents with a 1-year history of episodes of vertigo, diplopia, blurred vision, dysarthria, and instability of gait. The episodes have sudden onset, last several minutes, have no associated headache, and leave no neurologic sequela.

What is it? Another version of transient ischemic attacks, but now the vertebals may be involved.

Management. Start with Duplex scanning.

3. Last week, a 60-year-old diabetic man had abrupt onset of right third nerve paralysis and contralateral hemiparesis. There was no associated headache. The patient is alert, but the neurologic deficits have not resolved.

What is it? Neurologic catastrophes that begin suddenly and have no associated headache are vascular occlusive. The vernacular for this man’s problem is “a stroke.”

Management. Vascular surgery in the neck is designed to prevent strokes, not to treat them once they happen. There are very rare exceptions, but revascularization of an ischemic brain area risks making it bleed and get worse. This patient will get a CT scan to assess the extent of the infarct and supportive treatment with emphasis on rehabilitation. Eventually his neck vessels will be looked at by Duplex to see whether a second stroke elsewhere may be preventable. If the vignette had given the patient a very early stroke, where IV infusion of tissue-type plasminogen activator (tPA) could be started within 90 minutes of the onset of symptoms, your choice would have been a CT scan (to rule out extensive or hemorrhagic infarcts), followed by the tPA infusion.
Intracranial Bleeding

4. A 64-year-old black man complains of a very severe headache of sudden onset and then lapses into a coma. Past medical history reveals untreated hypertension, and examination reveals a stuporous man with profound weakness in the left extremities.

What is it? Neurologic catastrophes of sudden onset, with severe headache, are vascular hemorrhagic. This man has bled into his head. In the vernacular, he has also suffered “a stroke.”

Management. Give supportive measures with eventual rehabilitation efforts if he survives. CT scan is the universal first choice to see blood inside the head (we use it in trauma for the same purpose). This man will get one, to see exactly where he bled, and how bad it is.

5. A 39-year-old woman presents to the ED with a history of a severe headache of sudden onset that she says is different and worse than any headache she has ever had before. Her neurologic examination is completely normal, so she is given pain medication and sent home. She improves over the next few days, but 10 days after the initial visit she again gets a sudden, severe, and singular diffuse headache, and she returns to the ED. This time she has some nuchal rigidity on physical exam.

What is it? This one is a classic: subarachnoid bleeding from an intracranial aneurysm. The “sentinel bleed” that is not identified is a common feature. The “sudden, severe, and singular” nature of the pain is very common. And the nuchal rigidity betrays the presence of blood in the subarachnoid space.

Diagnosis. We are looking for blood inside the head, thus start with CT. Angiograms will eventually follow, in preparation for surgery to clip the aneurysm or endovascular coiling.

BRAIN TUMOR

1. A 31-year-old nursing student developed persistent headaches that began approximately 4 months ago, have been gradually increasing in intensity, and are worse in the mornings. For the past 3 weeks, she has been having projectile vomiting. Thinking that she may need new glasses, she seeks help from her optometrist, who discovers that she has bilateral papilledema.

What is it? Brain tumor. Neurologic processes that develop over a period of a few months and lead to increased ICP spell out tumor. Morning headaches are typical. If the tumor is in a “silent” area of the brain, there may be no other neurologic deficits.

Management. If given the option, pick MRI as your diagnostic test. If it is not offered, pick CT scan. Measures to decrease ICP while awaiting surgery include high-dose steroids (Decadron).
2. A 42-year-old right-handed man has a history of progressive speech difficulties and right hemiparesis for 5 months. He has had progressively severe headaches for the last 2 months. At the time of admission he is confused and vomiting and has blurred vision, papilledema, and diplopia. Shortly thereafter his BP rises to 190/100 mm Hg, and he develops bradycardia.

What is it? Again brain tumor, but now with 2 added features: there are localizing signs (left hemisphere, parietal, and temporal area), and he manifests the Cushing reflex of extremely high ICP.

Management. As above, but as an emergency.

3. A 42-year-old man has been fired from his job because of inappropriate behavior. For the past 2 months he has gradually developed very severe, "explosive" headaches that are located on the right side, above the eye. Neurologic examination shows optic nerve atrophy on the right, papilledema on the left, and anosmia.

What is it? Brain tumor in the right frontal lobe. A little knowledge of neuroanatomy can help localize tumors. The frontal lobe has to do with behavior and social graces, and is near the optic nerve and the olfactory nerve. If you want the fancy name, this is the Foster-Kennedy syndrome.

Management. MRI and neurosurgery.

4. A 12-year-old boy is short for his age, has bitemporal hemianopsia, and has a calcified lesion above the sella in x-rays of the head.

What is it? Craniopharyngioma.

Management. Get the fancy MRI and proceed with craniotomy.

5. A 23-year-old nun presents with a history of amenorrhea and galactorrhea of 6 months’ duration. She is very concerned that others might think that she is pregnant, and she vehemently denies such a possibility.

What is it? Prolactinoma.

Management. First confirm that she indeed is not pregnant or hypothyroid. Then, since you suspect a functioning tumor of an endocrine gland, measure the appropriate hormone. So, here you want a prolactin level. You also want to see the tumor. The top choice for that is MRI. Bromocriptine therapy is favored by most, with surgery reserved for those who do not respond or who wish to become pregnant.
6. A 44-year-old man is referred for treatment of hypertension. His physical appearance is impressive: he has big, fat, sweaty hands, large jaw and thick lips, a large tongue, and huge feet. He is also found to have a touch of diabetes. In further questioning he admits to headaches, and he relates that his wedding ring no longer fits his finger.

What is it? Acromegaly. Appearance is so striking that the vignette is likely to come with a picture (or two: front including his hands, and lateral showing the large jaw).

Management. Somatomedin C determination, MRI, and eventually pituitary surgery or radiation therapy.

7. A 15-year-old girl has gained weight and become “ugly.” She shows a picture of herself taken a year ago, where she was a lovely young woman. Now she has a hairy, red, round face full of pimples; her neck has a posterior hump, and her supraventricular areas are round and convex. She has a fat trunk and thin extremities. She has mild diabetes and hypertension.

What is it? Cushing’s syndrome. This one will also come with a picture, rather than a description. (Or two pictures, the before and after.)

Management. The sequence already described in the endocrine section: overnight low-dose dexamethasone suppression test. If no suppression, 24-hour urinary cortisol. If cortisol is high, do high-dose dexamethasone suppression test. If she suppresses at high dose, do an MRI of the sella, and follow with trans-sphenoidal pituitary surgery.

8. A 27-year-old woman develops a severe headache of sudden onset, making her stuporous. She is taken to the hospital, where she is found at admission to have a BP 75/45 mm Hg. Funduscopic examination reveals bilateral pallor of the optic nerves. Relatives indicate that for the past 6 months, she has been complaining of morning headaches, loss of peripheral vision, and amenorrhea. After she developed the severe headache, and just before she went into a deep stupor, she told her relatives that her peripheral vision had suddenly deteriorated even more than before.

What is it? Pituitary apoplexy. (She has bled into a pituitary tumor.)

Management. Steroid replacement is urgently needed. Other hormones will need to be replaced eventually. MRI or CT scan will determine extent of the problem.

9. A 32-year-old man complains of progressive, severe generalized headaches that began 3 months ago, are worse in the mornings, and lately have been accompanied by projectile vomiting. He has lost his upper gaze, and he exhibits the physical finding known as “sunset eyes.”
What is it? Another classic. This tumor is in the pineal gland, and if you want the fancy name, it is Parinaud syndrome.

Management. MRI to start. The neurosurgeons will take care of the rest.

10. A 6-year-old boy has been stumbling around the house and complaining of severe morning headaches for the past several months. While waiting in the office to be seen, he assumes the knee-chest position as he holds his head. Neurologic examination demonstrates truncal ataxia.

What is it? Tumor of the posterior fossa. Most brain tumors in children are located there, and cerebellar function is affected.

Management. MRI, neurosurgery.

11. A 23-year-old man develops severe headaches, seizures, and projectile vomiting over a period of 2 weeks. He has low-grade fever, and was recently treated for acute otitis media and mastoiditis.

What is it? Brain abscess. Signs and symptoms suggestive of brain tumor that develop in a couple of weeks with fever and an obvious source of infection spell out abscess.

Management. These are seen in CT as well as they would on MRI, and the CT is cheaper and easier to get…so pick CT if offered. Then the abscess has to be resected.

SPINAL CORD

1. A 52-year-old woman has constant, severe back pain for 2 weeks. While working in her yard, she suddenly falls and cannot get up again. When brought to the hospital she is paralyzed below the waist. Two years ago she had a mastectomy for cancer of the breast.

What is it? Most tumors affecting the spinal cord are metastatic, extradural. In this case the source is obvious, and the sudden onset of the paralysis suggests a fracture with cord compression or transection.

Management. Typically, an x-ray of the affected area is done right away, and it will show a huge, bony metastasis and the fracture that it has produced. But the best imaging to see what has happened to the cord (compressed? transected?) is the MRI. Neurosurgeons may be able to help if the cord is compressed rather than transected.
2. A 45-year-old man gives a history of aching back pain for several months. He has been told that he had muscle spasms, and was given analgesics and muscle relaxants. He comes in now because of the sudden onset of very severe back pain that came on when he tried to lift a heavy object. The pain is “like an electrical shock that shoots down his leg,” it is worse with sneezing and straining, and it prevents him from ambulating. He keeps the affected leg flexed. Straight leg-raising test gives excruciating pain.

What is it? Lumbar disk herniation. Peak incidence is age 40s, and virtually all of these are at L4–L5 or L5–S1.
- If the “lightning” exits the foot by the big toe, it is L4–L5.
- If the “lightning” exits by the little toe, it is L5–S1.

Management. MRI for diagnosis. Bed rest and pain control will take care of most of these cases. Neurosurgical intervention is done only if there is progressive weakness or sphincteric deficits.

3. A 79-year-old man complains of leg pain brought about by walking and relieved by rest. On further questioning it is ascertained that he has to sit down or bend over for the pain to go away. Standing at rest will not do it. Furthermore, he can exercise for long periods of time if he is “hunched over,” such as riding a bike or pushing a shopping cart. He has normal pulses in his legs.

What is it? The symptom is neurogenic claudication. The disease is spinal stenosis.

Management. Get MRI and refer to pain clinic. Pain control can usually be obtained with steroid and analgesic injections under x-ray guidance. Surgery is rarely needed for these.

4. A business executive who has been a T6 paraplegic for many years is held at a business meeting for several hours beyond the time when he would normally have done his in-and-out self-catheterization of the urinary bladder. He develops a pounding headache, profuse perspiration, and bradycardia. BP is 220/120 mm Hg.

The classic picture of autonomic dysreflexia. Obviously his bladder needs to be emptied, but he also needs alpha-adrenergic blocking agents and may benefit from calcium-channel blockers (such as nifedipine).
1. A 60-year-old man complains of extremely severe, sharp, shooting pain in his face, like a “bolt of lightning,” that is brought about by touching a specific area and lasts about 60 seconds. His neurologic examination is normal, but it is noted that part of his face is unshaven because he fears to touch that area.

What is it? Tic douloureux (trigeminal neuralgia).

Management. Rule out organic lesions with MRI. Treat with anticonvulsants.

2. Several months after sustaining a crushing injury of his arm, a patient complains bitterly about constant, burning, agonizing pain that does not respond to the usual analgesic medications. The pain is aggravated by the slightest stimulation of the area. The arm is cold, cyanotic, and moist.

What is it? Causalgia (reflex sympathetic dystrophy).

Management. A successful sympathetic block is diagnostic, and surgical sympathectomy will be curative.
UROLOGIC EMERGENCIES

1. A 14-year-old boy presents in the ED with very severe pain of sudden onset in his right testicle. There is no fever, pyuria, or history of recent mumps. The testis is swollen, exquisitely painful, “high riding,” and with a “horizontal lie.” The cord is not tender.

What is it? Testicular torsion, a urologic emergency.

Management. Emergency surgery to save the testicle (bilateral orchiopexy). Do not waste time doing diagnostic studies.

2. A 24-year-old man presents in the ED with very severe pain of recent onset in his right scrotal contents. There is a fever of 103°F and pyuria. The testis is in the normal position, and it appears to be swollen and exquisitely painful. The cord is also very tender.

What is it? Acute epididymitis.

Management. This is the condition that presents the differential diagnosis with testicular torsion. Torsion is a surgical emergency; epididymitis is not. This patient does not need to be rushed to the OR; all he needs is antibiotic therapy.

Should a diagnosis of testicular torsion be missed, the medicolegal implications are so severe that urologists routinely do a sonogram when they are sure the problem is epididymitis—just to absolutely, unequivocally rule out torsion.

3. A 72-year-old man is being observed with a ureteral stone that is expected to pass spontaneously. He develops chills, a temperature spike to 104°F, and flank pain.

What is it? Obstruction of the urinary tract alone is bad. Infection of the urinary tract alone is bad. But the combination of the two is horrible—a true urologic emergency. That’s what this patient has.

Management. Massive IV antibiotic therapy, but the obstruction must also be relieved right now. In a septic patient, stone extraction would be hazardous, so the option in addition to antibiotics would be decompression by ureteral stent or percutaneous nephrostomy.
4. An adult woman relates that 5 days ago she began to notice frequent, painful urination, with small volumes of cloudy and malodorous urine. For the first 3 days she had no fever, but for the past 2 days she has been having chills, high fever, nausea, and vomiting. Also in the past 2 days she has had pain in the right flank. She has had no treatment whatsoever up to this time.

What is it? Pyelonephritis.

Management. UTI should not occur in men or in children, and thus should trigger a workup looking for a cause. Women of reproductive age, on the other hand, get cystitis all the time, and they are treated with appropriate antibiotics without great fuss. However, when they get flank pain and septic signs it's much more serious. This woman needs hospitalization, IV antibiotics, and at least a sonogram to make sure that there is no concomitant obstruction.

5. A 62-year-old man presents with chills, fever, dysuria, urinary frequency, diffuse low back pain, and an exquisitely tender prostate on rectal exam.

What is it? Acute bacterial prostatitis.

Management. This vignette is supposed to elicit from you what not to do. The treatment for this man is intuitive: he needs IV antibiotics—but what should not be done is any more rectal exams or any vigorous prostatic massage. Doing so could lead to septic shock.

6. A 33-year-old man has urgency, frequency, and burning pain with urination. The urine is cloudy and malodorous. He has mild fever. On physical examination the prostate is not warm, boggy, or tender.

The first part of this vignette sounds like prostatitis, which would be common and not particularly challenging; however, if the prostate is normal on examination, things become less clear. The point of the vignette becomes that men (particularly young ones) are not supposed to get urinary tract infections. This infection needs to be treated, so ask for urinary cultures and start antibiotics—but also start a urologic workup. Do not start with cystoscopy (do not instrument an infected bladder, you could trigger septic shock). Start first with a sonogram.

CONGENITAL UROLOGIC DISEASE

1. You are called to the nursery to see an otherwise healthy-looking newborn boy because he has not urinated in the first 24 hours of life. Physical examination shows a big distended urinary bladder.

What is it? Infants are not born alive if they have no kidneys (without kidneys, lungs do not develop). This represents some kind of obstruction. First look at the meatus: it could be simple meatal stenosis. If it is not, posterior urethral valves is the best bet.

Management. Drain the bladder with a catheter if it passes easily (it will pass through the valves). Voiding cystourethrogram for diagnosis, endoscopic fulguration or resection for treatment.
2. A bunch of newborn boys are lined up in the nursery for you to do circumcisions. You notice that one of them has the urethral opening in the ventral side of the penis, about midway down the shaft.

What is it? Hypospadias.

The point of the vignette is that you don’t do the circumcision. The foreskin may be needed later for reconstruction when the hypospadias is surgically corrected.

3. A newborn baby boy has one of his testicles down in the scrotum, but the other one is not. On physical examination the missing testicle is palpable in the groin. It can easily be pulled down to its normal location without tension, but it will not stay there; it goes back up.

What is it? This is a retractile testicle, due to an overactive cremasteric reflex.

Management. Nothing needs to be done now. Even truly undescended testicles may spontaneously descend during the first year of life. Those that do not require orchidopexy.

4. A 9-year-old boy gives a history of 3 days of burning on urination, with frequency, low abdominal and perineal pain, left flank pain, and fever and chills.

What is it? Little boys are not supposed to get UTI. There is more than meets the eye here. A congenital anomaly has to be ruled out.

Management. Treat the infection of course, but do IVP and voiding cystogram looking for reflux. If found, long-term antibiotics while the child “grows out of the problem.”

5. A mother brings her 6-year-old girl to you because “she has failed miserably to get proper toilet training.” On questioning you find out that the little girl perceives normally the sensation of having to void and voids normally and at appropriate intervals, but also happens to be wet with urine all the time.

What is it? A classic vignette: low implantation of one ureter. In little boys there would be no symptoms, because low implantation in boys is still above the sphincter, but in little girls the low ureter empties into the vagina and has no sphincter. The other ureter is normally implanted and accounts for her normal voiding pattern.

Management. If the vignette did not include physical exam, that would be the next step, which might show the abnormal ureteral opening. Often physical examination does not reveal the anomaly, and imaging studies would be required (start with IVP). Surgery will follow.
6. A 16-year-old boy goes on a beer-drinking binge for the first time in his life. Shortly thereafter he develops colicky flank pain.

What is it? Another classic. Ureteropelvic junction obstruction.

Management. Start with U/S (sonogram). Repair will follow.

TUMORS

1. A 62-year-old man reports an episode of gross, painless hematuria. Further questioning determines that the patient has total hematuria rather than initial or terminal hematuria.

What is it? The blood is coming anywhere from the kidneys to the bladder, rather than the prostate or the urethra. Either infection or tumor can produce hematuria. In older patients without signs of infection, cancer is the main concern, and it could be either renal cell carcinoma or transitional cell cancer of the bladder or ureter.

Management. Do a CT scan and cytoscopy.

2. A 70-year-old man is referred for evaluation because of a triad of hematuria, flank pain, and a flank mass. He also has hypercalcemia, erythrocytosis, and elevated liver enzymes.

What is it? Full-blown picture of renal cell carcinoma (very rarely seen nowadays).

Management. Do a CT scan.

3. A 55-year-old chronic smoker reports 3 instances in the past 2 weeks when he has had painless, gross, total hematuria. In the past 2 months he has been treated twice for irritative voiding symptoms, but has not been febrile, and urinary cultures have been negative.

What is it? Most likely bladder cancer but a renal etiology must be excluded.

Management. Do a CT scan and cytoscopy.

4. A 59-year-old black man has a rock-hard, discrete, 1.5-cm nodule felt in his prostate during a routine physical examination.

5. A 59-year-old black man is told by his primary care physician that his prostatic specific antigen (PSA) has gone up significantly since his last visit. He has no palpable abnormalities in his prostate by rectal exam.
What is it? The two classic presentations for early cancer of the prostate.

Management. Transrectal needle biopsy, guided by the examining finger in the first case, and guided by sonogram in the second. Eventually surgical resection or radiotherapy after the extent of the disease has been established.

6. A 62-year-old man had a radical prostatectomy for cancer of the prostate 3 years ago. He now presents with widespread bony pain. Bone scans show metastases throughout the entire skeleton, including several that are very large and very impressive.

Management. Significant, often dramatic palliation can be obtained with orchiectomy, although it will not be long-lasting (1 or 2 years only). An expensive alternative is luteinizing hormone-releasing hormone agonists, and another option is antiandrogens (flutamide).

7. A 78-year-old man comes in for a routine medical checkup. He is asymptomatic. When a physician had seen him 5 years earlier, a PSA had been ordered, but he notices as he leaves the office this time that the study has not been requested. He asks if he should get it.

Management. For many years PSA was not done after age 75. Improved longevity and better treatments for early prostatic cancer have led to a more flexible approach. Also, with the advent of robotic prostatectomy, the surgery is so much safer and with better outcomes that PSA is now being offered selectively.

8. A 25-year-old man presents with a painless, hard testicular mass. It is clear in the physical examination that the mass arises from the testicle rather than the epididymus. To be sure, a sonogram was done. The mass was indeed testicular.

What is it? Testicular cancer.

Management. This will sound horrible, but here is a disease where we shoot to kill first—and ask questions later. The diagnosis is made by performing a radical orchiectomy by the inguinal route. That irreversible, drastic step is justified because testicular tumors are almost never benign.

Beware of the option to do a trans-scrotal biopsy: that is a definite no-no. Further treatment will include lymph node dissection in some cases (too complicated a decision for you to know about) and platinum-based chemotherapy. Serum markers are useful for follow-up: α-fetoprotein and β-human chorionic gonadotropin (β-HCG), and they have to be drawn before the orchiectomy (but they do not determine the need for the diagnostic orchiectomy—that still needs to be done).
9. A 25-year-old man is found on a pre-employment chest x-ray to have what appears to be a pulmonary metastasis from an unknown primary tumor. Subsequent physical examination discloses a hard testicular mass, and the patient indicates that for the past 6 months he has been losing weight for no obvious reason.

What is it? Same situation as earlier vignette, but with metastasis. The point of this vignette is that testicular cancer responds so well to chemotherapy that treatment is undertaken regardless of the extent of the disease when first diagnosed. Manage exactly as the previous case.

RETENTION AND INCONTINENCE

1. A 60-year-old man shows up in the ED because he has not been able to void for the past 12 hours. He wants to, but cannot. On physical examination his bladder is palpable halfway up between the pubis and the umbilicus, and he has a big, boggy prostate gland without nodules. He gives a history that for several years now he has been getting up 4 or 5 times a night to urinate. Because of a cold, 2 days ago he began taking antihistaminics, using "nasal drops," and drinking plenty of fluids.

What is it? Acute urinary retention, with underlying benign prostatic hypertrophy.

Management. Indwelling bladder catheter, to be left in for at least 3 days. Further management will be based on the use of alpha-blockers. Other options include 5-alpha-reductase inhibitors for large glands, or newly developed noninvasive interventions. The traditional TURP is rarely done now.

2. On postoperative day 2 after surgery for repair of bilateral inguinal hernias, a patient reports that he "cannot hold his urine." Further questioning reveals that every few minutes he urinates a few milliliters of urine. On physical examination there is a large palpable mass arising from the pelvis and reaching almost to the umbilicus.

What is it? Acute urinary retention with overflow incontinence.

Management. Indwelling bladder catheter.

3. A 42-year-old woman consults you for urinary incontinence. She is the mother of 5 children. Ever since the birth of her last child 7 years ago, she leaks a small amount of urine whenever she sneezes, laughs, gets out of a chair, or lifts any heavy objects. She relates that she can hold her urine all through the night without any leaking whatsoever.

What is it? Stress incontinence.

Management. If she has no physical findings, she can be taught exercises that strengthen the pelvic floor. If she has a large cystocele, she will need surgical reconstruction.
STONES

1. A 72-year-old man who in previous years has passed 3 urinary stones is now again having symptoms of ureteral colic. He has relatively mild pain which began 6 hours ago but does not have much nausea and vomiting. CT scan shows a 3-mm ureteral stone just proximal to the ureterovesical junction.

Management. Urologists have a huge number of options to treat stones, including laser beams, shock waves, ultrasonic probes, baskets for extraction—but there is still a role for “watching and waiting.” This man is a good example; it is a small stone, almost at the bladder. Give him time, medication for pain, and plenty of fluids, and he will probably pass it.

2. A 54-year-old woman has a severe ureteral colic. CT scan shows a 7-mm ureteral stone at the ureteropelvic junction.

Management. Whereas a 3-mm stone has a 70% chance of passing, a 7-mm stone only has a 5% probability of doing so. This one will have to be smashed and retrieved. The best option among choices offered would be shock-wave lithotripsy (SWL). (Contraindications to SWL include pregnancy, bleeding diathesis, and stones that are several centimeters big.)

MISCELLANEOUS

1. A 72-year-old man has for the past several days noticed bubbles of air coming out with the urine when he urinates. He also gives symptoms suggestive of mild cystitis.

What is it? Pneumaturia caused by a fistula between the bowel and the bladder. Most commonly from sigmoid colon to dome of the bladder, caused by diverticulitis. Cancer (also originating in the sigmoid) is the second possibility.

Management. Intuitively you would think that either cystoscopy or sigmoidoscopy would verify the diagnosis, but real life does not work that way: those seldom show anything. Contrast studies (cystogram or barium enema) are also typically unrewarding. The test to do is CT scan. Because ruling out cancer of the sigmoid is important, the sigmoidoscopic examination would be done at some point, but not as the first test. Eventually surgery will be needed.

2. A 32-year-old man has sudden onset of impotence. One month ago he was unexpectedly unable to perform with his wife after an evening of heavy eating and heavier drinking. Ever since then he has not been able to achieve an erection when attempting to have intercourse with his wife, but he still gets nocturnal erections and can masturbate normally.

What is it? Classic psychogenic impotence: young man, sudden onset, partner-specific.

Management. Curable with psychotherapy if promptly done.
3. Ever since he had a motorcycle accident where he crushed his perineum, a young man has been impotent.

4. Ever since he had an abdominoperineal resection for cancer of the rectum, a 52-year-old man has been impotent.

Organic impotence has sudden onset only when it is related to trauma. Vascular injury explains the first of these two, and vascular reconstruction may help. Nerve injury accounts for the second, and only prosthetic devices can help there.

5. A 66-year-old diabetic man with generalized arteriosclerotic occlusive disease notices gradual loss of erectile function. At first he could get erections, but they did not last long; later the quality of the erection was poor; and eventually he developed complete impotence. He does not get nocturnal erections.

This is the classic pattern of organic impotence (not related to trauma). A wide range of therapeutic options exists, but probably the first choice now is sildenafil, tadalafil, and vardenafil.
1. A 62-year-old man who had a motorcycle accident has been in a coma for several weeks. He is on a respirator, has had pneumonia on and off, has been on vasopressors, and shows no signs of neurologic improvement. The family inquires about brain death and possible organ donation.

At one time the medical profession was very fussy about who was accepted as an organ donor. Nowadays, with 65,000 patients on transplant waiting lists and many dying every day for lack of organs, almost anybody is taken. The rule now is that all potential donors are referred to the local organ harvesting organization. Donors with specific infections (such as hepatitis) can be used for recipients with the same infection. Even donors with metastatic cancer are eligible for eye donation.

A positive HIV status remains the only absolute contraindication to a patient serving as an organ donor.

2. Ten days after liver transplantation, levels of γ-glutamyltransferase (GGT), alkaline phosphatase, and bilirubin begin to go up. There is no U/S evidence of biliary obstruction or Doppler evidence of vascular thrombosis.

3. On week 3 after a closely matched renal transplant, there are early clinical and laboratory signs of decreased renal function.

4. Two weeks after a lung transplant, the patient develops fever, dyspnea, hypoxemia, decreased FEV1, and interstitial infiltrate on chest x-ray.

There are 3 kinds of rejection. **Hyperacute rejection** happens within minutes of re-establishing blood supply, produces thrombosis, and is caused by preformed antibodies. ABO matching and lymphocytotoxic crossmatch prevent it, and thus we do not see it clinically—and you will not encounter it on the exam.

Acute rejection is the one we deal with all the time. It occurs after the first 5 days, and usually within the first few months. Signs of organ dysfunction (as in these vignettes) suggest it, but biopsy is what confirms it. In the case of the heart, there are no early clinical signs; thus biopsies there are done routinely at set intervals. Once diagnosed, the first line of therapy is steroid boluses. If unsuccessful, antilymphocyte agents are used (anti-thymocyte serum).
5. Several years after a successful (renal, hepatic, cardiac, pulmonary) transplantation, there is gradual, insidious loss of organ function.

The third form, **chronic rejection**, is poorly understood and irreversible. There is no treatment for it, but the correct answer for such vignette would be to do biopsy. Late acute rejection episodes could be the problem, and those can be treated.
Index

A
ABCD of melanoma, 79, 210
ABCDE of hepatic risk, 36
ABCDE of Primary Survey, 3–5, 99–104
Abdominal aortic aneurysm (AAA), 75–76, 207
Abdominal compartment syndrome, 12, 118
Abdominal distention, postoperative, 41–42, 157
Abdominal hernias, 59, 184
Abdominal trauma, 10–13, 115–118
 boundaries of abdomen, 116
 gunshot wounds, 10, 100–101, 102, 115–116, 119, 154, 155
 stab wounds, 10, 116
Abscesses
 brain, 89, 225
 breast, 60, 186
 felon, 29, 142
 ischiorectal, 49, 170
 liver, 54, 177
 Ludwig’s angina, 85, 219
 pancreatic, 58, 182
 postoperative fever, 38, 153
Achalasia, 45–46, 164
Achilles tendon rupture, 25, 139
Acid burns, 15, 82, 123, 212
Acidosis, 44, 160–161
 surgical time and internal bleeding, 12, 118
Acoustic nerve neuroma, 84, 217
Acquired heart disease, 72–73, 203–205
Acromegaly, 89, 224
Acute rejection, 95, 237
Adult respiratory distress syndrome (ARDS), 40, 155
Annular pancreas, 67, 196, 197
 “double-bubble” in x-rays, 66, 196, 197
Anorectal diseases, 49, 65, 169–171
Antalgic gait, 19, 131
Anterior cord syndrome, 8, 110
Anterior cruciate ligament (ACL) injury, 25, 137–138
Antibiotics
 Clostridium difficile associated disease, 48, 169
 prophylaxis for dental work, 201
Anus, 49, 169–171
 fissure, 49, 170
 fistula, 49, 170, 171
 imperforation, 65, 195
 squamous cell carcinoma, 49, 171
Aorta
 abdominal aortic aneurysm, 75–76, 207
 coarctation of, 64, 194
 dissecting aneurysm of thoracic, 77, 208
 insufficiency, 72, 203
 stenosis, 72, 203
 traumatic injury of, 9–10, 112, 113, 114
 vascular ring, 71, 201
Apache II score and acute severe pancreatitis, 58
Appendicitis, acute, 48, 167
Arterial embolization, 77, 208
Arterial insufficiency ulcers, 31, 144
Arteriosclerosis
 occlusive disease of lower extremities, 31, 76–77, 208
 organic impotence, 94, 236
 renovascular hypertension, 64, 194
 subclavian steal syndrome, 75, 207
Ascending cholangitis, acute, 57, 181
Ascites
 chronic constrictive pericarditis and, 73
 hepatic risk, 36, 150
 peritonitis and, 51, 174
Aspiration, perioperative, 39, 154
Atelectasis
 postoperative fever, 37, 152
 rib fractures, 8, 110
Atrial septal defect, 71, 201
Auto accidents. See Car accidents
Autonomic dysreflexia, 226

B
Back pain, 29–30, 143–144
 abdominal aortic aneurysm, 75, 207
 metastatic malignancy, 30, 62, 144, 190, 225
Bacteremia, 37, 152
Bacterial endocarditis, 72, 201
Bacterial prostatitis, acute, 92, 230
Balthazar CT severity index and acute severe pancreatitis, 58
“Bamboo spine,” 30, 143
Barrett’s esophagus, 45, 163–164
Basal cell carcinoma, 79, 209
Bat bites, 128
Battle’s sign, 6
Bear bites, 102
Bee stings, 18, 104, 129
Bell’s palsy, 84, 85, 219
Bicarbonate therapy, 44
Biliary atresia, 68, 198
Biliary colic, 56, 180
Biliary pancreatitis, 57, 181
Biliary tract disease, 52, 181
Bilirubin in hepatic risk, 36
Bites, 17–18, 102, 127–129
Black widow spider bites, 18, 129
Bladder cancer, 93, 232
extrophy, 66, 196
injuries, 14, 120
Bleeding. See also Internal bleeding
 blood per rectum, 50, 51, 172–173
 epistaxis, 85–86, 219–220
 hemmorhoids, 49, 169
Blount disease, 20, 132
Blunt trauma. See also Car accidents
abdomen, 11, 116–117
chest, 9–10, 112–114
head, 6–7, 105
myocardial contusion, 9, 113
neck, 7, 109
urologic injuries, 14, 120–121
Boerhaave's syndrome, 46, 165
Bone tumors, 30, 33, 62, 93, 146, 225, 233
pathologic fractures as, 33, 146
Bony spur in foot, 32, 145
Bowel obstruction
 mechanical, 41, 47, 166, 167, 197
 postoperative, 41–42
 strangulated, 47, 166
Bow-legs, 20, 132
Brain abscess, 89, 225
Brain tumors, 88–89, 222–225
 pediatric, 89, 225
timetable and presentation, 87
Branchial cleft cyst, 83, 215
BRCA markers, 59
Breast diseases, 59–60, 185–186
 abscess, 60, 186
 cancer, 30, 33, 59–62, 146, 186–190
Breathing in trauma, 4, 100
Breslow measurement, 79, 80, 210
Bronchi, traumatic rupture, 10, 114
Brown recluse spider bites, 18, 129
Brown-Séquard injury, 8, 109
Burns, 15–17, 123–127
carcinoma from, 32, 145
 chemical burns, 15, 82, 123, 124, 212
 fluid resuscitation, 16–17, 125–126
 % total body surface area, 16, 125, 126
 scalding burns, 15–16, 69, 125, 199

C
Cancer. See also Tumors
anorectal, 49, 171
back pain, 30, 62, 144, 190, 225
bladder, 93, 232
bone tumors, 30, 33, 62, 93, 146, 225, 233
BRCA markers, 59
breast, 30, 33, 59–62, 146, 186–190
carcinoid syndrome of small bowel, 47, 167
chronic irritation sites, 32, 144–145
colon, 48, 168
esophagus, 46, 164
hematuria and, 92–93, 232
liver, 54, 176–177
lung, 73–74, 146, 205–206
lymph nodes, 83–84, 216–217
multiple myeloma, 33, 146
obstructive jaundice, 55, 179
pancreatic, 55, 180
parotid, 84, 218
pregnancy and, 61, 186, 189
prostate, 30, 33, 93, 146, 232–233
renal cell carcinoma, 92–93, 232
skin, 79–80, 209–210
soft tissue sarcoma, 33, 147
spinal cord tumors, 225–226
stomach, 47, 166
testicular, 93, 233–234
thyroid, 63, 191
urologic, 92–93, 232
Car accidents
abdominal trauma, 116–117
airway, 99–100
chest trauma, 112–114
circulation, 101, 103–104
fracture of extremities, 25, 103, 136–137, 138
head trauma, 105–107, 108, 141
hip posterior dislocation, 26, 140, 141
neck trauma, 109
spinal cord trauma, 110
urologic injuries, 120–121
Carcinoid syndrome of small bowel, 47, 167
Cardiac disease
acquired heart disease, 72–73, 203–205
cardiogenic shock, 4, 5, 104
congenital, 71–72, 201–202
electrical burns, 15
heart surgery patient care, 73, 204–205
rejection of transplanted tissue, 95
Cardiac risk, 35, 149–150
coronary revascularization and, 150
Cardiogenic shock, 4, 5, 104
Cardiothoracic surgery, 71–74, 201–206
Carpal navicular fracture, 23, 135–136
Carpal tunnel syndrome, 28, 141
Cast pain, 25, 139
Catheterization
postoperative urinary retention, 41, 93, 156, 234
urologic injuries and, 14, 120
Cauda equina syndrome, 29, 143
Causalgia, 90, 227
Cavernous sinus thrombosis, 85, 219
Central cord syndrome, 8, 110
Cerebral aneurysm, 88
Cerebral perfusion pressure, 6
Cervical spine evaluation, 28, 106, 109, 141
Charcot’s triad, 57
Chemical burns, 15, 123
eye, 82, 212
smoke inhalation, 15, 124
Chest pain
dissecting aneurysm of thoracic aorta, 77, 208
myocardial infarction, perioperative, 38, 153
pulmonary embolus, 38–39, 154
Chest trauma, 8–10, 110–115
car accidents, 112–114
gunshot wounds, 102–103, 116
stab wounds, 103, 110–112
Chest x-ray. See also X-ray images
internal bleeding, 11
in Primary Survey, 4, 5, 11
solitary “coin” lesion, 73, 205
CHF in cardiac risk, 35, 149
Child abuse, 69, 199
scalding burns, 15–16, 69, 125, 199
Child-Pugh classification system, 36
Children. See Pediatrics
Cholangitis, acute ascending, 57, 181
Cholecystitis, acute, 56, 175, 180
Cholelithiasis, 56
Chronic obstructive pulmonary disease (COPD), 36, 74, 150
Chronic rejection, 96, 238
Circulation in trauma, 4–5, 100–104
after fracture stabilization, 123
Circumcision and hypospadias, 92, 231
Circumferential burns, 15, 124
Cirrhosis
ammonium intoxication and, 41, 156
hepatic risk, 151
peritonitis, 174
Claudication
disabling intermittent, 76–77
neurogenic of spinal stenosis, 226
occlusive disease of lower extremities, 31, 76–77, 208
rest pain, 76, 77, 208
subclavian steal syndrome, 75, 207
Clavicular fracture, 22, 134
Closed angle glaucoma, acute, 81–82, 211–212
Clostridium difficile associated disease (CDAD), 48, 169
Clotting in hepatic risk, 36
Club foot, 20, 133
Coagulopathy, 118
prothrombin time in hepatic risk, 36
surgical time and internal bleeding, 12, 118
Coarctation of aorta, 64, 194
Colitis, chronic ulcerative, 48, 168–169
Colles’ fracture, 22, 135
Colon, 48, 168–169
Coma, postoperative, 40–41, 155–156
Compartment syndrome
abdominal, 12, 118
circumferential burns, 15, 124
common locations for, 25, 138
crushing injuries, 15, 26, 123
as emergency, 26
fasciotomy for, 15, 26, 77, 123, 138
prolonged ischemia and, 15, 26, 77, 139
supracondylar fractures, 20, 133
Congenital disease, 65–69, 195–199
heart, 71–72, 201–202
hip dysplasia, 19, 131
neck masses, 83, 215
urologic, 66, 92, 230–232
Constrictive pericarditis, chronic, 73
Coronary artery disease (CAD), 73, 204
Cortical blindness, 81, 211
Courvoisier-Terrier sign, 55
Craniopharyngioma, 89, 223
Cremasteric reflex, 231
Cricothyroidotomy, 3, 100
Crohn’s disease, 49, 170
Cruciate ligament injuries, 25, 137–138
Crushing injuries
 compartment syndrome, 15, 26, 123
 hyperkalemia, 15, 123, 160
CT images
 abdominal aortic aneurysm, 76
 acute diverticulitis, 53
 gallstones, 56
 head trauma need for, 6
 hemodynamic stability required, 117
 pulmonary embolus, 39
 spleen rupture, 13, 117
“Current jelly” stool, 69, 199
Cushing reflex, 88, 223
Cushing’s syndrome, 63, 192, 224
Cyanotic cardiac anomalies, 72, 202
Cystic fibrosis and meconium ileus, 67, 197
Cystic hygroma, 83, 215
Cystic mastitis, 60, 185–186
Cystitis, 91–92, 230
“Current jelly” stool, 69, 199
Cushing reflex, 88, 223
Cushing’s syndrome, 63, 192, 224
Cyanotic cardiac anomalies, 72, 202
Cystic fibrosis and meconium ileus, 67, 197
Cystic hygroma, 83, 215
Cystic mastitis, 60, 185–186
Cystitis, 91–92, 230
Cystosarcoma phyllodes, 60, 185

D
De Quervain tenosynovitis, 28, 142
Death triad, 118
 surgical time and internal bleeding, 12, 118
Deep abscess postoperative fever, 38, 153
Deep vein thrombophlebitis, 37–38, 39
Delirium tremens (DTs), 40, 155
Dental infections, 85, 201
Diabetes
 diabetic ulcer, 30–31, 144
 ketoacidosis, 43, 44, 151, 160
 metabolic risk of diabetic coma, 36, 151
 ophthalmologic evaluation, 82, 213
 organic impotence, 94, 236
Diabetes insipidus, 41, 43, 156
Diaphragmatic hernia, 66, 195
Diaphragmatic traumatic rupture, 9, 113–114
Diet in hepatic risk, 36
Diffuse axonal injury, 7, 107
Digit amputation, 29, 143
“Dinner fork” wrist, 22, 135
Diplopia and cavernous sinus thrombosis, 85
Disability survey in trauma, 5
Disk herniation, 29–30, 143, 226
Dislocation
 knee, 27, 140
 shoulder, 22, 134–135
Disorientation, postoperative, 40–41, 155–156
Dissecting aneurysm of thoracic aorta, 77, 208
Diverticulitis
 acute, 52–53, 175
 pneumaturia and, 94, 235
Dizziness, 86, 220
Dog bites, 17, 127–128
Donors for transplantation, 95, 237
“Double-bubble” in x-rays, 66, 197
Ductal carcinoma in situ (DCIS), 61, 189
Duodenal atresia, 67, 196, 197
“double-bubble” in x-rays, 66, 196, 197
Dupuytren contracture, 29, 142
Dysphagia, 45–46, 71, 164, 201
Dysplastic nevus, 210

E
Ejection fraction, preoperative assessment, 35, 149
Elderly patients
 back pain of metastatic malignancy, 30, 144
 breast cancer, 59, 186
 cardiogenic shock, 104
 central cord syndrome, 8, 110
 epistaxis, 86, 220
 gastric adenocarcinoma, 47
 gastrointestinal bleeding, 172
 hip fracture, 23, 136
 mesenteric ischemia, 54, 176
 Ogilvie syndrome, 41–42, 157
 prostatic cancer surveillance, 93, 233
 pulmonary embolism, postoperative, 38, 154
 renovascular hypertension, 64, 194
 retinal artery occlusion, 82, 213
 rib fractures, 8, 110
Electrical burns, 15, 124
 fluid resuscitation needs, 126
Electrolytes, postoperative, 43–44, 159–161
Emboli
 air embolism, 10, 114–115
 arterial embolization, 77, 208
 deep vein thrombophlebitis, 37–38, 39
 fat embolism, 10, 24, 115, 137
 pulmonary embolus, 38–39, 154
 retinal artery occlusion, 82, 213
Emergencies
 cauda equina syndrome, 29, 143
 ENT, 85–86, 219–220
 ophthalmologic, 81–82, 211, 212, 213
 orthopedic, 26–28, 131–132, 139–141
 urologic, 91–92, 122, 229–230
 Encephalopathy in hepatic risk, 36
 Endocarditis, 201, 203
 Endocrine system, 63–64, 191–193, 224
 ENT (ear, nose, throat), 83–86, 215–220
 pediatric, 85, 218
 Epididymitis, acute, 91, 229
 Epidural hematoma, acute, 6, 106
 Epiphysis in fractures. See Growth plate in fractures
 Epistaxis, 85–86, 219–220
 Erectile dysfunction (ED), 94, 235–236
Esophagus, 45–46, 163–165
 atresia, 65
cancer, 46, 164
 sliding hiatal hernias, 59
 traumatic rupture, 10, 114
Euthyroid patient with thyroid nodules, 63
Evisceration, 42, 158
Ewing sarcoma, 33, 146
Exposure survey in trauma, 5
Exstrophy of urinary bladder, 66, 196
Extremities. See also Orthopedics
 arteriosclerotic occlusive disease, 31, 76–77, 208
 bear bites, 102
 burns, 15, 26, 123, 160
 crushing injuries, 15, 102, 122–123
 hand problems, 18, 28–29, 141–143
 leg ulcers, 30–32, 144–145
 reflex sympathetic dystrophy, 90, 227
 stab wounds, 122
 trauma to, 14–15, 202
 vascular surgery, 75–77, 207–208
Eyes
 burns, 17, 82, 212
 ophthalmology, 81–82, 211–213
 "sunset eyes," 89, 224–225
Fluids
 burns, 16–17, 125–126
 postoperative, 43–44, 159–161
 trauma, 4, 101–102
Focused Abdominal Sonography for Trauma (FAST), 11
in Primary Survey, 4, 5
Foley catheter
 postoperative urinary retention, 41, 93, 156, 234
 urologic injuries and, 14, 120
Follicular thyroid cancer, 191
Foot pain, 32, 145
Foreign bodies in children, 85, 218
Foster-Kennedy syndrome, 89, 223
Fractures
 adults, 22–25, 134–139
 child abuse, 69, 199
 compartment syndrome, 20, 25, 133, 138
 emergencies, 26–28, 139–141
 extremities, 15, 114, 115
 growth plate involvement, 20, 21, 134
 pain under cast, 25, 139
 pathologic, 33, 146
 pediatric, 20–21, 133–134
 pelvic, 13, 14, 119, 120
 penile, 14, 122
 radial nerve involvement, 27, 140
 remodeling, 20, 133
 rib, 8, 9, 110, 112–113
 second hidden fracture, 22, 27–28, 134, 141
 skull, 6, 105–106
 slipped capital femoral epiphysis, 19, 131
Frontal lobe tumors, 88, 89, 223
Fibroadenoma, 60, 185
Fibrocystic disease, 60, 185–186
Fibula/tibia fractures, 25, 138
Finger problems, 28–29, 141–143
Fistulas
 anal, 49, 170, 171
 fecal, 42, 158
 GI tract, 42, 158, 161
 milk, 186
 renal pedicle, 14, 121
 tracheoesophageal, 65, 195
 Flail chest, 9, 112
Follicular thyroid cancer, 191
Foot pain, 32, 145
Foreign bodies in children, 85, 218
Foster-Kennedy syndrome, 89, 223
Fractures
 adults, 22–25, 134–139
 child abuse, 69, 199
 compartment syndrome, 20, 25, 133, 138
 emergencies, 26–28, 139–141
 extremities, 15, 114, 115
 growth plate involvement, 20, 21, 134
 pain under cast, 25, 139
 pathologic, 33, 146
 pediatric, 20–21, 133–134
 pelvic, 13, 14, 119, 120
 penile, 14, 122
 radial nerve involvement, 27, 140
 remodeling, 20, 133
 rib, 8, 9, 110, 112–113
 second hidden fracture, 22, 27–28, 134, 141
 skull, 6, 105–106
 slipped capital femoral epiphysis, 19, 131
Frontal lobe tumors, 88, 89, 223
pancreas, 57–59, 182–183
small bowel, 47–48, 166–167
stomach, 47, 166
Gastrochisis, 66, 196
Genu valgus, 20, 132
Genu varum, 20, 132
Glasgow Coma Score (GCS), 5, 6, 99
Glaucoma, 81–82, 211–212
Glucagonoma, 64, 193
Goldman’s index of cardiac risk, 35, 149, 150
Gout, 32, 145
Grey-Turner sign, 57
Growth plate in fractures, 20, 21, 134
Salter Harris classification, 21
slipped capital femoral epiphysis, 19, 131
Gunshot wounds
abdomen, 10, 100–101, 102, 115–116, 119, 154, 155
chest, 102–103, 116
extremities, 15, 102, 122–123
neck, 108–109
urologic injuries, 119
H
Hand problems, 18, 28–29, 141–143
Head trauma, 6–7, 28, 105–108
cervical spine evaluation, 28, 106, 109
Headache
brain tumors, 87, 88, 89, 222–223, 224–225
breast cancer metastasis, 62, 190
glaucoma, 81, 211–212
occlusive vs. hemorrhagic vascular disease, 87, 88, 221, 222
pheochromocytoma, 64, 193
Heart disease. See Cardiac disease
Heel spur, 32, 145
Hematogenous osteomyelitis, acute, 20, 132
Hematuria, 232
cancer and, 92–93, 232
pediatric, 121
urologic injury, 14, 119, 121
Hemisection of spinal cord, 8
Hemolytic jaundice, 54, 178
Hemoperitoneum image, 13
Hemopneumothorax, 112
Hemorrhagic pancreatitis, 173, 182
Hemorrhagic shock, 4, 11
Hemorrhagic stroke, 88, 222
Hemorrhoids, 49, 169
Hemothorax, 9, 111
hemopneumothorax, 112
Hepatic adenoma, 54, 177
Hepatic risk, 36, 150–151
Hepatobiliary diseases, 54–57, 176–181
Hepatocellular jaundice, 54, 178
Hepatoma, primary, 54, 177
Hernias
abdominal, 59, 184
diaphragmatic, 66, 195
incarcerated, 47, 160, 167, 184
inguinal, 47, 184
lumbar disk, 29–30, 143, 226
mechanical intestinal obstruction, 47, 167
strangulated, 167, 184
umbilical, 59, 184
High-voltage electrical burns, 15, 124
fluid resuscitation needs, 126
Hips
intertrochanteric fracture, 23, 24, 136
pediatric orthopedics, 19–20, 131–132
pelvic fracture, 13, 119
posterior dislocation, 26, 140, 141
proximal femur fracture, 23
Hirschprung’s disease, 68, 198
Human bites, 18, 129
Hyperacute rejection, 95, 237
Hyperaldosteronism, primary, 64, 193
Hyperkalemia, 43
crushing injuries and, 15, 123, 160
Hypernatremia, 43, 159
postoperative disorientation, 41, 43, 156
Hyperparathyroidism, 63
Hypertension
Cushing reflex in brain tumors, 88, 223
dissecting aneurysm of thoracic aorta, 77
epistaxis, 86, 220
hemorrhagic stroke, 88, 222
renovascular, 14, 64, 194
surgical, 64, 193–194
Hyperthyroidism, 63
thyroid nodules, 63
Hypertrophic pyloric stenosis, 68, 198
Hypokalemia, 43, 64
Hyponatremia, 43, 159–160
postoperative disorientation, 40, 43, 155
Hypoplasia, 92, 231
Hypothermia, surgical time, and internal bleeding, 12, 118
Hypovolemic shock
abdominal compartment syndrome, 12, 118
femur fracture, 24, 137
internal bleeding, 11, 117
intracranial bleeding and, 7, 11, 103–104, 108
non-trauma, 5
trauma, 4, 100–101, 102
Hypoxia and postoperative disorientation, 40, 155
I
Imaging. See CT images; X-ray images
Immunization after splenectomy, 12, 117
Imperforate anus, 65, 195
Impotence, 94, 235–236
Incarcerated hernias, 47, 160, 167, 184
Index

Incontinence
- overflow, 93, 234
- stress, 93–94, 234

Infant surgery, 65–69, 195–199

Infection of wound, 38, 42, 153, 158

Infectious neurologic disease timetable and presentation, 87

Infiltrating ductal carcinoma, 61, 188, 189, 190

Inflammatory bowel disease and chronic ulcerative colitis, 48

Inflammatory breast cancer, 60, 61, 62, 187

Inguinal hernias, 47, 184

Inhalation injuries of respiratory burns, 15, 124

fluid resuscitation needs, 126

Inoperable cancer of the breast, 61

Insulinoma, 64, 192

Internal bleeding, 11, 117
- femur fracture, 24, 137
- fluid resuscitation and, 4, 101–102
- gastrointestinal bleeding, 50–51, 171–173
- intracranial, 88, 222
- intracranial and hypovolemic shock, 7, 11, 103–104, 108
- pelvic fracture, 13, 119
- surgical time and, 12, 118

Intertrochanteric fracture, 23, 24, 136

Intestinal atresia, 67, 197

Intestinal obstruction
- mechanical, 41, 47, 166, 167, 197
- postoperative, 41–42
- strangulated, 47, 166

Intra-abdominal pressure (IAP), 12

Intracranial bleeding, 88, 222

hypovolemic shock and, 7, 11, 103–104, 108

Intraductal papilloma, 60, 186

Intussusception, 69, 197

Ischemic stroke, 88, 221

Ischemic ulcers, 31, 144

Ishioirectal abscess, 49, 170

Jaundice, 54–55, 57, 178–180

biliary atresia, 68, 198

Jersey finger, 29, 142

Jugular venous distention, 4, 35, 149

K

Ketoacidosis, 43, 44, 151, 160

Kidney injuries. See Renal injuries

Knee injury, 24–25, 137–138

- hip pathology as knee pain, 19, 131
- Osgood-Schlatter disease, 20, 132
- popliteal artery injury, 27, 140
- Knock-knee, 20, 132

L

Lachman test, 25, 137

Left-to-right shunts, 71

Leg ulcers, 30–32, 144–145

Legg-Calve-Perthes disease, 19, 131

Liver, 54–55, 176–180

- rejection of transplanted tissue, 95, 237–238

Lobular breast cancer, 61, 188, 189

Ludwig’s angina, 85, 219

Lumbar disk herniation, 29–30, 143, 226

Lung cancer, 73–74, 146, 205–206

Lymphatic system
- cystic hygroma, 83, 215
- lymph nodes enlarged, 83–84, 216–217
- lymphoma, 84, 216

Malignancy. See Metastatic malignancy

Malignant hyperthermia, 36, 152

Malleoli fracture, 25, 139

Mallet finger, 29, 142

Mallory-Weiss tear, 46, 165

Malrotation, 66–67, 197, 198

Mammary dysplasia, 60, 185–186

Mammography, 60, 62, 185, 186

Marjolin’s ulcer, 32, 144–145

Mastitis, 60, 185

Mechanical intestinal obstruction, 41, 47, 167

Meckel’s diverticulum, 51, 69, 173, 199

Meconium ileus, 67, 68, 197

Melanoma, 79–80, 210

Melena, 50

Meniscal tear, 25, 138

Mesenteric ischemia, 54, 176

Metabolic acidosis, 44, 160–161

surgical time and internal bleeding, 12, 118

Metabolic alkalosis, 44, 160, 161

Metabolic neurologic disease timetable and presentation, 87

Metabolic risk, 36, 151

Metacarpal neck fracture, 23, 136

Metastatic malignancy
- back pain, 30, 62, 144, 190, 225
- bone tumors, 30, 33, 62, 93, 146, 225, 233
- breast cancer, 30, 33, 62, 146, 225
- headache, 62, 190
- liver, 54, 176–177
- lung cancer, 74, 146
- lymph nodes, 84, 216–217
- melanoma, 80, 210
- prostatic cancer, 30, 33, 93, 233
- sentinel node biopsy, 61, 80, 188, 189, 190
- testicular cancer, 93, 234

Milk fistula, 186

Mitril regurgitation, 73, 204

Mitril stenosis, 72, 203
Monteggia fracture, 23, 135
Morton's neuroma, 32, 145
Multiple myeloma, 33, 146
Murmurs
- aortic insufficiency, 72, 203
- aortic stenosis, 72, 203
- atrial septal defect, 71, 201
- left-to-right shunts, 71
- mitral regurgitation, 73, 204
- mitral stenosis, 72, 203
- patent ductus arteriosus, 72, 202
- right-to-left shunts, 72
- ventricular septal defects, 71, 201–202
Myocardial contusion, 9, 113
Myocardial infarction
- cardiac risk, 35, 149, 150
- perioperative, 38, 153

N
Nasopharyngeal angiofibroma, 86, 220
Navicular fracture, 23, 135–136
Neck
- masses, 83–84, 215–217
- trauma, 7, 108–109
Necrolytic dermatitis of glucagonoma, 64, 193
Necrotic pancreas, 58
Necrotizing enterocolitis, 67, 197
Necrotizing skin as fracture emergency, 26
Neonates. See also Congenital disease
- bilious vomiting, 66–67, 197, 198
- green vomit, 66, 67, 196–197
- posterior urethral valve, 92
- urinary retention, 230–231
Nesidioblastosis, 192
Neurogenic shock, 5, 7
Neurologic evaluation in trauma, 5
Neuropathy and diabetic ulcer, 30–31, 144
Neurosurgery, 87–90, 221–227
Nipple discharge, bloody, 60, 186
Norwegian ancestry and palmar nodules, 29, 142
Nutritional risk, 36, 151

O
Obstructive jaundice, 55, 57, 178–179
Ogilvie syndrome, 41–42, 157
Omphalocele, 66, 196
Open fractures
- as emergencies, 26, 140
- head trauma, 6, 105
Open pneumothorax, 9
Ophthalmology, 81–82, 211–213
- burns, 17, 82, 212
- diabetic evaluation, 82, 213
- pediatric, 81, 211
Orange-peel skin, 62, 187
Orbital cellulitis, 82, 212, 219
Organ transplantation, 95–96, 237–238
Organic impotence, 94, 236
Orthopedics. See also Fractures
- adult, 22–32, 33, 134–145
- back pain, 29–30, 143–144
- emergencies, 26–28, 131–132, 139–141
- foot pain, 32, 145
- hand problems, 18, 28–29, 141–143
- human bites, 18, 129
- leg ulcers, 30–32, 144–145
- pathologic fractures, 33, 146
- pediatric, 19–21, 33, 131–134
- trauma to extremities, 14–15, 122–123
- tumors, 30, 33, 62, 93, 146–147, 225, 233
Osgood-Schlatter disease, 20, 132
Osteochondrosis of the tibial tubercle, 20, 132
Osteogenic sarcoma, 33, 146
Osteomyelitis
- acute hematogenous, 20, 132
- carcinoma from, 32, 144, 145
- diabetic ulcer and, 30, 144
Otolaryngology, 83–86, 215–220
- pediatric, 85, 218
Oxygenation via pulse oximetry, 3, 4, 100

P
Paget's disease of the breast, 187
Pain syndromes, 89–90, 227
Pain under cast, 25, 139
Pancreas, 57–59, 182–183
- abscess, 58, 182
- annular, 66, 67, 196, 197
- cancer, 55, 180
- pseudocyst, 58, 183
Pancreatitis
- acute, 52, 57–58, 174, 182
- acute edematous, 58
- acute severe, 58, 182
- acute supplicative, 58
- biliary, 57, 181
- chronic, 59, 183
- hemorrhagic, 173, 182
Paradoxical breathing, 9, 112
Paralytic ileus, postoperative, 41, 157
- “Paralytic ileus of colon,” 41–42, 157
Parathyroid adenoma, 191–192
Parinaud syndrome, 89, 224–225
Parkland formula for burns, 16, 125–126
Parotid tumors, 84, 218
Patent ductus arteriosus, 72, 202
Pathologic fractures, 33, 146
Peau d’orange, 62, 187
Pediatrics. See also Congenital disease; Neonates
- airway in trauma, 3, 100
- blood per rectum, 51, 173
- bone tumors, 33, 146
- brain tumors, 89, 225
- burns, fluid needs, 16–17, 126
- burns, scalding, 15–16, 69, 125
- child abuse, 15–16, 69, 125, 199
- epistaxis, 85–86, 219–220
- foreign bodies, 85, 218
- fractures, 20–21, 133–134
- hematuria, 121
- nesidioblastosis, 192
- ophthalmology, 81, 211
- orthopedics, 19–21, 33, 131–134
- otolaryngology, 85, 218
- peritonitis, 174
- snakebites, 18, 129
- spontaneous bacterial peritonitis, 51, 174
- surgery, 65–69, 193–199
- testicular torsion, 91, 229
- umbilical hernias, 59, 184
- UTI, 91, 92, 230, 231

Pelvic fracture, 13, 119
- urologic injuries, 14, 120

Penetrating trauma
- abdomen, 10–11
- abdominal gunshot wounds, 10, 100–101, 102, 115–116, 119, 154, 155
- abdominal stab wounds, 10, 116
- airway, 99
- back stab wound, 109
- chest gunshot wounds, 102–103
- chest stab wounds, 103, 110–112
- extremities gunshot wounds, 15, 102, 122–123
- extremities stab wounds, 122
- head, 6, 105
- neck, 7
- neck gunshot wounds, 108–109
- neck stab wounds, 109
- urologic injuries, 14, 119

Penile fracture, 14, 122

Perforation
- acute abdomen, 51, 173, 174
- colon, 46, 175
- diverticulitis and, 52
- esophagus, 46, 165
- meconium ileus with, 68
- necrotizing enterocolitis, 67
- septal and epistaxis, 86, 220

Perianal fistula, 49, 170, 171

Pericardial tamponade, 4, 100, 102–103

Pericarditis, chronic constrictive, 73

Peripheral arterial disease, 76–77, 208

Peritonitis
- blunt trauma and, 11
- generalized acute, 173
- spontaneous bacterial, 51, 174

Pheochromocytoma, 64, 193

Pineal gland tumor, 89, 224–225

“Pink and warm” shock, 5, 18

Pituitary tumor, 89, 224

Plantar fasciitis, 32, 145

Platelet count and sepsis in babies, 67

Pneumaturia, 94, 235

Pneumonia
- aspiration and, 39, 154
- postoperative, 37, 152
- rib fractures and, 8, 110

Pneumothorax
- hemopneumothorax, 112
- open, 9
- simple, 9, 110
- tension, intraoperative, 39–40, 154
- tension, trauma, 4, 5, 10, 100, 102, 103, 113

Polyps, colon, 48, 168

Popliteal artery injury, 27, 140

Posterior cruciate ligament (PCL) injury, 25

Posterior dislocation of hip, 26, 140, 141

Posterior fossa tumors, 89, 225

Posterior urethral valve, 92

Postoperative care
- complications, 36–44, 152–161
- heart surgery patient, 73, 204–205
- immunization after splenectomy, 12, 117

Potassium administration rate, 43, 160

Pregnancy and breast cancer, 61, 186, 189

Preoperative assessment, 35–36, 149–151

Primary Survey of patient, 3–5, 99–104

Prolactinomas, 89, 223

Prostate
- cancer, 30, 33, 93, 146, 232–233
- hypertrophy, benign, 93, 234
- prostatic specific antigen (PSA), 93, 232–233
- prostatitis, acute bacterial, 92, 230

Prosthetic valves, 73, 201

Prothrombin time in hepatic risk, 36

Pseudomembranous enterocolitis, 48, 169

Pseudo-obstruction of bowel, 41–42, 157

Psychogenic impotence, 94, 235

Pulmonary contusion, 9, 112, 113

Pulmonary embolus (PE), postoperative, 38–39, 154

Pulmonary postoperative complications, 37–40, 154

Pulmonary risk, 36, 150

Pulse oximetry, 3, 4, 100

Pupil white, 81, 211

Pyelonephritis, 92, 230

Pyloric stenosis, hypertrophic, 68, 198

Pyogenic liver abscess, 54, 177
Rabies prophylaxis, 17, 127–128
Radial nerve in fracture, 27, 140
Radiology. See CT images; X-ray images
Ranson’s criteria for pancreatitis, 58, 182
Recluse spider bites, 18, 129
Reflex sympathetic dystrophy, 90, 227
Rejection of transplanted tissue, 95–96, 237–238
Remodeling in fractures, 20, 133
Renal cell carcinoma, 92–93, 232
Renal failure
 crushing injuries and, 15, 43, 123
 metabolic acidosis and, 44
 postoperative urinary output, 41, 156–157
Renal injuries, 14, 121
Renal pedicle fistula, 14, 121
Renovascular hypertension, 14, 64, 194
Replantation of amputated digit, 29, 143
Respiratory acidosis/alkalosis, 44
Respiratory burns, 15, 124
 fluid resuscitation needs, 126
Rest pain of claudication, 76, 77, 208
Retinal artery occlusion, 82, 213
Retinal detachment, 82, 212
Reynolds pentad, 57
Rheumatic fever and mitral stenosis, 72, 203
Rib fractures, 8, 9, 110, 112–113
Right-to-left shunts, 72
Rule of nines for burns, 16, 125
 babies, 17, 126
Salter Harris (SH) classification, 21
Sarcomas
 Ewing, 33, 146
 osteogenic, 33, 146
 soft tissue, 33, 147
Scalding burns, 15–16, 69, 125, 199
Scaphoid fracture, 23, 135–136
Scoliosis, 20, 133
“Scoop and run,” 101, 102
Scrotal hematomas, 14, 121
Secondary Survey in trauma, 5
Sentinel node biopsy, 61, 80, 188, 189, 190
Sepsis
 fistula of GI tract, 42
 platelet count in babies, 67
 postoperative disorientation, 40, 155
 septic hip, 19–20, 132
Serum albumin in hepatic risk, 36
Shaken baby syndrome, 69
“Shin splints,” 25
Shock, 4–5, 100–104
Shoulder
 dislocation, 22, 134–135
 multiple myeloma image, 33
 Simple pneumothorax, 9, 110
 Sistrunk procedure, 83, 215
Skin
 burns, 15–17, 123–127
 cancer, 79–80, 209–210
 leg ulcers, 30–32, 144–145
 necrolytic dermatitis of glucagonoma, 64, 193
 necrotizing skin from fracture, 26
 peau d’orange, 62, 187
Skull fractures, 6, 105–106
Slipped capital femoral epiphysis (SCFE), 19, 131
Small cell cancer of lung, 74, 206
Smoking and preoperative assessment, 36, 150
Snakebites, 17–18, 128–129
SOFA scores and acute severe pancreatitis, 58
Soft tissue sarcoma, 33, 147
Spider bites, 18, 129
Spinal cord injury, 7–8, 109–110, 225–226
 cauda equina syndrome, 29, 143
Spinal shock, 5
 spinal cord injury, 7
Spinal stenosis, 226
Spleen rupture, 12–13, 117
Spontaneous bacterial peritonitis (SBP), 51, 174
Squamous cell carcinoma
 anus, 49, 171
 burn sites, 32, 145
 chronic ulcer sites, 32, 144–145
 mucosae of head and neck, 84, 217
 skin, 32, 79, 209
Stab wounds
 abdomen, 10, 116
 airway, 99
 back, 109
 chest, 103, 110–112
 extremities, 122
 neck, 109
Stenosing tenosynovitis, 28
Stings, 18, 104, 129
Stomach, 47, 166
Stones
 gallstones, 55–56, 180, 181
 ureteral, 52, 91, 94, 229, 235
Strabismus, 81, 211
Strangulated hernias, 59, 167, 184
Strangulated obstruction of intestines, 47, 166
Stress fracture, 25, 138
Stress incontinence, 93–94, 234
Stress ulcer, 51, 173
Stroke
 hemorrhagic, 88, 222
 ischemic, 88, 221
 transient ischemic attacks as predictors, 87
 very early stroke, 88, 221
Subarachnoid hemorrhage, 88, 222
Subclavian steal syndrome, 75, 207
Subcutaneous emphysema, 10, 114, 165
Subdural hematoma (SDH)
 acute, 6, 106–107
 chronic, 7, 107
 shaken baby syndrome, 69
Sucking chest wounds, 9, 112
“Sunset eyes,” 89, 224–225
Supracondylar humerus fracture, 20, 21, 133
Surgical hypertension, 64, 193–194
Swallowing difficulties, 45–46, 71, 164, 201

T
Talipes equinovarus, 20, 133
Tenosynovitis, 28, 142
Tension pneumothorax
 intraoperative, 39–40, 154
 trauma, 4, 5, 10, 100, 102, 103, 113
Testes
 cancer, 93, 233–234
 retractile, 231
 scrotal hematomas, 14, 121
 torsion, 91, 229
Tetanus prophylaxis
 bites, 17, 127, 128
 burns, 17, 127
 extremity trauma, 14, 122
Tetralogy of Fallot, 72, 202
Thenar atrophy, 28
Thyroglossal duct cyst, 83, 215
Thyroid nodules, 63, 191
Tibia/fibula fractures, 25, 138
Tibial stress fracture, 25, 138
Tic douloureux, 89, 227
Tinel's sign, 28
Total anomalous pulmonary venous connection, 202
Toxic megacolon, 48, 168–169
Trachea, traumatic rupture, 10, 114
Tracheoesophageal fistula, 65, 195
Tracheomalacia, 71, 201
Transient ischemic attack (TIA), 87, 221
Transplantation of organs, 95–96, 237–238
Transposition of the great vessels, 72, 202
Trauma
 ABCs, 3–5, 99–104
 abdominal, 10–13, 100–101, 102, 115–118, 119, 154, 155
 amputation of digit, 29, 143
 aortic injury, 9–10, 112, 113, 114
 bites, 17–18, 102, 127–129
 burns, 15–17, 69, 82, 123–127, 199, 212
 cervical spine evaluation, 28, 106, 109, 141
 chest, 8–10, 102–103, 110–115, 116
 extremities, 14–15, 122–123. See also Extremities
 facial nerve injuries, 85, 219
 head, 6–7, 28, 105–108
 neck, 7, 108–109
 organic impotence, 94, 236
 pelvic fracture, 13, 119
 reflex sympathetic dystrophy, 90, 227
 spinal cord injury, 7–8, 109–110, 225–226
 stings, 18, 104, 129
 urologic, 14, 119–122
Traumatic brain injury (TBI), 6
Triad of death, 118
Traumatic brain injury (TBI), 6
Triad of death, 118
Tricuspid atresia, 202
Trigeminal neuralgia, 89, 227
Trigger finger, 28, 141
Truncus arteriosus, 72, 202
Tumors. See also Cancer
 acoustic nerve neuroma, 84, 217
 bone, 33, 146
 brain, 87, 88–89, 222–225
 cystosarcoma phylloides, 60, 185
 facial nerve, 84, 218
 frontal lobe, 88, 89, 223
 nasopharyngeal angiofibroma, 86, 220
 neck masses, 83–84, 215–217
 obstructive jaundice, 55, 179
 parotid, 84, 218
 pinal gland, 89, 224–225
 pituitary, 89, 224
 posterior fossa, 89, 225
 testicular as benign, 93, 233
 urologic, 92–93, 232–234
24-hour urinary collection, 47, 167, 193

U
Ulcerative colitis, chronic, 48, 168–169
Ulcers
 gastrinoma, 63, 192
 leg ulcers, 30–32, 144–145
 stress ulcers, 51, 173
Umbilical hernia, 59, 184
Uncomplicated pneumothorax, 9, 110
Ureter, low implantation, 92, 231
Ureteral colic, 175, 235
Ureteral stones, 52, 94, 235
 infection and, 91, 229
Ureteropelvic junction obstruction, 92, 232
Urethral injuries, 14, 120
Urinary bladder. See Bladder
Urinary collection, 24-hour, 47, 167, 193
Urinary postoperative complications, 37, 41, 156–157
Urinary retention
 acute, 93, 226, 234
 neonatal, 230–231
 postoperative, 41, 93, 156, 234
Urinary tract infections (UTI), 91–92, 230
 pediatric, 91, 92, 230, 231
postoperative, 37, 153
Urinary tract obstructions, 91–92
infection and, 91, 229
ureteral stones, 52, 94, 235
ureteropelvic junction, 92, 232
Urology
congenital disease, 66, 92, 230–232
emergencies, 91–92, 122, 229–230
incontinence, 93–94, 234
injuries, 14, 119–122
stones, 52, 91, 94, 229, 235
tumors, 92–93, 232–234
urinary retention, 41, 93, 156, 226, 230–231, 234

V
VACTER constellation, 65, 195
Valgus stress test, 25, 137
Valves, prosthetic, 73, 201
Varus stress test, 25, 137
Vascular neurologic diseases, 87–88, 221–222
timetable and presentation, 87
Vascular occlusive disease, 87–88, 207, 208
disabling intermittent claudication, 76–77
occlusive disease of lower extremities, 31, 76–77, 208
organic impotence, 94, 236
renovascular hypertension, 64, 194
rest pain, 76, 77, 208
subclavian steal syndrome, 75, 207
Vascular ring, 71, 201
Vascular surgery, 75–77, 207–208
Vasomotor shock, 104
bee stings, 18, 104
Venous stasis ulcer, 31, 144
Ventricular septal defects, 71, 201–202
Vertigo, 86, 220, 221
Vesicoureteral reflux, 92
Vinchow's node and metastasis, 84, 216
Volkmann contracture, 133
Volvulus of sigmoid, 53, 176
Vomiting
blood, 46, 50, 165, 171
infant green/bilious, 66–67, 196–197, 198
infant non-bilious projectile, 68, 198
projectile of brain tumors, 87, 88, 222, 225

W
“Water hammer pulse,” 72
Water intoxication, 40, 43, 155, 159
White pupil, 81, 211
“Wind, water, walking, wound,” 37, 153
Wound dehiscence, 42, 157–158
Wound infection, 38, 42, 153, 158

X
X-ray images. See also Chest x-ray
angiogram of peripheral vascular disease, 77
atelectasis, 37
breast cancer, 62
Colles' fracture, 22
congenital diaphragmatic hernia, 66
“double-bubble,” 66, 67, 196–197, 198
femoral neck fracture, 23
foreign body in airway, 85
gas gangrene, 27
intertrochanteric fracture, 24
lumbar disk herniation, 30
meconium ileus, 68
multiple myeloma, 33
perforation of colon, 46
rib fractures, 8
Salter Harris grade III fracture, 21
supracondylar humerus fracture, 21
Z
Zollinger-Ellison syndrome, 63, 192